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Abstract. We deal with a Cauchy–Dirichlet problem with homogeneous boundary conditions
on the parabolic boundary of a space-time cylinder for doubly nonlinear parabolic equations, whose
prototype is

∂tu− div
(
|u|m−1|Du|p−2Du

)
= µ

with a non-negative Radon measure µ on the right-hand side. Here, the doubly degenerate (p ≥ 2,

m ≥ 1) and singular-degenerate (p ∈ ( 2n

n+2
, 2), m ≥ 1) cases are considered. The central objective

is to establish the existence of a solution in the sense of distributions (see Theorem 1.4). The

constructed solution is obtained by a limit of approximations, i.e. we use solutions of regularized

Cauchy–Dirichlet problems and pass to the limit to receive a solution for the original Cauchy–

Dirichlet problem.

1. Introduction and main result

We study the existence of solutions of the Cauchy–Dirichlet problem for doubly
nonlinear parabolic equations with measure data. Such equations arise in the field
of plasma physics, ground water problems, or the motion of viscous fluids, but also
in the modeling of an ideal gas flowing isoentropically in a homogeneous porous
medium.

1.1. Setting. In this paper, we consider nonhomogeneous Cauchy–Dirichlet
problems for a class of doubly nonlinear parabolic equations

∂tu− div (A(x, t, u,Du)) = µ(1.1)

in a space-time cylinder ET := E×(0, T ), where E ⊂ Rn is a bounded, open domain,
n ≥ 2, T > 0, and µ ∈ M+(ET ) is a non-negative Radon measure on ET with finite
total mass µ(ET ) < ∞. The aim of this article is to establish the existence of a
solution in the sense of distributions for Cauchy–Dirichlet problems of the form

{
∂tu− div (A(x, t, u,Du)) = µ in ET ,

u = 0 on ΓT ,
(1.2)

where ΓT := [E×{0}]∪[∂E×(0, T )] denotes the parabolic boundary of ET . Through-
out this paper, the vector field A : ET ×R×Rn → Rn is assumed to be measurable
with respect to (x, t) ∈ ET for all (u, ξ) ∈ R × Rn and continuous with respect to
(u, ξ) ∈ R × Rn for almost every (x, t) ∈ ET . Moreover, we want A to satisfy the
ellipticity condition

A(x, t, u, ξ) · ξ ≥ C0|u|
m−1|ξ|p(1.3)
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as well as the growth condition

|A(x, t, u, ξ)| ≤ C1|u|
m−1|ξ|p−1(1.4)

for any u ∈ R, ξ ∈ Rn, and almost every (x, t) ∈ ET , where C0 > 0 and C1 > 0
are fixed constants, p > 2n

n+2
and m ≥ 1. Note that the lower bound on p is a

typical requirement in the regularity theory for nonlinear parabolic equations (see [9,
Chap. V, Sec. 3 & 5]). For p = 2 or m = 1, one can retrieve the well-known structure
conditions for porous medium type and p-Laplacian equations, see e.g. [10, p. 6] and
[10, p. 5], respectively. In this regard, (1.3) and (1.4) are their natural extension.
Further, we need to restrict ourselves to the case

1 < p−
n

n(α + 1) + 1
,(1.5)

where α will be defined in (1.8). This constraint is customary, too, and its relevance
will be dicsussed in Remark 4.3. Finally, we expect the monotonicity assumption

[
A(x, t, u, ξ1)− A(x, t, u, ξ2)

]
· (ξ1 − ξ2)

≥ C2|u|
m−1|ξ1 − ξ2|

λ
[
|ξ1 − b(x, t, u)|p + |ξ2 − b(x, t, u)|p

]p−λ
p

(1.6)

to hold for any u ∈ R, ξ1, ξ2 ∈ Rn with ξ1 6= ξ2, and almost every (x, t) ∈ ET with
a fixed constant C2 > 0 and a function b : ET × R → Rn which is required to be
measurable with respect to (x, t) ∈ ET for all u ∈ R and continuous with respect to
u ∈ R for almost every (x, t) ∈ ET . Here, λ := 2 in the case p ∈ ( 2n

n+2
, 2), and λ := p

in the case p ≥ 2. Note that this is the common monotonicity condition (see [16,
p. 787]).

1.2. Doubly nonlinear parabolic equations. The model example for equa-
tions treated in the sequel is given by the doubly nonlinear parabolic equation

∂tu− div
(
|u|m−1|Du|p−2Du

)
= µ in ET ,(1.7)

whose modulus of ellipticity is |u|m−1|Du|p−2. For p > 2, m > 1, this quantity
vanishes if u or |Du| become 0, which is why we call the equation doubly degenerate,
whereas in the case that p ∈ ( 2n

n+2
, 2), m > 1, the coefficient |Du|p−2 tends to ∞

and |u|m−1 → 0 as |u| → 0, |Du| → 0 such that the equation is singular-degenerate.
This classification can also be found in [13, p. 23]. The degenerate-singular (p > 2,
0 < m < 1) and doubly singular case (p ∈ ( 2n

n+2
, 2), 0 < m < 1) will be postponed to

a forthcoming article.
Lately, several authors examined doubly nonlinear parabolic equations both be-

cause of their physical and mathematical interest, though, substantial parts of the
recent research were not on equations of the above general form, but rather on spe-
cific examples like (1.7) with either µ ≡ 0, p+m = 3, or other simplifications of (1.1).
For instance, Hölder regularity and Harnack’s inequality for bounded weak solutions
were established in [12, 13, 29, 39] and [22, 38], respectively. Besides, [28, 30, 35] are
concerned with the asymptotic behavior of solutions of doubly nonlinear parabolic
equations for certain values of the quantity p+m, and the local boundedness of the
gradient was shown in [31] under the additional assumption that u is strictly positive.
Existence and uniqueness results for the Cauchy–Dirichlet problem with an inhomo-
geneity µ ∈ L∞(ET ,R≥0) were developed in [14, 15, 16] and generalized in [34], where
µ ∈ Ls(ET ,R≥0) for some s ≡ s(n, m, p). However, since the proof strategies are
quite sophisticated due to the inherent difficulty of a double nonlinearity, there are
relatively few achievements regarding doubly nonlinear parabolic equations, and, to
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the author’s knowledge, there are no existence results for the corresponding measure
data problem in the literature up to now, not even for the model equation (1.7). Nev-
ertheless, certain special cases of (1.1) have been intensively studied (the survey [17]
and its list of references offer a deeper insight for the interested reader). In particular,
the equation passes into the porous medium equation when p = 2, the p-Laplacian
equation when m = 1, and the well-known (linear) heat equation ∂tu = ∆u can be ob-
tained by simultaneously setting p = 2 and m = 1. For those equations, an enormous
amount of mathematical literature is available, and it is impossible to list all proven
outcomes. In order to get at least a better overview of the porous medium equation,
one might especially appeal to [1, 5, 6, 8, 10, 26, 27, 36, 37] and the lists of references
therein. In addition, [2, 3, 4, 9, 11, 18, 19, 23] contain some famous accomplishments
as regards p-Laplacian equations. Eventually, we should mention that the equation
(1.7) is often displayed in the form ω1−p∂tv

ω − div(|Dv|p−2Dv) = ω1−pµ, which can
be deduced from the former via the transformation u = vω, where ω := p−1

p+m−2
.

1.3. Notations. As to the notation, we always write z = (x, t) for a point
z ∈ Rn+1 ∼= Rn ×R. As is customary, we denote by θ′ := θ

θ−1
∈ [1,∞] the Hölder

conjugate of θ ∈ [1,∞]. Moreover, we use the abbreviations Ut := U × (0, t) and
Ut1,t2 := U × (t1, t2) for any U ⊂ E, t ∈ (0, T ) and t1, t2 ∈ [0, T ] with t1 < t2. |U |
marks the n-dimensional Lebesgue measure of the set U (analogously, |Ut| stands
for the (n + 1)-dimensional Lebesgue measure of Ut). By {u > ℓ}, we express the
superlevel set {(x, t) ∈ ET : u(x, t) > ℓ} where the function u exceeds the level ℓ > 0,
and we address the positive part of u as u+ := max{u, 0}. We denote the weak
spatial derivative of the function u by Du = Dxu = (Dx1u,Dx2u, . . . , Dxnu), and
∂t =

∂
∂t

is the operator for the time derivative. Finally, by M+(ET ), we mean the set
of all non-negative Radon measures, and c ≡ c(·) stands for a constant, which may
vary from line to line and depend only on the parameters in brackets.

1.4. The concept of very weak solutions. In this section, we will define our
notion of a very weak solution. Throughout the whole article, we will abbreviate

α :=
m− 1

p
(1.8)

in order to shorten the notation.

Definition 1.1. Let α as in (1.8). A non-negative function u : ET → R satisfying

u ∈ L∞
(
(0, T );L1(E)

)
, uα+1 ∈ L1

(
(0, T );W 1,1

0 (E)
)
,

and the integrability property

A(·, u,Du) ∈ L1(ET ,R
n)(1.9)

is termed a very weak solution of the Cauchy–Dirichlet problem (1.2) if and only if
the identity

¨

ET

[
− u∂tϕ+ A(x, t, u,Du) ·Dϕ

]
dz =

¨

ET

ϕdµ(1.10)

holds true for any testing function ϕ ∈ C1(ET ) vanishing on [∂E×(0, T )]∪ [E×{T}].
For very weak solutions u, the symbol Du in (1.10) has to be understood in the sense
of (1.11).

At this point, we have to give a meaning to the symbol Du from the above
definition and become aware of the sense in which it has to be understood.
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Remark 1.2. Since we have imposed Duα+1 ∈ L1(ET ,R
n), among others, as

a condition on u, the existence of Du cannot be assured in the previous definition.
Formally, we set

Du := 1
α+1

χ
{u>0}u

−αDuα+1(1.11)

and like to interpret Du in that way. On {u > σ}, where σ > 0, Du indeed is the
weak derivative of u, and we have Du ∈ L1(ET ∩ {u > σ},Rn). ⋄

For local results, the values of u on the parabolic boundary are irrelevant such
that we may speak of a solution of the equation (1.1) rather than of a solution of a
Cauchy–Dirichlet problem. We specify this concept in the following definition.

Definition 1.3. We say that a non-negative function u : ET → R satisfying

u ∈ L∞
(
(0, T );L1(E)

)
, uα+1 ∈ L1

(
(0, T );W 1,1(E)

)
,

and the integrability property (1.9) is a very weak solution of the doubly nonlinear
parabolic equation (1.1) if and only if the identity (1.10) holds true for any testing
function ϕ ∈ C1

0 (ET ).

1.5. Main result and proof strategies. We now provide the main theorem
of this paper, which concerns the existence of very weak solutions of the Cauchy–
Dirichlet problem (1.2). The proof of Theorem 1.4 will be performed in Chapter 4.

Theorem 1.4. Let µ ∈ M+(ET ), let α as in (1.8), and assume that the hy-
potheses (1.3)–(1.6) are in force. Then, there exists at least one very weak solution u
(in the sense of Definition 1.1) of the Cauchy–Dirichlet problem (1.2). Moreover, the
solution fulfills uα+1 ∈ Lq

(
(0, T );W 1,q(E)

)
for any q satisfying 1 ≤ q < p− n

n(α+1)+1
.

In the following, we will outline the strategy of the proof of the above result.
First of all, in Chapter 2, we will prepare some basic tools. In particular, we will
quote a parabolic version of the Gagliardo–Nirenberg inequality as well as a lemma
regarding weak derivatives of truncated functions, and introduce a time mollification
procedure.

In Chapter 3, we will define our notion of a weak solution and ensure that, given
a solution u, the function min{u, ℓ} is a supersolution for ℓ > 0 (see Lemma 3.3).
Considering supersolutions is motivated by the fact that one has to construct a bound
for both the time and the spatial derivative of the functions from the approximating
sequence (uj)j∈N in order to apply a compactness result from [32] in Subsection 4.3.3.
However, only the spatial derivative Duα+1

j , but not the expression Duj, is well-
defined (see Remark 1.2). This conflict will be solved by truncating the functions

uj from below by some number ε > 0 such that the truncated functions w
(ε)
j :=

max{uj, ε} stay away from zero and D(w
(ε)
j )α+1 can easily be converted to Dw

(ε)
j .

After rewriting w
(ε)
j in terms of min{uj, ε}, the developed theory, especially the bound

(3.15) for the time derivative of a supersolution, is applicable.
The fourth chapter is designated for the proof of the existence of a very weak

solution of the Cauchy–Dirichlet problem (1.2). For that purpose, we will build
regularized Cauchy–Dirichlet problems in (4.4), where the right-hand side measure
µ ∈ M+(ET ) from (1.2) is replaced by a sequence (µj)j∈N of L∞(ET ,R≥0)-functions.
The existence of weak solutions (uj)j∈N (see Definition 3.1) for these approximated
problems follows from [14, 15]. In Section 4.2, we will deduce certain uniform a
priori estimates for the approximating sequence (uj)j∈N. In the general case of (1.2)
comprising a Radon measure, we cannot expect to have a bound in Lp(ET ,R

n) for
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(Duα+1
j )j∈N. Instead, the key idea here is to establish an estimate for (Duα+1

j )j∈N
below the natural energy space, i.e. one attempts to find some exponent 1 ≤ q < p
which admits an Lq(ET ,R

n)-bound for Duα+1
j that is uniform with respect to j ∈ N.

Then, the uniform estimates will lead to the weak convergences (4.21) and (4.22),
where it will be important on the one hand to show that (uj)j∈N subconverges not
only weakly, but in fact strongly and almost everywhere, and, on the other hand to
identify the weak limit of (a subsequence of) (Duα+1

j )j∈N as Duα+1 (see Section 4.3).
After that, we will pass to the limit in the equation, where the main difficulty will
come from proving the pointwise convergence of the derivatives (4.69), which will
subsequently grant the convergence of the integral involving the diffusion term.

2. Preliminaries

In this chapter, we will provide various tools, which will be needed in the existence
proof.

2.1. Auxiliary lemmata. To begin with, we cite a parabolic Sobolev embed-
ding (cf. [9, Prop. 3.1, p. 7]), which we will employ later in Section 4.2.

Lemma 2.1. Let 1 < q < ∞ and 0 < r < ∞. Then, there exists a constant
c ≡ c(n, q, r) such that for every u ∈ L∞

(
(0, T );Lr(E)

)
∩ Lq

(
(0, T );W 1,q

0 (E)
)

there
holds the Gagliardo–Nirenberg inequality

¨

ET

|u|ℓ dz ≤ c

[
sup

t∈(0,T )

ˆ

E×{t}

|u|r dx

] q
n
¨

ET

|Du|q dz,(2.1)

where ℓ is given by ℓ = q(n+r)
n

.

The following result, devoted to the derivation of truncated functions, can be
retrieved from [14, p. 2736] (see also [15, Prop. 5.2] and [5, Lemma 2.2]).

Lemma 2.2. Let 1 < q < ∞, δ > 0, and suppose that u : ET → R is a non-
negative function such that uσ ∈ Lq

(
(0, T );W 1,q(E)

)
for some σ > 1. Then, u(δ) :=

max{u, δ} has a weak derivative Du(δ) ∈ Lq(ET ,R
n), and Du(δ) = χ

ET∩{u>δ}Du,
where Du is defined by

Du := 1
σ
χ
ET∩{u>0}u

1−σDuσ.(2.2)

Moreover, we have that

lim
δց0

‖uσ−1Du(δ) − 1
σ
Duσ‖Lq(ET ,Rn) = 0.

If additionally u ≥ δ̃ on ET for some δ̃ ∈ (0, δ), i.e. u stays away from 0, then
u(δ) := min{u, δ} analogously has a weak derivative Du(δ) ∈ Lq(ET ,R

n), and Du(δ) =
χ
ET∩{u<δ}Du, where Du is again defined by the formula in (2.2).

Next, we will define the auxiliary function Gν . It will turn up in the proof of
Lemma 4.2, where we will need to use the property (2.3) from the following lemma.
The corresponding proof can be found in [5, Lemma 2.3].

Lemma 2.3. For ν ∈ (0, 1), we define the function Gν : [0,∞) → R by

Gν(s) :=

ˆ s

0

[
1− (1 + σ)−ν

]
dσ = s− 1

1−ν

[
(1 + s)1−ν − 1

]

for any s ≥ 0. Then, for any δ ∈ (0, 1] and s ≥ 0, there holds

(2.3) s ≤ δ + cδGν(s)
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for a constant cδ ≡
c(ν)
δ

.

2.2. Mollification in time. We will now introduce a mollification in time and
on its basis develop the regularized version (2.4) of the weak formulation (1.10).

Definition 2.4. For v ∈ L1(ET ), we define the mollification in time by

JvKh(·, t) :=
1

h

ˆ t

0

e
s−t
h v(·, s) ds

and its time reversed analogue by

JvKh(·, t) :=
1

h

ˆ T

t

e
t−s
h v(·, s) ds

for any h ∈ (0, T ] and t ∈ [0, T ]. Likewise, one can define the time regularization of
a vector-valued function v′ ∈ L1(ET ,R

n).

For the main properties of this mollification, we refer to [7, Appendix B] and [21,
Lemma 2.2]. One can now derive the regularized variant (2.4) of the weak formulation
(1.10) (see [5, p. 3293] or [33, Thm. 2.10]). The time mollification procedure from
Definition 2.4 allows us to insert in (2.4) testing functions whose time derivative does
not necessarily have to exist. In other words, Lemma 2.5 admits testing functions
containing the solution u itself, avoiding an appearance of the quantity ∂tu.

Lemma 2.5. If u : ET → R≥0 is a weak solution of the inhomogeneous dou-
bly nonlinear parabolic equation (1.1) in the sense of Definition 3.1, then, its time
mollification JuKh fulfills the averaged equation

¨

ET

[
∂tJuKhϕ+ JA(x, t, u,Du)Kh ·Dϕ

]
dz =

¨

ET

JϕKh dµ(2.4)

of (1.10) for any testing function ϕ ∈ C∞(ET ) with compact support in ET .

3. Weak solutions and supersolutions

In this chapter, we will examine weak solutions of the doubly nonlinear parabolic
equation (1.1). This concept will be employed for the purpose of achieving the ex-
istence of a solution of regularized Cauchy–Dirichlet problems in Section 4.1. The
central aim of this paragraph is establishing the bound (3.15) for the time deriva-
tive of a weak supersolution, which will follow from the Caccioppoli estimate from
Lemma 3.4 and the measure bound (3.12). The necessity of studying supersolutions
stems from the fact that we have to deal with truncated weak solutions in the ex-
istence proof. According to Lemma 3.3, the truncated function is no longer a weak
solution, but a supersolution.

Definition 3.1. Let α as in (1.8). A non-negative function u : ET → R satisfying

u ∈ C0
(
[0, T ];L2(E)

)
and uα+1 ∈ Lp

(
(0, T );W 1,p

0 (E)
)

is termed a weak solution of the Cauchy–Dirichlet problem (1.2) if and only if the
identity (1.10) holds true for any testing function ϕ ∈ C1(ET ) vanishing on [∂E ×
(0, T )] ∪ [E × {T}]; cf. also Remark 1.2. What is more, analogous to Definition 1.3,
we say that a non-negative function u : ET → R satisfying

u ∈ C0
(
[0, T ];L2(E)

)
and uα+1 ∈ Lp

(
(0, T );W 1,p(E)

)
(3.1)
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is a weak solution of the doubly nonlinear parabolic equation (1.1) if and only if the
identity (1.10) holds true for any testing function ϕ ∈ C1

0 (ET ).

Remark 3.2. Note that the existence of a weak solution of (1.2) cannot be guar-
anteed as long as the Cauchy–Dirichlet problem involving a general Radon measure
µ ∈ M+(ET ) without any further qualities is considered. If actually µ ∈ Lγ(ET ,R≥0)
for γ as in (4.18), one can prove the existence of weak solutions (see Remark 4.3). The
prerequisite in the previous definition that u belongs to the space C0

(
[0, T ];L2(E)

)

originates from the classical existence theorems for p-Laplacian equations in [24, 25],
and the requirement uα+1 ∈ Lp

(
(0, T );W 1,p(E)

)
is in perfect accordance with [5,

cond. (1.5)] or the case m > 1 of [10, p. 34] since α + 1 = m+1
2

for p = 2. Another
approach can be found, for instance, in [15, 28, 30, 38, 39], where the regularity
properties (3.1) are replaced by the conditions

u ∈ C0
(
[0, T ];Lβ+2(E)

)
and uβ+1 ∈ Lp

(
(0, T );W 1,p(E)

)
(3.2)

for β := m−1
p−1

. Provided that u ∈ L∞(ET ), one can infer that Duα+1 ∈ Lp(ET ,R
n)

implies Duβ+1 ∈ Lp(ET ,R
n) and both representations 1

α+1
χ
{u>0}u

−αDuα+1 and
1

β+1
χ
{u>0}u

−βDuβ+1 for Du coincide (see [16, p. 787]). On the contrary, under the

assumption that Duβ+1 ∈ Lp(ET ,R
n), there holds Duα+1 ∈ Lp(ET ,R

n) only as long
as one knows a lower bound u ≥ σ for some σ > 0. ⋄

We now start considering weak (super-)solutions. The following lemma ensures
that, for a weak solution u and a given ℓ > 0, the function Wℓ(u) := min{u, ℓ}
is a weak supersolution. In the case p = 2, this result can be retrieved from [6,
Lemma 3.1], where the conditions (3.2) were employed in the definition of a weak

solution. However, replacing the testing function from [6, Lemma 3.1] by ϕ ℓ−Wℓ(u)
̺+ℓ−Wℓ(u)

with a fixed ̺ > 0, ℓ > 0 and a non-negative function ϕ ∈ C1
0 (ET ), the proof works

with only minor modifications when using our regularity assumptions (3.1) instead.

Lemma 3.3. Suppose that u : ET → R is a weak solution of the doubly nonlinear
parabolic equation (1.1) under the structure conditions (1.3) and (1.4) and with an
inhomogeneity µ ∈ L1(ET ,R≥0). Furthermore, assume that for some ℓ > 0, the
truncation Wℓ(u) := min{u, ℓ} satisfies DWℓ(u)

α+1 ∈ Lp(ET ,R
n). Then, Wℓ(u) is a

weak supersolution of (1.1), i.e. we have
¨

ET

[
−Wℓ(u)∂tϕ+ A(x, t,Wℓ(u), DWℓ(u)) ·Dϕ

]
dz ≥ 0(3.3)

for any non-negative ϕ ∈ C1
0(ET ).

In the sequel, we deal with bounded weak supersolutions w : ET → R of the
doubly nonlinear parabolic equation (1.1), i.e. the non-negative function w fulfills

w ∈ C0
(
[0, T ];L2(E)

)
, wα+1 ∈ Lp

(
(0, T );W 1,p(E)

)
(3.4)

as well as the inequality
¨

ET

[
− w∂tϕ+ A(x, t, w,Dw) ·Dϕ

]
dz ≥ 0(3.5)

for any non-negative ϕ ∈ C1
0(ET ). First, we will establish the following Caccioppoli

type inequality (see [5, Lemma 5.2] and [20, Lemma 2.15] for the porous medium
equation case).
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Lemma 3.4. Let w : ET → R as in (3.4) be a bounded weak supersolution of the
doubly nonlinear parabolic equation (1.1) in the sense that (3.5) is valid. Moreover,
suppose that 0 ≤ w ≤ M for some M > 0, and the hypotheses (1.3) and (1.4) are in
force. Then, for any 0 ≤ t1 < t2 ≤ T , the Caccioppoli type estimate

¨

Et1,t2

ηp
∣∣Dwα+1

∣∣p dz ≤ c

[
Mp+m−1(t2 − t1)

ˆ

E

|Dη|p dx+M2

ˆ

E

ηp dx

]
(3.6)

holds true for any non-negative η ∈ C1
0(E) with a constant c ≡ c(m, p, C0, C1).

Proof. We define w(κ) := max{w, κ} for 0 < κ < M and choose in (3.5) the
testing function ϕ := ηpζ

(
M − w(κ)

)
, where η ∈ C1

0 (E) is non-negative and ζ ∈

W 1,∞
0 (R, [0, 1]) satisfies

ζ(t) :=





1 for t ∈ [t1, t2],

0 for t ∈ R \ (t1 − τ, t2 + τ),
1
τ
(t− t1 + τ) for t ∈ (t1 − τ, t1),

− 1
τ
(t− t2 − τ) for t ∈ (t2, t2 + τ)

(3.7)

with 0 < τ < min{t1, T − t2}. As a result, (3.5) reads as

I(1)
τ :=

¨

ET

ηpζA(x, t, w,Dw) ·Dw(κ) dz

≤ p

¨

ET

ηp−1ζ
(
M − w(κ)

)
A(x, t, w,Dw) ·Dη dz

−

¨

ET

ηpw
(
M − w(κ)

)
∂tζ dz +

¨

ET

ηpζw∂tw
(κ) dz

=: I(2)
τ + I(3)

τ + I(4)
τ .

(3.8)

Treating the integrals containing time derivatives, we reason only formally. The
argument can be made rigorous by exerting the mollification from Definition 2.4. We

start with the term I
(3)
τ and work with the definition of ζ and the facts that w ≤ M

and w(κ) ≥ 0 to receive

I(3)
τ ≤

ˆ t2+τ

t2

|∂tζ |

ˆ

E

ηpw
(
M − w(κ)

)
dx dt ≤ M2

ˆ

E

ηp dx.(3.9)

For the integral I
(4)
τ , we use the identity w∂tw

(κ) = w(κ)∂tw
(κ) = 1

2
∂t|w

(κ)|2, an

integration by parts, and the inequality w(κ) ≤ M . In this way, we find

I(4)
τ = −1

2

¨

ET

ηp|w(κ)|2∂tζ dz ≤ 1
2

ˆ t2+τ

t2

|∂tζ |

ˆ

E

ηp|w(κ)|2 dx dt ≤ 1
2
M2

ˆ

E

ηp dx.

Next, applying the growth condition (1.4), the assumption w ≤ M , and Young’s
inequality, we obtain

lim
τց0

I(2)
τ ≤ c lim

τց0

¨

ET

ηp−1ζMwm−1|Dw|p−1|Dη| dz

≤ c

¨

Et1,t2

ηp−1Mα+1
∣∣Dwα+1

∣∣p−1
|Dη| dz

≤ δ

¨

Et1,t2

ηp
∣∣Dwα+1

∣∣p dz + cδM
p+m−1(t2 − t1)

ˆ

E

|Dη|p dx

(3.10)
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for any δ ∈ (0, 1) with a constant cδ ≡ cδ(m, p, C1, δ). Finally, from Lemma 2.2, we
know that Dw(κ) = χ

{w>κ}Dw such that, inserting the ellipticity condition (1.3), we

can estimate the integral I
(1)
τ from below:

lim
τց0

I(1)
τ = lim

τց0

¨

ET

χ
{w>κ}η

pζA(x, t, w,Dw) ·Dwdz

≥ C0

¨

Et1,t2

χ
{w>κ}η

pwm−1|Dw|p dz = c̄

¨

Et1,t2

χ
{w>κ}η

p
∣∣Dwα+1

∣∣p dz,

where c̄ ≡ c̄(m, p, C0) is a constant. Passing to the limits τ ց 0 and κ ց 0,

joining the estimates for I
(1)
τ – I

(4)
τ with (3.8), and selecting δ := c̄/2, we can reabsorb

the energy term appearing on the right-hand side into the left and conclude that
(3.6) is valid for any choice of 0 < t1 < t2 < T . This implies the claim for any
0 ≤ t1 < t2 ≤ T . �

Remark 3.5. Consider a non-negative weak supersolution w of the doubly non-
linear parabolic equation (1.1). Then, by the Riesz representation theorem, there
exists a non-negative Radon measure µw such that there holds

¨

ET

[
− w∂tϕ+ A(x, t, w,Dw) ·Dϕ

]
dz =

¨

ET

ϕdµw(3.11)

for any ϕ ∈ C1
0(ET ). ⋄

In the following lemma, we will derive a local estimate for the corresponding
measure µw to a bounded weak supersolution w.

Lemma 3.6. Let w : ET → R as in (3.4), (3.5) be a bounded weak supersolution
of the equation (1.1) under the structure conditions (1.3) and (1.4). Besides, suppose
that 0 ≤ w ≤ M for some M > 0, and let µw be the associated Radon measure
according to Remark 3.5. Then, for any U ⋐ E, any 0 < t1 < t2 < T , and any
η ∈ C1

0(E, [0, 1]) with η ≡ 1 on U , we have

µw(Ut1,t2) ≤ c

[
Mp+m−2(t2 − t1)

ˆ

E

|Dη|p dx+M

ˆ

E

ηp dx

]
(3.12)

with a constant c ≡ c(m, p, C0, C1).

Proof. Let η ∈ C1
0(E, [0, 1]) be as in the statement of the lemma and choose the

cut-off function in time ζ as in (3.7). Then, testing (3.11) with ϕ := ηpζ , we get

µw(Ut1,t2) =

¨

Ut1,t2

ηpζ dµw ≤

¨

ET

ηpζ dµw

= −

¨

ET

ηpw∂tζ dz + p

¨

ET

ηp−1ζA(x, t, w,Dw) ·Dη dz

=: J (1) + J (2)
τ .

(3.13)

With the same arguments as in (3.9), the first integral simplifies to

J (1) ≤ −

ˆ t2+τ

t2

∂tζ

ˆ

E

ηpw dx dt ≤ M

ˆ

E

ηp dx.
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Next, by the growth condition (1.4), the calculations performed in (3.10), and the
Caccioppoli inequality (3.6), we infer

lim
τց0

J (2)
τ ≤ c lim

τց0

¨

ET

ηp−1ζwm−1|Dw|p−1|Dη| dz

≤ cM−1

¨

Et1,t2

ηp
∣∣Dwα+1

∣∣p dz + cMp+m−2(t2 − t1)

ˆ

E

|Dη|p dx

≤ c

[
Mp+m−2(t2 − t1)

ˆ

E

|Dη|p dx+M

ˆ

E

ηp dx

]

with a constant c ≡ c(m, p, C0, C1). Combining the last two estimates with (3.13),
we conclude that (3.12) holds true. �

Corollary 3.7. Let w : ET → R as in (3.4), (3.5) be a bounded weak superso-
lution of the equation (1.1) under the structure conditions (1.3) and (1.4). Besides,
suppose that 0 ≤ w ≤ M for some M > 0, and let µw be the associated Radon
measure according to Remark 3.5. Then, for any pair of sets U ⋐ W ⋐ E and any
0 < t1 < t2 < T , the following local energy and measure bound holds true with a
constant c ≡ c(m, p, C0, C1):

¨

Ut1,t2

∣∣Dwα+1
∣∣p dz +Mµw(Ut1,t2) ≤ cM |W |

[
Mp+m−2(t2 − t1)

dist (U, ∂W )p
+M

]
.(3.14)

Proof. Let η ∈ C1
0 (E, [0, 1]) with η ≡ 1 on U , η ≡ 0 on E \ W , and |Dη| ≤

2
dist(U,∂W )

. Then, noting that spt(η) ⊂ W , the estimate (3.14) is an immediate con-

sequence of Lemma 3.4 and Lemma 3.6. �

Having at hand the bound (3.14), we can take advantage of Remark 3.5 to deduce
a local bound for the time derivative of w in the next lemma.

Lemma 3.8. Let w : ET → R as in (3.4), (3.5) be a bounded weak supersolution
of the equation (1.1) under the structure conditions (1.3) and (1.4). Provided that
0 ≤ w ≤ M for some M > 0, we have

‖∂tw‖L1((t1,t2);W−1,1(U)) ≤ c|W |

[
Mp+m−2(t2 − t1)

dist (U, ∂W )p
+M

]
(3.15)

for any pair of sets U ⋐ W ⋐ E with dist(U, ∂W ) ≤ 1 and any 0 < t1 < t2 < T ,
where c ≡ c(m, p, C0, C1) is a constant.

Proof. For the proof, we fix U ⋐ W ⋐ E with dist(U, ∂W ) ≤ 1 and 0 < t1 < t2 <
T . Then, we consider (3.11) for functions ϕ ∈ C1

0(ET ) with compact support in Ut1,t2

and ‖ϕ‖L∞((t1,t2);W 1,∞(U)) ≤ 1. Using in turn the growth condition (1.4), Hölder’s
inequality, the assumption w ≤ M , Young’s inequality, and finally the bound (3.14),
we obtain

∣∣∣∣
¨

ET

w∂tϕdz

∣∣∣∣ ≤
∣∣∣∣
¨

ET

ϕdµw

∣∣∣∣+
∣∣∣∣
¨

ET

A(x, t, w,Dw) ·Dϕdz

∣∣∣∣

≤ µw(Ut1,t2) + C1

¨

Ut1,t2

wm−1|Dw|p−1|Dϕ| dz

≤ µw(Ut1,t2) + C1|Ut1,t2|
1
p

[
¨

Ut1,t2

wαpp′|Dw|p dz

] 1
p′
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≤ µw(Ut1,t2) + c|Ut1,t2|
1
pMα

[
¨

Ut1,t2

∣∣Dwα+1
∣∣p dz

] 1
p′

≤ µw(Ut1,t2) + cM−1

¨

Ut1,t2

∣∣Dwα+1
∣∣p dz + cMp+m−2|Ut1,t2 |

≤ c|W |

[
Mp+m−2(t2 − t1)

dist (U, ∂W )p
+M

]
+ cMp+m−2|W |(t2 − t1)

with a constant c ≡ c(m, p, C0, C1). Since dist(U, ∂W ) ≤ 1, taking the supremum
over all ϕ ∈ C1

0 (Ut1,t2) with ‖ϕ‖L∞((t1,t2);W 1,∞(U)) ≤ 1 yields the claim. �

4. Existence of very weak solutions: The proof of Theorem 1.4

Proof of Theorem 1.4. In this chapter, we will perform the proof of Theorem 1.4.
We will proceed as described in Section 1.5.

4.1. The approximation scheme. Let (µj)j∈N ⊂ L∞(ET ,R≥0) be a sequence
of non-negative bounded functions approximating the inhomogeneity µ ∈ M+(ET )
of the Cauchy–Dirichlet problem (1.2) in the sense that (µj)j∈N fulfills

µj(ET ) :=

¨

ET

µj dz ≤ µ(ET ) < ∞(4.1)

for any j ∈ N, and the associated measures µj dz converge to µ weakly∗ in M+(ET )
as j → ∞, i.e. there holds

lim
j→∞

¨

ET

µjϕdz =

¨

ET

ϕdµ(4.2)

for any ϕ ∈ C0
0 (ET ). In what follows, we consider for j ∈ N the regularized equations

∂tuj − div
(
A(x, t, uj, Duj)

)
= µj(4.3)

and the corresponding Cauchy–Dirichlet problems
{
∂tuj − div

(
A(x, t, uj, Duj)

)
= µj in ET ,

uj = 0 on ΓT ,
(4.4)

respectively. They admit a weak solution (see Definition 3.1) by the following exis-
tence theorem, which can be retrieved from [14, Thm. 3.1] in the case m ≥ 1, p ≥ 2,
and from [15, Thm. 1.1] for m ≥ 1, p ∈ ( 2n

n+2
, 2). We notice that the Lipschitz con-

dition [15, (L), p. 847] is only required for uniqueness matters such that we do not
need to impose an assumption of this type on the vector field A here. Moreover, note
that the condition [14, (d), p. 2725] is a consequence of (1.4) in our context.

Lemma 4.1. Let j ∈ N, µj ∈ L∞(ET ,R≥0), let α as in (1.8), and assume
that the hypotheses (1.3), (1.4), and (1.6) are in force. Then, there exists at least
one non-negative weak solution uj of the Cauchy–Dirichlet problem (4.4) satisfying

uj ∈ C0
(
[0, T ];L2(E)

)
, uα+1

j ∈ Lp
(
(0, T );W 1,p

0 (E)
)
, and

¨

ET

[
− uj∂tϕ+ A(x, t, uj, Duj) ·Dϕ

]
dz =

¨

ET

µjϕdz(4.5)



942 Stefan Sturm

for any testing function ϕ ∈ C1(ET ) vanishing on [∂E × (0, T )] ∪ [E × {T}]. Note
that the symbol Duj has to be understood analogous to (1.11), i.e.

Duj :=
1

α+1
χ
{uj>0}u

−α
j Duα+1

j .(4.6)

4.2. Energy estimates below the natural growth. In this section, we will
prove certain a priori estimates for the weak solutions uj (j ∈ N) of the Cauchy–
Dirichlet problems (4.4) from Lemma 4.1. In view of the presence of the Radon
measure µ on the right-hand side of the considered equation (1.1), choosing ϕ ∼ uj

as a testing function does not lead to energy bounds independent of j since, for the
approximating sequence (µj)j∈N, only the uniform L1(ET )-bound (4.1) is available
(see also Remark 4.3). Therefore, we have to design our testing function in a more
subtle way in order to accomplish the following estimate below the natural energy
space. We remark that a similar testing function was already constructed in [19,
p. 148] for elliptic p-Laplacian equations.

Lemma 4.2. Let µ ∈ M+(ET ) be the non-negative Radon measure from (1.2),
suppose that the structure conditions (1.3)–(1.6) hold, and let α as in (1.8). More-
over, let q such that

1 ≤ q < p−
n

n(α + 1) + 1
,(4.7)

and let uj be the weak solution of the Cauchy–Dirichlet problem (4.4) with µj ∈
L∞(ET ,R≥0) fulfilling (4.1) and (4.2), where j ∈ N. Then, the estimates

sup
t∈(0,T )

ˆ

E×{t}

uj dx ≤ c < ∞,(4.8)

¨

ET

∣∣Duα+1
j

∣∣q dz ≤ c < ∞,(4.9)

and
¨

ET

u
[α+1+ 1

n ]q
j dz ≤ c < ∞(4.10)

hold with a constant c ≡ c(n, m, p, q, C0, |ET |, µ(ET )). In particular, c does not
depend on j.

Proof. Let ν ∈ (0, 1) and ε > 0, and define the testing function

ϕ := ζ

(
1−

1

[1 + (uj − ε)+]ν

)
,

where the cut-off function in time ζ ∈ W 1,∞(R, [0, 1]) is given by

ζ(t) :=





1 for t ∈ (−∞, τ − δ],

−1
δ
(t− τ) for t ∈ (τ − δ, τ),

0 for t ∈ [τ,∞)

(4.11)

for a fixed τ ∈ (0, T ) and δ ∈ (0, τ). Now, note that ϕ = 0 on ∂ET and plug ϕ in
the weak formulation (4.5) of the Cauchy–Dirichlet problem (4.4). As before, the
reasoning can be made rigorous by applying the mollification in time introduced in
Definition 2.4, however, for the sake of brevity, we only argue formally concerning
the use of time derivatives. In the following, we will analyze all integrals appearing in
the weak form. For the first term, employing the facts that ∂t(uj −ε)+ = χ

{uj>ε}∂tuj
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and ϕ = 0 on {uj ≤ ε}, and subsequently an integration by parts as well as the
Lebesgue differentiation theorem, we obtain

¨

ET

ϕ∂tuj dz =

¨

ET

ζ∂t

[
ˆ (uj−ε)+

0

[
1− (1 + s)−ν

]
ds

]
dz

= 1
δ

¨

E×(τ−δ,τ)

ˆ (uj−ε)+

0

[
1− (1 + s)−ν

]
ds dz

→

ˆ

E×{τ}

Gν

(
(uj − ε)+

)
dx

(4.12)

as δ ց 0 for almost every τ ∈ (0, T ), where Gν is defined in Lemma 2.3. Next, by
Lemma 2.2, we know that

Dϕ = ζχ{uj>ε}

ν
α+1

u−α
j Duα+1

j

[1 + (uj − ε)+]ν+1

such that the diffusion term can be estimated with the help of the ellipticity condition
(1.3) in the following way:

lim
δց0

¨

ET

A(x, t, uj, Duj) ·Dϕdz ≥ c

¨

Eτ

χ
{uj>ε}

∣∣Duα+1
j

∣∣p

[1 + (uj − ε)+]ν+1
dz,(4.13)

where c ≡ c(m, p, C0, ν). Finally, regarding that 0 ≤ ϕ ≤ 1 and using the bound
(4.1), we can compute

¨

ET

µjϕdz ≤ µ(ET )(4.14)

for the third term. Thus, by taking the supremum over all τ ∈ (0, T ), we infer from
(4.5), (4.12)–(4.14) and (2.3) that

sup
t∈(0,T )

ˆ

E×{t}

(uj − ε)+ dx+

¨

ET

χ
{uj>ε}

∣∣Duα+1
j

∣∣p

[1 + (uj − ε)+]ν+1
dz ≤ c,

and since uj ≥ 0 on ET , the dominated convergence theorem yields

sup
t∈(0,T )

ˆ

E×{t}

uj dx+

¨

ET

∣∣Duα+1
j

∣∣p

(1 + uj)ν+1
dz ≤ c(4.15)

in the limit ε ց 0, where c ≡ c(m, p, C0, |E|, µ(ET ), ν) is a constant. The preceding
inequality proves (4.8). In order to establish the estimate (4.9), we first apply the
Gagliardo–Nirenberg inequality (2.1) to uα+1

j , where we set r := 1
α+1

and choose ν
such that

q(n+ r)

n
=

q(ν + 1)

(α + 1)(p− q)
.(4.16)

Note that the latter identity is equivalent to

q = p−
n(ν + 1)

n(α + 1) + 1
,
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and therefore, since we assumed that q fulfills the smallness property (4.7), we can
always find a number ν ∈ (0, 1) such that (4.16) is satisfied. Lemma 2.1 shows

¨

ET

u
q(ν+1)
p−q

j dz =

¨

ET

∣∣uα+1
j

∣∣ q(n+r)
n dz

≤ c

[
sup

t∈(0,T )

ˆ

E×{t}

uj dx

] q
n
¨

ET

∣∣Duα+1
j

∣∣q dz

≤ c

¨

ET

∣∣Duα+1
j

∣∣q dz

(4.17)

with a constant c ≡ c(n, m, p, q, C0, |E|, µ(ET )), where we inserted the estimate
(4.8) in the last step. Next, we make use of Hölder’s inequality, (4.15) and (4.17),
and eventually Young’s inequality to obtain that
¨

ET

∣∣Duα+1
j

∣∣q dz ≤

[
¨

ET

∣∣Duα+1
j

∣∣p

(1 + uj)ν+1
dz

] q
p
[
¨

ET

(1 + uj)
q(ν+1)
p−q dz

]1− q
p

≤ c

[
|ET |+

¨

ET

u
q(ν+1)
p−q

j dz

]1− q
p

≤ c+ c

[
¨

ET

∣∣Duα+1
j

∣∣q dz
]1− q

p

≤ c+ p−q

p

¨

ET

∣∣Duα+1
j

∣∣q dz

with a constant c ≡ c(n, m, p, q, C0, |ET |, µ(ET )). Now, reabsorbing the right-hand
side integral into the left, one concludes that (4.9) is valid, and (4.10) is a direct
consequence of (4.17) and (4.9). �

Remark 4.3. In the foregoing lemma, the necessity of the constraint (1.5) be-
comes apparent since a number q as in (4.7) can only be found provided that (1.5)
holds. The assumption is natural in the sense that it coincides with the well-known
conditions for porous medium type and p-Laplacian measure data problems (see [5,
cond. (6.7)] and [2, Rem. 1.5 & 1.7], respectively). If actually µ ≡ f ∈ Lγ(ET ,R≥0)
for

γ := 1 +
n

n(p+m− 2) + 2p
,(4.18)

one can retrieve an energy estimate of the form

sup
t∈(0,T )

ˆ

E×{t}

u2
j dx+

¨

ET

∣∣Duα+1
j

∣∣p dz ≤ c < ∞

with a constant c ≡ c(n, m, p, C0, |ET |, ‖f‖Lγ(ET )) independent of j by testing the
weak formulation with ϕ := ζuj, where ζ is as in (4.11). Hence, in the case of an
Lγ(ET )-inhomogeneity f , the presence of a variable q as in (4.7) is not required,
which is why the restriction (1.5) can be dropped. In order to explain the exponent
γ from (4.18), let us give a little more heuristic details. Considering a Lebesgue
function f , our bound (4.1) for the approximating sequence (fj)j∈N ⊂ L∞(ET ,R≥0)
becomes ‖fj‖Lγ(ET ) ≤ ‖f‖Lγ(ET ) < ∞. Then, the quantity γ is chosen optimal to the
effect that after rewriting the integral (4.14) as

¨

ET

fjϕdz ≤

[
¨

ET

|f |γ dz

] 1
γ
[
¨

ET

∣∣uα+1
j

∣∣ γ′

α+1 dz

] 1
γ′
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via Hölder’s inequality, γ is the smallest possible parameter such that the Gagliardo–
Nirenberg inequality is applicable to the last integral. By Young’s inequality and a
reabsorption argument, this eventually grants an energy estimate of the form claimed
above. Note that, for p = 2, the exponent γ consorts with the upper bound for
the number s from [5, cond. (1.16)]. Furthermore, for m = 1, γ corresponds to

the Hölder conjugate of p(n+2)
n

such that the integral
˜

ET
fjϕdz is well-defined for

testing functions ϕ ∼ uj due to the fact that, for p-Laplacian equations, we have uj ∈

L
p(n+2)

n (ET ) by the Gagliardo–Nirenberg inequality. In this regard, the value of γ is in
perfect accordance with the earlier results for porous medium type and p-Laplacian
equations. Under the additional premise that µ is not a Radon measure, but a
Lebesgue function that is sufficiently regular in the described sense, the following
reasoning can completely be performed with only minor modifications and yields the
existence of a weak solution of the Cauchy–Dirichlet problem (1.2). ⋄

In the next lemma, we will establish a uniform estimate for uα
j

∣∣Duα+1
j

∣∣p−1
in

L1(ET ). For that purpose, we need to restrict the condition (4.7) for the parameter q.

Lemma 4.4. Under the assumptions of Lemma 4.2 with (4.7) being replaced by
the prerequisite

max
{
1, p−

1

α + 1

}
≤ q < p−

n

n(α + 1) + 1
,(4.19)

we have
¨

ET

uα
j

∣∣Duα+1
j

∣∣p−1
dz ≤ c < ∞(4.20)

with a constant c ≡ c(n,m, p, q, C0, |ET |, µ(ET )). In particular, c does not depend
on j.

Proof. By Hölder’s inequality, there holds

¨

ET

uα
j

∣∣Duα+1
j

∣∣p−1
dz ≤

[
¨

ET

u
αq

q−p+1

j dz

] q−p+1
q

[
¨

ET

∣∣Duα+1
j

∣∣q dz
] p−1

q

.

Next, we recall the range (4.19) for q and the uniform estimate in L(α+1)q(ET ) for the
sequence (uj)j∈N from (4.10). Hence, we obtain by another application of Hölder’s
inequality that the first integral is uniformly bounded. Then, (4.20) can be concluded
with the help of the bound (4.9) for the second integral. �

We remark that the constraint (4.19) for q is in perfect accordance with the
requirement m−1

m+1
≤ q − 1 from [5, Sec. 6.3.1] in the case p = 2. Since the estimates

(4.9) and (4.10) are uniform in j, they admit some weak limits u of uj and v of
Duα+1

j , respectively. It has to be elucidated that the latter coincides with Duα+1,
which we will accomplish in the next section.

4.3. Uniform bounds for the approximating sequence. We start with
a fixed sequence (uj)j∈N of weak solutions of the Cauchy–Dirichlet problems (4.4),
which exists by Lemma 4.1. By Lemma 4.2, we have

sup
j∈N

[
¨

ET

|uj|
(α+1)q dz +

¨

ET

∣∣Duα+1
j

∣∣q dz
]
< ∞

for some q > 1 as in (4.19), which shall be fixed for the rest of this paper. Therefore,
there exist a subsequence (still denoted by (uj)j∈N) and functions u ∈ L(α+1)q(ET )
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and v ∈ Lq(ET ,R
n) such that

uj ⇀ u weakly in L(α+1)q(ET ) as j → ∞(4.21)

and

Duα+1
j ⇀ v weakly in Lq(ET ,R

n) as j → ∞.(4.22)

Since, up to now, we only know the above weak convergences, the functions u and
v might not be related. The main objective in what follows is the identification of
the weak limit v as Duα+1 using the strong convergence uj → u in Ls

loc
(ET ) for some

appropriate s (see (4.31)).

4.3.1. Truncations from below and their a priori estimates. Let ε > 0
be fixed and truncate the functions uj from below, i.e. consider the functions

w
(ε)
j := max{uj, ε} = max

{
uα+1
j , εα+1

} 1
α+1 .

We aim at applying [32, Cor. 4] to the set {w
(ε)
j : j ∈ N}. Ergo, we have to en-

sure that (w
(ε)
j )j∈N is bounded in Lq

(
(0, T );W 1,q(E)

)
and (∂tw

(ε)
j )j∈N is bounded

in L1
loc

(
(0, T );W−1,1(E)

)
(see (4.23) and (4.27), respectively). By the fact that∣∣w(ε)

j

∣∣ ≤ uj + ε on ET and the energy estimate (4.10), one can infer
¨

ET

∣∣w(ε)
j

∣∣q dz ≤ c

¨

ET

uq
j dz + c ≤ c < ∞

with a constant c ≡ c(n, m, p, q, C0, |ET |, µ(ET ), ε) independent of j ∈ N. Next,

we will establish a bound for (Dw
(ε)
j )j∈N in Lq(ET ,R

n). From Lemma 2.2, we deduce
the pointwise bound

∣∣Dw
(ε)
j

∣∣ = 1
α+1

χ
{uj>ε}u

−α
j

∣∣Duα+1
j

∣∣ ≤ 1
α+1

ε−α
∣∣Duα+1

j

∣∣

on ET for the spatial derivative of w
(ε)
j . Thus, there holds

¨

ET

∣∣Dw
(ε)
j

∣∣q dz ≤ c

¨

ET

∣∣Duα+1
j

∣∣q dz ≤ c < ∞

with a constant c ≡ c(n, m, p, q, C0, |ET |, µ(ET ), ε) independent of j ∈ N, where
we have used (4.9). Consequently, we arrive at

sup
j∈N

[
¨

ET

∣∣w(ε)
j

∣∣q dz +
¨

ET

∣∣Dw
(ε)
j

∣∣q dz
]
< ∞,(4.23)

i.e. (w
(ε)
j )j∈N is bounded in Lq

(
(0, T );W 1,q(E)

)
for any q as in (4.19).

4.3.2. Estimates for the time derivative. In the following, we will establish

a bound in L1
loc

(
(0, T );W−1,1(E)

)
for (∂tw

(ε)
j )j∈N. For that purpose, we first note

that w
(ε)
j can be rewritten in the form

w
(ε)
j = uj + ε− ŵ

(ε)
j with ŵ

(ε)
j := min{uj, ε}(4.24)

such that we have to acquire uniform bounds in L1
loc

(
(0, T );W−1,1(E)

)
for the se-

quences (∂tuj)j∈N and (∂tŵ
(ε)
j )j∈N (see (4.25) and (4.26), respectively). For ϕ ∈

C1
0(ET ) with ‖ϕ‖L∞((0,T );W 1,∞(E)) ≤ 1, we start with the weak formulation (4.5) of
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the Cauchy–Dirichlet problem (4.4) and proceed by exerting the growth condition
(1.4), the estimate (4.20), and the bound (4.1) to conclude that

∣∣∣∣
¨

ET

uj∂tϕdz

∣∣∣∣ ≤
∣∣∣∣
¨

ET

A(x, t, uj, Duj) ·Dϕdz

∣∣∣∣+
∣∣∣∣
¨

ET

µjϕdz

∣∣∣∣ ≤ c < ∞

with a constant c ≡ c(n, m, p, q, C0, C1, |ET |, µ(ET )) independent of j ∈ N. By
taking the supremum over all ϕ ∈ C1

0(ET ) with ‖ϕ‖L∞((0,T );W 1,∞(E)) ≤ 1, we receive

‖∂tuj‖L1((0,T );W−1,1(E)) ≤ c < ∞.(4.25)

Hence, it remains to derive a similar (local) bound for ∂tŵ
(ε)
j . By Lemma 3.3, we

know that the functions ŵ
(ε)
j are bounded weak supersolutions of the doubly nonlinear

parabolic equation (4.3), and therefore Lemma 3.8 is applicable. It yields the estimate

∥∥∂tŵ(ε)
j

∥∥
L1((t1,t2);W−1,1(U))

≤ c|W |

[
εp+m−2(t2 − t1)

dist (U, ∂W )p
+ ε

]
(4.26)

for any U ⋐ W ⋐ E with dist(U, ∂W ) ≤ 1, 0 < t1 < t2 < T , and for any j ∈ N,
where the constant c only depends on m, p, C0 and C1. Joining this with (4.25) and
recalling (4.24), we obtain for any fixed ε > 0, U ⋐ E, and 0 < t1 < t2 < T that

∥∥∂tw(ε)
j

∥∥
L1((t1,t2);W−1,1(U))

≤ c < ∞(4.27)

with a constant c independent of j ∈ N, i.e. we have found an L1
(
(t1, t2);W

−1,1(U)
)
-

bound for (∂tw
(ε)
j )j∈N.

4.3.3. Identifying the weak limit v. In this step, we will identify with
Duα+1 the limit v of the weakly convergent sequence (Duα+1

j )j∈N. We will adapt the
techniques from [27, p. 13 f.] and [5, Sec. 6.3.3] and slightly modify the reasoning
whenever necessary. Take an exhaustion of E by smooth sets (U (ℓ))ℓ∈N and nested

intervals
(
(t

(ℓ)
1 , t

(ℓ)
2 )

)
ℓ∈N

with U (ℓ)
⋐ E and 0 < t

(ℓ)
1 < t

(ℓ)
2 < T for any ℓ ∈ N, and

such that

ET =

∞⋃

ℓ=1

[
U (ℓ) ×

(
t
(ℓ)
1 , t

(ℓ)
2

)]
=:

∞⋃

ℓ=1

U(ℓ).

Now, for a fixed ε > 0, we appeal to [32, Cor. 4] with respect to the set {w
(ε)
j : j ∈ N}

and the following choice of spaces: X := W 1,1(U (1)), B := L1(U (1)), and Y :=
W−1,1(U (1)). Note that this is possible due to the uniform bounds (4.23) and (4.27).

We achieve the precompactness of the sequence (w
(ε)
j )j∈N in L1(U(1)), which allows

us to extract a subset K
(ε)
1 ⊂ N such that

w
(ε)
j → w̃

(ε)
1 in L1(U(1)) and a.e. on U(1) as K

(ε)
1 ∋ j → ∞.

On U(2), we consider the sequence (w
(ε)
j )

j∈K
(ε)
1

. The previous argument applies again

and gives a subset K
(ε)
2 ⊂ K

(ε)
1 such that

w
(ε)
j → w̃

(ε)
2 in L1(U(2)) and a.e. on U(2) as K

(ε)
2 ∋ j → ∞.

Of course, there holds w̃
(ε)
2 ≡ w̃

(ε)
1 on U(1) since pointwise limits are unique. This

process can be continued inductively by picking a subset K
(ε)
ℓ+1 ⊂ K

(ε)
ℓ such that the

subsequence (w
(ε)
j )

j∈K
(ε)
ℓ+1

converges strongly in L1(U(ℓ+1)) and almost everywhere on
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U(ℓ+1) to some function w̃
(ε)
ℓ+1 as K

(ε)
ℓ+1 ∋ j → ∞. Clearly, we have w̃

(ε)
ℓ+1 ≡ w̃

(ε)
ℓ on

U(ℓ). Now, let

K
(ε)
∞ :=

⋂

ℓ∈N

K
(ε)
ℓ = lim

ℓ→∞
K

(ε)
ℓ

be the diagonal set. Then, for the corresponding diagonal sequence of functions

(w
(ε)
j )

j∈K
(ε)
∞

, we conclude that

w
(ε)
j → w(ε) in L1

loc
(ET ) and a.e. on ET as K

(ε)
∞ ∋ j → ∞,

where w(ε) is defined in a natural way by the local limits w̃
(ε)
ℓ , i.e. w(ε) ≡ w̃

(ε)
ℓ on U(ℓ).

Next, we choose the values of ε as εi :=
1
i
(i ∈ N). As a result, the method from

above shows that there exists a subset L1 := K
(ε1)
∞ ⊂ N such that

w
(ε1)
j → w(ε1) in L1

loc
(ET ) and a.e. on ET as L1 ∋ j → ∞.

Starting with (w
(ε2)
j )j∈L1, the procedure yields another subset L2 ⊂ L1 such that

w
(ε2)
j → w(ε2) in L1

loc
(ET ) and a.e. on ET as L2 ∋ j → ∞.

Inductively, we find Li+1 ⊂ Li admitting the convergence

w
(εi+1)
j → w(εi+1) in L1

loc
(ET ) and a.e. on ET as Li+1 ∋ j → ∞.

At this stage, we select again the diagonal set

L∞ :=
⋂

i∈N

Li = lim
i→∞

Li,

and infer that, for any i ∈ N, there holds

w
(εi)
j → w(εi) in L1

loc
(ET ) and a.e. on ET as L∞ ∋ j → ∞.(4.28)

Since

w
(εi)
j = max

{
uj,

1
i

}
≥ max

{
uj ,

1
i+1

}
= w

(εi+1)
j ,

the a.e.-convergence in (4.28) implies that

w(εi)(x, t) = lim
L∞∋j→∞

w
(εi)
j (x, t) ≥ lim

L∞∋j→∞
w

(εi+1)
j (x, t) = w(εi+1)(x, t)

for almost every (x, t) ∈ ET , i.e. the sequence (w(εi))i∈N of non-negative functions is
nonincreasing and, therefore, concedes a pointwise, non-negative limit w ∈ L1

loc
(ET ).

Thus,

w(x, t) := lim
i→∞

w(εi)(x, t)

is well-defined for almost every (x, t) ∈ ET . In view of the L1
loc
(ET )-convergence of

(w
(εi)
j )j∈L∞

to w(εi) from (4.28), we have
¨

Ut1,t2

∣∣w(εi)
∣∣ dz = lim

L∞∋j→∞

¨

Ut1,t2

w
(εi)
j dz ≤ sup

j∈N

¨

ET

uj dz + |ET | < ∞

for any U ⋐ E and 0 < t1 < t2 < T , where we also have used the definition of

w
(εi)
j and the energy estimate (4.8). Hence, the sequence of functions (w(εi))i∈N is

uniformly bounded in L1(Ut1,t2), and we conclude that

w(εi) → w in L1
loc
(ET ) as i → ∞(4.29)
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by the dominated convergence theorem. Next, we consider the difference between w
and uj in the L1

loc
(ET )-norm and obtain for any U ⋐ E and 0 < t1 < t2 < T that

¨

Ut1,t2

|w − uj| dz ≤

¨

Ut1,t2

∣∣w − w(εi)
∣∣ dz +

¨

Ut1,t2

∣∣w(εi) − w
(εi)
j

∣∣ dz

+

¨

Ut1,t2

∣∣w(εi)
j − uj

∣∣ dz.
(4.30)

The third term appearing on the right-hand side of the preceding inequality can be
estimated as follows:

¨

Ut1,t2

∣∣w(εi)
j − uj

∣∣ dz =

¨

Ut1,t2

χ
{uj<εi}

∣∣1
i
− uj

∣∣ dz ≤ 1
i
|ET |.

We plug this inequality in (4.30) and subsequently pass to the limit L∞ ∋ j → ∞,
taking into account that the second integral on the right-hand side of (4.30) converges
to 0 by (4.28). Consequently, we arrive at

lim sup
L∞∋j→∞

¨

Ut1,t2

|w − uj| dz ≤

¨

Ut1,t2

∣∣w − w(εi)
∣∣ dz + 1

i
|ET |.

Letting i → ∞ and relying on (4.29), we find that

uj → w in L1
loc
(ET ) and a.e. on ET as L∞ ∋ j → ∞,

and, by (4.21) and the uniqueness of weak limits, we receive w ≡ u on ET . Therefore,
since, by (4.10) and (4.21), uj and u are uniformly bounded in L(α+1)q(ET ), we can
exploit Lyapunov’s inequality to conclude for any 1 ≤ s < (α + 1)q that

uj → u in Ls
loc
(ET ) and a.e. on ET as L∞ ∋ j → ∞.(4.31)

We are now ready to identify the weak limit v by the following computation. For
any ϕ ∈ C∞

0 (ET ,R
n), there holds

¨

ET

v · ϕdz = lim
L∞∋j→∞

¨

ET

Duα+1
j · ϕdz = − lim

L∞∋j→∞

¨

ET

uα+1
j div(ϕ) dz

= −

¨

ET

uα+1 div(ϕ) dz,

that is v = Duα+1 in the weak sense. Here, we have used in turn (4.22), an integration
by parts as well as the convergence in (4.31). Thus, the identification of v as Duα+1

is complete, and the convergence in (4.22) can be rewritten in the form

Duα+1
j ⇀ Duα+1 weakly in Lq(ET ,R

n) as L∞ ∋ j → ∞.(4.32)

We terminate this paragraph remarking that, from now on, we assume that not
only the subsequences (uj)j∈L∞

and (Duα+1
j )j∈L∞

, but the sequences (uj)j∈N and

(Duα+1
j )j∈N themselves, converge to u and Duα+1, respectively, in order to avoid an

overburdened notation.

4.3.4. Estimates for u. Next, we examine how the bounds (4.8), (4.9) and
(4.10) can be transferred from the approximating sequence to the limit function. One
is able to deduce the following estimates for u.

Lemma 4.5. The limit function u from (4.21) satisfies

sup
t∈(0,T )

ˆ

E×{t}

u dx+

¨

ET

∣∣Duα+1
∣∣q dz +

¨

ET

u(α+1)q dz ≤ c < ∞(4.33)
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with a constant c ≡ c(n, m, p, q, C0, |ET |, µ(ET )), where q is given by (4.19).

Proof. The claim follows directly from (4.8), (4.9), (4.10), (4.21), (4.32), and the
weak lower semicontinuity of the L∞

(
(0, T );L1(E)

)
-, Lq(ET ,R

n)-, and L(α+1)q(ET )-
norms. �

It remains to show that the limit function u is indeed a very weak solution of
the Cauchy–Dirichlet problem (1.2), i.e. we have to prove that (1.10) holds true for
any testing function ϕ ∈ C1(ET ) vanishing on [∂E × (0, T )]∪ [E×{T}]. The crucial
step in the proof will be the detection of the pointwise convergence of Duα+1

j almost
everywhere on ET , which will be accomplished in the next paragraph. After that, the
passage to the limit in the equation can be realized in Section 4.5. The methods are
similar to the porous medium equation case (i.e. p = 2), and our reasoning generalizes
the arguments from [5, Sec. 6.4].

4.4. Pointwise convergence of Du
α+1

j . In this section, we pursue the objec-

tive of extracting a subsequence of (Duα+1
j )j∈N which admits the pointwise conver-

gence to Duα+1 almost everywhere on ET . For that purpose, let η ∈ C∞
0 (E, [0, 1])

be a cut-off function and define u(ε) := max{u, ε} for ε > 0. We note that, by
Lemma 2.2, the symbol Du(ε) for the weak spatial derivative of u(ε) has then to be
understood in the sense of

Du(ε) = 1
α+1

χ
ET∩{u>ε}u

−αDuα+1.(4.34)

Let ℓ > ε (later on, we will pass to the limits ℓ → ∞ and ε ց 0 such that this
constraint is always satisfied) and define for j ∈ N the function

h
(ε)
j :=

∣∣ 1
α+1

Duα+1
j − uα

jDu(ε)
∣∣λ

[∣∣ 1
α+1

Duα+1
j − uα

j b(·, uj)
∣∣p +

∣∣uα
jDu(ε) − uα

j b(·, uj)
∣∣p
]λ−p

p

(4.35)

on ET , where λ is the parameter from (1.6). In what follows, we consider the integral
¨

ET

[
C2ηh

(ε)
j

]ϑ
dz

≤

¨

ET

[
η
[
A(x, t, uj, Duj)−A(x, t, uj, Du(ε))

]
·
(
Duj −Du(ε)

)]ϑ
dz

=

¨

ET∩{u<ℓ}

[
· · ·

]ϑ
dz +

¨

ET∩{u≥ℓ}

[
· · ·

]ϑ
dz =: Jj,ℓ(ε) + Kj,ℓ

(4.36)

for some

0 < ϑ < q(p+m−1)
p(p+2m−2)

< 1,(4.37)

where q is as in (4.19). In (4.36), we inserted the monotonicity assumption (1.6) and,
in the second step, partitioned the domain of integration into the sets ET ∩ {u < ℓ}
and ET ∩ {u ≥ ℓ} (note that Kj,ℓ is independent of the parameter ε since ℓ > ε).
Before dealing with the term Jj,ℓ(ε), we will analyze Kj,ℓ in the next subsection.

4.4.1. The term Kj,ℓ. The above splitting with respect to level sets depending
on large values of ℓ allows us to employ in the study of Kj,ℓ that

|ET ∩ {u ≥ ℓ}| =

¨

ET∩{u≥ℓ}

1 dz ≤ 1
ℓ

¨

ET

u dz → 0(4.38)



Existence of very weak solutions of doubly nonlinear parabolic equations with measure data 951

as ℓ → ∞, which holds true since u ∈ L1(ET ). Therefore, we will see in (4.40) that
the term Kj,ℓ converges to 0 in the limit ℓ → ∞ uniformly with respect to j ∈ N.
Using the fact that 0 ≤ η ≤ 1, the growth condition (1.4), several standard estimates,
the identity (4.34) and ε < ℓ (such that {u ≥ ℓ} ⊂ {u > ε}), and finally the lower
bound u ≥ ℓ on the domain of integration, we find that

Kj,ℓ ≤

¨

ET∩{u≥ℓ}

[(∣∣A(x, t, uj, Duj)
∣∣+

∣∣A(x, t, uj, Du(ε))
∣∣
)

·
(∣∣Duj

∣∣+
∣∣Du(ε)

∣∣
)]ϑ

dz

≤ c

¨

ET∩{u≥ℓ}

[
um−1
j

(∣∣Duj

∣∣p +
∣∣Du(ε)

∣∣p
)]ϑ

dz

≤ c

¨

ET∩{u≥ℓ}

[∣∣Duα+1
j

∣∣p + um−1
j u1−m

∣∣Duα+1
∣∣p
]ϑ

dz

≤ c

¨

ET∩{u≥ℓ}

∣∣Duα+1
j

∣∣ϑp dz + c

¨

ET∩{u≥ℓ}

[
ℓ1−mum−1

j

∣∣Duα+1
∣∣p
]ϑ

dz

=: K(1) + K(2)

(4.39)

with a constant c ≡ c(m, p, ϑ, C1). By Hölder’s inequality and the energy estimate
(4.9), the first term on the right-hand side simplifies to

K(1) ≤ c

[
¨

ET

∣∣Duα+1
j

∣∣q dz
]ϑp

q

|ET ∩ {u ≥ ℓ}|1−
ϑp
q ≤ c|ET ∩ {u ≥ ℓ}|1−

ϑp
q

with a constant c ≡ c(n,m, p, q, ϑ, C0, C1, |ET |, µ(ET )). Note that the last exponent
is positive due to (4.37). For the second integral from (4.39), we apply Hölder’s
inequality twice and the estimates (4.33) and (4.10) to infer that

K(2) ≤ cℓ−ϑ(m−1)

[
¨

ET

∣∣Duα+1
∣∣q dz

]ϑp
q
[
¨

ET∩{u≥ℓ}

u
ϑ(m−1)q

q−ϑp

j dz

]1−ϑp
q

≤ cℓ−ϑ(m−1)

[
¨

ET

u
(α+1)q
j dz

]ϑ(m−1)
(α+1)q

|ET ∩ {u ≥ ℓ}|
1− ϑ(m−1)

(α+1)(q−ϑp)

≤ cℓ−ϑ(m−1)|ET ∩ {u ≥ ℓ}|1−
ϑ(m−1)

(α+1)(q−ϑp)

with a constant c ≡ c(n, m, p, q, ϑ, C0, C1, |ET |, µ(ET )), where the exponent 1 −
ϑ(m−1)

(α+1)(q−ϑp)
is also positive because of (4.37). Joining the preceding estimates with

(4.39) and taking into account that (4.38) holds, we arrive at

lim
ℓ→∞

sup
j∈N

Kj,ℓ = 0,(4.40)

independent of ε. This finishes our investigation of Kj,ℓ, and we now turn our at-
tention to the term Jj,ℓ(ε) from (4.36). To this end, we first have to establish some
properties of truncations.

4.4.2. Properties of truncations. For ℓ ∈ N, we define the truncation opera-
tors Tℓ : R → R by Tℓ(s) := max{−ℓ,min{s, ℓ}}. They satisfy Tℓ(s) = min{s, ℓ} for
s ≥ 0.
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Lemma 4.6. Let uj be the weak solution from Lemma 4.1 and u the limit
function from (4.21). Then, there holds

¨

ET

∣∣D
[
Tℓ(uj)

]α+1∣∣p dz ≤ cℓ(4.41)

for any ℓ ∈ N with a constant c ≡ c(m, p, C0, µ(ET )) independent of j ∈ N.
Furthermore, Tℓ(u)

α+1 is weakly differentiable, and the derivative is given by the

weak limit of D
[
Tℓ(uj)

]α+1
, i.e. we have that

D
[
Tℓ(uj)

]α+1
⇀ D

[
Tℓ(u)

]α+1

converges weakly in Lp(ET ,R
n) as j → ∞.

Proof. In (4.5), we employ the testing function ϕ := ζTℓ(uj), where ζ is the cut-
off function from (4.11). As to the usage of time derivatives, we argue only formally
again. For the first term appearing in the weak formulation, an integration by parts
yields
¨

ET

ζTℓ(uj)∂tuj dz =

¨

ET

ζTℓ(uj)∂tTℓ(uj) dz +

¨

ET

ζTℓ(uj)∂t[uj − Tℓ(uj)] dz

= 1
2

¨

ET

ζ∂t|Tℓ(uj)|
2 dz + ℓ

¨

ET

ζ∂t(uj − ℓ)+ dz

= 1
δ

¨

E×(τ−δ,τ)

[
1
2
|Tℓ(uj)|

2 + ℓ(uj − ℓ)+

]
dz ≥ 0,

where τ ∈ (0, T ) and δ ∈ (0, τ). By treating the remaining two terms from (4.5) sim-
ilarly to the computations performed in (4.13) and (4.14), one can show that (4.41)

is valid. Therefore, D
[
Tℓ(uj)

]α+1
subconverges to some function ṽ ∈ Lp(ET ,R

n)
weakly in Lp(ET ,R

n) as j → ∞. Moreover, from (4.31), we know that Tℓ(uj)
α+1

converges to Tℓ(u)
α+1 almost everywhere on ET as j → ∞ such that, by the domi-

nated convergence theorem, there holds
¨

ET

ṽ · ϕdz = lim
j→∞

¨

ET

D
[
Tℓ(uj)

]α+1
· ϕdz = − lim

j→∞

¨

ET

Tℓ(uj)
α+1 div(ϕ) dz

= −

¨

ET

Tℓ(u)
α+1 div(ϕ) dz

for any ϕ ∈ C∞
0 (ET ,R

n), i.e. Lemma 4.6 is proven. �

We have now collected all the necessary properties of the truncations and can
devote ourselves to the term Jj,ℓ(ε) from (4.36), where we priorly shall remember
that Duj is given by (4.6).

4.4.3. The term Jj,ℓ(ε). Let σ > ε and Tℓ as defined in Subsection 4.4.2.
Availing ourselves of the identity χ

{u<ℓ}Du(ε) = χ
{u(ε)<ℓ}Du(ε) = DTℓ(u

(ε)) and en-
larging the domain of integration from ET ∩{u < ℓ} to ET , we can estimate the term
Jj,ℓ(ε) by

Jj,ℓ(ε) ≤

¨

ET

[
η
[
A(x, t, uj, Duj)− A(x, t, uj , DTℓ(u

(ε)))
]

·
(
Duj −DTℓ(u

(ε))
)]ϑ

dz

=: J
(+)
j,ℓ (ε, σ, h) + J

(−)
j,ℓ (ε, σ, h).

(4.42)



Existence of very weak solutions of doubly nonlinear parabolic equations with measure data 953

Here, in the second step, we have split the domain of integration ET into two parts
ET ∩ Σ+

j and ET ∩ Σ−
j , where

Σ+
j := {|uj − JTℓ(u

(ε))Kh| > σ} and Σ−
j := {|uj − JTℓ(u

(ε))Kh| ≤ σ},

and denoted the corresponding integrals by J
(+)
j,ℓ (ε, σ, h) and J

(−)
j,ℓ (ε, σ, h). First, we

examine the former. For that purpose, we fix

ϑ :=
q(p+m− 1)

2p(p+ 2m− 2)
(4.43)

and note that this choice is allowed in (4.37). Then, using the fact that 0 ≤ η ≤ 1,
the growth condition (1.4), several standard estimates, the bound Tℓ(u

(ε)) ≥ ε, the
formula from Lemma 2.2 for the spatial derivative of Tℓ(u

(ε)), Hölder’s inequality
(multiple times) as well as the estimates (4.9), (4.10) and (4.33), we obtain

J
(+)
j,ℓ (ε, σ, h) ≤

¨

ET∩Σ+
j

[(∣∣A(x, t, uj, Duj)
∣∣+

∣∣A(x, t, uj, DTℓ(u
(ε)))

∣∣
)

·
(∣∣Duj

∣∣+
∣∣DTℓ(u

(ε))
∣∣
)]ϑ

dz

≤ c

¨

ET∩Σ+
j

[
um−1
j

(∣∣Duj

∣∣p +
∣∣DTℓ(u

(ε))
∣∣p
)]ϑ

dz

≤ c

¨

ET∩Σ+
j

[∣∣Duα+1
j

∣∣ϑp +
(uj

ε

)ϑ(m−1)∣∣D
[
Tℓ(u

(ε))
]α+1∣∣ϑp

]
dz

≤ c|ET ∩ Σ+
j |

1
2 ·

[
¨

ET

∣∣Duα+1
j

∣∣2ϑp dz

+

¨

ET

(uj

ε

)2ϑ(m−1) ∣∣D
[
Tℓ(u

(ε))
]α+1∣∣2ϑp dz

] 1
2

≤ c|ET ∩ Σ+
j |

1
2

·

(
c+ cε

[
¨

ET

u
(α+1)q
j dz

] m−1
p+2m−2

[
¨

ET

∣∣Duα+1
∣∣q dz

] p+m−1
p+2m−2

) 1
2

≤ cε
∣∣ET ∩ {|uj − JTℓ(u

(ε))Kh| > σ}
∣∣ 12

with a constant cε ≡ cε(n,m, p, q, C0, C1, |ET |, µ(ET ), ε). We can now pass to the
limits j → ∞ and h ց 0 to conclude that

lim
hց0

lim sup
j→∞

J
(+)
j,ℓ (ε, σ, h) ≤ cε

∣∣ET ∩ {|u− Tℓ(u
(ε))| > σ}

∣∣ 12

= cε
∣∣ET ∩ {|u− Tℓ(u)| > σ}

∣∣ 12 ,

where, in the last line, we used the fact that ε < σ, which implies that |u−Tℓ(u
(ε))| <

σ on the set {u < ε}. Letting ℓ → ∞, we infer

lim sup
ℓ→∞

lim
hց0

lim sup
j→∞

J
(+)
j,ℓ (ε, σ, h) = 0(4.44)
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for any pair of parameters 0 < ε < σ. Next, we turn our attention to the term

J
(−)
j,ℓ (ε, σ, h) from (4.42). Here, Hölder’s inequality leads to

J
(−)
j,ℓ (ε, σ, h) ≤ |ET |

1−ϑ

[
¨

ET

χ
Σ−

j
ηA(x, t, uj, Duj) ·

(
Duj −DTℓ(u

(ε))
)
dz

−

¨

ET

χ
Σ−

j
ηA(x, t, uj, DTℓ(u

(ε))) ·
(
Duj −DTℓ(u

(ε))
)
dz

]ϑ

=: |ET |
1−ϑ

[
J
(−)
1 − J

(−)
2

]ϑ

(4.45)

for ϑ as in (4.43). In the study of J
(−)
j,ℓ (ε, σ, h), we start with the term J

(−)
2 , rewriting

the integrand in the following way:

A(·, uj, DTℓ(u
(ε))) ·

(
Duj −DTℓ(u

(ε))
)

= χ
{uj>0}u

−α
j A(·, uj, DTℓ(u

(ε))) ·
[

1
α+1

Duα+1
j − uα

jDTℓ(u
(ε))

]
.

Now, if z = (x, t) ∈ ET is such that uj(z) → u(z) > 0 as j → ∞, there holds

χ
{uj>0}(z)uj(z)

−αA(x, t, uj(z), DTℓ(u
(ε))(z)) → u(z)−αA(x, t, u(z), DTℓ(u

(ε))(z))

as j → ∞, while if uj(z) → 0 as j → ∞, then, by the growth condition (1.4), we
have

∣∣χ
{uj>0}(z)uj(z)

−αA(x, t, uj(z), DTℓ(u
(ε))(z))

∣∣

≤ C1uj(z)
α(p−1)

∣∣DTℓ(u
(ε))(z)

∣∣p−1
→ 0

as j → ∞, so that

χ
{uj>0}u

−α
j A(·, uj, DTℓ(u

(ε))) → χ
{u>0}u

−αA(·, u,DTℓ(u
(ε)))

converges almost everywhere on ET as j → ∞. Hence, by applying Egorov’s theorem
for a given δ > 0, we find a compact set Kδ ⊂ ET such that |ET \Kδ| < δ and

χ
{uj>0}u

−α
j A(·, uj, DTℓ(u

(ε))) → χ
{u>0}u

−αA(·, u,DTℓ(u
(ε)))(4.46)

converges uniformly on Kδ as j → ∞. Besides, from (4.31) and the dominated
convergence theorem, there follows

χ
Σ−

j
= χ

{|uj−JTℓ(u(ε))Kh|≤σ} → χ
{|u−JTℓ(u(ε))Kh |≤σ} =: χΣ−(4.47)

in Lω(ET ) as j → ∞ for any ω ≥ 1 and almost every σ > ε. Now, by the triangle
inequality, we obtain

∣∣∣∣
¨

Kδ

[
χ
Σ−

j
ηA(x, t, uj , DTℓ(u

(ε))) ·Duj − χ
Σ−ηA(x, t, u,DTℓ(u

(ε))) ·Du
]
dz

∣∣∣∣

≤ c
∥∥A(·, uj, DTℓ(u

(ε)))χ{uj>0}u
−α
j − A(·, u,DTℓ(u

(ε)))χ{u>0}u
−α

∥∥
∞

∥∥Duα+1
j

∥∥
q

+ c
∥∥A(·, u,DTℓ(u

(ε)))χ{u>0}u
−α

∥∥
∞

∥∥Duα+1
j

∥∥
q

∥∥χ
Σ−

j
− χ

Σ−

∥∥
q′

+ c

∣∣∣∣
¨

Kδ

[
χ
Σ−ηA(x, t, u,DTℓ(u

(ε)))χ{u>0}u
−α

]
·
(
Duα+1

j −Duα+1
)
dz

∣∣∣∣
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with a constant c ≡ c(m, p, |ET |). Therefore, due to (4.46), (4.9), (4.47) and (4.32),
we infer

lim
j→∞

¨

Kδ

χ
Σ−

j
ηA(x, t, uj, DTℓ(u

(ε))) ·Duj dz

=

¨

Kδ

χ
Σ−ηA(x, t, u,DTℓ(u

(ε))) ·Dudz.

(4.48)

Remember that the symbols Duj and Du have to be interpreted as in (4.6) and

(1.11), respectively. For the other summand of the integral J
(−)
2 , we compute

lim
j→∞

¨

Kδ

χ
Σ−

j
ηA(x, t, uj, DTℓ(u

(ε))) ·DTℓ(u
(ε)) dz

=

¨

Kδ

χ
Σ−ηA(x, t, u,DTℓ(u

(ε))) ·DTℓ(u
(ε)) dz.

(4.49)

Here, we used that A(·, uj, DTℓ(u
(ε))) → A(·, u,DTℓ(u

(ε))) converges almost every-
where on ET as j → ∞ because of (4.31) and the continuity of A(x, t, ·, DTℓ(u

(ε))).
Thus, taking into account that, by (4.47), we can extract a (nonrelabeled) a.e.-
convergent subsequence of (χΣ−

j
)j∈N, we also get that χ

Σ−

j
A(·, uj, DTℓ(u

(ε))) con-

verges almost everywhere on ET to χ
Σ−A(·, u,DTℓ(u

(ε))) as j → ∞. Since Egorov’s
theorem again provides the uniform convergence on Kδ, we conclude that (4.49) is

valid. It remains to control the integral J
(−)
2 on the complement ET \Kδ. For that

purpose, we first estimate
∣∣χ

Σ−

j
ηA(·, uj, DTℓ(u

(ε))) ·Duj

∣∣ ≤ C1
χ
Σ−

j
um−1
j

∣∣DTℓ(u
(ε))

∣∣p−1
|Duj|

= C1
χ
Σ−

j
Tℓ+σ(uj)

m−1
∣∣DTℓ(u

(ε))
∣∣p−1

|DTℓ+σ(uj)|

≤ cTℓ+σ(uj)
α(p−1)Tℓ(u

(ε))−α(p−1)
∣∣D

[
Tℓ(u

(ε))
]α+1∣∣p−1∣∣D

[
Tℓ+σ(uj)

]α+1∣∣

≤ c
[
ℓ+σ
ε

]α(p−1)∣∣D
[
Tℓ(u

(ε))
]α+1∣∣p−1∣∣D

[
Tℓ+σ(uj)

]α+1∣∣

with a constant c ≡ c(m, p, C1), where, in the second step, we have exerted the
definition of Σ−

j and the fact that JTℓ(u
(ε))Kh ∈ [0, ℓ]. If we integrate on ET \ Kδ

and apply Hölder’s inequality and subsequently the estimate (4.41), then, since

D
[
Tℓ(u)

]α+1
∈ Lp(ET ,R

n) by Lemma 4.6, we find by the absolute continuity of
the Lebesgue integral that

∣∣∣∣
¨

ET \Kδ

χ
Σ−

j
ηA(x, t, uj, DTℓ(u

(ε))) ·Duj dz

∣∣∣∣

≤ c
[
ℓ+σ
ε

]α(p−1)
[
¨

ET \Kδ

∣∣D
[
Tℓ(u

(ε))
]α+1∣∣p dz

] 1
p′

·

[
¨

ET

∣∣D
[
Tℓ+σ(uj)

]α+1∣∣p dz
] 1

p

≤ c
[
ℓ+σ
ε

]α(p−1)
[
¨

ET \Kδ

∣∣D
[
Tℓ(u)

]α+1∣∣p dz
] 1

p′

[ℓ+ σ]
1
p → 0

(4.50)

in the limit δ ց 0 uniformly with respect to j, where the constant c only depends

on n, m, p, C0, C1, |ET | and µ(ET ). As for the other term of J
(−)
2 , we analogously
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estimate
∣∣χ

Σ−

j
ηA(·, uj, DTℓ(u

(ε))) ·DTℓ(u
(ε))

∣∣ ≤ C1
χ
Σ−

j
um−1
j

∣∣DTℓ(u
(ε))

∣∣p

= C1
χ
Σ−

j
Tℓ+σ(uj)

m−1
∣∣DTℓ(u

(ε))
∣∣p

≤ cTℓ+σ(uj)
m−1Tℓ(u

(ε))1−m
∣∣D

[
Tℓ(u

(ε))
]α+1∣∣p

≤ c
[
ℓ+σ
ε

]m−1∣∣D
[
Tℓ(u

(ε))
]α+1∣∣p,

hence, again employing the absolute continuity of the Lebesgue integral, we infer
∣∣∣∣
¨

ET \Kδ

χ
Σ−

j
ηA(x, t, uj, DTℓ(u

(ε))) ·DTℓ(u
(ε)) dz

∣∣∣∣

≤ c
[
ℓ+σ
ε

]m−1
¨

ET \Kδ

∣∣D
[
Tℓ(u)

]α+1∣∣p dz → 0

(4.51)

in the limit δ ց 0 uniformly with respect to j. Using (4.48)–(4.51) and recalling

(1.11), we obtain for the term J
(−)
2 from (4.45):

∣∣∣ lim
j→∞

J
(−)
2

∣∣∣ =
∣∣∣∣
¨

ET

χ
Σ−ηA(x, t, u,DTℓ(u

(ε))) ·
(
Du−DTℓ(u

(ε))
)
dz

∣∣∣∣

≤ C1

¨

ET∩[{u<ε}∪{u>ℓ}]

um−1
∣∣DTℓ(u

(ε))
∣∣p−1

|Du| dz = 0.

(4.52)

Here, we exploited the facts that DTℓ(u
(ε)) = Du on ET ∩ {ε ≤ u ≤ ℓ} and

DTℓ(u
(ε)) = 0 on ET ∩ [{u < ε} ∪ {u > ℓ}] as well as the growth condition (1.4). We

now need to treat the leftover integral J
(−)
1 from (4.45). First, we compute

χ
ET∩Σ−

j

(
uj − JTℓ(u

(ε))Kh
)
= χ

ET∩Σ−

j
Tσ

(
uj − JTℓ(u

(ε))Kh
)
,

which is why we have

Duj −DTℓ(u
(ε)) = D

[
Tσ

(
uj − JTℓ(u

(ε))Kh
)]

+DJTℓ(u
(ε))Kh −DTℓ(u

(ε))

on ET ∩ Σ−
j . Since D

[
Tσ

(
uj − JTℓ(u

(ε))Kh
)]

= 0 on ET \ Σ−
j , there holds

J
(−)
1 =

¨

ET

χ
Σ−

j
ηA(x, t, uj, Duj) ·

[
DJTℓ(u

(ε))Kh −DTℓ(u
(ε))

]
dz

+

¨

ET

ηA(x, t, uj, Duj) ·DTσ

(
uj − JTℓ(u

(ε))Kh
)
dz.

(4.53)

We observe that the first integral disappears in the limit h ց 0. To deal with the
second term, we rely on the weak formulation of (4.4) and choose ϕ := ηTσ

(
uj −

JTℓ(u
(ε))Kh

)
as a testing function (note that ϕ = η = 0 on ∂E × (0, T )). This yields
¨

ET

ηA(x, t, uj, Duj) ·DTσ

(
uj − JTℓ(u

(ε))Kh
)
dz

=

¨

ET

ηµjTσ

(
uj − JTℓ(u

(ε))Kh
)
dz −

¨

ET

η∂tujTσ

(
uj − JTℓ(u

(ε))Kh
)
dz

−

¨

ET

Tσ

(
uj − JTℓ(u

(ε))Kh
)
A(x, t, uj, Duj) ·Dη dz

=: L1 + L2 + L3.

(4.54)
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Remember that basically we would have to apply the time mollification as done in
(2.4) since the time derivative ∂tuj does not need to exist, the details, however, will
be omitted as this is a standard procedure. For the first term, (4.1) leads us to

|L1| ≤ ‖η‖L∞(E)σ

¨

ET

µj dz ≤ cσ(4.55)

with a constant c = µ(ET ). Moreover, availing ourselves of the growth condition
(1.4) and the estimate (4.20), we find

|L3| ≤ cσ

¨

ET

uα
j

∣∣Duα+1
j

∣∣p−1
dz ≤ cσ(4.56)

with a constant c ≡ c(n, m, p, q, C0, C1, |ET |, µ(ET ), ‖Dη‖L∞(E,Rn)). Eventually,
we rewrite L2 as follows:

L2 = −

¨

ET

η∂tJTℓ(u
(ε))KhTσ

(
uj − JTℓ(u

(ε))Kh
)
dz

−

¨

ET

η∂t
[
uj − JTℓ(u

(ε))Kh
]
Tσ

(
uj − JTℓ(u

(ε))Kh
)
dz

=: L
(1)
2 + L

(2)
2 .

(4.57)

For the second integral, defining φσ(s) :=
´ s

0
Tσ(τ) dτ for s ∈ R, and recalling that

uj(·, 0) = 0 = JTℓ(u
(ε))Kh(·, 0) on E, we obtain

L
(2)
2 = −

ˆ

E

ˆ T

0

η∂tφσ

([
uj − JTℓ(u

(ε))Kh
]
(·, t)

)
dt dx

=

[
−

ˆ

E

ηφσ

([
uj − JTℓ(u

(ε))Kh
]
(x, T )

)
dx+

ˆ

E

ηφσ(0) dx

]
≤ 0,

(4.58)

where the first term is less or equal than 0 by the definitions of φσ and Tσ, and the
second integral disappears since φσ(0) = 0. As for the other contribution in (4.57),
we use the fundamental property ∂tJTℓ(u

(ε))Kh = 1
h

(
Tℓ(u

(ε)) − JTℓ(u
(ε))Kh

)
from [21,

Lemma 2.2, p. 417], pass to the limit j → ∞, and decompose ET into sets where u
is larger than ℓ, u is between ε and ℓ, and u is less or equal than ε. Then, due to the
fact that Tσ is nondecreasing, there holds (s1− s2)Tσ(s1 − s2) ≥ 0 for any s1, s2 ∈ R
such that the integrals on ET ∩ {u > ℓ} and ET ∩ {ε < u ≤ ℓ} can be estimated by
0. Hence, we conclude that

lim
j→∞

L
(1)
2 = − 1

h

¨

ET

η
[
Tℓ(u

(ε))− JTℓ(u
(ε))Kh

]
Tσ

(
u− JTℓ(u

(ε))Kh
)
dz

≤ − 1
h

¨

ET∩{u≤ε}

η
[
ε− JεKh

]
Tσ

(
u− JεKh

)
dz

≤ σε
h

ˆ

E

ˆ T

0

e−
t
h dt dx ≤ cσε

(4.59)

with a constant c = |E|. Merging (4.54)–(4.59), we infer from (4.53) that

lim
hց0

lim sup
j→∞

J
(−)
1 ≤ cσ(1 + ε)(4.60)

with a constant c ≡ c(n,m, p, q, C0, C1, |ET |, µ(ET ), ‖Dη‖L∞(E,Rn)) for almost every
σ > 0 and any 0 < ε < σ. As a consequence, if we insert (4.52) and (4.60) into (4.45)
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and choose σ ∈ (ε, 2ε), we have proved that

lim sup
ℓ→∞

lim
hց0

lim sup
j→∞

J
(−)
j,ℓ (ε, σ, h) ≤ cεϑ.(4.61)

We will now put together the above results and show that Duα+1
j subconverges to

Duα+1 almost everywhere on ET , we will argue that (4.69) is valid.

4.4.4. The conclusion. For ε > 0, we obtain by (4.36), (4.40), (4.42), (4.44)

and (4.61) that for h
(ε)
j as in (4.35) and ϑ as in (4.43), there holds

lim sup
j→∞

¨

ET

[
ηh

(ε)
j

]ϑ
dz ≤ cεϑ

for any η ∈ C∞
0 (E, [0, 1]) with a constant c only depending on n, m, p, q, C0, C1,

C2, |ET |, µ(ET ) and ‖Dη‖L∞(E,Rn). At this point, we pick a null sequence (εj)j∈N.
Then, the last inequality yields

lim sup
j→∞

¨

ET

[
ηh

(εj)
j

]ϑ
= 0.

From this, it follows at least for a subsequence, which we do not relabel, that

lim
j→∞

h
(εj)
j = 0(4.62)

on ẼT for a subset ẼT ⊂ ET with |ẼT | = |ET |. Now, if p ≥ 2, then λ = p, and (4.62)
leads to

lim
j→∞

∣∣ 1
α+1

Duα+1
j − uα

jDu(εj)
∣∣ = 0(4.63)

almost everywhere on ET , where we may recall that Du(εj) has to be understood as
recommended in (4.34). Our next aim is to show that (4.63) is valid also in the case
p ∈ ( 2n

n+2
, 2), in which λ = 2. Since Duα+1 ∈ Lq(ET ,R

n) for q as in the range from

(4.19), we can presume that Duα+1 is finite on ẼT after possibly reducing ẼT by a

set of measure 0, and we may further modify the set such that b(·, u) < ∞ on ẼT .
Besides, by the convergence in (4.31), we can assume without loss of generality that

uj(z) → u(z) as j → ∞ and u(z) < ∞ for any z ∈ ẼT . Hence, for a fixed z ∈ ẼT ,
we find

d
(1)
j (z) :=

∣∣uα
j (z)Du(εj)(z)

∣∣

=
∣∣uα

j (z)
1

α+1
χ
ET∩{u>εj}(z)u

−α(z)Duα+1(z)
∣∣ ≤ c(1)z < ∞

(4.64)

and (analogously, in view of the continuity of b(z, ·))

d
(2)
j (z) :=

∣∣uα
j (z)b(z, uj)

∣∣ ≤ c(2)z < ∞(4.65)

for any j ≫ 1 (for the sake of brevity, we will omit the restriction j ≫ 1, just

saying j ∈ N). The constants c
(1)
z , c

(2)
z > 0 are independent of j. In other words,

(d
(1)
j (z))j∈N and (d

(2)
j (z))j∈N are (nonuniformly) bounded at every point z ∈ ẼT .

Additionally, for some fixed Mz > 0, we are able to ensure that there holds

c(1)z ≤ d
(1)
j (z) + 1

j
Mz(4.66)

for any j ∈ N. We define

d
(3)
j (z) :=

∣∣ 1
α+1

Duα+1
j (z)

∣∣
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for short. Then, using (4.64)-(4.66), we can estimate the function h
(εj)
j at z ∈ ẼT as

follows:

h
(εj)
j (z) ≥

∣∣d(3)
j (z)− d

(1)
j (z)

∣∣2

c
[(

d
(3)
j (z)p + d

(2)
j (z)p

)
+
(
d

(1)
j (z)p + d

(2)
j (z)p

)] 2−p
p

≥
d

(3)
j (z)2 − 2c

(1)
z d

(3)
j (z) +

[
c
(1)
z − 1

j
Mz

]2

cz
[
d

(3)
j (z) + 1

]2−p
,

(4.67)

where cz > 0 is a constant independent of j. Now, suppose that (d
(3)
j (z))j∈N is

unbounded at some point z ∈ ẼT . Consequently, for a nonrelabeled subsequence, we

infer d
(3)
j (z) → ∞ as j → ∞, hence (taking into account that p > 2n

n+2
), we derive

from (4.67) that h
(εj)
j (z) → ∞ as j → ∞, which is a contradiction to (4.62). Thus,

(d
(3)
j (z))j∈N is (nonuniformly) bounded at every point z ∈ ẼT , and, since all terms

appearing in the denominator of h
(εj)
j are (nonuniformly) bounded, we conclude from

(4.62) that the numerator of h
(εj)
j tends to 0 on ẼT as j → ∞, i. e. (4.63) holds true

for any p > 2n
n+2

. Moreover, let us argue for any p > 2n
n+2

that

lim
j→∞

∣∣uα
jDu(εj) − 1

α+1
Duα+1

∣∣ = 0(4.68)

almost everywhere on ET . To that end, first, pick an arbitrary z ∈ ET such that
u(z) > 0. By (1.11) and (4.31), we find

uα
jDu− 1

α+1
Duα+1 = 1

α+1

[
uα
j u

−α − 1
]
Duα+1 → 0

almost everywhere on ET ∩ {u > 0} as j → ∞. Since Du(εj)(z) = Du(z) for any
sufficiently small εj > 0, this implies (4.68). On the other hand, if z ∈ ET and
u(z) = 0, then Duα+1(z) = 0 and Du(εj)(z) = 0 for all εj > 0 by (4.34). Combining
(4.63) and (4.68), we finally obtain

lim
j→∞

∣∣ 1
α+1

Duα+1
j − 1

α+1
Duα+1

∣∣ = 0

almost everywhere on ET , i. e. we have proved that

Duα+1
j → Duα+1 a.e. on ET as j → ∞(4.69)

converges for some subsequence of (Duα+1
j )j∈N, which we will omit in the following

for the sake of brevity. We are now able to show that u satisfies (1.10).

4.5. Passage to the limit in the equation. As uj is a weak solution of the
Cauchy–Dirichlet problem (4.4) for any j ∈ N, by (4.5), we know that

¨

ET

[
− uj∂tϕ+ A(x, t, uj, Duj) ·Dϕ− µjϕ

]
dz = 0

for any ϕ ∈ C1(ET ) vanishing on [∂E×(0, T )]∪[E×{T}]. The terms involving uj and
µj converge due to (4.31) and (4.2). To reason that also the diffusion term converges,
we take advantage of (4.69). Indeed, for z ∈ ET with Duα+1

j (z) → Duα+1(z) and
uj(z) → u(z) > 0 as j → ∞, we have

lim
j→∞

A(x, t, uj(z), Duj(z)) = lim
j→∞

A
(
x, t, uj(z),

1
α+1

χ
{uj>0}(z)u

−α
j (z)Duα+1

j (z)
)

= A
(
x, t, u(z), 1

α+1
χ
{u>0}(z)u

−α(z)Duα+1(z)
)
,
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and for z ∈ ET with Duα+1
j (z) → Duα+1(z) and uj(z) → 0 as j → ∞, we apply (1.4)

to find

lim
j→∞

∣∣A(x, t, uj(z), Duj(z))
∣∣ ≤ c lim

j→∞
uα
j (z)

∣∣Duα+1
j (z)

∣∣p−1
= 0

with a constant c ≡ c(m, p, C1). Hence, A(·, uj, Duj) converges to A(·, u,Du) almost
everywhere on ET as j → ∞. Now, for any δ > 0, Egorov’s theorem provides a
subset Kδ ⊂ ET with |ET \Kδ| < δ such that A(·, uj, Duj) → A(·, u,Du) converges
uniformly on Kδ as j → ∞. Furthermore, the integral on ET \ Kδ can be made
small by an adequate choice of δ because of the uniform L1(ET ,R

n)-bound (4.20) for
A(·, uj, Duj). Altogether, we can conclude that

lim
j→∞

¨

ET

A(x, t, uj, Duj) ·Dϕdz =

¨

ET

A(x, t, u,Du) ·Dϕdz

holds true for any ϕ ∈ C1(ET ) vanishing on [∂E × (0, T )] ∪ [E × {T}]. Conse-
quently, u is a very weak solution of the Cauchy–Dirichlet problem (1.2), meaning
that Theorem 1.4 is proved. �
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