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Abstract. We introduce central Morrey–Orlicz spaces MΦ,ω(B) on the unit ball and study
the existence of weighted spherical limits:

lim inf
r→1−

(1 − r)d1ω(1− r)d2

(

ˆ

S(0,r)

Φ((1− r)d3 |Iαf(x)|)
q dS(x)

)1/q

for some d1, d2, d3 ∈ R, 1 ≤ q < ∞, and all Riesz potentials Iαf with f ∈ MΦ,ω(B). We also deal

with the existence of weighted spherical limits for Green potentials and monotone Sobolev functions.

1. Introduction

Let RN , N ≥ 2, denote the N -dimensional Euclidean space. We use the notation
B(x, r) to denote the open ball centered at x with radius r > 0, whose boundary is
denoted by S(x, r). The Lq means over the spherical surface S(0, r) for u is defined
by

Sq(u, r) =

(

1

|S(0, r)|

ˆ

S(0,r)

|u(x)|q dS(x)

)1/q

=

(

1

ωN−1

ˆ

S(0,1)

|u(rσ)|q dS(σ)

)1/q

when 1 ≤ q < ∞, where |S(0, r)| = ωN−1r
N−1 with ωN−1 being the area of the unit

sphere. Gardiner [4, Theorem 2] showed that

lim inf
r→1−

(1− r)(N−1)(1−1/q)Sq(u, r) = 0

when u is a Green potential in the unit ball B = B(0, 1), (N − 3)/(N − 1) < 1/q ≤
(N − 2)/(N − 1) and q > 0, as an extension of the result by Stoll [21] in the plane
case. In [12], The first author gave versions of Gardiner’s result in [4] to the half
space. The first and third authors [17] studied the existence of boundary limits for
BLD (Beppo Levi and Deny) functions u on the unit ball B of RN satisfying

(1.1)

ˆ

B

|∇u(x)|p(1− |x|)γ dx < ∞,

where ∇ denotes the gradient, 1 < p < ∞ and −1 < γ < p− 1. In fact, we showed
that

lim inf
r→1−

(1− r)(N−p+γ)/p−(N−1)/qSq(u, r) = 0
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when q > 0 and (N − p− 1)/(p(N − 1)) < 1/q < (N − p+ γ)/(p(N − 1)), as a result
corresponding to [16, Theorem 2.1] given in half spaces. In [17], we also studied the
existence of boundary limits for monotone BLD functions u on the unit ball B of RN

satisfying (1.1).
We denote by MΦ,ω(B) the class of measurable functions f on the unit ball B

satisfying
‖f‖MΦ,ω(B) = sup

0<r<1
ω(1− r)‖f‖LΦ(B\B(0,r)) < ∞

with a convex function Φ and a doubling weight ω; the space MΦ,ω(B) is referred to
as a central Morrey–Orlicz space (see Section 2 for the definitions of Φ and ω). For
these spaces, see e.g. [1, 2, 3, 18]. When Φ(r) = rp and γ < 0, one can find u such
that |∇u| ∈ MΦ,ω(B) but u does not satisfy (1.1); see also Remark 3.5.

For 0 < α < N , we define the Riesz potential of order α for locally integrable
function f on B by

Iαf(x) =

ˆ

B

|x− y|α−Nf(y) dy.

Our main aim in this paper is to discuss the weighted limit

(1− r)d1ω(1− r)d2Sq(Φ((1− r)d3Iαf), r)

as r → 1 − 0 for Iαf with f ∈ MΦ,ω(B); d1, d2 and d3 will be given later (see
Theorem 3.1 below). The result is new even for Mp,ν(B), that is, for the case Φ(r) =
rp and ω(r) = r−ν . The sharpness of the exponent of 1− r will be discussed later.

In Section 4, as an application of Theorem 3.1, we treat functions f on B satis-
fying the weighted condition (1−|y|)βp1f(y)p1 ∈ MΦ,ω(B) for 1 < p1 < ∞ and β > 0
(see Theorem 4.2 below).

Let G(x, y) be a Green kernel on B. We define the Green potential for locally
integrable function f on B by

Gf(x) =

ˆ

B

G(x, y)f(y) dy.

In Section 5, we study the existence of weighted spherical limits for Green po-
tentials Gf with (1− |y|)f(y) ∈ MΦ,ω(B) in our settings (see Theorem 5.3 below).

A continuous function u on an open set Ω is called monotone in the sense of
Lebesgue [7] if for every relatively compact open set G ⊂ Ω,

max
G

u = max
∂G

u and min
G

u = min
∂G

u.

Harmonic functions on Ω are monotone in Ω. More generally, solutions of elliptic par-
tial differential equations of second order and weak solutions for variational problems
may be monotone (see [5]). See also [6], [9], [10], [14], [15], [24], [25] and [26].

In the last section, we study the existence of weighted spherical limits for mono-
tone functions u with |∇u(y)|p1 ∈ MΦ,ω(B) with p1 > N − 1 in our settings (see
Theorem 6.1 below). Essential tool in treating monotone functions is Lemma 6.2
below.

For related results on spherical means, see [11], [13], [15], [20], [22] and [23]. We
also refer the reader to the papers [8] and [19] for weighted integral means over balls.

2. Preliminaries and lemmas

Throughout this paper, let C denote various positive constants independent of
the variables in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch for some
constant C > 0.
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Let Φ be a convex function on [0,∞) such that

(Φ1) Φ(0) = 0 and Φ(r) > 0 for r > 0;
(Φ2) Φ is doubling, that is, there exists a constant A1 > 0 such that

Φ(2r) ≤ A1Φ(r) for r > 0;

(Φ3) for some p ≥ 1, r−pΦ(r) is almost increasing, that is, there exists a constant
A2 > 0 such that

Φ(rt) ≤ A2r
pΦ(t) when 0 < r < 1 and t > 0.

Further consider a weight ω such that

(ω1) ω(r) > 0 for r > 0;
(ω2) ω is almost decreasing in (0,∞), that is, there is a constant C > 0 such that

ω(t) ≤ Cω(s) when 0 < s < t < ∞;

(ω3) ω is doubling.

We see that ω(r) = r−ν(log(e + r−1))τ is almost decreasing when ν > 0 and τ ∈ R.
Note here that (Φ3) holds if and only if

(Φ4) Φ(rt) ≥ A2
−1rpΦ(t) when r ≥ 1 and t > 0.

Moreover, if Φ is of the form rp1(log(e + r))θ, then (Φ3) holds when p1 > p or when
p1 = p and θ ≥ 0.

For an open set G in R
N , we define the Luxemburg–Nakano–Orlicz norm for

f ∈ L1
loc
(G) by

‖f‖LΦ(G) = inf

{

λ > 0:

ˆ

G

Φ(|f(y)|/λ) dy ≤ 1

}

;

we set f = 0 outside G for the sake of convenience.
We consider the family MΦ,ω(B) of all measurable functions f on B satisfying

‖f‖MΦ,ω(B) = sup
0<r<1

ω(1− r)‖f‖LΦ(B\B(0,r)) < ∞.

When Φ(r) = rp and ω(r) = r−ν , MΦ,ω(B) will be written as Mp,ν(B). It is easy to
see that

(2.1) sup
0<r<1

ω(1− r)‖f‖LΦ(B\B(0,r)) < ∞

if and only if

(2.2) sup
0<r<1

ˆ

B\B(0,r)

Φ(ω(1− r)|f(y)|) dy < ∞.

Moreover it is useful to note the following result.

Lemma 2.1. Let Φ(r) = rp(log(c+r))θ and ω(r) = r−ν(log(c+r))τ for p > 1 and

real numbers θ, ν, τ , where c > 1 is chosen so large that Φ is convex. If 0 ≤ ν < 1/p,
then the following are equivalent:

(1) there exists a constant C1 > 0 such that

sup
0<r<1

ω(1− r)‖f‖LΦ(B\B(0,r)) ≤ C1;

(2) there exists a constant C2 > 0 such that

sup
0<r<1

ω(1− r)p
ˆ

B\B(0,r)

Φ(|f(y)|) dy ≤ C2;

here C1 ∼ C2.
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Proof. We treat only the case when θ ≥ 0, since the case θ < 0 is similarly
treated. Let 0 < r < 1 and t > 0. By (Φ4) and (ω2), we have

(2.3) ω(1− r)pΦ(t) ≤ CΦ (ω(1− r)t) ,

so that (1) implies (2). Next, if ω(1− r)t ≤ t1+A for A > 0, then

Φ(ω(1− r)t) = (ω(1− r)t)p (log(c+ ω(1− r)t))θ

≤ (ω(1− r)t)p (log(c+ t1+A))θ

≤ Cω(1− r)ptp(log(c+ t))θ = Cω(1− r)pΦ (t)

and if ω(1− r)t > t1+A, then t ≤ ω(1− r)1/A, so that

Φ(ω(1− r)t) ≤ Φ(ω(1− r)1+1/A).

Hence

(2.4) Φ(ω(1− r)t) ≤ C
{

ω(1− r)pΦ (t) + Φ(ω(1− r)1+1/A)
}

.

If νp < 1, then we note that
ˆ

B\B(0,r)

Φ(ω(1− r)1+1/A) dy = C(1− r)Φ(ω(1− r)1+1/A) < ∞,

when A is so large that νp(1 + 1/A) < 1 . Now the equivalence of assertions (1) and
(2) is obtained. �

Here we give an estimate for spherical means for Riesz kernels.

Lemma 2.2. Let 0 < a < N and c1, c2 be positive constants. If c1|y| < t < c2|y|
and 1/2 < |y| < 1, then there exists a constant C > 0 such that

ˆ

S(0,1)∩B(y,1−t)

|tσ − y|a−N dS(σ) ≤ C

{

|t− |y||a−1 when a < 1;

(1− t)a−1 when a > 1.

Proof. By an application of polar coordinates, we note that
ˆ

S(0,1)∩B(y,1−t)

|tσ − y|a−N dS(σ)

≤ C

ˆ sin−1 2(1−t)

0

||y|+ t2 − 2|y|t cos θ|(a−N)/2 sinN−2 θ dθ

≤ C

ˆ c(1−t)

0

(||y| − t|2 + t2θ2)(a−N)/2θN−2 dθ

= Ct1−N ||y| − t|a−1

ˆ c(1−t)t/||y|−t|

0

(1 + s2)(a−N)/2sN−2 ds

≤ Ct1−N ||y| − t|a−1 ×

{

1 when a < 1,

((1− t)t/||y| − t|)a−1 when a > 1.

Thus the present lemma is obtained. �

Lemma 2.3. Let 0 < a < N and c1, c2 be positive constants. If c1|y| < t < c2|y|
and 1/2 < |y| < 1, then there exists a constant C > 0 such that

ˆ

S(0,1)

|tσ − y|a−N dS(σ) ≥ C

{

|t− |y||a−1 when a < 1;

1 when a > 1.
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Proof. By an application of polar coordinates, we have
ˆ

S(0,1)

|tσ − y|a−N dS(σ) = C

ˆ π

0

||y|+ t2 − 2|y|t cos θ|(a−N)/2 sinN−2 θ dθ

≥ C

ˆ π/2

0

(||y| − t|2 + t2θ2)(a−N)/2θN−2 dθ

= Ct1−N ||y| − t|a−1

ˆ πt/(2||y|−t|)

0

(1 + s2)(a−N)/2sN−2 ds

≥ Ct1−N ||y| − t|a−1 ×

{

1 when a < 1,

(πt/||y| − t|)a−1 when a > 1

since

πt/(2||y| − t|) ≥ πt/(2(|y|+ t)) ≥ πc1/(2(1 + c1)) > 0

when c1|y| < t < c2|y|. Thus the present lemma is obtained. �

For a nonnegative function f ∈ L1
loc
(B) and x ∈ B, write

Iαf(x) =

ˆ

B(x,(1−|x|)/2)

|x− y|α−Nf(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|≤1−|x|}

|x− y|α−Nf(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|>1−|x|}

|x− y|α−Nf(y) dy

= I1(x) + I2(x) + I3(x).

Set

A(0, r) = B(0, r + (1− r)/2) \B(0, r − (1− r)/2).

Lemma 2.4. Let 1 ≤ q < ∞.

(1) Suppose 0 < ε < α and

(N − 1)/q < N − αp+ ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ((1− r)−εω(1− r)I1), r)

≤ C(1− r)−ε

ˆ

A(0,r)

|r − |y||(α−ε)p+ε−N+(N−1)/qΦ(ω(1− r)f(y)) dy

for all 1/2 < r < 1 and nonnegative measurable functions f ∈ L1
loc
(B).

(2) Suppose 0 < ε < α and

(N − 1)/q > N − αp+ ε(p− 1) > 0.

Then there exists a constant C > 0 such that

Sq(Φ((1− r)−εω(1− r)I1), r) ≤ C(1− r)(α−ε)p−N+(N−1)/q

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.
(3) Suppose 0 < ε < α and (α − ε)p + ε − N > 0. Then there exists a constant

C > 0 such that

Φ((1− r)−εω(1− r)I1) ≤ C(1− r)(α−ε)p−N
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for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.

Proof. Let 0 < ε < α and

(α− ε)p+ ε−N + (N − 1)/q < 0.

For 1/2 < r = |x| < 1, we have

I1(x) =

ˆ

B(x,(1−|x|)/2)

|x− y|α−Nf(y) dy

≤ C

ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

f(y) dy

)

tα−1 dt

≤ C

ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

tα−εf(y) dy

)

tε−1 dt

since B(x, (1− |x|)/2) ⊂ A(0, r), where |B| denotes the volume of balls B.
We have by Jensen’s inequality and (Φ3)

Φ((1 − r)−εω(1− r)I1(x))

≤ CΦ

(

(1− r)−εω(1− r)

ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

tα−εf(y) dy

)

tε−1 dt

)

≤ C(1− r)−ε

ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

Φ(tα−εω(1− r)f(y)) dy

)

tε−1 dt

≤ C(1− r)−ε

ˆ 1−r

0

t(α−ε)p−N

(
ˆ

B(x,t)∩A(0,r)

Φ(ω(1− r)f(y)) dy

)

tε−1 dt

≤ C(1− r)−ε

ˆ

A(0,r)

|x− y|(α−ε)p+ε−NΦ(ω(1− r)f(y)) dy

since (α− ε)p+ ε−N < 0.
Hence in this case Minkowski’s inequality and Lemma 2.2 yield

Sq(Φ((1− r)−εω(1− r)I1), r)

≤ C(1− r)−ε

ˆ

A(0,r)

Sq(| · −y|(α−ε)p+ε−N , r)Φ(ω(1− r)f(y)) dy

≤ C(1− r)−ε

ˆ

A(0,r)

|r − |y||(α−ε)p+ε−N+(N−1)/qΦ(ω(1− r)f(y)) dy

since (α − ε)p + ε− N + (N − 1)/q < 0, 1/2 < r < 1 and r ∼ |y| on A(0, r), which
gives assertion (1).

Next we shall show assertion (2). Similarly, under our assumptions, we obtain as
above

Sq(Φ((1− r)−εω(1− r)I1), r)

≤ C(1− r)−ε

ˆ

A(0,r)

Sq(| · −y|(α−ε)p+ε−NχB(y,(1−r)/2), r)Φ(ω(1− r)f(y)) dy

≤ C(1− r)−ε(1− r)(α−ε)p+ε−N+(N−1)/q

ˆ

A(0,r)

Φ(ω(1− r)f(y)) dy

≤ C(1− r)(α−ε)p−N+(N−1)/q
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for 1/2 < r < 1, since
ˆ

A(0,r)

Φ(ω(1− r)f(y)) dy ≤

ˆ

B\B(0,s)

Φ(ω(2(1− s)/3)f(y)) dy

≤ C

ˆ

B\B(0,s)

Φ(ω(1− s)f(y)) dy ≤ C,

where s = r − (1− r)/2. Thus assertion (2) is proved.
Finally we shall show assertion (3). When 0 < ε < α and (α− ε)p+ ε−N > 0,

we have

Φ((1− r)−εω(1− r)I1(x))

≤ C(1− r)−ε

ˆ 1−r

0

t(α−ε)p−N

(
ˆ

B(x,t)∩A(0,r)

Φ(ω(1− r)f(y)) dy

)

tε−1 dt

≤ C(1− r)−ε(1− r)(α−ε)p+ε−N

ˆ

A(0,r)

Φ(ω(1− r)f(y)) dy ≤ C(1− r)(α−ε)p−N ,

which proves assertion (3). �

Lemma 2.5. Let 0 < d < 1 and M > 0. Set

G(t) = (1− t)d
ˆ

A(0,t)

|t− |y||−dg(y) dy

for a nonnegative measurable function g such that sup0<t<1

´

A(0,t)
g(y) dy ≤ M . Then

there exists a constant c > 0 such that

inf
1−2−j+1<t<1−2−j

G(t) < cM for each positive integer j.

Proof. For each positive integer j, we have
ˆ 1−2−j

1−2−j+1

G(t)
dt

1− t

≤ C

ˆ

A(0,1−2−j)∪A(0,1−2−j+1)

(

2−j(d−1)

ˆ 1−2−j

1−2−j+1

|t− |y||−d dt

)

g(y) dy

≤ C

ˆ

A(0,1−2−j)∪A(0,1−2−j+1)

g(y) dy ≤ CM.

Hence

inf
1−2−j+1<t<1−2−j

G(t) ≤ CM/(log 2),

as required. �

Lemma 2.6. Let 1 ≤ q < ∞.

(1) Suppose ε > 0 and

(N − 1)/q < N − αp− ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ(ω(1− r)(1− r)εI2), r) ≤ C(1− r)(α+ε)p−N+(N−1)/q

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.
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(2) Suppose ε > 0 and

(N − 1)/q > N − αp− ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ(ω(1− r)(1− r)εI2), r) ≤ C(1− r)ε

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.

Proof. Let ε > 0 such that

(N − 1)/q < N − (α + ε)p+ ε.

For 1/2 < r = |x| < 1, we have

I2(x) =

ˆ

B

|x− y|α−Nf2,x(y) dy

≤ C

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

f2,x(y) dy

)

tα−1 dt

≤ C

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα+εf2,x(y) dy

)

t−ε−1 dt,

where f2,x(y) = f(y)χE2,x
(y) with E2,x = {y ∈ B\B(x, (1−|x|)/2) : 1−|y| ≤ 1−|x|}.

We have by Jensen’s inequality and (Φ3)

Φ(ω(1− |x|)(1− |x|)εI2(x))

≤ CΦ

(

ω(1− |x|)(1− |x|)ε
ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα+εf2,x(y) dy

)

t−ε−1 dt

)

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(tα+εω(1− |x|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

t(α+ε)p

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(ω(1− |x|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ

B

|x− y|(α+ε)p−ε−NΦ(ω(1− |x|)f2,x(y)) dy

since (α+ ε)p− ε−N < 0.
By Lemma 2.2, we see that

ˆ

{σ∈S(0,1): |tσ−y|>(1−t)/2}

|tσ − y|a−N dS(σ)

≤

ˆ

{σ∈S(0,1): |tσ−y|>(1−t)/2}

(C|(1 + (1− t))σ − y|)a−N dS(σ)

≤ C|(1 + (1− t))− |y||a−1 ≤ C|1− t|a−1
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for 1/2 < t < 1 and y ∈ B, when a < 1. Hence Minkowski’s inequality yields

Sq(Φ(ω(1− r)(1− r)εI2), r)

≤ C(1− r)ε
ˆ

B

Sq(| · −y|(α+ε)p−ε−NχE2,x
(y), r)Φ(ω(1− |x|)f(y)) dy

≤ C(1− r)ε(1− r)(α+ε)p−ε−N+(N−1)/q

ˆ

B\B(0,r)

Φ(ω(1− r)f(y)) dy

≤ C(1− r)(α+ε)p−N+(N−1)/q

since (α+ ε)p− ε−N + (N − 1)/q < 0, which gives assertion (1).
Next we shall show assertion (2). Suppose ε > 0 such that

(N − 1)/q > N − (α + ε)p+ ε > 0.

Then we have by Jensen’s inequality and (Φ3)

Φ(ω(1− |x|)(1− |x|)εI2(x))

≤ CΦ

(

ω(1− |x|)(1− |x|)ε
ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα+εf2,x(y) dy

)

t−ε−1 dt

)

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(tα+εω(1− |x|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

t(α+ε)p

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(ω(1− |x|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ

B

|x− y|(α+ε)p−ε−NΦ(ω(1− |x|)f2,x(y)) dy.

By Lemma 2.2 and Minkowski’s inequality, we find

Sq(Φ(ω(1− r)(1− r)εI2), r)

≤ C(1− r)ε
ˆ

B

Sq(| · −y|(α+ε)p−ε−NχE2,x
(y), r)Φ(ω(1− r)f(y)) dy

≤ C(1− r)ε
ˆ

B\B(0,r)

Φ(ω(1− r)f(y)) dy ≤ C(1− r)ε

since (α+ ε)p− ε−N + (N − 1)/q > 0.
When ε > 0 and (α + ε)p− ε−N ≥ 0, taking 0 < δ < (N − 1)/q, we have

Φ(ω(1− |x|)(1− |x|)εI2(x))

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

t(α+ε)p

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(ω(1− |x|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ

B

|x− y|−δΦ(ω(1− |x|)f2,x(y)) dy

and

Sq(Φ(ω(1−r)(1−r)εI2), r) ≤ C(1− r)ε
ˆ

B

Sq(| · −y|−δχE2,x
(y), r)Φ(ω(1−r)f(y)) dy

≤ C(1− r)ε
ˆ

B\B(0,r)

Φ(ω(1− r)f(y)) dy ≤ C(1− r)ε,

which completes the proof of assertion (2). �
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Lemma 2.7. Let 1 ≤ q < ∞.

(1) Suppose

(ω4) tαp+ε0−N+(N−1)/qω(t)−p is almost decreasing on (0, 1] for some ε0 > 0.
Let 0 < ε < ε0/(p− 1). Then there exists a constant C > 0 such that

Sq(Φ((1− r)εI3), r) ≤ C(1− r)(α+ε)p−N+(N−1)/qω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.
(2) Suppose ε > 0 and

(N − 1)/q > N − αp− ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ((1− r)εI3), r) ≤ C(1− r)ε

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖f‖MΦ,ω(B) ≤ 1.

Proof. Let 1/2 < r = |x| < 1. First note from (ω4) and 0 < ε < ε0/(p− 1) that
t(α+ε)p−ε−N+(N−1)/qω(t)−p is almost decreasing on (0, 1] and

(α + ε)p− ε−N + (N − 1)/q < 0.

Further, note that

ˆ

B(0,1/4)

|x− y|α−Nf(y) dy ≤ C

ˆ

B(0,1/4)

f(y) dy ≤ C.

As in the proof of Lemma 2.6, we have

I3(x) =

ˆ

B

|x− y|α−Nf3,x(y) dy

≤ C

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

f3,x(y) dy

)

tα−1 dt

≤ C

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα+εf3,x(y) dy

)

t−ε−1 dt,

where f3,x(y) = f(y)χE3,x
(y) with E3,x = {y ∈ B\B(x, (1−|x|)/2) : 1−|y| > 1−|x|}.

Since r ∼ |y| for y ∈ B \ B(0, 1/4), in the same way as in the proof of Lemma 2.6,
we see from Lemma 2.2 that

Sq(Φ((1− r)εI3), r) ≤ C(1− r)ε
(
ˆ

B

Sq(| · −y|(α+ε)p−ε−NχE3,x
(y), r)Φ(f(y)) dy+ 1

)

≤ C(1− r)ε
(
ˆ

B(0,r)

(1− |y|)(α+ε)p−ε−N+(N−1)/qΦ(f(y)) dy + 1

)

.
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Let j0 be the smallest integer such that r ≤ 1− 2−j0−1. Note here that
ˆ

B(0,r)

(1− |y|)(α+ε)p−ε−N+(N−1)/qΦ(f(y)) dy

≤

j0
∑

j=0

ˆ

A(0,1−2−j)

(1− |y|)(α+ε)p−ε−N+(N−1)/qΦ(f(y)) dy

≤ C

j0
∑

j=0

2−j((α+ε)p−ε−N+(N−1)/q)

ˆ

A(0,1−2−j)

Φ(f(y)) dy

≤ C

j0
∑

j=0

2−j((α+ε)p−ε−N+(N−1)/q)ω(2−j)−p

≤ C(1− r)(α+ε)p−ε−N+(N−1)/qω(1− r)−p

by (ω4), which gives assertion (1).
For assertion (2), suppose ε > 0 such that

(N − 1)/q > N − (α + ε)p+ ε > 0.

Then, in the same way as in the proof of Lemma 2.6, we see from Lemma 2.2 that

Sq(Φ((1− r)εI3), r)

≤ C(1− r)ε
(
ˆ

B

Sq(| · −y|(α+ε)p−ε−NχE3,x
(y), r)Φ(f(y)) dy+ 1

)

≤ C(1− r)ε
(
ˆ

B(0,r)

Φ(f(y)) dy + 1

)

≤ C(1− r)ε.

When ε > 0 and (α + ε)p− ε−N ≥ 0, we see that

Sq(Φ((1− r)εI3), r) ≤ C(1− r)ε
(
ˆ

B(0,r)

Φ(f(y)) dy + 1

)

≤ C(1− r)ε,

as in the proof of Lemma 2.6. Thus the present lemma is proved. �

Remark 2.8. If ω(r) = r−ν , then (ω4) holds in case (N − 1)/q < N − αp− νp.

3. Spherical limits for Riesz potentials

We are now ready to show our main result.

Theorem 3.1. Let 1 ≤ q < ∞.

(1) Suppose (ω4) holds for some ε0 > 0. If 0 < ε < min{α, ε0/(p− 1)} and

N − αp+ ε(p− 1)− 1 < (N − 1)/q < N − αp− ε(p− 1),

then there exists a constant C > 0 such that

lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εIαf), r) ≤ C

for all nonnegative measurable functions f with ‖f‖MΦ,ω(B) ≤ 1.
(2) If 0 < ε < α and

max{N − αp− ε(p− 1), N − αp+ ε(p− 1)− 1} < (N − 1)/q

< N − αp+ ε(p− 1),
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then there exists a constant C > 0 such that

lim inf
r→1−

min{(1−r)N−(α+ε)p−(N−1)/qω(1−r)p, (1−r)−ε}Sq(Φ((1−r)εIαf), r) ≤ C

for all nonnegative measurable functions f with ‖f‖MΦ,ω(B) ≤ 1.
(3) If 0 < ε < α and (N − 1)/q > N − αp + ε(p − 1) > 0, then there exists a

constant C > 0 such that

min{(1− r)N−(α+ε)p−(N−1)/qω(1− r)p, (1− r)−ε}Sq(Φ((1− r)εIαf), r) ≤ C

for all 1/2 < r < 1 and all nonnegative measurable functions f with ‖f‖MΦ,ω(B)

≤ 1.
(4) If 0 < ε < α and (α − ε)p + ε − N > 0, then there exists a constant C > 0

such that

min{(1− r)N−(α+ε)pω(1− r)p, (1− r)−ε}Sq(Φ((1− r)εIαf), r) ≤ C

for all 1/2 < r < 1 and all nonnegative measurable functions f with ‖f‖MΦ,ω(B)

≤ 1.

Proof. We shall show assertion (1). Let f be a nonnegative measurable function
in MΦ,ω(B). For x ∈ B, write

Iαf(x) = I1(x) + I2(x) + I3(x)

as before. Let 0 < ε < min{α, ε0/(p− 1)} such that

−1 < (α− ε)p+ ε−N + (N − 1)/q < (α + ε)p− ε−N + (N − 1)/q < 0.

Set
d = −(α − ε)p− ε+N − (N − 1)/q.

Then 0 < d < 1. First note by Lemma 2.6 (1) that

(1− r)N−(α+ε)p−(N−1)/qSq(Φ(ω(1− r)(1− r)εI2), r) ≤ C,

so that by (Φ4)

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI2), r) ≤ C.

By Lemma 2.7 (1), we have

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI3), r) ≤ C.

Finally, we obtain by Lemma 2.4 (1)

Sq(Φ((1− r)−εω(1− r)I1), r) ≤ C(1− r)−ε

ˆ

A(0,r)

|r − |y||−dg(y) dy,

where g(y) = Φ(ω(1− |y|)f(y)). Therefore (Φ4) gives

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI1), r)

≤ C(1− r)N−(α+ε)p−(N−1)/q(1− r)2εpSq(Φ((1− r)−εω(1− r)I1), r)

≤ C(1− r)d
ˆ

A(0,r)

|r − |y||−dg(y) dy.

In view of Lemma 2.5, we can find a sequence {rj} of positive numbers such that
1− 2−j+1 < rj < 1− 2−j and

sup
j

(1− rj)
N−(α+ε)p−(N−1)/qω(1− rj)

pSq(Φ((1− rj)
εI1), rj) ≤ C.

Thus assertion (1) is obtained.
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Next we shall show assertion (2). Suppose 0 < ε < α such that

N − αp− ε(p− 1) < (N − 1)/q < N − αp+ ε(p− 1).

By Lemmas 2.6 (2) and 2.7 (2), we obtain

Sq(Φ((1− r)εI2), r) ≤ CSq(Φ(ω(1− r)(1− r)εI2), r) ≤ C(1− r)ε

and

Sq(Φ((1− r)εI3), r) ≤ C(1− r)ε

for all 1/2 < r < 1. In view of (Φ4), we obtain

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI1), r)

≤ C(1− r)N−(α+ε)p−(N−1)/q(1− r)2pεSq(Φ(ω(1− r)(1− r)−εI1), r)

≤ C(1− r)N−(α−ε)p−(N−1)/qSq(Φ(ω(1− r)(1− r)−εI1), r)

for all 1/2 < r < 1. Thus, by Lemma 2.4 (1), assertion (2) is proved.
For a proof of assertion (3), it suffices to apply Lemma 2.4 (2) in the proof of

assertion (2).
For a proof of assertion (4), note that by our assumption

(N − 1)/q > 0 > N − αp+ ε(p− 1) > N − αp− ε(p− 1)

and by (Φ4)

(1− r)N−(α+ε)pω(1− r)pSq(Φ((1− r)εI1), r)

≤ C(1− r)N−(α−ε)pSq(Φ(ω(1− r)(1− r)−εI1), r)

for all 1/2 < r < 1. As in the proof of assertion (2), it suffices to apply Lemma 2.4
(3). �

Remark 3.2. The first and third authors [17, Theorem 1] treated the existence
of boundary limits for BLD functions u on the unit ball B of RN satisfying

ˆ

B

|∇u(x)|p(1− |x|)γ dx < ∞,

where ∇ denotes the gradient, 1 < p < ∞ and −1 < γ < p− 1. In fact, we showed
that

lim inf
r→1−

(1− r)(N−p+γ)/p−(N−1)/qSq(u, r) = 0

when q > 0 and (N − p− 1)/(p(N − 1)) < 1/q < (N − p+ γ)/(p(N − 1)). If u is in
addition monotone in B in the sense of Lebesgue, then u is shown to have weighted
boundary limit zero (see [17, Theorem 2]).

When Φ(r) = rp and ω(r) = r−ν , we obtain the following corollary.

Corollary 3.3. Suppose 1 ≤ q < ∞, ν ≥ 0 and

N − αp− 1

N − 1
<

1

q
<

N − αp− νp

N − 1
.

Then

lim inf
r→1−

(1− r)(N−αp−νp)/p−(N−1)/(pq)Spq(Iαf, r) < ∞

for all nonnegative measurable functions f ∈ Mp,ν(B).
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Proof. Let f be a nonnegative measurable functions f ∈ Mp,ν(B). First note
that (ω4) holds for some ε0 > 0. Take 0 < ε < min{α, ε0/(p− 1)} such that

N − αp+ ε(p− 1)− 1 < (N − 1)/q.

Then Theorem 3.1 (1) gives

lim inf
r→1−

(1− r)(N−αp−νp)/p−(N−1)/(pq)Spq(Iαf, r) < ∞,

as required. �

Corollary 3.4. Suppose 1 ≤ p ≤ q < ∞ and

N − αp− 1

p(N − 1)
<

1

q
<

N − αp− νp

p(N − 1)
.

Then

lim inf
r→1−

(1− r)(N−αp−νp)/p−(N−1)/qSq(Iαf, r) < ∞

for all nonnegative measurable functions f ∈ Mp,ν(B).

Remark 3.5. We show that the exponent in Corollary 3.4 is the best possible.
For this, let 1 ≤ p ≤ q < ∞ and α+ ν−N/p+(N −1)/q < 0. Consider the function

f(y) = |e− y|ν−N/p

for 0 < ν < 1/p, where e = (0, . . . , 0, 1) ∈ ∂B. Then, by the proof of Lemma 2.2 and
0 < ν < 1/p, we see that

(1− r)−νp

ˆ

B\B(0,r)

|f(y)|p dy ≤ C(1− r)−νp

ˆ 1

r

(1− t)νp−1 dt ≤ C

for 1/2 < r < 1. Moreover,

Iαf(x) ≥

ˆ

B∩B(x,|e−x|/2)

|x− y|α−N |e− y|ν−N/p dy

≥ C|e− x|ν−N/p

ˆ

B∩B(x,|e−x|/2)

|x− y|α−N dy

≥ C|e− x|α+ν−N/p

for x ∈ B. Lemma 2.3 gives

Sq(Iαf, r) ≥ C(1− r)α+ν−N/p+(N−1)/q

for 1/2 < r < 1, since α + ν −N/p + (N − 1)/q < 0. Hence

lim inf
r→1−

(1− r)(N−αp−νp)/p−(N−1)/qSq(Iαf, r) ≥ C > 0.

Remark 3.6. Consider

f(y) =

∞
∑

j=1

|y − ej|
ν−N/pχB(0,(1−2−j )+2−j−2)\B(0,(1−2−j )−2−j−2)(y)

for 0 < ν < 1/p, where e = (0, . . . , 0, 1) ∈ ∂B and ej = (1 − 2−j)e. Let j0 be the
largest integer such that 1−2−j0 −2−j0−2 < r ≤ 1−2−j0−1−2−j0−3. Then note from
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Lemma 2.2 that
ˆ

B\B(0,r)

f(y)p dy ≤

∞
∑

j=j0

ˆ

B(0,(1−2−j )+2−j−2)\B(0,(1−2−j )−2−j−2)

|y − ej |
νp−N dy

≤ C

∞
∑

j=j0

ˆ (1−2−j )+2−j−2

(1−2−j)−2−j−2

|t− (1− 2−j)|νp−1 dt

≤ C

∞
∑

j=j0

2−jνp ≤ C(1− r)νp

since 0 < ν < 1/p. Further,

Iαf(x) ≥ C|x− ej |
α−N

ˆ

B(ej ,|x−ej|/2)

|y − ej |
ν−N/p dy ≥ C|x− ej |

α+ν−N/p

for x ∈ B(ej , 2
−j−2/2), since ν −N/p+N > 0. We see that

Sq(Iαf, 1− 2−j) ≥ C

(

ˆ

S(0,1−2−j)∩B(ej ,2−j−2/2)

|x− ej|
(α+ν−N/p)q dS(x)

)1/q

= ∞,

when (α + ν − N/p)q + N − 1 ≤ 0. This implies the necessity of the lower limit in
Theorem 3.1 when ν > 0 and

N − 1

q
≤

N − αp− νp

p
.

Let MΦ,ω
0 (B) denote the family of all measurable functions f on B such that

lim
r→1−

ˆ

A(0,r)

Φ(ω(1− r)|f(y)|) dy = 0.

With a slight modification of the proof of Theorem 3.1, we can prove the following
result.

Corollary 3.7. Let 1 ≤ q < ∞. Suppose (ω4) holds for some ε0 > 0. If

0 < ε < min{α, ε0/(p− 1)} and

N − αp+ ε(p− 1)− 1 < (N − 1)/q < N − αp− ε(p− 1),

then

lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εIαf), r) = 0

for all nonnegative measurable functions f ∈ MΦ,ω
0 (B).

Proof. Let f be a nonnegative measurable function in MΦ,ω
0 (B). For x ∈ B,

write
Iαf(x) = I1(x) + I2(x) + I3(x)

as before. Let 0 < ε < min{α, ε0/(p− 1)} such that

−1 < (α− ε)p+ ε−N + (N − 1)/q < (α + ε)p− ε−N + (N − 1)/q < 0.

Set
d = −(α − ε)p− ε+N − (N − 1)/q.

Then 0 < d < 1. First note by the proof of Lemma 2.6 (1) that

(1− r)N−(α+ε)p−(N−1)/qSq(Φ(ω(1− r)(1− r)εI2), r) ≤ C

ˆ

B\B(0,r)

Φ(ω(1− r)f(y)) dy,
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so that by (Φ4)

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI2), r) ≤ C

ˆ

B\B(0,r)

Φ(ω(1− r)f(y)) dy.

Take 0 < r0 < 1. We write

I3(x) =

ˆ

{y∈B\B(x,(1−|x|)/2): 1−|y|>1−|x|,|y|≤r0}

|x− y|α−Nf(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2): 1−|y|>1−|x|,|y|>r0}

|x− y|α−Nf(y) dy

= I3,1(x) + I3,2(x).

By (Φ3) and the fact that I3,1(x) ≤ C, we have

lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI3,1), r)

≤ lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εC), r) = 0

and by the proof of Lemma 2.7 (1)

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI3,2), r)

≤ C sup
{j∈N : 1−2−j−1>r0}

ω(2−j)p
ˆ

A(0,1−2−j)

Φ(f(y)) dy

for r0 < r < 1, so that

lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1 − r)εI3), r)

≤ C sup
{j∈N : 1−2−j−1>r0}

ω(2−j)p
ˆ

A(0,1−2−j )

Φ(f(y)) dy.

Letting r0 → 1, we infer that

lim inf
r→1−

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI3), r) = 0.

Finally, we obtain by Lemma 2.4

Sq(Φ((1− r)−εω(1− r)I1), r) ≤ C(1− r)−ε

ˆ

A(0,r)

|r − |y||−dg(y) dy,

where g(y) = Φ(ω(1− |y|)f(y)). Therefore (Φ4) gives

(1− r)N−(α+ε)p−(N−1)/qω(1− r)pSq(Φ((1− r)εI1), r)

≤ C(1− r)N−(α+ε)p−(N−1)/q(1− r)2εpSq(Φ((1− r)−εω(1− r)I1), r)

≤ C(1− r)d
ˆ

A(0,r)

|r − |y||−dg(y) dy.

In view of Lemma 2.5, we can find a sequence {rj} of positive numbers such that
r0 < 1− 2−j+1 < rj < 1− 2−j and

sup
j
(1− rj)

N−(α+ε)p−(N−1)/qω(1− rj)
pSq(Φ((1 − rj)

εI1), rj)

≤ C sup
r0<r<1

ˆ

A(0,r)

Φ(ω(1− r)f(y)) dy.

Thus, letting r0 → 1, we obtain the required result. �
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4. Spherical limits for Riesz potentials II

In this section we treat functions f on B satisfying the weighted condition (1−
|y|)βp1f(y)p1 ∈ MΦ,ω(B) for 1 < p1 < ∞ and β > 0.

Lemma 4.1. Let 1 < p1 < ∞ and β > 0. Suppose 0 < αp1−α1 < βp1 < p1−1.
Then there exists a constant C > 0 such that

(

(1− |x|)−(α−α1/p1)+βIαf(x)
)p1

≤ CIα1
g(x)

for all x ∈ B \ B(0, 1/2) and nonnegative measurable functions f ∈ L1
loc(B), where

g(y) = (1− |y|)βp1f(y)p1.

Proof. Let f be a nonnegative measurable function f ∈ L1
loc(B). By Hölder’s

inequality and Lemma 2.2, we have
ˆ

B

|x− y|α−Nf(y)dy ≤

(
ˆ

B

|x− y|(α−α1/p1)p′1−N(1− |y|)−βp′
1 dy

)1/p′
1

×

(
ˆ

B

|x− y|α1−N(1− |y|)βp1f(y)p1 dy

)1/p1

≤

(
ˆ 1

0

(
ˆ

S(0,r)

|x− y|(α−α1/p1)p′1−N dS(y)

)

(1− r)−βp′
1 dr

)1/p′1

×

(
ˆ

B

|x− y|α1−Ng(y) dy

)1/p1

≤ C

(
ˆ 1

0

||x| − r|(α−α1/p1)p′1−1(1− r)−βp′
1 dr

)1/p′
1

×

(
ˆ

B

|x− y|α1−Ng(y) dy

)1/p1

,

where g(y) = (1 − |y|)βp1f(y)p1. Since (α − α1/p1)p
′
1 > 0, −βp′1 + 1 > 0 and

(α−α1/p1)p
′
1 − βp′1 +1 < 1 by our assumptions, the Riesz composition formula (see

e.g. [15, p. 59]) yields
ˆ

B

|x− y|α−Nf(y) dy ≤ C(1− |x|)(α−α1/p1)−β

(
ˆ

B

|x− y|α1−Ng(y) dy

)1/p1

,

as required. �

In view of Lemma 4.1 and Theorem 3.1, we obtain the following theorem.

Theorem 4.2. Let 1 ≤ q < ∞ and let 0 < αp1 − α1 < βp1 < p1 − 1.

(1) Suppose (ω4) holds for some ε0 > 0 and α replaced by α1 . If 0 < ε <
min{α1, ε0/(p− 1)} and

N − α1p+ ε(p− 1)− 1 < (N − 1)/q < N − α1p− ε(p− 1),

then there exists a constant C > 0 such that

lim inf
r→1−

(1− r)N−(α1+ε)p−(N−1)/qω(1− r)p

× Sq(Φ((1− r)ε((1− r)−(α−α1/p1)+βIαf)
p1), r) ≤ C

for all nonnegative measurable functions f with ‖g‖MΦ,ω(B) ≤ 1, where g(y) =

(1− |y|)βp1f(y)p1.
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(2) If 0 < ε < α1 and

max{N − α1p− ε(p− 1), N − α1p+ ε(p− 1)− 1} < (N − 1)/q

< N − α1p+ ε(p− 1),

then there exists a constant C > 0 such that

lim inf
r→1−

min{(1− r)N−(α1+ε)p−(N−1)/qω(1− r)p, (1− r)−ε}

× Sq(Φ((1− r)ε((1− r)−(α−α1/p1)+βIαf)
p1), r) ≤ C

for all nonnegative measurable functions f with ‖g‖MΦ,ω(B) ≤ 1, where g(y) =

(1− |y|)βp1f(y)p1.
(3) If 0 < ε < α1 and (N − 1)/q > N − α1p + ε(p− 1) > 0, then there exists a

constant C > 0 such that

min{(1− r)N−(α1+ε)p−(N−1)/qω(1− r)p, (1− r)−ε}

× Sq(Φ((1− r)ε((1− r)−(α−α1/p1)+βIαf)
p1), r) ≤ C

for all 1/2 < r < 1 and all nonnegative measurable functions f with ‖g‖MΦ,ω(B)

≤ 1, where g(y) = (1− |y|)βp1f(y)p1.
(4) If 0 < ε < α1 and (α1 − ε)p+ ε−N > 0, then there exists a constant C > 0

such that

min{(1−r)N−(α1+ε)pω(1−r)p, (1−r)−ε}Sq(Φ((1−r)ε((1−r)−(α−α1/p1)+βIαf)
p1), r) ≤ C

for all 1/2 < r < 1 and all nonnegative measurable functions f with ‖g‖MΦ,ω(B)

≤ 1, where g(y) = (1− |y|)βp1f(y)p1.

When Φ(r) = rp and ω(r) = 1, we obtain the following corollary.

Corollary 4.3. If 1 ≤ q < ∞, 0 < αp1 − α1 < βp1 < p1 − 1 and

N − α1p− 1

N − 1
<

1

q
<

N − α1p

N − 1
,

then

(4.1) lim inf
r→1−

(1− r)N−(α−β)pp1−(N−1)/qSq((Iαf)
pp1, r) < ∞

for all nonnegative measurable functions f such that
ˆ

B

f(y)pp1(1− |y|)βp1p dy < ∞.

5. Green potentials

Let G(x, y) be a Green kernel on B. When N ≥ 3, there exists a constant C > 0
such that

C−1 (1− |x|)(1− |y|)

|x− y|N−2|x∗ − y|2
≤ G(x, y) ≤ C

(1− |x|)(1− |y|)

|x− y|N−2|x∗ − y|2
≤ C

(1− |x|)(1− |y|)

|x− y|N

for x, y ∈ B, where x∗ is the inversion of x with respect to S(0, 1).
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For f ∈ L1
loc
(B) and x ∈ B, we write

Gf(x) =

ˆ

B

G(x, y)f(y) dy =

ˆ

B(x,(1−|x|)/2)

G(x, y)f(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|≤1−|x|}

G(x, y)f(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|>1−|x|}

G(x, y)f(y) dy

= G1(x) +G2(x) +G3(x).

Lemma 5.1. Let 1 ≤ q < ∞.

(1) Suppose ε > 0 and

(N − 1)/q < N − ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ((1− r)−1+εG2), r) ≤ C(1− r)εp−N+(N−1)/qω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖F‖MΦ,ω(B) ≤ 1, where F (y) = (1− |y|)f(y).
(2) Suppose ε > 0 and

(N − 1)/q > N − ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ((1− r)−1+εG2), r) ≤ C(1− r)εω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖F‖MΦ,ω(B) ≤ 1, where F (y) = (1− |y|)f(y).

Proof. Let ε > 0 such that

ε(p− 1)−N + (N − 1)/q < 0.

For 1/2 < r = |x| < 1, we have

G2(x) ≤ C

ˆ

B

(1− |x|)(1− |y|)|x− y|−Nf2,x(y) dy

≤ C(1− |x|)

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

(1− |y|)f2,x(y) dy

)

t−1 dt

≤ C(1− |x|)

ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tε(1− |y|)fx,2(y) dy

)

t−ε−1 dt,

where f2,x(y) = f(y)χE2,x
(y) with E2,x = {y ∈ B\B(x, (1−|x|)/2) : 1−|y| ≤ 1−|x|}.

We have by Jensen’s inequality and (Φ3)

Φ((1− |x|)−1+εG2(x))

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

(

1

|B(x, t)|

ˆ

B(x,t)

Φ(tε(1− |y|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

tεp
(

1

|B(x, t)|

ˆ

B(x,t)

Φ((1− |y|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ

B

|x− y|ε(p−1)−NΦ((1− |y|)f2,x(y)) dy.
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Hence Minkowski’s inequality, Lemma 2.2 and (Φ3) yield

Sq(Φ((1− r)−1+εG2), r)

≤ C(1− r)ε
ˆ

B

Sq(| · −y|ε(p−1)−NχE2,x
(y), r)Φ((1− |y|)f2,x(y)) dy

≤ C(1− r)ε(1− r)ε(p−1)−N+(N−1)/q

ˆ

B\B(0,r)

Φ(F (y)) dy

≤ C(1− r)εp−N+(N−1)/qω(1− r)−p

since ε(p− 1)−N + (N − 1)/q < 0, which gives assertion (1).
To show assertion (2), suppose ε > 0 such that ε(p− 1)−N < 0 and ε(p− 1)−

N + (N − 1)/q > 0. Then we have by Lemma 2.2

Sq(Φ((1− r)−1+εG2), r)

≤ C(1− r)ε
ˆ

B

Sq(| · −y|ε(p−1)−NχE2,x
(y), r)Φ((1− |y|)f2,x(y)) dy

≤ C(1− r)ε
ˆ

B\B(0,r)

Φ(F (y)) dy ≤ C(1− r)εω(1− r)−p

since ε(p− 1)−N + (N − 1)/q > 0.
When ε > 0, ε(p − 1) − N ≥ 0 and ε(p − 1) − N + (N − 1)/q > 0, taking

0 < δ < (N − 1)/q, we have

Φ((1− |x|)−1+εG2(x))

≤ C(1− |x|)ε
ˆ 2

(1−|x|)/2

tεp
(

1

|B(x, t)|

ˆ

B(x,t)

Φ((1− |y|)f2,x(y)) dy

)

t−ε−1 dt

≤ C(1− |x|)ε
ˆ

B

|x− y|−δΦ((1 − |y|)f2,x(y)) dy

and

Sq(Φ((1− r)−1+εG2), r) ≤ C(1− r)ε
ˆ

B

Sq(| · −y|−δχE2,x
(y), r)Φ(F (y)) dy

≤ C(1− r)ε
ˆ

B\B(0,r)

Φ(F (y)) dy ≤ C(1− r)εω(1− r)−p,

which completes the proof of assertion (2). �

Lemma 5.2. Let 1 ≤ q < ∞.

(1) Suppose

(ω5) tε0−N+(N−1)/qω(t)−p is almost decreasing on (0, 1) for some ε0 > 0.
Let 0 < ε < ε0/(p− 1). Then there exists a constant C > 0 such that

Sq(Φ((1− r)−1+εG3), r) ≤ C(1− r)εp−N+(N−1)/qω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖F‖MΦ,ω(B) ≤ 1, where F (y) = (1− |y|)f(y).
(2) Suppose ε > 0 and

(N − 1)/q > N − ε(p− 1).

Then there exists a constant C > 0 such that

Sq(Φ((1− r)−1+εG3), r) ≤ C(1− r)ε
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for all 1/2 < r < 1 and nonnegative measurable functions f on B with

‖F‖MΦ,ω(B) ≤ 1, where F (y) = (1− |y|)f(y).

Proof. First note from (ω5) and 0 < ε < ε0/(p− 1) that tε(p−1)−N+(N−1)/qω(t)−p

is almost decreasing on (0, 1) and

ε(p− 1)−N + (N − 1)/q < 0.

In the same way as above, we obtain

Sq(Φ((1−r)−1+εG3), r) ≤ C(1−r)ε
(
ˆ

B(0,r)

(1− |y|)ε(p−1)−N+(N−1)/qΦ(F (y)) dy + 1

)

.

Let j0 be the smallest integer such that r ≤ 1− 2−j0−1. Note here that
ˆ

B(0,r)

(1− |y|)ε(p−1)−N+(N−1)/qΦ(F (y)) dy

≤

j0
∑

j=0

ˆ

A(0,1−2−j)

(1− |y|)ε(p−1)−N+(N−1)/qΦ(F (y)) dy

≤ C

j0
∑

j=0

2−j(ε(p−1)−N+(N−1)/q)

ˆ

A(0,1−2−j )

Φ(F (y)) dy

≤ C

j0
∑

j=0

2−j(ε(p−1)−N+(N−1)/q)ω(2−j)−p

≤ C(1− r)ε(p−1)−N+(N−1)/qω(1− r)−p

by (ω5), which gives assertion (1).
Assertion (2) is proved as in the proof of Lemma 2.7 (2). �

Theorem 5.3. Let 1 ≤ q < ∞.

(1) Suppose (ω5) holds for some ε0 > 0. If 0 < ε < min{1, ε0/(p− 1)} and

N − 2p− 1 + ε(p− 1) < (N − 1)/q < N − 2p− ε(p− 1),

then there exists a constant C > 0 such that

lim inf
r→1−

(1− r)N−2p−(N−1)/q+εpω(1− r)pSq(Φ((1− r)1−εGf), r) ≤ C

for all nonnegative measurable functions f with ‖F‖MΦ,ω(B) ≤ 1, where

F (y) = (1− |y|)f(y).
(2) Suppose (ω5) holds for some ε0 > 0. If 0 < ε < min{1, ε0/(p− 1)}, 2p−N −

ε(p− 1) < 0 and

N − 2p− ε(p− 1) < (N − 1)/q < N − ε(p− 1),

then there exists a constant C > 0 such that

(1− r)N−2p−(N−1)/q+εpω(1− r)pSq(Φ((1 − r)1−εGf), r) ≤ C

for all 1/2 < r < 1 and nonnegative measurable functions f with ‖F‖MΦ,ω(B) ≤
1, where F (y) = (1− |y|)f(y).

(3) If 0 < ε < 1, 2p − N < ε(p − 1) and (N − 1)/q > N − ε(p − 1), then there

exists a constant C > 0 such that

(1− r)−2(1−ε)p−εSq(Φ((1 − r)1−εGf), r) ≤ C
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for all 1/2 < r < 1 and all nonnegative measurable functions f with ‖F‖MΦ,ω(B)

≤ 1, where F (y) = (1− |y|)f(y).

Proof. Let f be a nonnegative measurable function in MΦ,ω(B). For x ∈ B,
write

Gf(x) = G1(x) +G2(x) +G3(x)

as before.
Let 0 < ε < min{1, ε0/(p− 1)} such that

−1 < (2− ε)p+ ε−N + (N − 1)/q < (2 + ε)p− ε−N + (N − 1)/q < 0.

Set

d = ε(p− 1)− (N − 1)/q +N − 2p.

Then 0 < d < 1. Since ε(p− 1)−N + (N − 1)/q < ε0 −N + (N − 1)/q ≤ 0 by (ω5),
one notes by Lemmas 5.1 (1) , 5.2 (1) and (Φ3) that

(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG2), r)

≤ C(1− r)N−2p+εp−(N−1)/qω(1− r)p(1− r)2(1−ε)pSq(Φ((1− r)−1+εG2), r)

≤ C(1− r)N−εp−(N−1)/qω(1− r)pSq(Φ((1− r)−1+εG2), r) ≤ C

and

(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG3), r) ≤ C.

Next we see that G1(x) ≤

ˆ

B(x,(1−|x|)/2)

|x− y|2−Nf(y) dy, and hence

(1− |x|)G1(x) ≤ C

ˆ

B(x,(1−|x|)/2)

|x− y|2−N(1− |y|)f(y) dy.

By Lemma 2.4 (1) with α = 2, we obtain

Sq(Φ(ω(1− r)(1− r)1−εG1), r) ≤ C(1− r)−ε

ˆ

A(0,r)

|r − |y||−dg(y) dy,

where g(y) = Φ(ω(1 − |y|)F (y)) with F (y) = (1 − |y|)f(y). Therefore we establish
by (Φ4)

(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG1), r)

≤ C(1− r)N−2p+εp−(N−1)/qSq(Φ(ω(1− r)(1− r)1−εG1), r)

≤ Ctd
ˆ

A(0,r)

|r − |y||−dg(y) dy.

In view of Lemma 2.5, we can find a sequence {rj} of positive numbers such that
1− 2−j+1 < rj < 1− 2−j and

sup
j

(1− rj)
N−2p+εp−(N−1)/qω(1− rj)

pSq(Φ((1− rj)
1−εG1), rj) ≤ C,

which proves assertion (1).
To show assertion (2), suppose 0 < ε < min{1, ε0/(p−1)}, 2p−N − ε(p−1) < 0

and

ε(p− 1) +N − 2p < (N − 1)/q < N − ε(p− 1).

Then, for 1/2 < r < 1, we see from Lemmas 5.1 (1), 5.2 (1) and (Φ3) that

(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG2), r) ≤ C
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and
(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG3), r) ≤ C,

as above. By Lemma 2.4 (2) with α = 2, we obtain

(1− r)N−2p+εp−(N−1)/qω(1− r)pSq(Φ((1− r)1−εG1), r)

≤ C(1− r)N−2p+εp−(N−1)/qSq(Φ(ω(1− r)(1− r)1−εG1), r) ≤ C,

which proves assertion (2).
For a proof of (3), suppose 0 < ε < 1, 2p − N < ε(p − 1) and (N − 1)/q >

N − ε(p− 1). Then Lemmas 5.1 (2), 5.2 (2) yield

(1− r)−2(1−ε)p−εSq(Φ((1− r)1−εG2), r)

≤ C(1− r)−2(1−ε)p−εω(1− r)p(1− r)2(1−ε)pSq(Φ((1− r)−1+εG2), r)

≤ C(1− r)−εω(1− r)pSq(Φ((1− r)−1+εG2), r) ≤ C

and
(1− r)−2(1−ε)p−εSq(Φ((1− r)1−εG3), r) ≤ C

for all 1/2 < r < 1. Further we see from Lemma 2.4 (2) with α = 2 that

(1− r)−2(1−ε)p−εSq(Φ((1− r)1−εG1), r)

≤ C(1− r)−2(1−ε)p−εSq(Φ((1− r)1−εω(1− r)G1), r)

≤ C(1− r)ε(p−1)−N+(N−1)/q ≤ C

since
(N − 1)/q > N − ε(p− 1) > N − 2p+ ε(p− 1)

by ε < 1 < p/(p− 1). Hence we obtain assertion (3). �

We can prove the following result in the same way as Corollary 3.7.

Theorem 5.4. Let 1 ≤ q < ∞ and f be a nonnegative measurable function

such that F ∈ MΦ,ω
0 (B), where F (y) = (1− |y|)f(y).

(1) Suppose (ω5) holds for some ε0 > 0. If 0 < ε < min{1, ε0/(p− 1)} and

N − 2p− 1 + ε(p− 1) < (N − 1)/q < N − 2p− ε(p− 1),

then

lim inf
r→1−

(1− r)N−2p−(N−1)/q+εpω(1− r)pSq(Φ((1− r)1−εGf), r) = 0.

(2) Suppose (ω5) holds for some ε0 > 0. If 0 < ε < min{1, ε0/(p− 1)}, 2p−N −
ε(p− 1) < 0 and

N − 2p− ε(p− 1) < (N − 1)/q < N − ε(p− 1),

then

lim
r→1−

(1− r)N−2p−(N−1)/q+εpω(1− r)pSq(Φ((1− r)1−εGf), r) = 0.

(3) If 0 < ε < 1, 2p−N < ε(p− 1) and (N − 1)/q > N − ε(p− 1), then

lim
r→1−

(1− r)−2(1−ε)p−εSq(Φ((1− r)1−εGf), r) = 0.

Remark 5.5. Gardiner [4] proved that for a Green potential Gµ in B

(1) when (N − 1)/(N − 2) ≤ q < (N − 1)/(N − 3),

lim inf
r→1−

(1− r)N−1−(N−1)/qSq(Gµ, r) = 0;
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(2) when 1 ≤ q < (N − 1)/(N − 2),

lim
r→1−

(1− r)N−1−(N−1)/qSq(Gµ, r) = 0.

To obtain this result, we need modify Theorem 5.3 as in Corollary 3.7.

6. Monotone functions

A continuous function u is said to be monotone in Ω in the sense of Lebesgue [7],
if for every relatively compact subdomain G of Ω we have

max
Ḡ

u = max
∂G

u and min
Ḡ

u = min
∂G

u.

For monotone functions, see Koskela–Manfredi–Villamor [6], Manfredi–Villamor [9,
10], the first author [14, 15], Villamor–Li [24] and Vuorinen [25, 26].

Theorem 6.1. Let p1 > N − 1 and p1 ≤ q < ∞. Suppose

(ω6) tε0−(N−p1−1)/p1+(N−1)/qΦ−1
(

t−1ω(t)−p
)1/p1

is almost decreasing in (0, 1) for

some ε0 > 0.

Then there exists a constant C > 0 such that

lim sup
r→1−

(1− r)(N−p1−1)/p1−(N−1)/qΦ−1
(

(1− r)−1ω(1− r)−p
)−1/p1 Sq(u, r) ≤ C

for all monotone functions u on B such that ‖h‖MΦ,ω(B) ≤ 1, where h(y) = |∇u(y)|p1.

For a proof of Theorem 6.1, we need the following result, which gives an essential
tool in treating monotone functions.

Lemma 6.2. (cf. [9, 10, 15]) Let p1 > N−1. If u is a monotone Sobolev function

on B(x0, 2r), then

(6.1) |u(x)− u(y)|p1 ≤ Mrp1−N

ˆ

B(x0,2r)

|∇u(z)|p1 dz whenever x, y ∈ B(x0, r).

Lemma 6.2 is a consequence of Sobolev’s theorem, so that the restriction p1 >
N − 1 is needed; for a proof of Lemma 6.2, see for example [9] or [15, Theorem 5.2,
Chap. 8].

Now we are ready to prove Theorem 6.1, along the same lines as in the proof of
[17, Theorem 2].

Proof. Let u be a monotone function on B such that ‖h‖MΦ,ω(B) ≤ 1 with
p1 > N−1, where h(y) = |∇u(y)|p1. Let rj = 2−j−1 and tj = 1−rj−1 for j = 1, 2, . . ..
Using (6.1), we obtain from the proof of [17, Theorem 2] that

|Sq(u, tj)− Sq(u, tj+m)|

≤ C

j+m
∑

ℓ=j

r
−(N−p1−1)/p1+(N−1)/q
ℓ

(

r−1
ℓ

ˆ

B(0,1−rℓ)\B(0,1−3rℓ)

|∇u(y)|p1 dy

)1/p1

.

Hence, we have by (ω6) and (Φ3)

|Sq(u, tj)− Sq(u, tj+m)|

≤ C

j+m
∑

ℓ=j

r
−(N−p1−1)/p1+(N−1)/q
ℓ Φ−1

(

r−1
ℓ

ˆ

B(0,1−rℓ)\B(0,1−3rℓ)

Φ (|∇u(y)|p1) dy

)1/p1
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≤ C

j+m
∑

ℓ=j

r
−(N−p1−1)/p1+(N−1)/q
ℓ Φ−1

(

r−1
ℓ ω(rℓ)

−p
)1/p1

≤ Cr
−(N−p1−1)/p1+(N−1)/q
j+m Φ−1

(

r−1
j+mω(rj+m)

−p
)1/p1 .

If tj ≤ r < 1, then we take m such that tj+m−1 ≤ r < tj+m and establish

|Sq(u, tj)− Sq(u, r)| ≤ C(1− r)−(N−p1−1)/p1+(N−1)/qΦ−1
(

(1− r)−1ω(1− r)−p
)1/p1 .

Therefore it follows from (ω6) that

lim sup
r→1−

(1− r)(N−p1−1)/p1−(N−1)/qΦ−1
(

(1− r)−1ω(1− r)−p
)−1/p1 Sq(u, r) ≤ C,

as required. �
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