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Abstract. This paper deals with the question of the existence of a positive solution to the
boundary value problem involving the fractional Laplacian











∆
α

2 u = −uγ on D,

u = 0 on Dc,

limx→z∈∂D δ(x)1−
α

2 u(x) = f(z),

for γ > 1, where δ(x) denotes the Euclidean distance from x to the boundary ∂D. We distinguish

two cases of nonnegative data f : trivial and nontrivial.

1. Introduction

Let α ∈]0, 2[ and d > α. Let D be a Lipschitz domain in R
d and consider, for

γ > 1, the problem

(1)

{

∆
α
2 u = −uγ in D,

u = 0 on Dc := R
d\D,

where ∆
α
2 = −(−∆)

α
2 is the fractional Laplacian on R

d. Solutions of this problem
are understood in the distributional sense. The existence and nonexistence of positive
solutions of problem (1) have been the main subject of some recent works [8, 14, 18,
19]. For 1 < γ < d+α

d−α
, it was proved in [8, 19] that problem (1) admits a positive

solution in the fractional Sobolev space H
α
2 (D). The nonexistence result in star-

shaped domains has been investigated in [14, 18]. In both works, the authors proved
that if γ ≥ d+α

d−α
then problem (1) has no positive bounded solutions. A natural

question to ask is how the solutions of (1) in [8, 19] behave near the boundary ∂D
(bounded or not)? Also, what can be said about the existence of unbounded solutions
of (1) for γ ≥ d+α

d−α
? Here, we would like to point out that this last question does not

arise in the classical context α = 2. In fact, on account of the celebrated Pohozaev
identity established in [17], it is well known that, for γ ≥ d+2

d−2
, the problem

{

∆u = −uγ in D,

u = 0 on Dc,

has neither bounded nor unbounded positive solution.
We now briefly show how the boundary behavior of a solution of problem (1) is

closely connected to the nonlocal character of ∆
α
2 , and therefore some supplementary

boundary condition will naturally appear in the study of problem (1). Let u be a
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positive solution of problem (1). It is obvious that ∆
α
2 u ≤ 0 in D which means

that u is α-superharmonic on D. Thus, it follows from the integral representations
of nonnegative α-superharmonic functions established in [4, 11] that there exists a
unique nonnegative finite measure ν on ∂D such that, for every x ∈ D,

u(x) =

ˆ

∂D

Mα
D(x, z) ν(dz) +

ˆ

D

Gα
D(x, y)u

γ(y) dy,

where, Mα
D and Gα

D denotes respectively the Martin kernel and the Green kernel of
∆

α
2 on D. The Martin kernel Mα

D

ν →

ˆ

∂D

Mα
D(x, z) ν(dz); x ∈ D,

provides a one-to-one correspondence between positive finite measures ν on ∂D and
positive singular α-harmonic functions on D. It follows from [16, Remark 3.15] that
the nontangential limit

lim
x→z

Mα
Dν(x)

Mα
Dσ(x)

exists and is finite for σ-a.e. z ∈ ∂D,

where σ is the Haussdorff surface measure on ∂D. Moreover, if ν is of density a
continuous function f with respect σ then

lim
x→z

Mα
Dν(x)

Mα
Dσ(x)

= f(z) for every z ∈ ∂D,

see also [6, Theorem 4.2]. In this case, Mα
Dν and Mα

Dσ are simply denoted by Mα
Df

and Mα
D1 respectively. On the other hand, since Gα

D(u
γ) is a potential on D, it seems

plausible that

lim
x→z∈∂D

Gα
D(u

γ)(x)

Mα
D1(x)

= 0,

but we have no proof of this. Taking into account all the aspects raised above, it is
therefore reasonable to expect that every solution u of problem (1) should satisfies

lim
x→z

u(x)

Mα
D1(x)

exists and is finite for σ-a.e. z ∈ ∂D.

The purpose of this paper is then to investigate the following appropriate refor-
mulated problem:

(2)











∆
α
2 u = −uγ on D,

u = 0 on Dc,

limx→z
u(x)

Mα
D
1(x)

= f(z), z ∈ ∂D.

This change in perspective allows us to gain not only finer results, but also a detailed
study of problem (1). It is worth noting that several types of Neumann conditions
for the fractional Laplacian, see for instance [13, 18], can also be taken into account,
but we will not deal with here.

Theorem 1. Let f be a nontrivial nonnegative continuous function on ∂D.

1. If 1 < γ < 2+α
2−α

, then there exists a positive constant L = L(D,α, γ) such that
problem (2) admits a positive solution provided

‖f‖ := sup
z∈∂D

|f(z)| ≤ L.

2. If 2+α
2−α

≤ γ, then problem (2) has no positive solutions.
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Similar results have been established in [1, Theorem 1.9], where the author in-
vestigated problem (2) replacing the data f by the constant 1 and the equation
∆

α
2 u = −uγ by ∆

α
2 u = −λuγ .

Remarks 1. 1. Let 1 < γ < 2+α
2−α

and f ∈ C(∂D). If f changes sign, then
the following problem

(3)











∆
α
2 u = −u |u|γ−1 on D,

u = 0 onDc,

limx→z
u(x)

Mα
D
1(x)

= f(z), z ∈ ∂D,

possesses a solution provided

‖f‖ := sup
z∈∂D

|f(z)| ≤ L.

The proof is a slight modification to that of the above theorem.
2. The question of whether problems (2) or (3) admits a solution when ‖f‖ > L

needs further research. We have left open this question.

Theorem 1 yields, for every 1 < γ < 2+α
2−α

, the existence of infinitely many positive
blow up boundary solutions of problem (1):

Corollary 1. Problem (1) has infinitely positive solutions such that

lim
x→z

u(x) = ∞ for every z ∈ ∂D.

As a consequence, it turns out that the critical power characterizing the existence
of a positive solution of problem (1) cannot be d+α

d−α
as in the classical setting (α = 2),

but it seems to be 2+α
2−α

. We note in passing that boundary blow up solutions of the
fractional equation with positive semilinearity

∆
α
2 u = uγ

have been dealt with in [15], see also [1, 2, 9]. Next, we focus on problem (2) with
trivial data f .

Theorem 2. If f = 0, then problem (2) has no positive solutions for 1 < γ <
2+α
2−α

.

This theorem immediately yields:

Corollary 2. For 1 < γ < 2+α
2−α

, problem (1) has no positive solution which

behaves near the boundary ∂D like δ(x)−β for some β < 1− α
2
.

At the first time, it seems plausible that d+α
d−α

is the critical exponent characterizing

the existence of positive bounded solutions of problem (1) as in the classical case
α = 2, but this is not true. In fact, by taking β = 0, we deduce from the second
corollary that problem (1) has no bounded positive solutions not only for γ ≥ d+α

d−α

as established in [14, 18] but also for 1 < γ < d+α
d−α

.

Corollary 3. For every γ > 1, problem (1) has no bounded positive solutions.

Finally, we would like to point out that Theorem 2 fails to holds in the classical
setting α = 2. Indeed, formally taking α = 2, we would deduce the nonexistence of
a positive solution of the problem

{

∆u = −uγ in D,

u = 0 on Dc,
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while it is well known that this classical problem admits a bounded positive solution
for 1 < γ < d+2

d−2
.

This work hopefully allows us to better understand how the nonlocal property of
the fractional Laplacian influences the boundary behavior of solutions. The approach
that we perform in this paper is essentially based on some tools from potential theory
and it is completely different from that used in [1, 8, 14, 18, 19].

2. Preliminaries

For an open set U of Rd, let B(U) be the set of all Borel measurable functions on
U , Bb(U) be the set of all bounded Borel measurable functions on U , C(U) be the set
of all continuous functions on U and C0(U) be the set of all continuous functions on
U such that u = 0 on ∂U . We denote by C∞

c (U) the set of all infinitely differentiable
functions on U with compact support. For two nonnegative functions f and g, the
notation f ≈ g on U means that there exist two positive constants c1 and c2 such
that c1f(x) ≤ g(x) ≤ c2f(x) for all x ∈ U .

Let α ∈]0, 2[ and d > α. The fractional Laplacian ∆
α
2 is a prototype of non-local

operators, it is defined, for ϕ ∈ C∞
c (Rd), by

∆
α
2 u(x) = C(d, α)P.V

ˆ

Rd

u(x+ y)− u(x)

|y|d+α
dy

= C(d, α) lim
ε→0

ˆ

{|y|≥ε}

u(x+ y)− u(x)

|y|d+α
dy,

where the constant C(d, α) depending only on d and α. Throughout this paper, we
fix a bounded Lipschitz open subset D of Rd. For every locally bounded function v
on D and every u ∈ B(Rd) such that

(4)

ˆ

Rd

|u(x)|

(1 + |x|)d+α
dy < ∞,

we say that ∆
α
2 u = v in D in the distributional sense if for every nonnegative ϕ ∈

C∞
c (D),

ˆ

Rd

u(x)∆
α
2ϕ(x) dx =

ˆ

Rd

v(x)ϕ(x) dx.

Let us make the observation that if u is identically zero on Dc, then the integrabil-
ity condition (4) simply means that u ∈ L1(D) the set of all Lebesgue integrable
functions on D.

Definition 1. A function h satisfying (4) is said to be:

(a) α-harmonic in D if h ∈ C(D) and ∆
α
2 h = 0 in D. If, in addition, h = 0 on

Dc, we say that h is singular α-harmonic in D.
(b) α-superharmonic in D if h is lower semi-continuous on D and ∆

α
2 h ≤ 0.

As in the classical case (α = 2), there exist probabilistic equivalent definitions
for α-superharmonic and α-harmonic functions using the symmetric α-stable process
(see [5, Theorem 3.9]).

By a solution of problem (1), we shall mean every function u ∈ C(D) ∩ L1(D)
such that u = 0 on Dc and

ˆ

Rd

u(x)∆
α
2ϕ(x) dx = −

ˆ

Rd

uγ(x)ϕ(x) dx

for every ϕ ∈ C∞
c (D).



Existence and nonexistence of positive solutions to the fractional equation ∆
α

2 u = −u
γ

1001

Sometimes it is more expedient to define the fractional Laplacian in probabilistic
terms. We denote by (Ω, Xt, P

x) the standard rotation invariant (symmetric) stable
process in R

d, with index of stability α, and characteristic function

E0[ei<ξ,Xt>] = e−t|ξ|α; ξ ∈ R
d, t ≥ 0,

where Ex is the expectation with respect to the distribution P x of the process starting
from x ∈ R

d. The limiting classical case α = 2 corresponds to the Brownian motion
generated by the usual Laplacian ∆ =

∑N

i=1 ∂
2
i . Nevertheless, when 0 < α < 2, the

process is generated by the fractional Laplacian ∆
α
2 . Let (XD

t ) be the killed stable
process in D defined by

XD
t =

{

Xt if t < τD,

∂ if t ≥ τD,

where τD is the first exit time from D and ∂ is a cemetery point.
For x ∈ D, let Hα

D(x, ·) be the α-harmonic measure relative to x and D defined,
for f ∈ Bb(R

d), by
Hα

Df(x) = Ex[f(XτD)].

Hα
D(x, ·) is concentrated on D

c
and is absolutely continuous with respect to the

Lebesgue measure. Its corresponding density function Kα
D(x, y), called the Poisson

kernel of D, is continuous in (x, y) ∈ D × D
c
. The function Hα

Df is a fundamental
example of α-harmonic function in D. Furthermore, if f ∈ Cb(D

c) then Hα
Df is the

unique solution of the fractional Dirichlet problem
{

∆
α
2 u = 0 in D,

u = f on Dc.

The potential operator Gα
D of the killed process (XD

t ) is defined, for every f ∈
B(D) for which the following identity exists, by

Gα
Df(x) = Ex

[
ˆ ∞

0

f(XD
t ) dt

]

; x ∈ D.

If f is bounded then Gα
Df ∈ C0(D). Moreover, if Gα

Df 6≡ ∞ then

(5) ∆
α
2Gα

Df = −f in D

in the distributional sense. The kernel Gα
D(·, ·) of the operator Gα

D is called the Green
function of (XD

t ), i.e.,

Gα
Df(x) =

ˆ

D

Gα
D(x, y)f(y) dy; x ∈ D.

The Green function Gα
D(·, ·) defined on D×D is positive, symmetric and continuous

except along the diagonal. Moreover,

Gα
D(x, y) ≤ c min

{

1

|x− y|d−α
,
δ(x)

α
2 δ(y)

α
2

|x− y|d

}

,(6)

Gα
D(x, y) ≥ c

δ(x)
α
2 δ(y)

α
2

|x− y|d
if |x− y| > max

{

δ(x)

2
,
δ(y)

2

}

.(7)

Let x0 ∈ D be a reference point. The Martin kernel of the killed symmetric
stable process is defined by

Mα
D(x, z) = lim

y→z

Gα
D(x, y)

Gα
D(x0, y)

, for x ∈ D and z ∈ ∂D.
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The mapping (x, z) 7→ Mα
D(x, z) is continuous on D × ∂D. Moreover, for every

z ∈ ∂D, Mα
D(·, z) is a positive singular α-harmonic in D and for every z, w ∈ ∂D

such that z 6= w we have limx→w Mα
D(x, z) = 0. For every f ∈ C(∂D), the function

Mα
Df defined on R

d by

Mα
Df(x) =







ˆ

∂D

Mα
D(x, z) f(z) σ(dz) if x ∈ D,

0 if x /∈ D,

is the unique positive solution h of the following boundary value problem:










∆
α
2 h = 0 in D,

h = 0 on Dc,

limx→z∈∂D
h(x)

Mα
D
1(x)

= f(z).

Furthermore,

(8) Mα
D1 ≈ δ

α
2
−1 on D.

The explicit formula of Mα
D1 is known only for few choices of D, namely, for the unit

ball B of Rd:

Mα
B1(x) =

1

(1− |x|2)1−
α
2

; x ∈ B.

Concluding this section, we refer to [3, 4, 5, 6, 7, 10, 11, 16] for more details on
the properties of the Poisson kernel Kα

D, the Green function Gα
D, the Martin kernel

Mα
D and also on further background material for the potential theory of the fractional

Laplacian.

3. Proofs of Theorem 1 and 2

We shall apply Schauder’s fixed point theorem to prove the existence of positive
solution of problem (2). Before going to the proof, we first give some interesting prop-
erties of the potential Gα

D(δ
−λ) which are technically needed. The upcoming lemma

has been proved in [2], but for the reader’s convenience we include the complete
proof.

Lemma 1. For every λ < 1 + α
2
, the potential Gα

D

(

δ−λ
)

is continuous on D.

Proof. Let λ < 1 + α
2
. Let x0 ∈ D and let r > 0 such that B(x0, 2r) ⊂ D. We

write Gα
D

(

δ−λ
)

= h1 + h2, where

h1(x) := Gα
D

(

1B(x0,2r)δ
−λ

)

(x) and h2(x) := Gα
D

(

1D\B(x0,2r)δ
−λ

)

(x).

The approach is as follows. We check that sup|x−x0|≤r |h1(x) − h1(x0)| can be made
arbitrarily small with a suitably chosen r > 0 and that limx→x0

|h2(x)− h2(x0)| = 0
for this choose of r. In this proof, the letter c signifies a positive constant which
may change from one location to another. Seeing that δ(y) ≥ δ(x0) − 2r for every
y ∈ B(x0, 2r), it follows from (6) that, for every x ∈ B(x0, r),

Gα
D(x, y)δ

−λ(y) ≤ c (δ(x0)− 2r)−λ 1

|x− y|d−α
.
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Then, recalling the Lebesgue measure of balls |B(x0, 2r)| = c rd, we obtain

|h1(x)− h1(x0)| ≤

ˆ

B(x0,2r)

|Gα
D(x, y)−Gα

D(x0, y)|δ(y)
−λ dy

≤ c

ˆ

B(x0,2r)

(Gα
D(x, y) +Gα

D(x0, y)) δ
−λ(y) dy

≤ c (δ(x0)− 2r)−λ

(
ˆ

B(x0,2r)

dy

|x− y|d−α
+

ˆ

B(x0,2r)

dy

|x0 − y|d−α

)

≤ c (δ(x0)− 2r)−λ

(
ˆ

B(x,r)

dy

|x− y|d−α
+

ˆ

B(x0,2r)\B(x,r)

dy

|x− y|d−α
+ (2r)α

)

≤ c (δ(x0)− 2r)−λ

(

rα +
|B(x0, 2r)|

rd−α
+ rα

)

≤ c (δ(x0)− 2r)−λ rα.

It is clear that the last term is arbitrarily small for a careful choose of r > 0. Now,
having chosen r, let us turn to show that limx→x0

|h2(x) − h2(x0)| = 0. For every
y ∈ B\B(x0, 2r) and every x ∈ B(x0, r), we have |x− y| > r and |x0 − y| > r. Then
it follows from (6) that

Gα
D(x, y) +Gα

D(x0, y) ≤
c

rd
δ(y)

α
2 .

Thus, for every x ∈ B(x0, r) and every y ∈ D\B(x0, 2r), we obtain

|Gα
D(x, y)−Gα

D(x0, y)| δ(y)
−λ ≤ (Gα

D(x, y) +Gα
D(x0, y)) δ(y)

−λ ≤
c

rd
δ(y)

α
2
−λ.

Noting that −1 < α
2
− λ, we get
ˆ

D\B(x0,2r)

δ(y)
α
2
−λdy ≤

ˆ

D

δ(y)
α
2
−λdy < ∞.

Hence, by dominated convergence theorem,

lim
x→x0

|h2(x)− h2(x0)| = lim
x→x0

ˆ

D\B(x0,2r)

|Gα
D(x, y)−Gα

D(x0, y)| δ(y)
−λ dy = 0.

This finish the proof of the lemma. �

The following important result is due to [12, Proposition 7] and provides some
useful estimates of the potential Gα

D(δ
−λ) on D.

Lemma 2.

Gα
D(δ

−λ) ≈











δα−λ, if α
2
< λ < 1 + α

2
,

δ
α
2 ln

(

2d
δ

)

, if λ = α
2
,

δ
α
2 , if λ < α

2
.

Lemma 1 and Lemma 2 bear as a consequence the following:

Corollary 4. Let λ < 1 + α
2
. Then, for every f ∈ Bb(D), Gα

D

(

δ−λf
)

∈ C(D)
and

(9) δ1−
α
2Gα

D

(

δ−λf
)

∈ C0(D).

Proof. Let f ∈ Bb(D) and denote supx∈D |f(x)| by M . We can clearly assume
that f ≥ 0, else we break up f as f+ − f+, where f+ = max(f, 0) and f− =
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max(−f, 0). Put g := M − f . Multiplying by δ−λ and then applying the operator
Gα

D, we obtain

Gα
D

(

δ−λf
)

(x) +Gα
D

(

δ−λg
)

(x) = M Gα
D

(

δ−λ
)

(x).

Now, seeing that Gα
D

(

δ−λf
)

and Gα
D

(

δ−λg
)

are lower semi-continuous on D and that

Gα
D(δ

−λ) ∈ C(D), we immediately deduce that Gα
D

(

δ−λf
)

∈ C(D). The statement
(9) follows immediately from Lemma 2. �

Lemma 3. Let λ < 1 + α
2
. Then, for every M > 0, the family

{

δ1−
α
2Gα

D

(

δ−λf
)

; f ∈ Bb(D) and ‖f‖ ≤ M
}

is relatively compact in C0(D) endowed with the uniform norm ‖ · ‖.

Proof. Let M > 0. For every f ∈ Bb(D) such that ‖f‖ ≤ M and for every x ∈ D,
we have

∣

∣δ(x)1−
α
2Gα

D

(

δ−λf
)

(x)
∣

∣ ≤ M sup
x∈D

(

δ(x)1−
α
2 Gα

D

(

δ−λ
)

(x)
)

< ∞.

Thus the family {δ1−
α
2Gα

D

(

δ−λf
)

, ‖f‖ ≤ M} is uniformly bounded in C0(D). Then,
in virtue of the Arzelà–Ascoli theorem, we need only to show that this family is
equicontinuous on D. Let x0 ∈ D. Since

sup
‖f‖≤M

∣

∣δ(x)1−
α
2Gα

D

(

δ−λf
)

(x)− δ(x0)
1−α

2 Gα
D

(

δ−λf
)

(x0)
∣

∣

≤ M

ˆ

D

∣

∣δ(x)1−
α
2 Gα

D(x, y)− δ(x0)
1−α

2 Gα
D(x0, y)

∣

∣ δ(y)−λ dy =: k(x),

it will be sufficient to show that limx→x0
k(x) = 0. Let r > 0 such that B(x0, 2r) ⊂ D.

We write k = k1 + k2, where

k1(x) =

ˆ

B(x0,2r)

∣

∣δ(x)1−
α
2 Gα

D(x, y)− δ(x0)
1−α

2Gα
D(x0, y)

∣

∣ δ(y)−λ dy

and

k2(x) =

ˆ

D\B(x0,2r)

∣

∣δ(x)1−
α
2 Gα

D(x, y)− δ(x0)
1−α

2Gα
D(x0, y)

∣

∣ δ(y)−λ dy.

Now, following steps analogous to those in the proof the continuity of Gα
D

(

δ−λ
)

at
x0 in Lemma 1, we show that k1 can be made arbitrarily small on B(x0, r) with a
suitably chosen r > 0 and that limx→x0

k2(x) = 0 for this choose of r. To avoid
repetition, we omit the computation. �

Now we are in position to prove our theorems.

Proof of Theorem 1. For the sake of simplicity, we denote Mα
D1 by h.

1. Let f be a nontrivial nonnegative continuous function on ∂D and assume that
1 < γ < 2+α

2−α
. Seeing that γ(1 − α

2
) < 1 + α

2
and using the fact that h ≈ δ

α
2
−1, it

follows from (9) that

c := sup
x∈D

[

Gα
D (hγ) (x)

h(x)

]

< ∞.

Let λ0 and L be two positive constants chosen so that

λ0 − 1

λγ
0

= max
λ>1

λ− 1

λγ
and L =

(

λ0 − 1

cλγ
0

)
1

γ−1

.
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Let

Λ := {v ∈ C(D); 0 < v ≤ λ0‖f‖}

and consider the operator T : Λ → C(D) defined by

Tv(x) :=
Mα

Df(x)

h(x)
+

Gα
D (hγvγ) (x)

h(x)
.

Then, for every v ∈ Λ and every x ∈ D, we have

0 < Tv(x) ≤ ‖f‖+ c (λ0‖f‖)
γ.

Now, the assumption ‖f‖ ≤ L yields ‖f‖+ c (λ0‖f‖)
γ ≤ λ0‖f‖ and hence

T (Λ) ⊂ Λ.

Let (vn)n be a sequence in Λ converging uniformly to v ∈ Λ and let ε > 0. Since
the function t 7→ tγ is uniformly continuous on the interval [0, λ0‖f‖], there exists
n0 ∈ N such that, for every n ≥ n0,

sup
x∈D

|vγn(x)− vγ(x)| ≤ ε

and hence, for every n ≥ n0 and every x ∈ D,

|Tvn(x)− Tv(x)| ≤ ε
1

h(x)
Gα

D (hγ) (x) ≤ cε.

This shows that (Tvn)n converges uniformly to Tv and therefore the operator T is
continuous. On the other hand, thanks to Lemma 3, T (Λ) is relatively compact.
Since Λ is a closed bounded convex subset of C(D), the Schauder fixed point theorem
ensures the existence of a function v ∈ Λ such that v = Tv on D, that is, for every
x ∈ D,

h(x)v(x) = Mα
Df(x) +Gα

D ((hv)γ) (x).

Now, put u = hv. Then, we readily deduce that

u(x) = Mα
Df(x) +Gα

D(u
γ)(x); x ∈ D,

and hence, by (5), ∆
α
2 u = −uγ in D. Moreover, for every z ∈ ∂D,

lim
x→z

u(x)/h(x) = lim
x→z

Mα
Df(x)/h(x) = f(z)

since

lim
x→z

Gα
D(u

γ)(x)

h(x)
≤ (λ0‖f‖)

γ lim
x→z

Gα
D(h

γ)(x)

h(x)
= 0.

This completes the proof of the first statement of the theorem.
2. Let γ ≥ 2+α

2−α
. Arguing by contradiction, we assume that problem (2) admits

a positive solution u. Since ∆
α
2 u = −uγ ≤ 0 in D, it follows from [11, Theorem 3.8]

that u can be written uniquely as

u(x) = Mα
Dν(x) +Gα

D(u
γ)(x); x ∈ D,

where ν is finite measure on ∂D. This implies, in particular, that

Gα
D(u

γ)(x) < ∞; x ∈ D.

On the other hand, let z0 ∈ ∂D such that f(z0) > 0. By the hypothesis

lim
x→z0

u(x)

h(x)
= f(z0),
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there exist two constants r, η > 0 small enough such that u(x) ≥ η h(x) for every
x ∈ D ∩B(z0, r). Let x0 ∈ D be fixed and consider

K = {y ∈ D; 2δ(y) < δ(x0)}.

It is easy to verify that, for every y ∈ K,

|x0 − y| > max

(

δ(x0)

2
,
δ(y)

2

)

.

Then, invoking (8) and (7), we obtain

Gα
D(u

γ)(x0) ≥ ηγ
ˆ

D∩B(z0,r)

Gα
D(x0, y)h

γ(y) dy

≥ c1

ˆ

K∩D∩B(z0,r)

δ(x0)
α
2 δ(y)

α
2

|x0 − y|d
δ(y)γ(

α
2
−1) dy

≥ c2

ˆ

K∩D∩B(z0,r)

δ(y)
α
2
+γ(α

2
−1) dy = ∞

since α
2
+ γ(α

2
− 1) ≤ −1. But this is impossible since Gα

D(u
γ)(x0) < ∞. Hence

problem (2) has no positive solutions as desired. �

Proof of Theorem 2. Summarizing the first statement of Theorem 1, whenever
0 < ‖f‖ ≤ L and 1 < γ < 2+α

2−α
, we have constructed a solution u of problem (2) such

that, for every x ∈ D,

(10) 0 < u(x) ≤ λ0 ‖f‖M
α
D1(x).

Let n0 ∈ N such that 1 ≤ n0 L. For every n ≥ n0, let un be the solution of problem
(2) with boundary data f ≡ 1

n
. It follows from (10) that the sequence (un)n converges

to zero pointwise. Let u be a nonnegative solution of problem (2) with f ≡ 0. We
now prove that u ≤ un for every n ≥ n0 and hence u will be identically zero as
desired. Indeed, suppose otherwise. Then, there exists m ≥ n0 such that the open
set

V := {x ∈ D; u > um}

is not empty. It follows from [11, Theorem 3.8] that, for every x ∈ D,

u(x) = Gα
D(u

γ)(x) and um(x) = Mα
Dνm(x) +Gα

D(u
γ
m)(x),

where νm is (the unique) finite measure on ∂D. Let w := um − u and ρ := uγ
m − uγ.

Since u and um are identically zero on Dc, we thus obtain

w(x) = Mα
Dνm(x) +Gα

D(ρ)(x); x ∈ R
d\∂D.

Integrating with respect to the harmonic measure Hα
V (x, ·), x ∈ V, shows that

Hα
Vw(x) = Mα

Dνm(x) +Hα
V (Gα

D(ρ)) (x) = Mα
Dνm(x) +Gα

D(ρ)(x)−Gα
V (ρ)(x)

= w(x)−Gα
V (ρ)(x) ≤ −Gα

V (ρ)(x).

This implies that Hα
Vw ≡ 0 on V since Gα

V (−ρ) is a potential. But this is impossible
because, for x ∈ V , the harmonic measure Hα

V (x, ·) is absolutely continuous on V c

with respect to the Lebesgue measure and therefore must charges the nonempty open
set {w > 0} = D\V which implies that Hα

Vw(x) 6= 0. Here, the fact that the set
{w > 0} is not empty follows immediately from the boundary conditions

lim
x→z

w(x)

Mα
D1(x)

= lim
x→z

um(x)

Mα
D1(x)

− lim
x→z

u(x)

Mα
D1(x)

=
1

m
> 0 for all z ∈ ∂D.
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This completes the proof of theorem 2. �
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