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Abstract. In the present paper, we study spirallikenss (including starlikeness) of the shifted

hypergeometric function f(z) = z2F1(a, b; c; z) with complex parameters a, b, c, where 2F1(a, b; c; z)

stands for the Gaussian hypergeometric function. First, we observe the asymptotic behaviour of

2F1(a, b; c; z) around the point z = 1 to obtain necessary conditions for f to be λ-spirallike for a

given λ with −π/2 < λ < π/2. We next give sufficient conditions for f to be λ-spirallike. As

special cases, we obtain sufficient conditions of strong starlikeness and examples of spirallike, but

not starlike, shifted hypergeometric functions.

1. Introduction and main results

The Gaussian hypergeometric function 2F1(a, b; c; z) with complex parameters
a, b, c (c 6= 0,−1,−2, . . . ) is defined by the power series

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)nn!

zn

for z ∈ D = {z ∈ C : |z| < 1}, where (a)n is the Pochhammer symbol; namely,
(a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a) for n = 1, 2, . . . . It
is well known that 2F1(a, b; c; z) analytically extends to the slit plane C \ [1,+∞).
The use of hypergeometric functions in the confirmation of the Bieberbach conjecture
by de Branges [2] has renewed interests to special function theory. Since then, the
geometric properties of hypergeometric functions have been widely investigated and
have found many applications in geometric function theory. For basic properties of
hypergeometric functions, one can consult [1], [20] or [21].

Let A denote the set of analytic functions f on the open unit disk D and consider
the subclass A1 = {f ∈ A : f(0) = f ′(0)− 1 = 0}. We denote by S the subset of A1

consisting of univalent functions on D. For a constant λ ∈ (−π/2, π/2), a function
f ∈ A1 is called λ-spirallike if

Re

(

e−iλ zf
′(z)

f(z)

)

> 0, z ∈ D.

(Note that in the literature a λ-spirallike function may refer to (−λ)-spirallike one in
our definition.) Let SP(λ) denote the class of λ-spirallike functions. It is known that
SP(λ) ⊂ S. For a geometric characterisation and other properties of λ-spirallike
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functions, the reader may refer to [3] (and also [6]). In particular, a function in
SP(0) is called starlike and we sometimes write S∗ = SP(0). Furthermore, let

σ(f) = inf
z∈D

Re

(

zf ′(z)

f(z)

)

.

Here, following the convention adopted by Küstner [8], we will leave σ(f) undefined if
zf ′(z)/f(z) has a pole in D so that the assertion σ(f) = −∞ means that zf ′(z)/f(z)
is pole-free but its real part has no lower bound on D. A function f ∈ A1 is
called starlike of order α if σ(f) ≥ α. Note here that f is starlike precisely if
σ(f) ≥ 0. A (not necessarily normalised) function f ∈ A is called convex if f maps
D univalently onto a convex domain. It is well known that f is convex if and only
if Re [1 + zf ′′(z)/f ′(z)] > 0 on |z| < 1. For a real constant α ∈ (0, 1), a function
f ∈ A1 is called strongly starlike of order α if

∣

∣

∣

∣

arg
zf ′(z)

f(z)

∣

∣

∣

∣

<
π

2
α, z ∈ D.

A strongly starlike function is starlike and known to be bounded and to have a
quasiconformal extension to the whole plane. We denote by SS(α) the set of strongly
starlike functions of order α. For geometric properties of strongly starlike functions,
the reader may refer to [19] and cited papers there. We note that for λ ∈ (−π/2, π/2),
a function f ∈ A1 is λ-spirallike if and only if

λ− π

2
< arg

zf ′(z)

f(z)
< λ +

π

2
.

In particular, we observe that

SP(λ) ∩ SP(−λ) = SS(α), α = 1− 2

π
|λ|.

Note that the function z2F1(a, b; c; z), called the shifted hypergeometric function,
belongs to the class A1. A number of authors have investigated geometric properties
of the shifted hypergeometric functions. For instance, sufficient conditions for those
functions to be starlike or convex were found by Merkes and Scott [10], Lewis [9],
Ruscheweyh and Singh [17], Miller and Mocanu [11], Silverman [18], Ponnusamy and
Vuorinen [14], Küstner [7], [8], Hästo, Ponnusamy and Vuorinen [4]. Most of known
results in this line, however, deal with z2F1(a, b; c; z) for real parameters a, b, c only.
A few exceptions are [16, Theorem 2.12] (see also [8, Theorem 4]), [8, Theorem 14,
Corollary 17] (and its convex counterparts), [4, Remark 1.5], [12, Theorem 4.1, The-
orem 4.11] and [13, Theorem 1]. Moreover, to the best knowledge of the authors,
no results are found on (proper) spirallikeness of hypergeometric functions. Some of
known starlikeness results are summarised in the following form. Note here that the
hypergeometric functions are symmetric in regard of the parameters a and b; namely,

2F1(a, b; c; z) = 2F1(b, a; c; z).

Theorem A. Let f(z) = z2F1(a, b; c; z). Then the following hold:

(i) (Küstner [7, Remark 2.3]) For a, b, c ∈ R with 0 < a ≤ b ≤ c,

σ(f) = 1− 2F1
′(a, b; c;−1)

2F1(a, b; c;−1)
≥ 1− ab

b+ c
.

(ii) (Küstner [7, Remark 1.2]) For a, b, c ∈ R with −1 ≤ a < 0 < b and c−a−b >
1,

σ(f) = 1− ab

c− a− b− 1
.



Spirallikeness of shifted hypergeometric functions 965

(iii) (Ruscheweyh, cf. [8, Theorem 4]) For a ∈ R, b, c ∈ C with 2Re b ≤ a+1, 0 ≤
a and c = a− b̄+ 1,

σ(f) ≥ 1− a

2
.

In particular, we obtain the following.

Corollary. The shifted hypergeometric function z2F1(a, b; c; z) is starlike if one

of the following conditions is satisfied:

(i) a, b, c ∈ R with 0 < a ≤ b ≤ c and ab ≤ b+ c.
(ii) a, b, c ∈ R with −1 ≤ a < 0 < b and c− a− b ≥ 1− ab (> 1).
(iii) a ∈ R with 2Re b ≤ a+ 1, 0 ≤ a ≤ 2 and c = a− b̄+ 1.

We remark that part (ii) in the corollary was first proved by Silverman [18]. In
the present note, we study spirallikenss, including starlikeness, of shifted hyperge-
ometric functions with complex parameters. First, we collect necessary conditions
for spirallikeness by looking at the behaviour as z → 1 in D. Since f(z) ≡ z when
ab = 0, it is reasonable to assume ab 6= 0 from the beginning.

Theorem 1.1. We set f(z) = z2F1(a, b; c; z) for complex numbers a, b, c with

ab 6= 0, c 6= 0, −1, −2, . . . and let −π/2 < λ < π/2. Suppose that f is λ-spirallike.

Then the following hold according to the value of c− a− b :

(i) If Re (c− a− b) > 1, then
∣

∣

∣

∣

λ− arg

(

1 +
ab

c− a− b− 1

)
∣

∣

∣

∣

≤ π

2
.

(ii) If c− a− b = 1 + si with s ∈ R \ {0}, then R1 ≤ |w1| and

|λ− argw1| ≤ arccos
R1

|w1|
,

where w1 = 1− iab/s and

R1 =

∣

∣

∣

∣

Γ(c− a)Γ(c− b)

sΓ(a)Γ(b)

∣

∣

∣

∣

eπ|s|/2 =

∣

∣

∣

∣

(a+ is)(b+ is)

s
· Γ(a+ is)Γ(b+ is)

Γ(a)Γ(b)

∣

∣

∣

∣

eπ|s|/2.

(iii) If c− a− b = 1, then

|λ− arg (ab)| ≤ π

2
.

(iv) If 0 ≤ Re (c− a− b) < 1, then c− a− b ∈ R and
∣

∣

∣

∣

λ− arg
Γ(c− a)Γ(c− b)

Γ(a)Γ(b)

∣

∣

∣

∣

≤ (c− a− b)
π

2
.

(v) If Re (c− a− b) < 0,

λ = arg (a+ b− c).

We remark that the condition R1 ≤ |w1| in case (ii) is indeed necessary for local
univalence of the function f(z). We now give several sufficient conditions for f to
be univalent. The first result complements Theorem A by adding a case of complex
parameters.

Theorem 1.2. Assume that complex numbers a, b, c satisfy ab 6= 0 and c 6=
0,−1,−2, . . . . The shifted hypergeometric function z2F1(a, b; c; z) is starlike if the

following conditions are satisfied:

(i) p = a + b+ 1− c is a real number,

(ii) Re [ab] > p,
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(iii) L ≥ 0, N ≥ 0 and LN −M2 ≥ 0, where

L = |c− 1|2 − |a+ b|2 + p+ 3Re [ab],

M = Im [ab(ā + b̄− 2)], and

N = |c− 2|2 − |a− 1|2|b− 1|2 − p+ Re [ab].

The following simple fact might be helpful to check condition (iii). The condition
N ≥ 0 follows from the two inequalities L > 0 and LN − M2 ≥ 0 because N ≥
M2/L ≥ 0. The roles of L and N are interchangeable.

By using Alexander’s correspondence (see Lemma 3.3 given below), the starlike-
ness criterion can readily be translated into a convexity one.

Theorem 1.3. Assume that complex numbers a, b, c satisfy ab 6= 0 and c 6=
0,−1,−2, . . . . The hypergeometric function 2F1(a, b; c; z) is convex if the following

conditions are satisfied:

(i) p = a + b− c+ 2 is a real number,

(ii) Re [(a+ 1)(b+ 1)] > p,
(iii) L ≥ 0, N ≥ 0 and LN −M2 ≥ 0, where

L = |c|2 − |a+ b+ 2|2 + p+ 3Re [(a + 1)(b+ 1)],

M = Im [(a + 1)(b+ 1)(ā+ b̄)] = (|a|2 − 1) Im b+ (|b|2 − 1) Im a, and

N = |c− 1|2 − |a|2|b|2 − p+ Re [(a + 1)(b+ 1)].

One might expect that the condition (ii) in Theorems 1.2 and 1.3 could be weak-
ened to allow equality. This is indeed possible to some extent but not in full generality.
See Remarks 3.2 and 4.2 below.

A sufficient condition for spirallikeness can also be given as follows. As long
as we apply Jack’s lemma in the present setting, it seems inevitable to assume the
additional condition c = a + b+ 1 (see the proof given in Section 3).

Theorem 1.4. Let λ be a real number with 0 < |λ| < π/2 and a, b be complex

numbers. Then the shifted hypergeometric function z2F1(a, b; a + b + 1; z) is λ-

spirallike if the following conditions are satisfied:

(i) Re
[

e−iλab
]

≥ 0,
(ii) L ≥ 0, N ≥ 0 and LN −M2 ≥ 0, where

L = Re
[

e−iλab(2 + e−2iλ)
]

,

M = Im
[

e−iλab(ā + b̄− 2e−iλ cosλ)
]

, and

N = Re
[

e−iλab(2ā+ 2b̄− e−2iλ − eiλāb̄/ cosλ)
]

.

We note that the function f under the assumptions in Theorem 1.4 is always
bounded (see Lemma 2.2). When e−iλab or ab is real, the conditions in the theorem
may be simplified as follows.

Corollary 1.5. Let λ be a real number with 0 < |λ| < π/2. Suppose that

q = e−iλab is a positive real number. Then the shifted hypergeometric function

z2F1(a, b; a + b+ 1; z) is λ-spirallike if

(2 + cos 2λ)(2 Re [a+ b]− cos 2λ− q/ cosλ)− ( Im [a+ b]− sin 2λ)2 ≥ 0.

Corollary 1.6. Let λ be a real number with 0 < |λ| < π/3. Suppose that q = ab
is a positive real number. Then the shifted hypergeometric function z2F1(a, b; a+ b+
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1; z) is λ-spirallike if

( Im [eiλ(a+ b)]− 2 sin 2λ cosλ)2

≤ (4 cos2 λ− 1)(2Re [eiλ(a+ b)] cosλ− 4 cos4 λ+ 3 cos2 λ− q).
(1.1)

We finally obtain a sufficient condition for strong starlikeness.

Theorem 1.7. Let 1/3 < α < 1 and a, b be complex numbers with a+b ∈ R and

ab > 0. Then the shifted hypergeometric function z2F1(a, b; a + b + 1; z) is strongly

starlike of order α if

[(a− b)2 + 6(a+ b)− 3] sin2
πα

2
− a2 − ab− b2 ≥ 0.(1.2)

Let p = a + b and q = ab. Then, under the assumption of Theorem 1.7, a and b
are real numbers precisely if (a − b)2 = p2 − 4q ≥ 0. Otherwise, a = b̄ = s + it for
some s, t ∈ R and the following result follows from the last theorem.

Corollary 1.8. Let 1/3 < α < 1 and s, t ∈ R. Then the function

f(z) = z2F1(s+ it, s− it; 2s + 1; z), z ∈ D,

is strongly starlike of order α if (s, t) is contained in the closed ellipse given by
(

s− 2 sin2
πα

2

)2

+
1

3

(

4 sin2
πα

2
− 1

)

t2 ≤ sin2
πα

2

(

4 sin2
πα

2
− 1

)

.

In the next section, we prove Theorem 1.1. Section 3 will be devoted to proofs
of the other results in this section. We will give some more corollaries and examples
in the final section.

2. Proof of Theorem 1.1

For the proof, we recall a couple of important formulae of hypergeometric func-
tions. For details, the reader can consult monographs [20] by Temme and [21] by
Whittaker and Watson. As is well known, the hypergeometric function F (z) =

2F1(a, b; c; z) is characterised as the solution to the hypergeometric differential equa-
tion

(2.1) (1− z)zF ′′(z) + [c− (a+ b+ 1)z]F ′(z)− abF (z) = 0

with the initial condition F (0) = 1. We also note the following relation which readily
follows from the form of the hypergeometric series:

(2.2)
d

dz
2F1(a, b; c; z) =

ab

c
2F1(a + 1, b+ 1; c+ 1; z).

The following formula for a, b, c ∈ C with a + b 6= c and c 6= 0,−1,−2, . . . is useful
in what follows:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z).

(2.3)

When Re (c − a − b) > 0, by (2.3), we see that the limit of 2F1(a, b; c; z) exists as
z → 1 in D and evaluated as

(2.4) 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.
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When Re (c − a − b) < 0, the asymptotic behaviour of 2F1(a, b; c; z) can be
understood via the expression (2.3); namely, if Re (c− a− b) < 0,

(2.5) 2F1(a, b; c; z) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b +O(|1− z|ε)

as z → 1 in D, where ε = min{Re (c−a− b)+1, 0}. In the zero-balanced case when
a+ b = c, we have the following asymptotic formula due to Ramanujan:

(2.6) 2F1(a, b; a+ b; z) =
Γ(c)

Γ(a)Γ(b)

(

R(a, b)− log(1− z)
)

+O

(

|1− z| log 1

|1− z|

)

as z → 1 in D, where
R(a, b) = 2ψ(1)− ψ(a)− ψ(b)

and ψ(x) = Γ′(x)/Γ(x) denotes the digamma function.
We denote by D(a, r) the open disk |z − a| < r. The next result describes the

cluster set
C1(F ) =

⋂

0<δ<1

F (D ∩D(1, δ))

of F (z) = 2F1(a, b; c; z) in the point z = 1 in the remaining case when Re (c−a−b) =
0 and c − a − b 6= 0. We note the simple fact that C1(ϕf) = C1(f) for an analytic
function f on D whenever ϕ is analytic on D and has (unrestricted) limit 1 as z → 1
in D.

Lemma 2.1. Assume that c = a + b + is for an s ∈ R \ {0}. For the function

F (z) = 2F1(a, b; c; z), the cluster set in the point z = 1 is given by

C1(F ) = {w ∈ C : Re−π|s|/2 ≤ |w − w0| ≤ Reπ|s|/2},
where

w0 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
=

Γ(a + b+ is)Γ(is)

Γ(a + is)Γ(b+ is)

and

R =

∣

∣

∣

∣

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)

∣

∣

∣

∣

=

∣

∣

∣

∣

Γ(a+ b+ is)Γ(is)

Γ(a)Γ(b)

∣

∣

∣

∣

.

Proof. In view of the formula (2.3), it is enough to look at the function

g(z) = (1− z)c−a−b = (1− z)is = exp
[

− s arg (1− z) + is log |1− z|
]

.

Observe that arg g(z) = s log |1 − z| is unbounded when z → 1 whereas −π/2 <
arg (1− z) < π/2. It is thus easy to deduce the relation C1(g) = {w : e−π|s|/2 ≤ |w| ≤
eπ|s|/2}. Since Γ(is) = Γ(−is), the required assertion now follows. �

In particular, 2F1(a, b; c; z) is bounded on D in the last case. As for boundedness
of 2F1(a, b; c; z), we can summarise the above observations.

Lemma 2.2. The hypergeometric function 2F1(a, b; c; z) is bounded on the unit

disk D precisely when Re (c− a− b) ≥ 0 and c− a− b 6= 0.

Proof of Theorem 1.1. We put F (z) = 2F1(a, b; c; z) and f(z) = zF (z). Then

h(z) :=
zf ′(z)

f(z)
= 1 +

zF ′(z)

F (z)
= 1 +

abz

c
· 2F1(a + 1, b+ 1; c+ 1; z)

2F1(a, b; c; z)
.

Case (i): When Re (c− a− b) > 1, by (2.4) for F and F ′, we compute

h(1) = 1 +
ab

c
· Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
· Γ(c− a)Γ(c− b)

Γ(c)Γ(c− a− b)
= 1 +

ab

c− a− b− 1
,
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where we have used the fundamental relation Γ(x+1) = xΓ(x) for the Euler gamma
function. Since Re [e−iλh(1)] ≥ 0 by assumption, we have the inequality in (i).

Case (ii): We next assume that c−a− b = 1+ is for s ∈ R\{0}. Note that F (z)
has a finite limit as z → 1 in D. Applying Lemma 2.1 to 2F1(a+1, b+1; c+1; z), we
see that the cluster set C1(h) is the closed annulus Re−π|s|/2 ≤ |w − w1| ≤ Reπ|s|/2,
where

w1 = 1 +
ab

cF (1)
· Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
= 1 +

ab

is

and

R =

∣

∣

∣

∣

ab

cF (1)
· Γ(c+ 1)Γ(a+ b− c+ 1)

Γ(a+ 1)Γ(b+ 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

Γ(−is)Γ(c− a)Γ(c− b)

isΓ(is)Γ(a)Γ(b)

∣

∣

∣

∣

.

Since |Γ(−is)| = |Γ(is)|, we see that Reπ|s|/2 coincides R1 given in the assertion.
Since the annulus Re−π|s|/2 ≤ |w − w1| ≤ Reπ|s|/2 = R1 is contained in the closed
half-plane Re (e−iλw) ≥ 0, we get the inequalities in the assertion.

Case (iii): Assume that c− a− b = 1. By (2.6), we have the asymptotic formula

h(z) = 1 +
ab

cF (1)
· Γ(c+ 1)

Γ(a+ 1)Γ(b+ 1)
(− log(1− z) +O(1)) = ab log

1

1− z
+O(1)

as z → 1 in D. Thus we see that the condition in the assertion is necessary.
Case (iv): Put c− a − b = α + iβ with 0 ≤ α < 1 and β ∈ R. We first assume

that 0 < α < 1. By (2.4) and (2.5), we obtain

h(z) = 1 + A(1− z)c−a−b−1(1 + o(1)) = 1 + A(1− z)α−1+iβ(1 + o(1))

as z → 1 in D, where

A =
ab

cF (1)
· Γ(c+ 1)Γ(a+ b− c+ 1)

Γ(a+ 1)Γ(b+ 1)
=

Γ(c− a)Γ(c− b)Γ(a + b+ 1− c)

Γ(a)Γ(b)Γ(c− a− b)
.

Since | arg (1− z)| < π/2 in |z| < 1, we see that

|h(z)| = |A| exp {−(1− α) log |1− z| − β arg (1− z)} (1 + o(1)) → +∞
as z → 1 and that

arg h(z) = β log |1− z|+ (α− 1) arg (1− z) + argA→ −sgn(β)∞
as z → 1 if β 6= 0. Hence, the image h(D) cannot be contained in the half-plane
Re (e−iλw) > 0 if β 6= 0. Therefore, the assumption that f is λ-spirallike implies that
β = 0. Moreover, we should have λ−π/2 ≤ (α−1)π/2+ argA ≤ (1−α)π/2+ argA ≤
λ+ π/2, which implies the inequality in the assertion, where one should use the fact
that arg Γ(a+ b+ 1− c) = arg Γ(c− a− b) = 0.

Secondly, we assume α = 0 and β 6= 0. Then, by (2.3),

h(z) =
A + o(1)

1− z
· (1− z)iβ

B + (1− z)iβ
=
A+ o(1)

1− z
· 1

B + (1− z)−iβ

as z → 1, where A and B are nonzero complex numbers. As we saw above, the cluster
set of (1− z)−iβ in the point z = 1 is the annulus e−π|β|/2 ≤ |w| ≤ eπ|β|/2. Therefore,
the inequality eπ|β|/2 ≤ |B| should hold. For a fixed θ ∈ (−π/2, π/2), consider the
curve zθ(t) = 1 − teiθ. Note that zθ(t) ∈ D for t ∈ (0, tθ) for a positive number tθ.
We now have

h(zθ(t)) =
A + o(1)

teiθ
· 1

B + eβθ exp[iβ log(1/t)]
(t→ 0+).
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Therefore, if we denote by Φ+(θ) and Φ−(θ) the upper and lower limits of arg h(zθ(t))
as t→ 0+ respectively, we obtain

Φ±(θ) = argA− θ − argB ± arcsin
eβθ

|B| .

Therefore,

lim
θ→π/2−

[

Φ+(−θ)− Φ−(θ)
]

= π + arcsin
e−πβ/2

|B| + arcsin
eπβ/2

|B| > π,

which implies that the image h(D) cannot be contained in the half-plane Re (e−iλw) >
0.

Finally, we assume that α = β = 0. By (2.5) and (2.6), we obtain

h(z) =
1 + o(1)

−(1− z) log(1− z)

as z → 1 in D. By using the above curve zθ(t), we compute

h(zθ(t)) =
1 + o(1)

teiθ[log(1/t)− iθ]
.

In particular, arg h(zθ(t)) → −θ as t → 0+ for −π/2 < θ < π/2. Therefore, the
image h(D) can be contained only in the half-plane Rew > 0; in other words, λ = 0.
Thus the assertion is deduced in this case, too.

Case (v): Assume that Re (c− a− b) < 0. By (2.5), we have

h(z) =
a+ b− c+ o(1)

1− z

as z → 1 in D. Thus λ = arg (a+ b− c) as required in order that the image h(D) is
contained in the half-plane Re (e−iλw) > 0. �

3. Proofs of the other results

As in a paper [9] of Lewis (see also the proof of [16, Theorem 2.12]), our proof will
be based on the following lemma due to Jack [5] and the hypergeometric differential
equation (2.1). The strategy and computations are largely overlapped with those in
Küstner [8, §3] at least when λ = 0 (and his paper, more generally, deals with the
estimate of σ(f)). We note, however, that final conclusions are given in [8] only for
real parameters a, b, c.

Lemma 3.1. (Jack’s lemma) Let ω be a non-constant analytic function on D

with ω(0) = 0. If the maximum value of |ω(z)| on the circle |z| = r with 0 < r < 1
is attained at a point z0 on the circle, then z0ω

′(z0) = kω(z0) for some k ≥ 1.

Let F (z) = 2F1(a, b; c; z) and f(z) = zF (z). For a while, without any assump-
tions on the parameters a, b, c, we try to show that f is λ-spirallike for a fixed
λ ∈ (−π/2, π/2). We define a meromorphic function p on D with p(0) = 1 by
the relation

zf ′(z)

f(z)
= eiλ

(

p(z) cos λ− i sin λ
)

.

In view of the formula zf ′(z)/f(z) = 1 + zF ′(z)/F (z), we obtain

zF ′(z)

F (z)
= eiλ

(

p(z) cos λ− i sinλ
)

− 1 = µ(p(z)− 1),
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where
µ = eiλ cosλ.

Differentiating the derived formula zF ′(z) = µ(p(z)− 1)F (z), we get

zF ′′(z) + F ′(z) = µp′(z)F (z) + µ(p(z)− 1)F ′(z).

In conjunction with (2.1), we have

[1− c+ (a+ b)z − µ(1− z)(p(z) − 1)]F ′(z) = [µ(1− z)p′(z)− ab]F (z),

which further leads to

(3.1) [1− c+ (a + b)z − µ(1− z)(p(z)− 1)]µ(p(z)− 1) = µ(1− z)zp′(z)− abz.

To verify λ-spirallikeness of f(z), we need to show that Re p(z) > 0 for z ∈ D.
It is equivalent to the condition that the meromorphic function

(3.2) ω(z) =
p(z)− 1

p(z) + 1

satisfies |ω| < 1 on D. Suppose, to the contrary, that there exists a z0 ∈ D such that
|ω(z0)| = 1 and that |ω(z)| < 1 for |z| < r0 := |z0|. Then Lemma 3.1 implies that
z0ω

′(z0)/ω(z0) = k ≥ 1.
If ω(z0) = 1, then the meromorphic function q = 1/p = (1− ω)/(1 + ω) satisfies

q(z0) = 0 and z0q
′(z0) = −z0ω′(z0)/2 = −k/2. We substitute p = 1/q into (3.1) to

obtain the relation
[

q(z){1− c+(a+ b)z}−µ(1− z)(1− q(z))
]

µ(1− q(z)) = −µ(1− z)zq′(z)−abzq(z)2.

Letting z = z0, we obtain k = −2µ, which is impossible. Thus we have ω(z0) 6= 1.
Hence, the function

p(z) =
1 + ω(z)

1− ω(z)

is analytic at z = z0 and satisfies Re p(z0) = 0. Taking the logarithmic derivative of
the both sides of (3.2), we have

2z0p
′(z0)

p(z0)2 − 1
=
z0ω

′(z0)

ω(z0)
= k.

Thus, we can write

(3.3) p(z0) = is and z0p
′(z0) = −k(s2 + 1)/2 ≤ −(s2 + 1)/2

for some s ∈ R. We put

(3.4) σ = µ(is− 1) and τ = µk(s2 + 1)/2.

Letting z = z0 in (3.1) and recalling (3.3), we obtain the relation

τ − σ(σ + c− 1) = [τ − (σ + a)(σ + b)]z0.

Therefore, we will get a contradiction if the inequality

(3.5)
∣

∣τ − σ(σ + c− 1)
∣

∣ ≥
∣

∣τ − (σ + a)(σ + b)
∣

∣

holds and if equalities

τ − σ(σ + c− 1) = τ − (σ + a)(σ + b) = 0

never hold simultaneously for any s ∈ R and k ≥ 1, where σ, τ are given in (3.4).
Hence, it is enough to show (3.5) and σ(σ + c − 1) 6= (σ + a)(σ + b) to prove

λ-spirallikeness of the function f(z) = z2F1(a, b; c; z).
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Fix s (and thus σ) for a while. The inequality (3.5) means exactly that the point
τ is contained in the half-plane H bounded by the perpendicular bisector of the two
points A = σ(σ+c−1) and B = (σ+a)(σ+b), which contains the point B, provided
that A 6= B. Note that the point τ = µk(s2 + 1)/2 with k ≥ 1 may vary on the ray
emanating from the point τ1 = µ(s2 + 1)/2 with the direction µ. Hence, the ray is
contained in H precisely when τ1 ∈ H and | arg (B −A)− arg µ| ≤ π/2. The second
condition and the condition A 6= B follow from the inequality

(3.6) Re [(B − A)µ̄] = Re
[

|µ|2(is− 1)(a+ b+ 1− c) + abµ̄
]

> 0.

(We remark that the second condition follows from the weaker inequality Re [(B −
A)µ̄] ≥ 0 when A 6= B is already established by another way.) Since the inequality
(3.6) should hold for any s ∈ R, the condition Im (a+b+1−c) = 0 is required. Thus
p := a+b+1−c is a real number. We should also have the inequality Re [abµ̄] > p|µ|2.
In other words, Re

[

e−iλab
]

> p cosλ; equivalently,

Re
[

e−iλ(ab− p)
]

> 0.

We next consider the first condition τ1 ∈ H ; namely, |τ1 − A| ≥ |τ1 − B|. By
squaring, we see that it is equivalent to validity of the inequality

(3.7) |A|2 − |B|2 − 2Re [(A−B)τ1] ≥ 0.

A substitution of the concrete forms of A,B, σ and τ1 gives us

2Re [(A− B)τ1] = (s2 + 1)(p|µ|2 − Re [abµ̄]),

which is a quadratic polynomial in s. On the other hand,

|A|2 − |B|2 = |σ|2(|σ|2 + 2Re (c− 1)σ̄ + |c− 1|2)
− (|σ|2 + 2Re [aσ̄] + |a|2)(|σ|2 + 2Re [bσ̄] + |b|2)

= −2Re [(a + b+ 1− c)σ̄]|σ|2 + (|c− 1|2 − |a|2 − |b|2)|σ|2

− (2 Re [aσ̄] + |a|2)(2 Re [bσ̄] + |b|2).
Since the first term in the last expression is equal to

−2pRe σ̄|σ|2 = 2p(s Imµ+ Reµ)|µ|2(s2 + 1) = 2p( Imµ)|µ|2s3 +O(s2)

and the other terms are polynomials in s of degree at most 2, we need the condi-
tion p Imµ = 0 for the inequality (3.7) to hold for all s ∈ R. Hence, the present
approach works only when λ = 0 or p = 0, which correspond to Theorems 1.2 and
1.4, respectively. We are now ready to prove these theorems.

Proof of Theorem 1.2. Here, we assume that λ = 0. Therefore, we now have
µ = 1 and σ = −1 + is. For convenience, we write a = a1 + ia2 and b = b1 + ib2.
Substituting these, the left-hand side of (3.7) can be computed as

2p(s2 + 1) + (|c− 1|2 − |a|2 − |b|2)(s2 + 1)

− (−2a1 − 2sa2 + |a|2)(−2b1 − 2sb2 + |b|2) + (s2 + 1)(Re [ab]− p)

= (|c− 1|2 − |a|2 − |b|2 + p+ Re [ab]−4a2b2)s
2 − 2(2a1b2 + 2a2b1 − a2|b|2 − b2|a|2)s

+ (|c− 1|2 − |a|2 − |b|2 + p+ Re [ab]− 4a1b1 + 2a1|b|2 + 2b1|a|2 − |a|2|b|2)
= (|c− 1|2 − |a+ b|2 + p+ 3Re [ab])s2 − 2 Im [āb̄(a+ b− 2)]s

+ |c− 2|2 − |a− 1|2|b− 1|2 − p+ Re [ab].

Since the above quadratic polynomial in s is non-negative, the assertion follows. �
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Remark 3.2. In Theorem 1.2, we assumed the strict inequality Re [ab] > p. We
can, however, weaken the assumption to Re [ab] ≥ p by a limiting argument in some
cases. For instance, we assume that Re [ab] = p and that L,N and LN −M2 are all
positive. Then, for ε > 0, we consider the function fε(z) = z2F1(a, b; c + ε; z). Note
that fε converges to the original function f = f0 locally uniformly on D as ε → 0.
We now observe that pε = a+b+1−c−ε is real and Re [ab]−pε = ε > 0. Moreover,
for a sufficiently small ε > 0, the quantities Lε, Nε, LεNε −M2

ε corresponding to fε
are all still positive. Therefore, by the theorem, we conclude that fε is starlike. Since
starlikeness is preserved by locally uniform convergence, we see that f is starlike.
On the other hand, this procedure does not necessary work when the quadratic form
Ls2 + 2Mst+Nt2 is degenerate. See Remark 4.2 below.

Proof of Theorem 1.4. We next complete the proof of Theorem 1.4. We can
harmlessly assume that ab 6= 0. By the form of the function, p = a+b+1−(a+b+1) =
0. Then we have B − A = pσ + ab = ab 6= 0 and

|A|2 − |B|2 = (|a+ b|2 − |a|2 − |b|2)|σ|2 − (2 Re [aσ̄] + |a|2)(2 Re [bσ̄] + |b|2)
= 2|σ|2Re [ab̄]− (2 Re [aσ̄] + |a|2)(2 Re [bσ̄] + |b|2).

Thus, by recalling σ = (is− 1)µ, we compute the left-hand side of (3.7) as

2(s2 + 1)|µ|2Re [ab̄] + (s2 + 1)Re [abµ̄]

− (2s Im [aµ̄]− 2Re [aµ̄] + |a|2)(2s Im [bµ̄]− 2Re [bµ̄] + |b|2)
= (Re [abµ̄] + 2Re [aµ̄bµ̄]− 4 Im [aµ̄] Im [bµ̄])s2

− 2
[

Im [aµ̄](−2Re [bµ̄] + |b|2) + Im [bµ̄](−2Re [aµ̄] + |a|2)
]

s

+ Re [abµ̄] + 2Re [aµ̄bµ̄] − (−2Re [aµ̄] + |a|2)(−2Re [bµ̄] + |b|2)
= (Re [abµ̄] + 2Re [abµ̄2])s2 − 2 Im

[

− 2abµ̄2 + abb̄µ̄+ baāµ̄
]

s

+ Re [abµ̄]− 2Re [abµ̄2] + 2Re [ab(ā + b̄)µ̄]− |a|2|b|2

= cos λ(Ls2 − 2Ms +N),

where L,M,N are given in the assertion of Theorem 1.4. In the above, we used the
relation 2µ = 1 + e2iλ.

Finally, we observe that the assumptions in the theorem imply that c = a+b+1 6=
0,−1,−2. . . . . Suppose, to the contrary, that a+ b = −k for some k ∈ {1, 2, 3, . . .}.
Then

N = −2kRe [e−iλab]− Re [e−3iλab]− |ab|/ cosλ ≤ −2kRe [e−iλab].

Since the last term is negative by condition (i), we have a contradiction. Hence, we
conclude that a+ b 6= −1,−2, . . . . The proof is now complete. �

In order to prove Theorem 1.3, it is enough to note the following fact which
follows from Alexander’s theorem (see [3, Theorem 2.12]).

Lemma 3.3. Let a, b, c be complex numbers with ab 6= 0, c 6= 0,−1,−2, . . . .
The Gaussian hypergeometric function g(z) = 2F1(a, b; c; z) is convex if and only if

f(z) = z2F1(a+ 1, b+ 1; c+ 1; z) is starlike.

Proof. Note the relation f(z) = (ab/c)zg′(z) by the formula (2.2). By taking the
logarithmic derivatives of the both sides, we obtain the relation

zf ′(z)

f(z)
= 1 +

zg′′(z)

g′(z)
,
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from which the assertion follows. �

Proof of Corollary 1.5. In order to apply Theorem 1.4, under the assumptions
of the corollary, we compute

L = qRe
[

(2 + e−2iλ)
]

= q(2 + cos 2λ),

M = q Im
[

ā+ b̄− 2e−iλ cosλ
]

= −q( Im [a+ b]− 2 sinλ cosλ), and

N = qRe
[

2ā+ 2b̄− e−2iλ − eiλāb̄/ cosλ
]

= q(2 Re [a + b]− cos 2λ− q/ cosλ).

Thus the assertion follows. �

Proof of Corollary 1.6. Similarly, assuming that q = ab is positive, we compute

L = qRe
[

e−iλ(2 + e−2iλ)
]

= q cosλ(4 cos2 λ− 1),

M = q Im
[

e−iλ(ā+ b̄− 2e−iλ cosλ)
]

= −q( Im [eiλ(a+ b)]− 2 sin 2λ cosλ), and

N = qRe
[

e−iλ(2ā+ 2b̄−e−2iλ−eiλāb̄/ cosλ)
]

= q(2 Re [eiλ(a+b)]−cos 3λ−q/ cosλ).
The assertion now follows from Theorem 1.4. �

By using the last corollary, we are able to show Theorem 1.7.

Proof of Theorem 1.7. Let λ = (1− α)π/2 (< π/3). When p = a + b ∈ R and
q = ab > 0, the condition (1.1) reads

(4 cos2 λ− 1)(2p cos2 λ− 4 cos4 λ+ 3 cos2 λ− q)− (p sinλ− 2 sin 2λ cosλ)2

= −p2 sin2 λ+ 6p cos2 λ+ q(1− 4 cos2 λ)− 3 cos2 λ ≥ 0,

which is nothing but (1.2). Noting the relation cos λ = sin[πα/2], we see that (1.1)
is equivalent to (1.2). Since the condition (1.2) is unchanged if we replace λ by
−λ, we conclude that the function z2F1(a, b; a + b + 1; z) is contained in the class
SP(λ) ∩ SP(−λ) = SS(α). �

4. Some examples

This section is devoted to giving examples of spirallike shifted hypergeometric
functions.

Let a = 2 in Theorem 1.2. Then Re [ab] − p = 2Re b − (b − c + 3) = b̄ + c − 3
and L,M,N have the simple forms L = N = Re [c − b] · Re [b + c − 3], M = 0 so
that LN −M2 = L2 ≥ 0. Therefore the next result follows from Theorem 1.2.

Corollary 4.1. Let b, c, s be real numbers with 3 ≤ b + c and b ≤ c. Then

the function f(z) = z2F1(2, b + is; c + is; z) is starlike and the function g(z) =
z2F1(1, b+ is; c + is; z) is convex.

Proof. As is accounted above, starlikeness of f follows from Theorem 1.2 when
3 < b+c. When b+c = 3, we first apply the theorem to the function z2F1(2, b+is; c+
ε + is; z) for ε > 0 and let ε → 0. The second assertion follows from the Alexander
relation zg′(z) = f(z) (see Lemma 3.3) which can be checked by comparing the
coefficients of the power series expansions. �

Remark 4.2. It is noteworthy here that the triple (a, b, c) = (2, b, 3− b̄) satisfies
Re [ab] = p, L =M = N = 0. Therefore, as far as b 6= 3, 4, 5, . . . , the function f(z) =
z2F1(2, b; 3 − b̄; z) satisfies all the assumptions in Theorem 1.2 with (ii) Re [ab] > p
being replaced by Re [ab] = p. On the other hand, it is necessary for f to be starlike
that |f ′′(0)/2| = |2b/(3 − b̄)| ≤ 2, which is equivalent to Re b ≤ 3/2. Therefore, the
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above function f with Re b > 3/2 tells us that we cannot replace the condition (ii)
by Re [ab] ≥ p in general.

Put γ = b− 1 + is. When c = b+ 1, the function g(z) in the last corollary takes
the form

z2F1(1, γ + 1; γ + 2; z) =
∞
∑

j=1

γ + 1

γ + j
zj .

The corollary implies that it is convex if Re γ ≥ 0. Note that this is contained in
Theorem 5 with n = 1 in Ruscheweyh [15].

Similarly, let a = 2 in Theorem 1.4 and b = Reiλ with R > 0. Then L,M,N in
Theorem 1.4 are expressed by

L = 2R(2 + cos 2λ) = 2R(1 + 2 cos2 λ),

M = −2R(R − 2 cosλ) sinλ,

N = 2R(2R cos λ+ 5− 2 cos2 λ− 2R/ cosλ).

Therefore,

LN −M2 = 4R2
(

−R2 sin2 λ− 2R sin λ tanλ+ 5− 4 cos2 λ
)

= −4R2(R sinλ cosλ+ sinλ− 3 + 2 sin2 λ)(R sin λ cosλ + sinλ+ 3− 2 sin2 λ)

cos2 λ
.

For simplicity, we may assume that λ > 0. (Note that f(z) is λ-spirallike if and

only if f(z̄) is −λ-spirallike.) Then LN − M2 ≥ 0 if and only if R sin λ cosλ ≤
− sinλ + 3 − 2 sin2 λ = (1 − sin λ)(3 + 2 sinλ). Simpler conditions for spirallikeness
can now be obtained by Theorem 1.4 as follows.

Corollary 4.3. Let 0 < λ < π/2. Then the function z2F1(2, b; 3 + b; z) with

b = Reiλ is λ-spirallike if

0 < R ≤ (1− sinλ)(3 + 2 sinλ)

sinλ cosλ
.

We next let a = 2eiλ cosλ and b > 0 in Theorem 1.4 to obtain the following.

Corollary 4.4. Let λ be a real number with 0 < |λ| < π/2. Then the shifted

hypergeometric function z2F1(2e
iλ cos λ, b; 2eiλ cosλ+ b+ 1; z) is λ-spirallike for any

constant b > 0.

Indeed, in this case, we check condition (iii) in the theorem by L = 2b(2 +
cos 2λ) cosλ > 0,M = 0, N = 2b(2 cos2 λ+ 1) cosλ > 0.

Next, let a + b = s ∈ R and ab = qeiλ with q > 0. Then we see the following by
applying Corollary 1.5.

Corollary 4.5. Let λ ∈ (−π/2, π/2) with λ 6= 0. Suppose that a, b ∈ C satisfy

a+ b = s ∈ R and ab = qeiλ for some q > 0. Then the function z2F1(a, b; s+ 1; z) is

λ-spirallike if

2s− q

cosλ
≥ 1 + 2 cos 2λ

2 + cos 2λ
=

4 cos2 λ− 1

2 cos2 λ+ 1
.

Example 4.6. Let λ = π/4 in Corollary 4.5. Then the required inequality takes
the form 2s −

√
2q ≥ 1/2. For instance, put a = 5(1 + 2i)/8 and b = 5(3 − i)/4.

Then s = a + b = 35/8 and q = abe−πi/4 = 125(1 + i)e−πi/4/32 = 125/16
√
2 satisfy

the inequality. See Figure 1, generated by Mathematica ver. 10, for the image of D
under the mapping f(z) = z2F1(a, b; a+ b+1; z) in this case. As the picture suggests
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us, f is not starlike. Indeed, the real part of zf ′(z)/f(z) assumes the value −0.0374
approximately at z = eπi/4.

Figure 1. Image domain of z2F1(a, b; a+ b+ 1; z) with a+ b = 35/8 and ab = 125eπi/4/16
√
2.
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