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Abstract. This short note is a continuous work of our previous paper [SW], where we were

mainly concerned with the BMO theory of the universal Teichmüller space. We will endow the

BMO-Teichmüller curve Tb, the VMO-Teichmüller curve Tv and the BMO-Teichmüller space Tb with

BMO manifold structures and prove that all these three spaces Tb, Tv and Tb are contractible. We

will also introduce a (new) extended BMO-Teichmüller space T̂b and endow it with BMO manifold

structures.

1. Introduction

We begin with some basic notations. Let ∆ = {z : |z| < 1} denote the unit disk

in the extended complex plane Ĉ. Then S1 = ∂∆ is the unit circle. We also denote
by H = {z = x+ iy : y > 0} the upper half plane, and R the real line. I0 will always
denote the unit circle S1 or the real line R.

The universal Teichmüller space T is a universal parameter space for all Rie-
mann surfaces and one of its models can be defined as the right coset space T =
QS(I0)/Möb(I0). Here, QS(I0) denotes the group of all quasisymmetric homeomor-
phisms of I0 onto itself, and Möb(I0) the subgroup of QS(I0) which consists of Möbius
transformations keeping I0 fixed. Recall that a sense preserving self-homeomorphism
h of I0 is quasisymmetric if there exists a (least) positive constant C(h), called the
quasisymmetric constant of h, such that

(1.1)
|h(I1)|

|h(I2)|
≤ C(h)

for all pairs of adjacent arcs I1 and I2 on I0 with the same arc-length |I1| = |I2|.
Beurling–Ahlfors [BA] proved that a sense preserving self-homeomorphism h of R is
quasisymmetric if and only if there exists some quasiconformal homeomorphism of
H onto itself which has boundary values h. Later Douady–Earle [DE] gave a quasi-
conformal extension of a quasisymmetric homeomorphism of S1 which is conformally
invariant. It is known that T is contractible (see [EE] and also [DE]) and is an infinite
dimensional complex manifold modeled on a Banach space via the Bers embedding
through the Schwarzian derivative (see [GL, Le, Na]).

https://doi.org/10.5186/aasfm.2017.4254
2010 Mathematics Subject Classification: Primary 30C62, 30F60, 32G15; Secondary 30H35.
Key words: Universal Teichmüller space, BMO-Teichmüller space, VMO-Teichmüller space,

strongly quasisymmetric homeomorphism.
Research supported by the National Natural Science Foundation of China (Grant Nos.

11371268, 11601360, 11631060) and the Natural Science Foundation of Jiangsu Province (Grant
No. BK20141189).



922 Yue Fan, Yun Hu and Yuliang Shen

The universal Teichmüller curve T is a close relative of T and one of its models
can be defined as the right coset space T = QS(S1)/Rot(S1), where Rot(S1) denotes
the group of all rotations about the circle S1. It is also known that T is contractible,
is an infinite dimensional complex manifold modeled on a Banach space via the
logarithmic derivative embedding and the natural projection Φ from T onto T is a
holomorphic split submersion (see [Be, DE, Te1-2]).

In this note, we are mainly concerned with two subclasses of quasisymmetric
homeomorphisms. A sense preserving self-homeomorphism h of I0 is said to be
strongly quasisymmetric if there exist two positive constants C1(h), C2(h), called the
strongly quasisymmetric constants of h, such that

(1.2)
|h(E)|

|h(I)|
≤ C1(h)

(

|E|

|I|

)C2(h)

whenever I ⊂ I0 is an interval and E ⊂ I a measurable subset. In other words, h
is strongly quasisymmetric if and only if h is locally absolutely continuous so that
|h′| belongs to the class of weights A∞ introduced by Muckenhoupt (see [CF, Ga]),
in particular, log h′ belongs to BMO(I0), the space of locally integrable functions on
I0 of bounded mean oscillation (see [FS, Ga, Po, Zh] and Section 2). Here and in
what follows, f ′ denotes the derivative of a function f defined on a set E, namely,
for z ∈ E,

f ′(z) = lim
E∋ζ→z

f(ζ)− f(z)

ζ − z
,

provided the limit exists, while f ′(z) = 0 otherwise. Let SQS(I0) denote the set of
all strongly quasisymmetric homeomorphisms of I0 onto itself. Then SQS(I0) is a
sub-group of QS(I0) and Tb = SQS(I0)/Möb(I0) is a model of the BMO-Teichmüller
space. We say a sense preserving self-homeomorphism h of the unit circle S1 is
strongly symmetric if it is absolutely continuous such that log h′ belongs to VMO(S1),
the space of integrable functions on S1 of vanishing mean oscillation (see [Ga, Po,
Sa, Zh] and Section 2). We denote by SS(S1) the set of all strongly symmetric self-
homeomorphisms of the unit circle. Then SS(S1) is a sub-group of SQS(S1) (see [Pa])
and Tv = SS(S1)/Möb(S1) is a model of the VMO-Teichmüller space. These two sub-
classes of quasisymmetric homeomorphisms and their Teichmüller spaces were much
investigated (see [AZ, CZ, FH, FHS, FKP, HS, Ma, Se, SW, TWS, We, WS]) because
of their great importance in the application to harmonic analysis (see [Da, FKP, Jo,
Se]).

This note is a continuous work of the previous paper [SW] by Wei and the third
named author of the present paper, where we were mainly concerned with the BMO
theory of the universal Teichmüller space. In particular, it was proved in [SW] that
both Tb and Tv have complex Banach manifold structures via the Bers embedding
through the Schwarzian derivative such that Tv is a complex sub-manifold of Tb. Here
we shall deal with two fiber spaces Tb = SQS(S1)/Rot(S1) and Tv = SS(S1)/Rot(S1)
over Tb and Tv respectively. It was also proved in [SW] that both Tb and Tv have
complex Banach manifold structures via the logarithmic derivative embedding such
that Tv is a complex sub-manifold of Tb, and the natural projections Φ: Tb → Tb and
Φ: Tv → Tv are holomorphic split submersions. In the present paper, we will endow
these two fiber spaces with new BMO manifold structures (see Theorems 3.3 and 3.4).
In particular, we will prove that both Tb and Tv are contractible (see Corollary 3.5).

We will also endow the BMO-Teichmüller space Tb = SQS(R)/Möb(R) with a
new BMO manifold structure and prove that Tb is contractible (see Theorem 4.1 and
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Corollary 4.2). More generally, we say a sense preserving homeomorphism h on R is
strongly quasisymmetric if it is locally absolutely continuous so that |h′| belongs to
the class of weights A∞ and it maps R onto a chord-arc curve passing through the
point at infinity (see [Se]). Recall that a Jordan curve Γ is a chord-arc (or Lavrentiev)
curve with constant K ≥ 0 if it is locally rectifiable and

(1.3) |s1 − s2| ≤ (1 +K)|z(s1)− z(s2)|

for all s1 ∈ R and s2 ∈ R, where z(s) is the parametrization of Γ by the arc-length
s ∈ R (see [La, Po]). We denote by SQSC(R) the set of all strongly quasisymmetric
homeomorphisms on the real line R and by Möb(C) the set of all Möbius transfor-

mations in the complex plane C (with ∞ fixed). Then T̂b = SQSC(R)/Möb(C) is an
extension of Tb, which we call it the extended BMO-Teichmüller space. In section 5,
we will also endow this extended BMO-Teichmüller space T̂b with a (complex) BMO
manifold structure (see Theorem 5.2 and also Theorem 5.3). In the final section, we
list several open problems which are suggested by our discussions in Sections 3–5.

2. Preliminaries on BMO functions

In this section, we shall recall some basic definitions and results on BMO-functions.
For primary reference, see [Ga].

A locally integrable function u ∈ L1
loc(I0) is said to have bounded mean oscillation

if

(2.1) ‖u‖I0 = sup
1

|I|

ˆ

I

|u(z)− uI ||dz| < +∞,

where the supremum is taken over all sub-intervals I of I0, while uI is the average of
u on the interval I, namely,

(2.2) uI =
1

|I|

ˆ

I

u(z)|dz|.

If u also satisfies the condition

(2.3) lim
|I|→0

1

|I|

ˆ

I

|u(z)− uI ||dz| = 0,

we say u has vanishing mean oscillation. The classes of these functions are denoted
by BMO(I0) and VMO(I0), respectively.

We need some basic results on BMO functions. By the well-known theorem
of John–Nirenberg for BMO functions (see [Ga]), there exist two universal positive
constants C1 and C2 such that for any BMO function u, any subinterval I of I0 and
any λ > 0, it holds that

(2.4)
|{z ∈ I : |u(z)− uI | ≥ λ}|

|I|
≤ C1 exp

(

−C2λ

‖u‖I0

)

.

By means of (2.4), it is easy to obtain the following basic results (see [Sh] for a proof).

Proposition 2.1. Let u ∈ BMO(S1) and p ≥ 1. Then eu ∈ Lp(S1) when p‖u‖S1

is small. In particular, if u ∈ VMO(S1), then eu ∈ Lp(S1) for any real number p ≥ 1.

Proposition 2.2. Let u ∈ VMO(S1) and un ∈ BMO(S1). If ‖un − u‖S1 → 0
and (un − u)S1 → 0 when n→ ∞, then for any p ≥ 1, ‖eun − eu‖Lp → 0 as n→ ∞.

(2.4) also plays an important role in the proof of the following well-known result.
Proposition 2.3. [Jo] Let h ∈ SQS(I0). Then the pull-back operator Ph defined

by Ph(u) = u ◦ h is a bounded isomorphism from BMO(I0) onto itself.
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We also need the following basic result. A proof can be found in [Pa].

Proposition 2.4. [Pa] Let f ∈ L1(S1) and f̂ ∈ L1
loc(R) be related by f̂(x) =

f(eix) for x ∈ R. Then f ∈ BMO(S1) if and only if f̂ ∈ BMO(R), and ‖f‖S1 ≤

‖f̂‖R ≤ 3‖f‖S1.

3. On the structures of Tb and Tv

We first recall the following result from our paper [SW].

Proposition 3.1. [SW] The mapping Ψ: Tb → BMO(S1)/C defined by Ψ(h) =
log h′ is a homeomorphism from Tb onto its image.1

By means of Proposition 3.1, it is natural to assign the following metric to Tb by

(3.1) d(h1, h2) = ‖ log h′1 − log h′2‖S1.

As will be seen below, a more natural metric on Tb is

(3.2) dR(h1, h2) = ‖ log |h′1| − log |h′2|‖S1.

Lemma 3.2. dR and d induce the same topology on Tb.

Proof. We use some discussion from [Sh] by the third author of the present paper.
Each point h in Tb can be considered as a strongly quasisymmetric homeomorphism
of S1 onto itself which keeps 1 fixed. Writing h(eiθ) = eiφ(θ), φ is a strictly increasing
and absolutely continuous function on the real line R such that φ(0) = 0, φ(θ+2π) =
φ(θ) + 2π. Then it holds that

(3.3) h′(eiθ) = ei(φ(θ)−θ)φ′(θ).

Recall that φ′(θ) = |h′(eiθ)| ∈ A∞.
We first show that, as ‖ log |h′|‖S1 → 0, ‖ℑ(log h′)‖S1 → 0, which implies that

‖ log h′‖S1 → 0. For simplicity, we set f = ℑ(log h′) so that f̂(θ) = φ(θ) − θ.
Recall that for any s > 0, the Sobolev space Hs consists of all integrable functions
u ∈ L1(S1) on the unit circle with semi-norm

(3.4) ‖u‖Hs =

(

+∞
∑

n=−∞

|n|2s|an(u)|
2

)
1

2

,

where, as usual, an(u) is the n-th Fourier coefficient of u, namely,

(3.5) an(u) =
1

2π

ˆ 2π

0

û(θ)e−inθ dθ.

In particular, a0(u) = uS1. Then it is well known thatH
1

2 ⊂ VMO(S1), and the inclu-
sion map is continuous (see [Zh]). Therefore, it is sufficient to show that ‖f‖

H
1

2
→ 0

as ‖ log |h′|‖S1 → 0.
Set u = log |h′| − a0(log |h

′|) so that a0(u) = 0. Then, by Proposition 2.2, we
obtain ‖eu − 1‖L1 → 0 as ‖ log |h′|‖S1 → 0. Noting that

|a0(e
u)− 1| =

1

2π

∣

∣

∣

∣

ˆ 2π

0

(eû(θ) − 1) dθ

∣

∣

∣

∣

≤ ‖eu − 1‖L1,

1The correspondence h 7→ log h′ induces a map from QS(S1) into BMO(S1). It projects to a
well-defined map Ψ sending an equivalence [h] in Tb to the equivalence class [log h′] in BMO(S1)/C.
For simplicity, we still use h 7→ log h′ to denote the correspondence by Ψ, namely, Ψ(h) = log h′.
The correspondences in the following Theorems 3.3, 4.1 and 5.2 will also be understood in this
sense.
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we conclude that a0(e
u) → 1 as ‖ log |h′|‖S1 → 0. Since eu = |h′|/ea0(log |h

′|), and
a0(|h

′|) = 1, we have a0(log |h
′|) → 0 as ‖ log |h′|‖S1 → 0. By Proposition 2.2 again,

we obtain ‖|h′| − 1‖L2 → 0 as ‖ log |h′|‖S1 → 0.
On the other hand, the n-th (n 6= 0) Fourier coefficient of f is

an(f) =
1

2π

ˆ 2π

0

(φ(θ)− θ)e−inθ dθ =
1

2nπi

ˆ 2π

0

(φ′(θ)− 1)e−inθ dθ.

Thus, by Parseval’s equality, we have

‖f‖2H1 =
∑

n 6=0

n2|an(f)|
2 =

1

4π2

∑

n 6=0

∣

∣

∣

∣

ˆ 2π

0

(φ′(θ)− 1)e−inθ dθ

∣

∣

∣

∣

2

= ‖|h′| − 1‖2L2.

Thus, ‖f‖
H

1

2
≤ ‖f‖H1 → 0 as ‖ log |h′|‖S1 → 0.

Now let h0 and h be given in Tb such that dR(h, h0) → 0. We consider g = h◦h−1
0 .

Then

(3.6) log g′ = (log h′ − log h′0) ◦ h
−1
0 .

By Proposition 2.3, we obtain

(3.7) ‖ log g′‖S1 = ‖(log h′ − log h′0) ◦ h
−1
0 ‖S1 ≍ ‖ log h′ − log h′0‖S1 = d(h, h0).

Here and in what follows, the notation A ≍ B means that there is a constant C
independent of A and B such that A/C ≤ B ≤ CA. Writing h0(e

iθ) = eiφ0(θ) and
h(eiθ) = eiφ(θ) as above, then g(eiτ ) = eiψ(τ) with ψ = φ ◦ φ−1

0 . Thus,

(3.8) logψ′ = (log φ′ − logφ′
0) ◦ φ

−1
0 .

Noting that φ′
0(θ) = |h′0(e

iθ)|, φ′(θ) = |h′(eiθ)| and ψ′(τ) = |g′(eiτ )|, we conclude by
Propositions 2.3 and 2.4 that

‖ log |g′|‖S1 ≍ ‖ logψ′‖R = ‖(logφ′ − log φ′
0) ◦ φ

−1
0 ‖R

≍ ‖ logφ′ − log φ′
0‖R ≍ ‖ log |h′| − log |h′0|‖S1

= dR(h, h0).

(3.9)

As a matter of fact the properties (3.7) and (3.9) imply that d(h, h0) → 0 if and only
if dR(h, h0) → 0. �

Let BMOR(I0) (VMOR(I0)) denote the real valued BMO (VMO) functions on
I0. Then we have

Theorem 3.3. The mapping ΨR : Tb → BMOR(S
1)/R defined by ΨR(h) =

log |h′| is a homeomorphism from Tb onto its image. The image ΨR(Tb) is a starlike

open subset of BMOR(S
1)/R.

Proof. The first statement follows directly from Proposition 3.1 and Lemma 3.2.
To prove the openness of the image, we need a basic property of A∞ weight (see
[Ga]): There exists some universal constant C > 0 such that eu ∈ A∞ whenever
u ∈ BMOR(I0) has norm ‖u‖I0 < C. Now let h0(e

iθ) = eiφ0(θ) be given in Tb. For
any u ∈ BMOR(S

1)/R, by adding to a constant to u if necessary, we may assume
that a0(e

u) = 1. Set h(eiθ) = eiφ(θ) by

(3.10) φ(θ) =

ˆ θ

0

eû(t) dt, θ ∈ R.

Then h is an absolutely continuous sense-preserving homeomorphism of the unit
circle with log |h′(eiθ)| = logφ′(θ) = u(eiθ). As in the proof of Lemma 3.2, set



926 Yue Fan, Yun Hu and Yuliang Shen

g = h ◦ h−1
0 and ψ = φ ◦ φ−1

0 so that g(eiτ ) = eψ(τ). We conclude by (3.9) that,
when ‖u− log |h′0|‖S1 is small, ‖ log |g′|‖S1 is also small, which implies by the above
mentioned A∞ property that |g′| ∈ A∞, that is, g ∈ Tb. Since Tb is a group, we
obtain h = g ◦ h0 ∈ Tb, or equivalently, u ∈ ΨR(Tb) when ‖u − log |h′0|‖S1 is small.
Consequently, ΨR(Tb) is an open subset of BMOR(S

1)/R.
To prove the starlikeness of the image, we need another basic property of A∞

weight (see [Ga]): Let ω ∈ A∞ be given. Then for each 0 < t < 1, ωt ∈ A∞. Let
h(eiθ) = eiφ(θ) be given in Tb. Then φ′ ∈ A∞. For 0 < t < 1, define ht(e

iθ) = eiφt(θ)

by

(3.11) φt(θ) =
2π

´ 2π

0
(φ′)t(τ) dτ

ˆ θ

0

(φ′)t(τ) dτ, θ ∈ R.

Since φ′
t = (φ′)t/a0((φ

′)t) ∈ A∞, ht ∈ Tb. Noting that log |h′t| = t log |h′|−log a0((φ
′)t),

we conclude that ΨR(Tb) is a starlike subset (with respect to the zero element) of
BMOR(S

1)/R. �

Theorem 3.4. The mapping ΨR is a homeomorphism from Tv onto VMOR(S
1)/

R.

Proof. It is sufficient to show that ΨR maps Tv onto VMOR(S
1)/R. This is easy.

For any u ∈ VMOR(S
1)/R, by adding to a constant to u if necessary, we may assume

that a0(e
u) = 1. Define h(eiθ) = eiφ(θ) by (3.10). Then h is an absolutely continuous

sense-preserving homeomorphism of the unit circle with log |h′(eiθ)| = logφ′(θ) =

u(eiθ). As in the proof of Lemma 3.2, consider f = ℑ(log h′) so that f̂(θ) = φ(θ)− θ.
Thus, f is continuous on the unit circle S1, in particular, f ∈ VMO(S1). Thus,
log h′ = log |h′|+ if ∈ VMO(S1), that is, h ∈ Tv, and u ∈ ΨR(Tv). �

Corollary 3.5. Both Tb and Tv are contractible.

Proof. Since ΨR(Tb) and ΨR(Tv) are starlike, and the latter one is even the whole
real Banach space VMOR(S

1)/R, they are definitely contractible. As the images of
contractible spaces under homeomorphic maps, Tb and Tv are also contractible. �

4. On the structure of Tb

Theorem 4.1. The mapping Ψ: Tb → BMOR(R)/R defined by Ψ(h) = log h′

is a homeomorphism from Tb = SQS(R)/Möb(R) onto its image. The image Ψ(Tb)
is a starlike open subset of BMOR(R)/R.

Proof. A proof of the first statement was given in our previous paper [SW], which
uses a series of results from the papers [AZ, Da2, Se]. For details, see Theorem 7.1
and its proof in [SW].

The proof of the second statement is similar to that of Theorem 3.3. Each
point in Tb = SQS(R)/Möb(R) can be considered as a strongly quasisymmetric
homeomorphism h which maps the real line R strictly increasingly onto itself and
keeps the points 0 and 1 fixed. Now let h0 ∈ Tb be given. For any u ∈ BMOR(R)/R,

by adding a constant to u if necessary, we may assume that
´ 1

0
eu(t) dt = 1. Set

(4.1) h(x) =

ˆ x

0

eu(t) dt, x ∈ R.

Then h is a locally absolutely continuous and strictly increasing homeomorphism of
the real line R onto itself with log h′ = u. Setting g = h ◦ h−1

0 , we conclude by
Proposition 2.3 (see (3.7)) that, when ‖u− log h′0‖R is small, ‖ log g′‖R is also small,
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which implies by the A∞ property that g′ ∈ A∞, that is, g ∈ Tb. Since Tb is a group,
we obtain h = g ◦ h0 ∈ Tb, or equivalently, u ∈ Ψ(Tb) when ‖u − log h′0‖R is small.
Consequently, Ψ(Tb) is an open subset of BMOR(R)/R.

To prove the starlikeness of the image, we fix h ∈ Tb so that h′ ∈ A∞. For
0 < t < 1, define

(4.2) ht(x) =

´ x

0
(h′)t(τ) dτ

´ 1

0
(h′)t(τ) dτ

, x ∈ R.

Clearly, h′t ∈ A∞ and ht ∈ Tb. Noting that log h′t = t log h′ up to a constant,
we conclude that Ψ(Tb) is a starlike subset (with respect to the zero element) of
BMOR(R)/R. �

Corollary 4.2. Tb is contractible.

Proof. As the image of a starlike set under a homeomorphism, Tb contractible. �

Remark 4.3. The contractibility of the VMO-Teichmüller space Tv was proved
recently in our paper [TWS] by a very different approach. In the recent paper
[FH], Fan–Hu even proved that the VMO-Teichmüller space Tv is holomorphically
contractible.

Remark 4.4. As stated in section 1, Tb is a complex manifold modeled on a
Banach space (see [SW]). Theorem 4.2 implies that Tb can be endowed with the
BMO manifold structure by the homeomorphism Ψ: Tb → BMOR(R)/R defined by
Ψ(h) = log h′. It can be proved that the original complex manifold structure on Tb
is compatible with this new BMO manifold structure. Details will appear elsewhere.

5. On the structure of T̂b

We first recall some basic results on chord-arc curves. Let Γ be a chord-arc
curve passing through the point at infinity with parametrization z(s) by the arc-
length s ∈ R. David [Da1] proved that there exists some b ∈ BMOR(R) such that
z′(s) = eib(s). Furthermore, these BMO functions b′s form an open subset Ω of
BMOR(R)/R. Actually, Coifman–Meyer [CM] proved the following stronger result.

Proposition 5.1. [CM] For any b ∈ Ω, there exists some δ > 0 such that the

following equation

(5.1) z̃(x) = z0 +

ˆ x

0

ei(b(t)+w(t)) dt

represents a chord-arc curve whenever w ∈ BMO(R) with ‖w‖R < δ.

Theorem 5.2. The mapping Ψ defined by Ψ(h) = log h′ is a one-to-one map

from T̂b = SQS
C
(R)/Möb(C) into BMO(R)/C. The image Ψ(T̂b) is an open subset

of BMO(R)/C.

Proof. Let h0 ∈ SQS
C
(R) so that h0 is a locally absolutely continuous sense-

preserving homeomorphism from R onto a chord-arc curve Γ0 so that |h′0| ∈ A∞. We
first show that log h′0 ∈ BMO(R). Let z0(s) be the parametrization of Γ0 by the arc-
length s ∈ R. Then there exists b0 ∈ Ω such that z′0(s) = eib0(s). Set g0 = z−1

0 ◦ h0 so
that z0 ◦ g0 = h0. Then g0 is a locally absolutely continuous self-homeomorphism of
R, and (z′0 ◦ g0)g

′
0 = h′0 so that g′0 = |h′0| ∈ A∞, that is, g0 ∈ SQS(R). Consequently,

log h′0 = ib0 ◦ g0 + log g′0 ∈ BMO(R). Clearly, Ψ(h) = log h′ determines a one-to-one

map Ψ from T̂b = SQSC(R)/Möb(C) into BMO(R)/C.
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We proceed to show that log h′0 is an interior point of Ψ(T̂b). Let w = u + iv ∈

BMO(R) be given with small norm ‖w‖R. We need to find h ∈ T̂b with log h′ =
log h′0 + w.

To do so, let z′0(s) = eib0(s) and z0 ◦ g0 = h0 as above. Consider

(5.2) z̃(x) =

ˆ x

0

ei(b0(t)−i(w◦g
−1

0
)(t)) dt.

Since ‖w‖R is small, and g0 ∈ SQS(R), ‖w ◦ g−1
0 ‖R is also small. We conclude by

Proposition 5.1 that the equation (5.2) represents a chord-arc curve Γ. Set h = z̃ ◦ g0
so that h maps R onto Γ. Then

h′ = (z̃′ ◦ g0)g
′
0 = (z′0 ◦ g0)g

′
0e
w = h′0e

w,

which implies that log h′ = log h′0 + w. We also have |h′| = g′0e
u, or equivalently,

log |(h ◦ g−1
0 )′| = u ◦ g−1

0 . Since ‖u‖R ≤ ‖w‖R is small, and g0 ∈ SQS(R), ‖u ◦ g−1
0 ‖R

is also small. By A∞ property we obtain |(h ◦ g−1
0 )′| ∈ A∞ and so |h′| ∈ A∞ due

to the fact that SQS(R) is a group. Consequently, h ∈ T̂b is the required mapping.
This completes the proof of Theorem 5.2. �

During the proof of Theorem 5.2, we use the chord-arc curve Γ by (5.2). In
general, (5.2) is not the parametrization of Γ by the arc-length, and it is really so
only when u = 0. For completeness, we now find the parametrization of Γ by the
arc-length s ∈ R even if u 6= 0. To approach this, we set

(5.3) f0(x) =

ˆ x

0

eu◦g
−1

0 dt.

Since ‖u ◦ g−1
0 ‖R is small, f ′

0 ∈ A∞ and f0 ∈ SQS(R). Set g = f0 ◦ g0. Then
g ∈ SQS(R), and g′ = (f ′

0 ◦ g0)g
′
0 = eug′0.

Let

(5.4) b = b0 ◦ f
−1
0 + v ◦ g−1,

and define

(5.5) z(s) =

ˆ s

0

eib(t) dt.

Then z(s) is the the parametrization of Γ by the arc-length s ∈ R. This follows from
the following computation:

z̃(x)
by (5.2)
=

ˆ x

0

ei(b0−i(w◦g
−1

0
)) dt

by w = u+ iv
=

ˆ x

0

ei(b0+v◦g
−1

0
−iu◦g−1

0
) dt

by (5.3)
=

ˆ x

0

ei(b0+v◦g
−1

0
−i log f ′

0
) dt =

ˆ x

0

ei(b0+v◦g
−1

0
)f ′

0 dt =

ˆ f0(x)

0

ei(b0+v◦g
−1

0
)◦f−1

0 dt

by (5.4)
=

ˆ f0(x)

0

eib(t) dt
by (5.5)
= z(f0(x)).

Note that the computation also implies that h = z̃ ◦ g0 = z ◦ g by g = f0 ◦ g0. Since
z(s) is the the parametrization of Γ, we also have b ∈ Ω.

By the factorization in the proof of Theorem 5.1, the extended Teichmüller space
T̂b has another model.

Theorem 5.3. There is a one-to-one map from T̂b onto Tb × Ω.



On strongly quasisymmetric homeomorphisms 929

Proof. From the proof of Theorem 5.2, each h ∈ SQSC(R) induces a g ∈ SQS(R)
and a b ∈ Ω such that h = z ◦g maps R onto a chord-arc curve Γ whose parametriza-
tion z(s) by the arc-length s ∈ R satisfies z′(s) = eib(s). This induces a one-to-one

map Ψ̂ from T̂b onto Tb × Ω by letting Ψ̂(h) = (g, b). Replacing h by h̃ defined as

h̃(x) =
|h(1)− h(0)|

h(1)− h(0)

h(x)− h(0)
´ 1

0
|h′(t)| dt

if necessary, we may assume that each h ∈ T̂b satisfies the normalized condition
h(0) = 0, h(1) > 0 and

´ 1

0
|h′(t)| dt = 1. Then the corresponding function g ∈ Tb

satisfies the normalized condition g(0) = 0, g(1) = 1. �

We end the paper with the following problems, which are suggested by our dis-
cussions in the proof of Theorems 5.2 and 5.3.

Problem 5.4. Theorem 5.2 implies that the extended BMO-Teichmüller space
T̂b has a (complex) BMO manifold structure by the embedding Ψ : T̂b → BMO(R)/C
defined by Ψ(h) = log h′. On the other hand, by Theorem 4.1 and David’s result,
each of Tb and Ω is an open subset of BMOR(R)/R, which implies that Tb × Ω is
an open subset of BMOR(R)/R × BMOR(R)/R. Then Theorem 5.3 implies that

T̂b has another (real) BMO manifold structure by the bijection Ψ̂ : T̂b → Tb × Ω.

Determine whether or not these two manifold structures on T̂b are compatible with
each other. It should be pointed out that in this case it is even not clear whether
these two manifold structures induce the same topology on T̂b, although it seems to
be so.

Problem 5.5. By Corollaries 3.5, 4.2 and Remark 4.3, we know that each
of Tb, Tv, Tb and Tv is contractible. Determine whether or not the extended BMO-
Teichmüller space T̂b is connected under the embedding Ψ: T̂b → BMO(R)/C and/or

the bijection Ψ̂ : T̂b → Tb×Ω. In the latter case, the problem is closely related to the
one about the connectedness of the chord-arc curve space Ω, which is known to be a
difficult open problem (see [AZ, CM]).

Acknowledgements. The authors would like to thank the referee for a very careful
reading of the manuscript and for several corrections.
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