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Abstract. We introduce central Morrey-Orlicz spaces M®“(B) on the unit ball and study
the existence of weighted spherical limits:

r—1—

1/q
liminf (1 — )% w(l —r)? </S(O : O((1 —r)B|I, fz)])? dS(:v))

for some dy,da,ds € R, 1 < ¢ < oo, and all Riesz potentials I, f with f € M®“(B). We also deal
with the existence of weighted spherical limits for Green potentials and monotone Sobolev functions.

1. Introduction

Let RN, N > 2, denote the N-dimensional Euclidean space. We use the notation
B(x,r) to denote the open ball centered at z with radius r > 0, whose boundary is

denoted by S(x,r). The L7 means over the spherical surface S(0,r) for u is defined
by

Salw,r) = <m /s . |u(x)lqu(x))l/q - <w;_1 /s » |u(ra)|qd5(0))l/q

N-1

when 1 < g < oo, where |S(0,7)| = wy_17" ! with wy_; being the area of the unit

sphere. Gardiner |4, Theorem 2| showed that
liminf (1 —r)N-DO=VDg (4 r) =0

r—1

when u is a Green potential in the unit ball B = B(0,1), (N —3)/(N —1) <1/¢ <
(N —2)/(N —1) and ¢ > 0, as an extension of the result by Stoll [21] in the plane
case. In [12], The first author gave versions of Gardiner’s result in [4| to the half
space. The first and third authors [17] studied the existence of boundary limits for
BLD (Beppo Levi and Deny) functions u on the unit ball B of R¥ satisfying

(1.1) /B Vu(@)|P(1 — |2])" do < oo,

where V denotes the gradient, 1 < p < oo and —1 < v < p — 1. In fact, we showed
that
lim%nf (1-— r)(N_pJ"Y)/p_(N_l)/qu(u,7‘) =0
r—1—
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when ¢ >0and (N—p—1)/(p(N—=1)) <1/q¢ < (N —=p+~)/(p(N —1)), as a result
corresponding to [16, Theorem 2.1] given in half spaces. In [17], we also studied the
existence of boundary limits for monotone BLD functions u on the unit ball B of R¥
satisfying (1.1).

We denote by M®(B) the class of measurable functions f on the unit ball B
satisfying

[fllarew@) = sup w(l —=7)|[fllre@\Bosm) <00
0<r<1

with a convex function ® and a doubling weight w; the space M®*(B) is referred to
as a central Morrey—Orlicz space (see Section 2 for the definitions of ® and w). For
these spaces, see e.g. [1, 2, 3, 18]. When ®(r) = r? and v < 0, one can find u such
that |Vu| € M®“(B) but u does not satisfy (1.1); see also Remark 3.5.

For 0 < a < N, we define the Riesz potential of order « for locally integrable
function f on B by

Lf@) = [ o=yl 1) dy
B
Our main aim in this paper is to discuss the weighted limit
(1= r)Mw(l = )28, (R((1 = r)®1af),r)

as r — 1 —0 for I,f with f € M*¥(B); dy,d, and d3 will be given later (see
Theorem 3.1 below). The result is new even for M?¥(B), that is, for the case ®(r) =
r? and w(r) = r~". The sharpness of the exponent of 1 — r will be discussed later.

In Section 4, as an application of Theorem 3.1, we treat functions f on B satis-
fying the weighted condition (1 — |y|)?P* f(y)P* € M*«(B) for 1 < p; < co and > 0
(see Theorem 4.2 below).

Let G(z,y) be a Green kernel on B. We define the Green potential for locally
integrable function f on B by

Gf(x) = /B G, y)f () dy.

In Section 5, we study the existence of weighted spherical limits for Green po-
tentials G f with (1 — |y|)f(y) € M®*(B) in our settings (see Theorem 5.3 below).

A continuous function v on an open set (2 is called monotone in the sense of
Lebesgue [7] if for every relatively compact open set G C €2,

maxu = maxu and minwu = minu.
G oG € oG
Harmonic functions on €2 are monotone in 2. More generally, solutions of elliptic par-
tial differential equations of second order and weak solutions for variational problems
may be monotone (see [5]). See also [6], [9], [10], [14], [15], [24], [25] and [26].

In the last section, we study the existence of weighted spherical limits for mono-
tone functions u with |Vu(y)[P* € M*“(B) with p; > N — 1 in our settings (see
Theorem 6.1 below). Essential tool in treating monotone functions is Lemma 6.2
below.

For related results on spherical means, see [11], [13], [15], [20], [22] and [23]. We
also refer the reader to the papers [8] and [19] for weighted integral means over balls.

2. Preliminaries and lemmas

Throughout this paper, let C' denote various positive constants independent of
the variables in question. The symbol g ~ h means that C~'h < g < Ch for some
constant C' > 0.
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Let @ be a convex function on [0, c0) such that
(®1) ©(0) =0 and ®(r) > 0 for r > 0;
(#2) @ is doubling, that is, there exists a constant A; > 0 such that
O(2r) < A;®(r) for r > 0;
(®3) for some p > 1, r~Pd(r) is almost increasing, that is, there exists a constant
Ay > 0 such that
O(rt) < AgrP®(t) when 0 <r <1 andt> 0.

Further consider a weight w such that
(wl) w(r) >0 for r > 0;
(w2) w is almost decreasing in (0, 00), that is, there is a constant C' > 0 such that
w(t) < Cw(s) when 0 < s <t < o0;
(w3) w is doubling.
We see that w(r) = r(log(e + r~!))7 is almost decreasing when v > 0 and 7 € R.
Note here that (®3) holds if and only if
(®4) ®(rt) > Ay~ 'rP®(t)  when 7 > 1 and t > 0.
Moreover, if ® is of the form rP'(log(e + 7)), then (®3) holds when p; > p or when
p1 =pandfd > 0.
For an open set G in RY, we define the Luxemburg-Nakano-Orlicz norm for
f € Li(G) by

loc

I fllzo() = inf {A > 0: /G O(|f(w)I/A) dy < 1};

we set f = 0 outside G for the sake of convenience.
We consider the family M®(B) of all measurable functions f on B satisfying

’|f||M‘1”w(B) = sup w(l— 7“)||fHL<1>(B\B(o,r)) < 0.
o<r<1

When ®(r) = r? and w(r) = r=%, M®**(B) will be written as MP"(B). It is easy to
see that
(2.1) sup  w(l —7)|[fllze@\n0,m) < 0
0<r<1
if and only if
22) sup [ (= () dy < o
0<r<1 B\B(0,r)

Moreover it is useful to note the following result.

Lemma 2.1. Let ®(r) = rP(log(c+7))? and w(r) = r=(log(c+7r))" for p > 1 and
real numbers 0, v, T, where ¢ > 1 is chosen so large that ® is convex. If 0 < v < 1/p,
then the following are equivalent:

(1) there exists a constant Cy > 0 such that

sup w(l —7)|fllze@\Bo0s) < C1;

0<r<1
(2) there exists a constant Cy > 0 such that
sup (1= [ () dy < C
0<r<1 B\B(0,r)

here C; ~ Cs.



24 Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

Proof. We treat only the case when 6 > 0, since the case 8 < 0 is similarly
treated. Let 0 <7 <1 and t > 0. By (®4) and (w2), we have

(2.3) w(l—=r)Po(t) < CP(w(l—r1)t),
so that (1) implies (2). Next, if w(1 —7)t < t'+4 for A > 0, then
O(w(l —r)t) = (w(l —r)t)? (log(c 4+ w(l — r)t))?

< (w(1 = 7)t)? (log(c + 1))

< Cw(1 —r)PtP(log(c + 1)) = Cw(l — r)Pd (t)
and if w(1 — )t > 174 then t < w(1 —7r)"4, so that

O(w(l —r)t) < B(w(l — 7)),
Hence
(2.4) P(w(l —7)t) < C{w(l — )P (t) + P(w(l —r) T4},
If vp < 1, then we note that

/ B(w(l — 1)) dy = C(1 — P)B(w(l — )+ < oo,
B\B(0,r)

when A is so large that vp(1 4+ 1/A) < 1. Now the equivalence of assertions (1) and
(2) is obtained. O
Here we give an estimate for spherical means for Riesz kernels.

Lemma 2.2. Let 0 < a < N and ¢, ¢co be positive constants. If c1|y| <t < ca|y|
and 1/2 < |y| < 1, then there exists a constant C' > 0 such that

/ |t0' _ y‘a—N dS(O') <C |t - |y||a—1 when a < L;
5(0,1)NB(y,1—t) o (1-— t)“_l when a > 1.

Proof. By an application of polar coordinates, we note that

/ to — 5" dS(o)
5(0,1)NB(y,1—t)

sin~! 2(1—t)
= C/ lly| + 12 — 2|y|t cos 8] @M/ 2sinN =29 dp
0
c(1-t)
- C/ (Ily| — t]? + 126%) @ N/2gN=2 g9
0

c(1=t)t/|lyl—1|
— C’tl_N||y| o t|a—1/ (1 + S2)(a—N)/2SN—2 ds
0

1 when a < 1,

< Ct Nyl —¢*!
< Iyl | X {((1 —t)t/|ly| - t|)a_1 when a > 1.

Thus the present lemma is obtained. U

Lemma 2.3. Let 0 < a < N and ¢, ¢co be positive constants. If c1|y| <t < cs|y|
and 1/2 < |y| < 1, then there exists a constant C' > 0 such that

/ |t0’ . y|a—N dS(O') >C |t - |y|
5(0,1) 1

|~ when a < 1;

when a > 1.
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Proof. By an application of polar coordinates, we have

/ lto —y|* N dS(o) = C/ lly| + 2 — 2|yt cos 0] N/2sinV =209 dp
S(0,1) 0
w/2
> C [l =t + ) N2
0

wt/(2lly[—t])
— C’tl_N||y| . t|a_1/ (1 + S2)(a—N)/2SN—2 ds
0

1 when a < 1,

= Iy =1l (mt/|ly] — t))*" when a > 1

since
mt/2llyl =) = 7t/ 2yl + 1)) = mer /(1 + 1)) > 0
when ¢ |y| < t < c]y|. Thus the present lemma is obtained. O

For a nonnegative function f € L} (B) and = € B, write
Lf@) = [ o~ 1 1) dy
B(z,(1-|z[)/2)

+f o= ol 1) dy
{yeB\B(z,(1-[z[)/2):1-|y[<1—|z|}

+/ o= ol 1) dy
{yeB\B(z,(1~[z[)/2):1=|y[>1—|z|}

= I(z) + Iy(z) + I3(x).
Set
A(0,r) = B0, r+ (1 —7)/2)\ B(0,r — (1 —1r)/2).
Lemma 2.4. Let 1 < g < o0.
(1) Suppose 0 < ¢ < « and
(N—-1)/g< N—ap+e(p-—1).
Then there exists a constant C' > 0 such that
Sg(@((L —7) " w(l —r)ly),r)

<C(l—r)— /A( | [ — [y[[{em e MDD (w(1 — ) f(y)) dy
0,r

for all 1/2 < r < 1 and nonnegative measurable functions f € L} (B).

(2) Suppose 0 < ¢ < a and
(N=1)/¢g>N—-ap+e(p—-1)>0.
Then there exists a constant C' > 0 such that
S (®((1 —7)Sw(l —7r)L),r) < C(1 —r)@-ep=N+(N-1/q

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

I fllareemy < 1.
(3) Suppose 0 < ¢ < o and (« —e)p+¢e — N > 0. Then there exists a constant

C' > 0 such that
O((1—r)“wl-—r))<C(1 - r)(a_e)p_N
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for all 1/2 < r < 1 and nonnegative measurable functions f on B with
1 fllarewm) < 1.

Proof. Let 0 < e < a and

(a—e)p+e—-—N+(N-1)/¢g<0.
For 1/2 < r = |z| < 1, we have

Il(l')

/ 2 — 41N f(y) dy
B(z,(1-|z])/2)

<c / - (ﬁ ) dy) o di

z,t)] JB@onaor)

<C / ( " f(y dy) ==t dt
|B(2, )] JBannao. )

(1 —1z|)/2) € A(0,r), where |B| denotes the volume of balls B
We have by Jensen’s inequality and ($3)

O((1—r)*w(l —r)(x))

e <(1 ) w(l— 1) /OH (#

" f(y) dy) et dt)
|B(z, )| J Bpnao
1

1—r
— )¢ - a—e _ e—1
<co- [ (e seanaon O W= ) )

1—r
<C(1- 7“)_5/ tla—ep-N </ S(w(l—7r)f(y)) dy) =t at
0 B(z,t)NA(0,r)

<C(-r) / & — y| NG (1 — ) £(y)) dy
A(0,r)
since (a« —e)p+e— N < 0.

since B(z,

Hence in this case Minkowski’s inequality and Lemma 2.2 yield

Sy(@((1—7r) " w(l —r)y),r)
<C(l—r) / o Sl =N el = () dy

_0(1—r)—€/ | — [yl NENDAG (1 = ) f(y)) dy
A(0,r)

since (a —e)p+e—N+(N—-1)/¢<0,1/2<r <1andr~ |yl on A(0,r), which
gives assertion (1).

Next we shall show assertion (2). Similarly, under our assumptions, we obtain as
above

Sg(®((1 =) w(l —r)),7)

<C1-nr)° /A(O )Sq(| . —y|(a 6)‘T’Jrs_NXB(y,(l_r)/z),7‘)(I>(cu(1 —7)f(y)) dy

< C(1 =)= )N [ () dy

A(0,r)
< C’(l _ 7a)(Ol—ef)p—l\”r(f\f—1)/q
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for 1/2 < r < 1, since

(Am)@wa—rﬁ@»@néf D(w(2(1 — 5)/3)F(y)) dy

B\B(0,s)

<c D(w(l - s)f(y)) dy < C.

B\B(0,s)

where s = r — (1 — r)/2. Thus assertion (2) is proved.
Finally we shall show assertion (3). When 0 < e < o and (o —e)p+¢— N > 0,
we have

O((1—7)" w(l —r)i(x))

1—r
<C(1- 7’)_5/ tla—elp=N (/ O(w(l—r)f(y)) dy) t=tdt
0 B(z,t)NA(0,r)

<O =) N [ (- () dy < €1 - e,
A(0,r)

which proves assertion (3). O

Lemma 2.5. Let 0 <d <1 and M > 0. Set

Gt = -1

It — |yl "% (y) dy
A0,)

for a nonnegative measurable function g such that supg.,, fA(O 9 g(y)dy < M. Then
there exists a constant ¢ > 0 such that

inf G(t) < cM for each positive integer j.
1-277 1l <t<1-277

Proof. For each positive integer j, we have

1-277
dt
[ v
1-9-j+1 1-—1t¢
' 1-2-7
< C/ 2_J(d—1)/ It — Iyll_ddt 9(y) dy
A(0,1—277)UA(0,1—2—7+1) |_9—j+1
SC/ g(y) dy < CM.
A(0,1-2-7)UA(0,1—2-3+1)

inf G(t) < OM/(log2),

1-2-Jtl<t<1—-2-7

Hence

as required. O
Lemma 2.6. Let 1 < g < o0.
(1) Suppose € > 0 and
(N=1)/g<N—ap—e(p—1).
Then there exists a constant C' > 0 such that
Sg(P(w(l—r)(1 —71)°l),r) < C(1— r)(o‘+€)p_N+(N_1)/q

for all 1/2 < r < 1 and nonnegative measurable functions f on B with
[ fllareem)y < 1.
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(2) Suppose € > 0 and

(N=1)/¢g>N—ap—e(p—1).
Then there exists a constant C' > 0 such that
Se(P(w(l—=r)(1—7r)l),r) <C1—r)
for all 1/2 < r < 1 and nonnegative measurable functions f on B with

1 fllvewm) < 1.
Proof. Let € > 0 such that

(N=-1)/g< N —(a+e)p+e.

For 1/2 < r = |z| < 1, we have
/|x—y\a “foaly) dy

<C (7 fou(y dy) ttat
(—tz/2 \IB@ )] J By 2 (y)

2 1
< a+a —e—1

(1—|a])/ |B(,t)] Bx,t)

where fo.(y) = f(y)xp,,(y) with Ey» = {y € B\ B(z, (1-[x])/2) : 1= |y[ < 1—|x]}.
We have by Jensen’s inequality and ($3)

B(eo(1 — |2 (1 — |al)*Io(a))
<o (wa )1~ al)* /( o (|B(i 5l e dy) et dt)
5 2 1 oe-i—aw — | —e—1
co-l [ \zom Bm@(t g II)fz,x(y))dy)t @

= C0 =y /(1 o) /2 e (IB O e Wil = leDfasly ))dy) e

(1 - Jaly /B & — PN B (1 — [2]) foa(y)) dy

since (o« +¢)p—e— N < 0.
By Lemma 2.2, we see that

/ to— g dS(o)
{0€S5(0,1): [to—y|>(1—-t)/2}

<

/ (CI(1+ (1= t))o — g™ dS(o)
{ceS(0,1): |to—y|>(1-t)/2}
<O(L+ (1= ) =yl < CJL— !
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for 1/2 <t <1 and y € B, when a < 1. Hence Minkowski’s inequality yields
Se(P(w(l —7r)(1—7r)ly), )
<C=r) [ Syl1- =yl (). 101 = ke )

<C(A-r)(1- 7“)(“+€)”_E_N+(N_1)/q/ P(w(l—r)f(y))dy
B\B(0,r)
< C(l . T)(a+€)p—N+(N—1)/q

since (a+¢)p—e— N+ (N —1)/q < 0, which gives assertion (1).
Next we shall show assertion (2). Suppose € > 0 such that

(N—-1)/g>N —(a+¢e)p+¢e>0.
Then we have by Jensen’s inequality and ($3)

O(w(l = |2))(1 = |2)"Lx(2))

5 ? 1 a+te —e—1
< 0 (w1~ Ja (1 - o) /(1||/2(\B($ il Feal)dy) )

€ 2 1 oe-i—aw — | —e—1
<ot [ (e Bm‘b“ (1=l () d ) ¢

’ (ate) o
ety [ (e [ a =ty )
< C(1— 2]y /B & — PN B(o(1 — [2]) foaly)) dy.

By Lemma 2.2 and Minkowski’s inequality, we find
Sq(®(w(l —r)(1 —7r)°L),r)

<C(—r) /B Sull - =yl @ (), B (1 — ) () dy

<C(l—ry /B vy M=) dy < O =

since (a +e)p—e— N+ (N —-1)/q > 0.
When e > 0 and (o +¢)p—e — N >0, taking 0 < 6 < (N — 1)/q, we have

(w(l = |2))(1 = |2[)"Lx(2))

<Ol — |l /(1_| e (| B(fc 5 /B R le)fz,x(y))dy) et
(1 - Jaly /B & — 4|0 B(w(1 — [2]) fo(y)) dy

and

Sg(@(w(d=r)(1=7)°Ly),r) < C(1 - 7“)E/BSq(| =YX (9), )R (0(1-7) f(y)) dy

<C(—ry /B o B ) dy < OO

which completes the proof of assertion (2). O
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Lemma 2.7. Let 1 < g < o0.

(1) Suppose
(wd) topteo=N+(N=1)/ay,(#)P js almost decreasing on (0, 1] for some gy > 0.
Let 0 < e <eo/(p—1). Then there exists a constant C > 0 such that

Sg(@((L —1r)°l5),r) < C(1 — r)letelp=N+W=1/q,,(1 — y)=P
for all 1/2 < r < 1 and nonnegative measurable functions f on B with

1f [Iareqmy < 1.
(2) Suppose 5 > 0 and

(N=1)/¢g>N —ap—c(p—1).
Then there exists a constant C' > 0 such that
Sg(@((1 —=7)I3),7) < C(1 —71)°

for all 1/2 < r < 1 and nonnegative measurable functions f on B with
1 fllarewm) < 1.

Proof. Let 1/2 < r =|z| < 1. First note from (w4) and 0 < & < g¢/(p — 1) that
tlarelp—e=N+(N=1)/a,($)=P is almost decreasing on (0, 1] and

(a+e)p—e—N+(N—-1)/¢g<0.

Further, note that

/ 2 — gl Nf(y)dy < C / fly)dy < C.
B(0,1/4) B(0,1/4)

As in the proof of Lemma 2.6, we have

Iy(z) = /B 2=y fo(y) dy

2 1
<c (— foay) dy) =
(—tz/2 \|B@ )] J By ’
2 1 )
<c ( 5 fya(y) dy) et
(—tz/2 \IB@ )] J By ’

where fs(y) = f(y)xEs . (y) with Bz, = {y € B\B(z, (1-|x[)/2) : 1—[y[ > 1—|z]}.
Since r ~ |y| for y € B\ B(0,1/4), in the same way as in the proof of Lemma 2.6,
we see from Lemma 2.2 that

Sy (@((1 — 1) T),r) < C(1— 1) ( [l )10 dy + 1)
<O(—ry ( / e >/q<1><f<y>>dy+1).
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Let jo be the smallest integer such that r < 1 — 270~! Note here that

[ e ) dy
B(0,r)

Jo
<3 / (1 = [y|) et N g f(y) dy
=0 J A(0,1-279)

Jo
<C Z 9—i((ate)p—e—N+(N-1)/q) / q)(f(y)) dy

=0 A(0,1-277)

Jo

<C Z 9 -i(atep—e=N+(N=1)/a) ;,(9=7) =P
=0

< 0(1 _ r)(a-ﬁ-a)p—a—N—i—(N—l)/qw(l _ /r)—p

by (w4), which gives assertion (1).
For assertion (2), suppose € > 0 such that

Then, in the same way as in the proof of Lemma 2.6, we see from Lemma 2.2 that

(N—-1)/¢g>N —(a+¢e)p+e>0.

S,(®((1 = 1)L, 7)
<O -0y ( [ Su =l N ),y dy + 1)
<O—ry ( / LRy 1) <C ).

When € > 0 and (a+¢)p —e — N > 0, we see that

S(®((1 = 1)), ) < C(1 — 1) (/B

(0,7)

as in the proof of Lemma 2.6. Thus the present lemma is proved.

Remark 2.8. If w(r) = r7%, then (w4) holds in case (N

3. Spherical limits for Riesz potentials

We are now ready to show our main result.

Theorem 3.1. Let 1 < ¢ < o0.

(1) Suppose (w4) holds for some gy > 0. If 0 < ¢ < min{e,e0/(p — 1)} and

N—-—ap+ep—1)—1<(N—=1)/g< N—ap—e(p—1),
then there exists a constant C > 0 such that

liminf (1 — 7)N-@+r=0=D/ay,1 — 1S (O((1 — 7)1, f),r) < C

r—1—

for all nonnegative measurable functions f with || f||pe..m) < 1.
(2) If 0 < e < a and

max{N —ap —e(p—1),N —ap+e(p—1) -1} < (N —1)/q

<N—Oép+€(p—].),

() dy + 1) <oy,

31

O

—1)/¢g < N —ap—wvp.
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then there exists a constant C > 0 such that
lim%nf min{ (1—r)V~@FP=N=D/ay,(1 )P (1—1) 1S (D((1—7)° I f),7) < C
r—1—

for all nonnegative measurable functions f with || f||pre.«m) < 1.
(3) If0 <e<aand (N—1)/g > N —ap+e(p—1) > 0, then there exists a
constant C' > 0 such that

min{(1 — r)N_(aJre)p_(N_l)/qw(l — )P (L =7r) "} S (P((L —7)°Lnf), ) < C

forall1/2 < r < 1 and all nonnegative measurable functions f with || f|| /.« (s
<1

(4) If 0 < e < a and (o — €)p+¢e — N > 0, then there exists a constant C' > 0
such that

min{(1 — T)N_(O‘J“f)pw(l — )P (1 —7r) "} S ( (L —7r)Lnf),r) <C

forall1/2 < r < 1 and all nonnegative measurable functions f with || f|| yse.«(s)
<1

Proof. We shall show assertion (1). Let f be a nonnegative measurable function
in M*<(B). For z € B, write

I.f(z) = L(x) + Ix(z) + I3(x)
as before. Let 0 < ¢ < min{a, ¢/(p — 1)} such that
—1<(a—¢e)pte—N+(N-1)/g<(a+e)p—e— N+ (N—-1)/¢<0.
Set
d=—(a—¢e)p—e+N—-(N-1)/q.

Then 0 < d < 1. First note by Lemma 2.6 (1) that

(1 —r)N=letelr=V=0/ag ((w(l —r)(1 —r)°ly),r) < C,
so that by (®4)

(1 — p)N=(etelp=(N=D/ag,(1 — )P S (®((1 — r)°L,),7) < C.
By Lemma 2.7 (1), we have

(1 —p)N=leter=(N=D/ag,(1 — )P S (D((1 — r)°I3),7) < C.
Finally, we obtain by Lemma 2.4 (1)

Sg(@((1 —7) " w(l = r)hy),r) < C(1 - 7“)_5/ [ = [yl g (y) dy,

A(0,r)

where g(y) = ®(w(1 — |y|)f(y)). Therefore (P4) gives

(1 =)Dl (1 s, (@((1 = )T, r)

< C(1 — p)N-latelp-(N=D/a(] _ ) PS,(D((1 — ) w(l —7)L),7)

<ca-nt [ eyl gty dy

A(0,r)

In view of Lemma 2.5, we can find a sequence {r;} of positive numbers such that
1—277" <r;<1—277 and

sup (1 — ) NN (1 —15)P Sy (@((1 = 1)) 11),15) < C.
J

Thus assertion (1) is obtained.
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Next we shall show assertion (2). Suppose 0 < £ < a such that
N—-—ap—e(p—1)<(N—=1)/g< N—ap+e(p—1).
By Lemmas 2.6 (2) and 2.7 (2), we obtain
Se(P((1 —7)°Ly),1r) < CS(P(w(l —7r)(1—7r)l),r) <C(1—r)
and
Sy(P((1—7r)°l3),r) <C(1—r)°
for all 1/2 < r < 1. In view of ($4), we obtain
(1= O (B((1 ) T), )
< CO(1 — p)N-(arelr=W=D/a() _ )28 (d(w(l —r)(1 —7) L), r)
< O(1 — p)N-lemap=W=D/ag (H(w(1 —r)(1 —r)~1),7)
for all 1/2 < r < 1. Thus, by Lemma 2.4 (1), assertion (2) is proved.
For a proof of assertion (3), it suffices to apply Lemma 2.4 (2) in the proof of

assertion (2).
For a proof of assertion (4), note that by our assumption

(N-1)/g>0>N—-ap+e(p—1)>N—-ap—e(p—1)
and by (®4)
(1= )N OFP(1 — )PS5y (@((1 = r)°L), 7)
<O —r)N-@=erg (B(w(l —r)(1 — 7)), 7)

for all 1/2 < r < 1. As in the proof of assertion (2), it suffices to apply Lemma 2.4
(3). O

Remark 3.2. The first and third authors [17, Theorem 1| treated the existence
of boundary limits for BLD functions u on the unit ball B of R satisfying

/B |Vu(x)|P(1 - |z]) dx < oo,

where V denotes the gradient, 1 < p < oo and —1 < v < p — 1. In fact, we showed
that

1imlinf (1 _ T)(N—p+w)/p—(N—1)/qu(u’T) —0
r—1—

when ¢ >0 and (N —p—1)/(p(N—=1))<1/g< (N —=p+7)/(p(N —=1)). f uisin
addition monotone in B in the sense of Lebesgue, then u is shown to have weighted
boundary limit zero (see [17, Theorem 2]).

When ®(r) = r? and w(r) = r~%, we obtain the following corollary.

Corollary 3.3. Suppose 1 < ¢ < oo, v > 0 and

N — -1 1 N-— —
R R e ¢
N —1 q N -1
Then
liminf (1 — r)(N_O‘p_”p)/p_(N_l)/(pQ)Spq(laf, r) < 00

r—1—

for all nonnegative measurable functions f € MP"(B).
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Proof. Let f be a nonnegative measurable functions f € MP¥(B). First note
that (w4) holds for some gy > 0. Take 0 < ¢ < min{a,eo/(p — 1)} such that

N—-—ap+e(p—1)—1<(N-1)/q.
Then Theorem 3.1 (1) gives

liminf (1 — r)(N—aP—VP)/p—(N—l)/(pq)Spq([af’ r) < oo,

r—1—

as required. O]

Corollary 3.4. Suppose 1 < p < ¢ < oo and
N—ap—1 1 N-—ap—
N—oap—1 _1 _N-—ap—wp
p(N=1) ¢  p(N-1)
Then
limn (1~ r) V== =115, (1, ) < o0

r—1—
for all nonnegative measurable functions f € M?"(B).

Remark 3.5. We show that the exponent in Corollary 3.4 is the best possible.
For this, let 1 <p < g<ooand a+v—N/p+ (N —1)/q < 0. Consider the function

fly) =le—y|~ NP

for 0 < v < 1/p, where e = (0,...,0,1) € OB. Then, by the proof of Lemma 2.2 and
0 < v < 1/p, we see that

1
(1- T)_”p/ |fy)Pdy < C(1 - r)"’p/ (1—t)Ptdt < C
B\B(0,r) .
for 1/2 < r < 1. Moreover,
Liw= [ o =yl e — gl NP dy
BNB(z,le—x|/2)

> Cle— a0 o= g dy

BNB(z,le—x|/2)
Z C|6 . z|a+u—N/p

for z € B. Lemma 2.3 gives
Sq(]af7 7,) > C(l . T>a+u—N/p+(N—1)/q
for 1/2 <r <1, since a +v — N/p+ (N —1)/q < 0. Hence
liminf (1 — r)N-er=vP)/p=N=D/ag (1 £ 1) > C > 0.

r—1—

Remark 3.6. Consider
fy) = Z ly — ej|V_N/pXB(O,(1—2*J')+2*J’*2)\B(0,(1—2*J’)—2*]’*2)(y)
j=1

for 0 < v < 1/p, where e = (0,...,0,1) € 0B and e; = (1 — 277)e. Let jy be the
largest integer such that 1 — 279 — 27502 < p < 1 —27J0=1 27403 Then note from
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Lemma 2.2 that

[ swrasy [ - e dy
B\B(O,r) B(0,(1-277)+273-2)\ B(0,(1-27)—2-7~2)

J=Jo
(1—279)4277-2

<C / [t — (1 =279 at
Z 1-2-7)—2-9 -2
<0y 27 <C(l—r)”
J=jo

since 0 < v < 1/p. Further,

Iaf(x) > C‘SL’ _ ej‘a—N/ |y o ej|u—N/p dy > C|$ _ ej‘a—l—u—N/p

B(ej|z—ejl/2)

for x € B(e;,27772/2), since v — N/p+ N > 0. We see that

1/q
Sy(If,1—27) > C / o o[NP aS () | = oo
5(0,1—-2-3)NB(e;,277-2/2)

when (o +v — N/p)g+ N — 1 < 0. This implies the necessity of the lower limit in
Theorem 3.1 when v > 0 and
N -1 < N —ap—vp

qa p
Let Mgb “(B) denote the family of all measurable functions f on B such that
lim (w1 =r)|f(y)]) dy = 0.
r—1— A(0,r)

With a slight modification of the proof of Theorem 3.1, we can prove the following
result.

Corollary 3.7. Let 1 < ¢ < oo. Suppose (w4) holds for some gy > 0. If
0 < e <min{a,g0/(p—1)} and
N—-—ap+ep—1)—1<(N-1)/g< N—-—ap—¢e(p—1),

then
liminf (1 — p)N=eFer=W=D/a,,(1 — )P S (B((1 — 1)L f),7) =

r—1—
for all nonnegative measurable functions f € Mg (B).

Proof. Let f be a nonnegative measurable function in Mg “(B). For z € B,
write

]af(l') = [1(5(7) + [2(5(7) + [3(5(7)
as before. Let 0 < ¢ < min{a,e0/(p — 1)} such that
—1<(a—¢e)pt+te—N+(N-1)/g<(a+e)p—e—N+(N—-1)/¢<0.
Set
d=—(a—¢e)p—e+N—-(N-1)/q.
Then 0 < d < 1. First note by the proof of Lemma 2.6 (1) that
(1 — )Nt DIas, ((w (1 —r)(1 =)L), r) < C/ (w1l —r)f(y))dy,

B\B(0,r)
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so that by (®4)
(1 — )N er= =Dl (1 — )P Sy (@((1 — ) Lp),7) < C/ P(w(l—7)f(y)) dy.
B\B(0,r)
Take 0 < rg < 1. We write

I3(x) = |z —y|* N fy) dy

/{yGB\B(%(l—w)ﬂ)i I=[y|>1—|z|,]y|<ro}
f o=yl 1) dy
{yeB\B(z,(1-[z[)/2): 1-|y[>1—|z|,[y[>r0}
= [371(517) + ]3,2(1’).
By (®3) and the fact that I3;(z) < C, we have

liminf (1 —7)N=FP=WN=D/ag,(1 — 9)PS (D((1 — ) 154),7)

r—1—

< liminf (1 — r)N-@FP=N=D/a,,(1 — )PS5 (B((1 —7)°C),7) = 0

r—1—

and by the proof of Lemma 2.7 (1)
(1 —r)N-letop=(N=D/ay,(1 — p)PS (B((1 — 7)°T32),7)
<c s ey [ )y
{jEN: 1-2-7-1>r0} A(0,1-27)
for ro < r < 1, so that
liminf (1 — )N -@FP=N=D/ag,(1 — p)PS (B((1 —7)°I3), 1)

r—1—
<c s ey [ ()
{JEN: 1-2-3=1>ro} A(0,1—-2-7)
Letting rg — 1, we infer that
liminf (1 — )N -@Fr=N=D/ay,1 — 9)PS (D((1 — 7)°15),7) = 0.

r—1—

Finally, we obtain by Lemma 2.4
S@((1 =)0 =) £ €= [ el )y
0,r
where g(y) = ®(w(1 — |y|)f(y)). Therefore (®4) gives
(1 — )Nt =0/, (1 — S (@((1 = r)° 1), 7)
< CO(1 — p)N-(arelp=W=D/a() _ )25 (B((1 — 7)w(l — 7)), )

<o -ry / I — Iyl g (y) dy.
A(0,r)

In view of Lemma 2.5, we can find a sequence {r;} of positive numbers such that
ro<1—27"1 <pr; <1—277 and
sup(1 — r;)N TNV (1 — 1 )P (B((1 = 1) 11), 75)
j

<C sup / 2=

ro<r<l

Thus, letting r¢ — 1, we obtain the required result. 0
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4. Spherical limits for Riesz potentials 11

In this section we treat functions f on B satisfying the weighted condition (1 —
ly|)PPr £ (y)Pr € M®*(B) for 1 < p; < oo and 3 > 0.

Lemma 4.1. Let 1 < p; < oo and § > 0. Suppose 0 < ap; —ay < fp1 < p1 — 1.
Then there exists a constant C > 0 such that

(1 = Jaf)~tome/P¥ L, f ()" < Cla,g(x)

for all x € B\ B(0,1/2) and nonnegative measurable functions f € L}, (B), where
g(y) = (1 = [y f(y)".

Proof. Let f be a nonnegative measurable function f € L}, (B). By Hélder’s
inequality and Lemma 2.2, we have

1/p4
/ |z —y|* N fy)dy < </ |z — y|l@me /PPN (] |y]) P dy)
B B

1/p1
y ( / 2 — gV (1= )P ) dy)
B

1 1/p}
<([ ([ pamtemmrivasg)) 1 -n i)
0 S(0,r)
1/p1
X (/B |z —y|“ Vg(y) dy)

1 , , 1/p}
<C (/ ||| — r|(@mea/POPi=L (] _ p)=hP dr)
0

1/171
X </ Ix—y\al‘Ng(y)dy) ,
B

where g(y) = (1 — [y))?" f(y)**. Since (@ — ar/p)py > 0, —=fpy + 1 > 0 and
(o — aq/p1)p| — Bp) + 1 < 1 by our assumptions, the Riesz composition formula (see
e.g. [15, p. 59]) yields

1/p1
/ 2 — y|*N f(y) dy < C(1 — [ fe—or/o=5 ( / |a:—y|al-Ng<y>dy) ,
B B

as required. O
In view of Lemma 4.1 and Theorem 3.1, we obtain the following theorem.
Theorem 4.2. Let 1 < g < oo and let 0 < ap; —a; < fp; < p1 — L.

(1) Suppose (w4) holds for some gy > 0 and « replaced by oy . If 0 < ¢ <
min{as,e0/(p — 1)} and
N—-—ap+ep—1)—1<(N—=1)/g< N —ap—e(p—1),
then there exists a constant C' > 0 such that

liminf (1 — p)V=(@rrOrm DA, (1 — )
r—1—

% Sq(q>((1 —7)%((1 — r)_(a_al/Pl)‘f‘B]af)pl)’,r) <C

for all nonnegative measurable functions f with ||g||ye.«s) < 1, where g(y) =
(1= [y f(y)P.
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(2) If 0 < e < a; and

max{N —a;p—e(p—1),N —agp+e(p—1) -1} < (N —1)/q
<N—Oélp+5(p_1)>

then there exists a constant C > 0 such that

limlinf min{(1 — p)N=lerFp=V=D/a,(1 — )P (1 — )~}
r—1—

X Sq(@((l —7)%((1 — T)—(a—a1/p1)+ﬁlaf)p1)’ r)y<C

for all nonnegative measurable functions f with ||g||ye.«s) < 1, where g(y) =

(1= [yl f ()P
(3) If0 <e<ajand (N—1)/¢g >N —ayp+e(p—1) >0, then there exists a

constant C' > 0 such that
min{(1 — p)N=lerFr=(V=lag,(1 —p)P (1 —7)7F}
X Sg(®((1 = r)*((1 = r)~lemea/ptB, FYPr) r) < C

forall1/2 < r < 1 and all nonnegative measurable functions f with ||g|| yre.«(s)

< 1, where g(y) = (1= [y])" f(y)".
(4) If 0 <e < ;g and (oy —e)p+e€ — N > 0, then there exists a constant C' > 0

such that
min{ (1—r)N P (1—r)?, (1=r) 715, (B((1—r)*((1—r) " C7/PIH L f)P) 1) < C

forall1/2 < r < 1 and all nonnegative measurable functions f with ||g|| yre.«(s)
< 1, where g(y) = (1 = [y])" f(y)".
When ®(r) = r? and w(r) = 1, we obtain the following corollary.

Corollary 4.3. If 1 <g<oo,0<ap; —a; < fBp1 <p; — 1 and
N—-—ap—1 1 N-—ap

<< —
N -1 q N-1"~
then

(1) limnf (1= )N, (1, 7)< o0

r—1—

for all nonnegative measurable functions f such that

Lﬂwmﬂ—MW”@<w-

5. Green potentials

Let G(z,y) be a Green kernel on B. When N > 3, there exists a constant C' > 0
such that

-1 (1= |z —Jy])

co =D~y (L~ |z~ |y])
|z —y[¥ 2z =y B

|z =yt —y2 T jz —yV

5 < G(,y)

for x,y € B, where x* is the inversion of x with respect to S(0,1).
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For f € L .(B) and = € B, we write

61 = [ Genswa=[ - cwnrwd
_'_

/ G,y f () dy
{yeB\B(z,(1—|z|)/2):1-|y|<1—|z|}

4 / G, y)f(y) dy
{yeB\B(z,(1—|z|)/2):1-|y|>1—|z|}

= G1(z) + Ga(x) + Gs(x).
Lemma 5.1. Let 1 < g < o0.
(1) Suppose € > 0 and
(N-1)/g< N —¢e(p—1).
Then there exists a constant C' > 0 such that
S (®((1 — 7)1 Gy),r) < C(1 — r)P NFE=D/agy(1 — )P
for all 1/2 < r < 1 and nonnegative measurable functions f on B with

[ Fllar2e@) < 1, where F(y) = (1= [y|)f(y).
(2) Suppose € > 0 and

(N=1)/¢>N—e(p—1).
Then there exists a constant C' > 0 such that
Sy (@((1—7)"2Gy),r) < C(1 —r)w(l —7)7P
for all 1/2 < r < 1 and nonnegative measurable functions f on B with
[Fl| ooy < 1, where Fy) = (1= |y]) f(y).
Proof. Let € > 0 such that
ep—1) =N+ (N-1)/¢g<0.
For 1/2 < r = |z| < 1, we have

Golr) < C /B (1= )1 = [z =y ™ fona(y) dy

2 1 B
<co-t [ (i [, 0= bR i) e

2 1
o - [ EQ D fealy) dy ),
<ca-t [ (igm [, O b )

where fo.(y) = f(y)Xp,.(y) With By, = {y € B\ B(z, (1—|2[)/2): 1-[y| <1—|z]}.
We have by Jensen’s inequality and ($3)

B((1— o))~ Gofa)
€ ? 1 € - —e—1
cco-uly [ (g L 20— )
2 1

<co-uly [ e (5o [ al0- o )y ) £

< (1 |aly /B & — gD NS [y]) faa(y)) dy.
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Hence Minkowski’s inequality, Lemma 2.2 and ($3) yield
Sq(@((1 —7)7*Gy), 1)

<C(l—r) /B Sall - =ylF" Ny, (1), M)@((1 = [y]) fore (v)) dy

P [ ) dy
B\B(0,r)

<C(l-—r
S 0(1 o ,r,)sp—N—I-(N—l)/qw(l o ’f’)_p
since e(p —1) = N + (N — 1)/q < 0, which gives assertion (1).

To show assertion (2), suppose € > 0 such that e(p —1) = N <O and e(p —1) —
N+ (N —1)/q > 0. Then we have by Lemma 2.2

Sq(®((1 —7)~*°Gy), 1)
<C(l—r) /B Sall - =ylF" Ny, (1), M)@((1 = [y]) fore () dy

<C(—ry /B vy M) dy < OO =y )

since e(p —1) = N+ (N —1)/q > 0.
When ¢ > 0, e(p—1)— N >0and e(p—1) — N+ (N —1)/q > 0, taking
0<d<(N—1)/q, we have

O((1 = |2]) " *Ga(w))

2 1
c(1— € P O((1 — " d -1y
cco-uly [ (g [, MO W) )
< CO1=lalf [ o=y 0((1 = Iy foslo) d
and
S (1= 1) Ga).r) £ O =1 [ S, =3l X () ) BE ) dy
<C-vf [ BFE)dy< O rFul -,
B\B(0,r)
which completes the proof of assertion (2). O

Lemma 5.2. Let 1 < g < o0.
(1) Suppose
(wh) o~ NHIN=D/ay,($)~P js almost decreasing on (0,1) for some &4 > 0.
Let 0 < e <eo/(p—1). Then there exists a constant C' > 0 such that
S (®((1 — 7)1 Gy),r) < C(1 — r)P NFE=D/ag, (1 — )P

for all 1/2 < r < 1 and nonnegative measurable functions f on B with

[Fllare(my < 1, where F(y) = (1= [y|)f(y).
(2) Suppose € > 0 and

(N-1)/g> N —¢e(p—1).
Then there exists a constant C > 0 such that
Sq(®((L—7)""*Gs),r) < C(L—r)°
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for all 1/2 < r < 1 and nonnegative measurable functions f on B with
[El|aroom) < 1, where Fy) = (1= |y[) f(y).

Proof. First note from (w5) and 0 < € < go/(p — 1) that (P~ D=N+N=1/ay,(4)=p
is almost decreasing on (0, 1) and

ep—1)—-N+(N-1)/¢g<0.
In the same way as above, we obtain
S(@((1-r) G, r) < O ([ (= IO dy 1)
B(0,r)
Let jo be the smallest integer such that r < 1 — 2770~! Note here that

/ (1= [yl) @D N+OD/ag(F(y)) dy

B(Or)

< Z 0 I R L
01 2— J

< 022—j(e(p—1)—N+(N—1)/q) / B(F(y)) dy

e A(0,1-2-7)

Jo
< O 9D NAN =D/ 9=y
=0
< C(1 - T)E(p—l)—N+(N—1)/qw(1 — )P
by (wb), which gives assertion (1).
Assertion (2) is proved as in the proof of Lemma 2.7 (2). U
p p
Theorem 5.3. Let 1 < ¢ < o0.
(1) Suppose (wb) holds for some gy > 0. If 0 < ¢ < min{l,eq/(p — 1)} and

N-2p—1+e(p—1)<(N—-1)/g< N—=2p—e(p—1),
then there exists a constant C > 0 such that

liminf (1 —r)¥ 727D (1 — )25y (@((1 — 1) TG f),r) < C

r—1—

for all nonnegative measurable functions f with ||F|ye.m) < 1, where

Fy) = (1= [y f(y).
(2) Suppose (w5) holds for some gy > 0. If 0 < e <min{l,e0/(p—1)},2p— N —

e(p—1) <0 and
N—-2p—e(p—1) <(N-1)/g<N—-c(p—1),
then there exists a constant C' > 0 such that
(1= N2 DR S (1 = )G ). 1) < C

forall1/2 < r < 1 and nonnegative measurable functions f with || F|| yse.«@) <
1, where F(y) = (1 — [y[) f(y).

3) If0<e<1,2p—N<e(p—1)and (N —-1)/¢ > N —e(p—1), then there
exists a constant C' > 0 such that

(1 =) 2028, (@((1 =) G ), 7) < C
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forall1/2 < r < 1 and all nonnegative measurable functions f with || F|| e« ()
<1, where F(y) = (1 — |y[) f(y).

Proof. Let f be a nonnegative measurable function in M®*(B). For z € B,
write

as before.
Let 0 < e <min{l,e9/(p — 1)} such that

—1<@2—-¢e)p+e—N+(N-1)/g<(2+e)p—e—N+(N—-1)/g<0.
Set
d=e(p—1)—(N—-1)/qg+ N — 2p.
Then 0 <d < 1. Sincee(p—1)—N+(N—-1)/g<eg— N+ (N—-1)/q <0 by (wh),
one notes by Lemmas 5.1 (1) , 5.2 (1) and ($3) that

(L2t s, 0((1 1)), 1)
< CO(1 — r)N=2rer=N=D/ay, (1 — p)P(1 — 7)207PS (B((1 — 7)1 F2GY), 1)
< O(1 —p)N=ep=W=Dlag,(1 — p)PS(B((1 — 1) Gy),r) < C

and
(1 — p)N=2ter=(N=D/ag, (1 — 1)PS (B((1 — 1) 75Gs), ) < C.
Next we see that G (z) < / |z — y|>~" f(y) dy, and hence
B(z,(1-[z[)/2)

(1 = fz))Gi(z) <C o =y~ (1 = ) f(y) dy.

B(z,(1-[z[)/2)
By Lemma 2.4 (1) with a@ = 2, we obtain
S@0 =)= G 00— [ =yl ) dy
0,r

where ¢g(y) = ®(w(1 — |y|)F(y)) with F(y) = (1 — |y|)f(y). Therefore we establish
by (@4)

(1= ) a1 — s @((1 =)' “Go), 1)

< C(1 — r)N=2rer=N=0/ag (D(w(1 —7)(1 — ) 7°GY),7)

<cet [ -t dy
A(0,r)

In view of Lemma 2.5, we can find a sequence {r;} of positive numbers such that
1—279t < pr; <1—279 and
sup (1 — ry) N2 (VDG (1 — )PS5 (O((1 —1ry)' 7°Gh), ) < C,
J

which proves assertion (1).
To show assertion (2), suppose 0 < ¢ < min{l,&0/(p—1)},2p—N—e(p—1) <0
and
ep—1)+N—-2p<(N—-1)/g<N—¢c(p—1).
Then, for 1/2 < r < 1, we see from Lemmas 5.1 (1), 5.2 (1) and (®3) that

(1 — )N =2ter=(ND/agy (1 8 (D((1 — 1)), 7) < C
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T e s (- <0
as above. By Lemma 2.4 (2) with a = 2, we obtain

(1= )2 D1 S (@((1 - 1) EC) )

< (1 — )Nt (V=g (D(w(l —r)(1 =)' 7°G),r) < C,
which proves assertion (2).

For a proof of (3), suppose 0 < ¢ < 1,2p— N < e(p—1) and (N —1)/q >
N —¢e(p—1). Then Lemmas 5.1 (2), 5.2 (2) yield

(1 =) 225, (@((1 = )2 Ga), )
< O(1 —r) 2079721 — r)P(1 — )28 (B((1 — )T EGy), r)
<C(1—7)Fw(l —r)PS(R((1 —r)"=Gy), 1) < C
and
(1—7) 2025 (@((1 = 1) 5Gy), 1) < C
for all 1/2 < r < 1. Further we see from Lemma 2.4 (2) with o = 2 that
(1 =) 225, (@((1 = )2 Gh), 1)
< O(1 —r) 72079728 (B((1 — ) Fw(1 — r)GY), 7)
< C(1—r)fpD-N+(N-D/a < ¢
since
(N—1)/g>N—e(p—1)>N—-2p+¢e(p—1)
by e <1< p/(p—1). Hence we obtain assertion (3). O
We can prove the following result in the same way as Corollary 3.7.

Theorem 5.4. Let 1 < g < oo and f be a nonnegative measurable function
such that F € M (B), where F(y) = (1 — |y|)f(y).

(1) Suppose (wb) holds for some gy > 0. If 0 < e < min{l,eq/(p — 1)} and
N—-2p—1+e(p—1)<(N—-1)/g<N—-2p—c(p—1),
then
liminf (1 — )N =22~ N=D/atery,(1 — ) S (B((1 — ) =G f),r) = 0.

r—1

(2) Suppose (wb) holds for some gy > 0. If 0 < ¢ < min{l,e0/(p—1)}, 2p— N —
e(p—1) <0 and
N=2p—cep-1)<(N-1)/g<N—-celp-1),
then
lim (1 — )N 2= WN=Dfatepyy (1 — r)PS,(®((1 —7)'=Gf),r) = 0.

r—1—
B) If0<e<1,2p—N<e(p—1)and (N —1)/¢g> N —e(p—1), then
lim (1 —r) 72079275 (®((1 — r)' =G f),7) = 0.

r—1—
Remark 5.5. Gardiner [4] proved that for a Green potential Gu in B
(1) when (N — 1)/(N —2) < g < (N = 1)/(N —3),
liminf (1 —r)N="1=W=D/2g (Gu,r) = 0;

r—1—
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(2) when 1 < g < (N — 1)/(N —2),
lim (1 —p)N-1=W=Dlag (Gu,r) =

r—1—

To obtain this result, we need modify Theorem 5.3 as in Corollary 3.7.

6. Monotone functions

A continuous function u is said to be monotone in €2 in the sense of Lebesgue [7],
if for every relatively compact subdomain G of 2 we have

maxu = maxu and minu = minu.
G oG G LTe

For monotone functions, see Koskela-Manfredi-Villamor [6], Manfredi-Villamor |9,
10], the first author [14, 15|, Villamor-Li [24] and Vuorinen |25, 26].

Theorem 6.1. Let p; > N — 1 and p; < q < co. Suppose
(w6) oo~ W=Pi=D/p(N=1/agp-1 (t_lw(t)_p)l/p1 is almost decreasing in (0,1) for
some gg > 0.
Then there exists a constant C' > 0 such that

limsup(1 — )N =Pr1=D/p=(N=-1/qgp-1 (=7 w1 - 7’)_1’))_1/‘7’1 Sq(u,r) < C

r—1—
for all monotone functions u on B such that ||h|| e« < 1, where h(y) = [Vu(y)[P*.

For a proof of Theorem 6.1, we need the following result, which gives an essential
tool in treating monotone functions.

Lemma 6.2. (cf. [9, 10, 15]) Let p; > N —1. Ifu is a monotone Sobolev function
on B(xg,2r), then

(6.1)  |u(z) —u(y)P* < Mrpl_N/( | |Vu(z)[P* dz  whenever x, y € B(xg,r).
B(xo,2r

Lemma 6.2 is a consequence of Sobolev’s theorem, so that the restriction p; >
N — 1 is needed; for a proof of Lemma 6.2, see for example [9] or [15, Theorem 5.2,
Chap. §].

Now we are ready to prove Theorem 6.1, along the same lines as in the proof of
[17, Theorem 2|.

Proof. Let u be a monotone function on B such that ||h[/yewm) < 1 with
p1 > N —1, where h(y) = [Vu(y)[P*. Let r; =27 tand t; =1—r;1forj=1,2,....
Using (6.1), we obtain from the proof of [17, Theorem 2| that

‘SII(uv tj) - Sq(u7 tj+m)‘
Jj+m 1/p1
< CZTZ—(N—m—l)/m-i-(N—l)/q (7’21/ |vu(y)|p1 dy) .
(= B(0,1—r¢)\B(0,1—3ry)
Hence, we have by (w6) and ($3)

|Sq(u> tj) - Sq(ua tj+m)|

Jj+m

1/p1
<CZ —(N-p1—-1)/p1+(N—1 /qq) ( 1/ <I>(|Vu(y)\p1) dy)
B(0,1—r,)\B(0,1-3ry)
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Jjt+m
<C Z TZ(N—pl—l)/P1+(N—1)/qq)—1 (Tg—lw(m>_p) 1/p1
l=j

< er—ii\fl—m—l)/pl+(N—1)/qq)—1 (T]-_Jrlmw(rﬂm)_p)
If t; <r <1, then we take m such that ¢;.,,—1 <7 <t;4,, and establish
Sultsts) = Sy, )] < O1 =) WP D@1 (1= ) uo(1 = 7))
Therefore it follows from (w6) that

limsup(1 — ) N2 D/m=(V=D/agt (1 ) T(1 - ) P) TS (ur) <

r—1—

1/p1

as required. O]
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