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Abstract. Let (X,d, 1) be a metric measure space of homogeneous type and p(-): X — (0,1]
a variable exponent function satisfying the globally log-Holder continuous condition. Assume that
L is a one-to-one operator of type w on L?(X), with w € [0, 7/2), which has a bounded holomorphic
functional calculus, and whose heat kernel satisfies the Davies—Gaffney estimates. In this article, the
authors introduce the variable Hardy space H Z(') (X) associated with L. Then the authors establish
the molecular characterization of H z(') (X) via the atomic decomposition of variable tent spaces and
show that the dual space of Hf(')(X) is the BMO-type space BMO,,.) - (X), where L* denotes the
adjoint operator of L on L?(X). In particular, if L is a non-negative self-adjoint operator whose
heat kernel has a Gaussian upper bound, the authors then obtain the non-tangential and the radial
maximal function characterizations of H z(') (X) via establishing its atomic characterization.

1. Introduction

Let p(-): R* — (0,00) be a measurable function. The variable Lebesgue space
LPO)(R™) is defined to be the space of all measurable functions f on R™ such that,
for some A € (0, 00),

(1) [ f”r(x) dr < 0

In particular, if p(-) = p is a positive constant, then Lp(')(R”) is just the classical
Lebesgue space LP(R™). The study of variable Lebesgue spaces originated from Or-
licz [49] in 1931. Then it was further developed by Nakano [47, 48] and Kovacik
and Rakosnik [42]. Nowadays the interest in variable function spaces has increased
steadily and these variable function spaces have been widely used in harmonic analysis
as well as partial differential equations; see, for example, |1, 16, 17, 18, 22, 23, 33, 52].
The study of variable Lebesgue spaces on a (quasi-)metric measure space X seemingly
appeared initially in [34], where, under the assumption that X is bounded with a
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doubling measure and p(-) is locally log-Ho6lder continuous, Harjulehto et al. studied
the boundedness of the Hardy-Littlewood maximal function M on LP)(X). Then
there has been a lot of attention paid to the study of the boundedness of operators
on variable Lebesgue spaces over metric measure spaces. More precisely, Gorosito et
al. [29] investigated the boundedness of the fractional integral operators on weighted
variable Lebesgue spaces with non-doubling measures and, in [41], Kokilashvili and
Samko established the boundedness of the Hardy—Littlewood maximal operator on
variable Lebesgue spaces over metric measure spaces. Moreover, in [32|, Hajibayov
and Samko considered the generalized potential operators in variable Lebesgue spaces
on bounded quasi-metric measure spaces equipped with doubling measures satisfying
the so-called Ahlfors N-regular condition and, recently, Adamowicz et al. [2] studied
the Hardy-Littlewood maximal operator M on LP)(X) when X is an unbounded
quasi-metric measure space with a doubling measure and p(-) is log-Hélder continu-
ous.

On the other hand, the theory of classical real Hardy spaces HP(R"™) was first
introduced by Stein and Weiss [57] in the early 1960s, and then was systematically de-
veloped by Fefferman and Stein [27]. It is well known that the Hardy space H?(R")
is a suitable substitute of the Lebesgue space LP(R™) for any p € (0, 1]. When
p € (0, 1], many well-known operators from harmonic analysis, such as Hilbert and
Riesz transforms, are bounded on HP(R™), but not on LP(R™). As a generaliza-
tion of classical Hardy spaces, Nakai and Sawano [45] introduced variable Hardy
spaces HP()(R"), established their atomic characterizations and investigated their
dual spaces. Independently, Cruz-Uribe and Wang [19] also studied the variable
Hardy spaces HP)(R™) with p(-) satisfying some conditions slightly weaker than
those used in [45]. Recently, Yang et al. [62, 67| established equivalent characteriza-
tions of variable Hardy spaces via Riesz transforms and intrinsic square functions. A
complete real-variable theory of variable Hardy spaces over an RD-space (any metric
measure space satisfying both the doubling and the reverse doubling conditions) was
also established by Zhuo et al. [65]. Notice that H?(R") is essentially associated with
the Laplace operator

(see, for example, [26]). In recent years, there has been a lot of attention paid to
the study of Hardy spaces associated with different operators, which has been a very
active research topic in harmonic analysis; see, for example, [5, 8, 25, 26, 35, 36,
37, 38, 39, 55, 59|. In particular, Yang and Zhuo [61] introduced variable Hardy
spaces Hg(')(R") associated with operators L on R", where p(-): R™ — (0,1] is
a variable exponent function satisfying the globally log-Holder continuous condition
and L is a linear operator on L?(R™) which generates an analytic semigroup {e *};>¢
with kernels having pointwise upper bounds. As a generalization of 61|, Yang et

al. [60] further studied variable Hardy spaces Hz(')(R") associated with operator
L which satisfies the Davies-Gaffney estimates. The notion of the Davies-Gaffney
estimates (or the so-called L? off-diagonal estimates) of the semigroup {e~**};- was
first introduced by Gaffney [28] and Davies [21], which serves as good substitutes
of the Gaussian upper bound of the associated heat kernel; see also [7| and the
related references therein. These estimates are fundamental in many applications of
semigroups. For example, they are the main technical tool (for the resolvent instead
of the semigroup) in the proof of the Kato square root problem (see [6]).
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Very recently, under the assumptions that L is a non-negative self-adjoint op-
erator whose heat kernel having a Gaussian upper bound, Song and Yan [55] es-
tablished a characterization of the Hardy space HY(R™) for any p € (0, 1] via the
non-tangential maximal function associated with the heat semigroup {e=**} .-, based
on a subtle modification of the technique due to Calderén [9]. Furthermore, Song
and Yan [56| generalized the results of [55] to metric measure spaces of homogeneous
type; see [63, 66] for more generalizations of [55]. In particular, Zhuo and Yang [66]
established the atomic and the several maximal function characterizations of variable
Hardy spaces H?")(R™).

To continue the study of [60, 66, 56|, in this article, we investigate the Hardy
space Hf(')()() associated with a one-to-one operator L of type w in L*(X), with w €
[0, 7/2), which has a bounded holomorphic functional calculus and satisfies Davies—
Gaffney estimates (see Assumptions 2.6 and 2.7 below) on a metric measure space
(X, d, ) of homogeneous type. In general, an operator L satisfying Assumptions 2.6
and 2.7 is not necessarily non-negative self-adjoint. Notice that the “non-negative self-
adjoint" assumption plays an important role in the known work (see, for example,
[35, 39, 55, 56, 66]). This leads to that L has the finite speed propagation property
for solutions of the corresponding wave equation (see, for example, [35]), which allows
one to characterize the Hardy spaces via atoms. Therefore, without the “non-negative
self-adjoint” assumption, it requires us to characterize the Hardy spaces H z(')(X ) via
molecules instead of atoms (see Theorem 3.3 below) in this article. In Section 4,

we study the dual space of Hf(')(é\?). We point out that, although, in [60], Yang et

al. also investigated the dual space of H i(')(R"), there are some methods which only
work on R"™ not on a metric measure space of homogeneous type. For example, in the
arguments used in [60, Remark 4.6] to obtain the duality of Hardy spaces H f(')(R"),
we can cover the annulus (2/B) \ (277!'B), with j € N, by approximately 2" balls
of radius rg. In general, this is not true in the case of metric measure spaces of
homogeneous type. To overcome this difficulty, we make use of the property that the
metric measure space X has a dyadic grid analogous to that of R"™, which is due to
Christ [11, Theorem 11| (see also Lemma 4.6 below).

Comparing the function spaces with constant exponents, we would like to point
out that a main difficulty appearing in the study of variable function spaces ex-
ists in that the quasi-norm [ - || »¢)(x) has no explicit and direct expression, which
makes some estimates become very complicated. To overcome this difficulty, we make
use of the boundedness of the HardyLittlewood maximal operator on LP()(X) (see
Lemmas 2.2 and 2.3 below) and borrow some ideas from the proof of |65, Proposi-
tion 2.11| (which was essentially proved by Sawano [53, Lemma 4.1| and is restated
as Lemma 2.4 below). The role of Lemma 2.4 is to reduce some estimates in terms
of LP1)(X) norms of some series of functions into some estimates in terms of LI(X)
norms of some functions.

This article is organized as follows.

In Section 2, we first recall the notion of the variable Lebesgue space on a metric
measure space of homogeneous type. Then we describe Assumptions 2.6 and 2.7
imposed on the operator L considered in this article and introduce the definition of the
variable Hardy space H f(')(/'\f ) in terms of the square function of the heat semigroup
generated by L. Finally, we recall some notions and notation on the variable tent
spaces TPO)(XT) on X* := X x [0, co) and establish the atomic decomposition of
TPO(X*) (see Proposition 2.13 below).
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In Section 3, we establish the molecular characterization of Hf(')(é\? ) (see Theo-
rem 3.3 below). Following the strategy that used in the proof of [60, Propositions 3.10
and 3.12|, we prove Theorem 3.3 by means of the atomic decomposition of the tent
space TP0)(X+). The proof of Theorem 3.3 also relies on Lemmas 2.2 and 2.4 below.

In Section 4, we introduce the variable BMO-type space BMO,.) - (X) and show

that the dual space of Hf(')()() is BMOy.), .+ (X) (see Theorem 4.9 below), where L*
denotes the adjoint operator of L on L?(X’). The proof of Theorem 4.9 is based on
an argument used in the proofs of [36, Theorems 8.2 and 8.6] and [39, Theorem 4.1]
with some ingenious modifications on the case of variable exponents. For example,
it is difficult to compare [|X B |l 02y With |[XBy.n | o) ) directly, where B(x,r)
and B(y,t) denote two balls of X with z, y € X and r € (0, 00). To overcome this
difficulty, we make full use of Lemma 2.2 below and establish a relationship between
two quasi-norms || - || z»)(x), respectively, corresponding to two different balls (see
Remark 4.8 below for more details).

In Section 5, if L is a non-negative self-adjoint operator whose heat kernel has
a Gaussian upper bound, we establish the non-tangential and the radial maximal
function characterizations of Hf(')()( ) (see Theorem 5.7 below). The proof of The-

orem 5.7 is based on the atomic characterization of Hz(')()( ) (see Proposition 5.12
below) and some known results from Song and Yan [56].

We end this section by making some conventions on notation. In this article,
we always let (X, d, 1) be a metric measure space of homogeneous type. For any
p € (0, 0o) and any measurable subset E of X', let LP(E) be the set of all measurable
functions f on X such that

1/p

ey = | [ 1560 o) < o0
We denote by C' a positive constant which is independent of the main parameters,
but it may vary from line to line. We also use C(, ..., to denote a positive constant
depending on the parameters a, 3, .... The symbol f < g means that f < Cg. If
f < gand g < f, we then write f ~ g. Let N := {1,2,...} and Z, := N U {0}.
For any a € (0, o0) and = € X, denote by I',(x) the cone of aperture av with vertex
r € X, namely,

(1.2) Fo(z) :={(y, t) € X x (0, 00): d(z, y) < at}.
If a =1, we simply write ['(z) instead of I',(x). For any ball
B:= B(zp,rp) :={ye X:d(zx,y) <rp} CX
with x5 € & and rg € (0,00), a € (0,00) and j € N, we let aB := B(zp,arg),
(1.3) Up(B):=B and U;(B):=(2B)\ (27'B).
For any subsets E, FF C X, let
dist(E, F) :=inf{d(x, y): x € E, y € F}.

For any p € [1, 00|, p’ denotes its conjugate number, namely, 1/p+ 1/p’ = 1.

2. Preliminaries

In this section, we first recall the definition of metric measure spaces of homoge-
neous type. Then we describe two assumptions imposed on the operator L studied
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in this article. Finally, we introduce the variable Hardy spaces Hf(')(é\? ) associated
with L.

Let (X, d) be a metric space equipped with a non-negative doubling Borel mea-
sure u. In what follows, for any z € X and r € (0, c0), denote by

Vi, r) = p(B(z, r)),

the volume of the open ball B(z, r). Recall that a measure u is said to be doubling
if there exists a positive constant C' such that, for any z € X and r € (0, 00),
(2.1) V(z, 2r) < CV(x, r).

Then the triple (X, d, u) is called a metric measure space of homogeneous type in the
sense of Coifman and Weiss [12, 13]. From the doubling property (2.1), we deduce
that there exist positive constants C' and D such that, for any A € [1, 00), x € X
and r € (0, 00),

(2.2) V(x, \r) < ONPV (2, 7).

There also exists a positive constant C' such that, for any z, y € X and r € (0, c0),

(2.3) Viy,r) <C [1 + d(a; y)} V(z, 7).

Indeed, property (2.3) is a direct consequence of the triangle inequality of the metric
d and the strong homogeneity (2.2).

2.1. Variable Lebesgue spaces. Let (X, d, u) be a metric measure space
of homogeneous type. Define P(X) to be the set of all the measurable functions
p(-): X — (0, oo) satisfying
(2.4) p_ =essinfexrp(xr) >0 and py :=esssup,cr p(z) < co.

Then a function p(-) € P(X) is called a variable function on X.

For any p(-) € P(X), the variable Lebesque space LPV)(X) is defined to be the
space of all measurable functions f satisfying (1.1) for some A € (0, c0), equipped
with the Luzemburg (quasi-)norm

x p(z)
(2.5) £l oo ) = inf{)\e (0, 00): /X[lf(A)l} du(x) < 1}‘

For more properties of the variable Lebesgue spaces, we refer the reader to [17, 23].
Remark 2.1. Let p(-) € P(X).
(i) For any A € C and f € LPO(X), AN eer ey = M fl 2o 2y~ In particular,
if p_ €[1, 00), then || - || sy () is @ norm, namely, for any f, g € PO (x),

1f + gllror ey < Nfleo ) + 191 eo 1)

(ii) If p(-) = p € (0, o0) is a constant exponent, we find that LP¢)(X) is just the
classical Lebesgue space LP(X'), which is defined to be the set of all measurable
functions f on (X, d, ) such that

Il = | [ 17l dute)] Vs

(iii) By (2.5), it is easy to see that, for any f € LP()(X) and s € (0, 00),
11PN zrer ey = (1]

S
Lsr()(Xx)*
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(iv) Let p_ € (1, oo). Then, by [34, p. 90], we find that, for any f € LPO)(X) and

/ F@)g(0)] du) < 20 FlLwoee 9]l o .

here and hereafter, p*(-) denotes the dual variable exponent of p(-), which is
defined by setting, for any x € X,

1 1

+
p(z)  p*(x)
(v) Let p_ € (1, 00). Then, by |65, Lemma 2.9] (see also [17, Theorem 2.34] and
[23, Corollary 3.2.14]), we know that, for any f € LPO)(X),

1
o < sup [ 1@t duta) < 21l
<1}

{9€L”"O(X): llgll e () )

(vi) By an argument similar to that used in the proof of [17, Proposition 2.21],
we find that, for any non-trivial function f € LPO)(X),

£ ()] ]pm e
] =t

Recall that a variable function p(-) € P(X) is said to be locally log-Hdlder con-
tinuous if there exists a positive constant ¢, such that, for any z, y € X,

(2.6) Ip(z) — p(y)| <

Clog
log(e + 1/d(z, y))’

and that p(-) is said to satisfy the log-Holder decay condition with the basepoint
xg € X if there exist some p,, € R and a positive constant c,, such that, for any
r e X,

(2.7) [P(2) = Poo| <

Coo

log(e + d(z, xq))

We say that p(-) is log-Hélder continuous, denoted by p(-) € C'°8(X), if p(-) satisfies
both (2.6) and (2.7). By [65, Remark 2.4], we know that p(-) € C'°8(X) is equivalent
to that p*(-) € C'°8(X). In what follows, we always fix the basepoint 7y € X, which
plays the same role as the origin of R" does.

Recall that the central Hardy-Littlewood maximal operator M is defined by set-
ting, for all f € L] (X) and z € X,

1
(29 Ve = s g [ 156t

The following lemma establishes the boundedness of M on LP¢)(X), which is just
|2, Corollary 1.8] (see also [34, Theorem 4.3]).

Lemma 2.2. [2| Let p(-) € C'8(X) with 1 < p_ < p, < oo. Then there exists
a positive constant C' such that, for any f € LPU)(X),

M)l ror iy < CUfllpeor

The following Fefferman-Stein vector-valued inequality of M on LP()(X) is just
|65, Theorem 2.7].
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Lemma 2.3. [65] Let p(-) € C8(X) with 1 < p_ < p, < oo. Then, for any
given q € (1, o], there exists a positive constant C' such that, for any sequence
{f;}jen of measurable functions, it holds true that

(2.9) {Z[M(fmq}q

J=1

1

<C [Z\fa‘\q] ,

Lr()(X) Lr()(X)
where, when q = oo, it is understood that (2.9) means
sup M (f;) < C'|[sup|f;]
JjeN Lr() (X) JjeN Lr() (X)

If p(-) = p € (1, o) is a constant exponent, the conclusion of Lemma 2.3 was
proved in [30, Theorem 1.2].

The following lemma is a slight variant of [65, Proposition 2.11], which plays a
key role in the proofs of the main results of this article.

Lemma 2.4. Let k € [1, o), p(-) € C'°8(X), p := min{p_, 1} and q € [1, co] N
(ps, o], where p_ and p, are as in (2.4). Then there exists a positive constant
C such that, for any sequence {B;}jenx of balls in X, {\;}jexn C C and functions
{a;};en satisfying that, for any j € N, suppa; C kB; and ||a;||racx) < [(B;)]M,

J
> : 11 e v
(2.10) (Z |>\j@j|£> <ok’ (ZW’XBJ- |£>
j=1 Lr()(X) LrO)(X)
Proof. From (iii) and (v) of Remark 2.1, we deduce that there exists a function

Q *
g e 1) (X) with ||g||L(p(. " < 1 such that

o
s

I3 =
I3 =

(2.11) <Z |>\jaj|p> =

Lp(-)()()

IS =

S [ 3 mailtlato) du(x)]

Since p := min{p_, 1} and q € [1, oo] N (p4, 00), it follows that ¢ > p. Moreover, by
the Hélder inequality, (2.2) and Lemma 2.1(iv), we find that

32 maltlo(o)] dute)

p/q 1-p/q
\aj(fc)lqdu(x)] [ / ) ()|’ du<x>]

J

By (B2

A
>

1-p/q
1 X
55/ , o da >]

~ » 1/(2y
< SOl | int o (16l o)

SCEBJ'
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< KD(l—p/Q)/Xi I\ [Pxs, (2) [M (\g|@/) (x)] /() e
j=1

Z P‘J'XBj ‘E
=1

By this, (2.11), the fact that

(g)/<{(%)*}_‘:>g>%<:>wm,

Remark 2.1(iii) and Lemma 2.2, we obtain (2.10), which completes the proof of
Lemma 2.4. O

q

PN RS
[ ()]
%5)

()

< P-p/9)

() *
Lﬁ’g )
L

Remark 2.5. In particular, if K = 1, Lemma 2.4 is just |65, Proposition 2.11].
Moreover, if (X, d, u) := (R", | - |, dz) is the classical Euclidean space, then x = 1
and hence the conclusion of Lemma 2.4 was proved by Sawano in [53, Lemma 4.1|
(see also |45, Theorem 4.6| of Nakai and Sawano).

2.2. Two assumptions on the considered operator L. We first recall some
knowledge about bounded holomorphic functional calculi introduced by Mclntosh
[44] (see also [3]).

For any w € [0, 7), the closed and open w sectors, S, and S°, are defined,
respectively, by setting
S,:={z€C:|argz| <w}u{(0,0)} and S°:={zecC\{(0,0)}: |argz| < w}.
Let (X, d, p) be a space of homogeneous type. A closed and densely defined operator
L on L?(X) is said to be of type w if

(i) o(L) C S,,, where o(L) denotes the spectrum of L,
(ii) for any 6 € (w, 7), there exists a positive constant Cg) such that, for any
zeC \ S,

(2.12) [2[I1(21 = L)~ 22y < Cro)-

Here and hereafter, £(L?*(X)) denotes the set of all continuous linear operators
from L?*(X) to itself and, for any T € L(L*(X)), its operator norm is denoted by

1Tl £z
For any 4 € (0, ), define

Ho(S)) :={f: S, = C is holomorphic and [ fll Lo (s9) < oo}

and

W(SY) = {f € Hyo(S%): Ja, C € (0, 00) such that |f(2)] < %

Let w € [0, 7) and L be a one-to-one operator of type w on L?*(X). For any
¢ € W(S)) with € (w, ), the operator ¢(L) € L(L*(X)) is defined by setting

(2.13) (L) = / B(E)ET — L)V d,

,VzESg}.

where v = {re":r € (0,00)} U{re™™:r € (0, 00)}, for any given v € (w, p),
is a curve consisting of two rays parameterized anti-clockwise. By (2.12) and |3,
Lecture 2|, we know that the integral in (2.13) is absolutely convergent in L?(X) and
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the definition of (L) is independent of the choice of v € (w, u). Moreover, it is
well known that the above holomorphic functional calculus defined on W(S}) can be
extended to Hu(Sy) by a limiting procedure (see [44]). Let 0 < w < p < 7. Recall
that the operator L is said to have a bounded holomorphic functional calculus on
L*(X) if there exists a positive constant C(, ., depending on z and w, such that, for
any ¢ € Hy(S)),

(2.14) [P L) N ezzca)) < Cluw ]| oo (s0)-

By [3, Theorem F|, we know that, if (2.14) holds true for some p € (w, 7), then it also
holds true for all p € (w, 7). As was pointed out in [5, Lecture 4|, operators, which
have bounded holomorphic functional calculi, include positive self-adjoint operators
and maximal accretive operators on L?(X).

Let L be a one-to-one operator of type w in L?(X) with w € [0, m/2). Then it
follows from [50, Theorem 1.45] that L generates a bounded holomorphic semigroup
{e_ZL}zesg/H on the open sector SY , .

We now make the following two assumptions on the operator L, which are used
through the whole article.

Assumption 2.6. L is a one-to-one operator of type w in L*(X), with w €
[0, 7/2), and has a bounded holomorphic functional calculus on L?(X).

Assumption 2.7. The semigroup {e~*},.( generated by L satisfies the Davies—
Gaffney estimates, namely, there exist positive constants C' and ¢ such that, for any
closed subsets F and F of X and f € L*(X) with supp f C FE,

_ _ laisu(m, F))?
(2.15) e ey < Ce 5 fll .

Examples of operators which satisfy Assumptions 2.6 and 2.7 include second
order divergence form elliptic operators on R", (magnetic) Schrodinger operators
with non-negative potentials on R" and Laplace-Beltrami operators on all complete
Riemannian manifolds; see, for example, [36, 20, 28|.

Remark 2.8. (i) Let L satisfy Assumptions 2.6 and 2.7, and L* be the adjoint
operator of L on L?(X). Then, by |40, Theorems 5.30 and 6.22 of Chapter Three],
L* is also a one-to-one operator of type w on L?(X). From [31, Lemma 2.6.2|, it
follows that, for any k € Z, and t € (0, oo), [(tL)* e t£]* = (tL*)*e~'L". Notice that
the semigroup e ** is holomorphic in S? 2 From this, Assumption 2.7 and an
argument similar to that used in the proof of [35, Proposition 3.1|, we deduce that,
for any k € Z,, the family {(tL)*e=*L},.o of operators also satisfies the Davies—
Gaffney estimates (2.15).

(ii) We point out that the assumption that L is one-to-one is necessary for the
bounded holomorphic functional calculus on L?(X) (see [44, 3|). By [15, Theo-
rem 2.3|, we further know that, if 7' is a one-to-one operator of type w on L?(X),
then T has dense domain and dense range.

Assume that the operator L satisfies Assumptions 2.6 and 2.7. For any k € N,
the square function Sp ) associated with L is defined by setting, for any f € L*(X)

and r € X,
Spu(f)(@) = {/0 /B( t)

In particular, when k = 1, we write Sy, instead of Sp, .

(L) e (f)(y)

’2 dp(y) dt} i
Ve, )t
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We observe that, for any k € N, S, is bounded on L?(X). Indeed, from the
Fubini theorem, (2.3) and [3, Theorem F|, we deduce that, for any f € L?(X),

152, k()72 // /“ 2 du(y) dt

(PD) e () () o )

s [ [ et ] ) S S 1R

t

(2.16)

where the implicit positive constant is independent of f.
We now introduce the variable Hardy spaces associated with the operator L.

Definition 2.9. Let p(-) € C°¢(X) satisfy p, € (0, 1] and L be an operator

satisfying Assumptions 2.6 and 2.7. The variable Hardy space Hf(')()( ) is defined to
be the completion of the space

{f € LX) |SLH)ll ey < 00}

with respect to the quasi-norm

2)1P®)
10y = ||SL(f)||Lp(.)(X):inf{)\e(0, 50) /){[%] du(g;)g}.

Remark 2.10. (i) In particular, when p(-) = p € (0, 1] is a constant, Hz(')()()
was introduced in [8] as a special case and also studied in [24].
(i) If (X, d, p) :== (R", | - |, dx) is the classical Euclidean space, the variable

Hardy space Hf(')(/'\? ) was studied in [60].

2.3. Variable tent spaces. In this subsection, we first introduce some no-
tions and notation on variable tent spaces TP")(X*). Then we establish an atomic
decomposition of T7C)(X+). Here and hereafter, we always let X := X x (0, o0).

Definition 2.11. Let p(-) € P(X). The variable tent space TP)(X*) is defined
to be the space of all measurable functions f such that || f || zec) (v+) == [ Af)|| o)) <

oo, where, for any = € X,
{ / / o )]’
B(z,t) (l’, t)t

In particular if p(-) = p € (0, 00) is a constant exponent, we simply write T?(X )
instead of TP*)(X*). We point out that the tent space TP(X*) was studied in [4].
The following lemma is just [4, Proposition 3.10].

Lemma 2.12. [4] Let p € (1, 00). Then, for any f € TP(X*) and g € TP (X*),

the pairing
- —— d
ogy= [ [ s e Dant)

realizes T (X7 as the dual of TP(X*), up to equivalent norms, where 1/p+1/p’ = 1.

For any a € (0, 00) and z € X, let I',(z) be as in (1.2). Then, for any closed
subset F C X, define
= U La(z)

zelR
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Let o € (0, 00) and O be an open subset of X. The tent over O with aperture « is
defined by setting

(2.17) T.(0) :={(y, t) € X": d(y, O%) > at}.
If @ =1, we simply write R(O) and T'(O), respectively, instead of R;(O) and T}(O).
Let p(-) € P(X). Recall that a measurable function a on X'+ is called a (p(+), 00)-
atom if there exists a ball B C X such that
(i) suppa C T'(B);
(ii) for any ¢ € (1, 00),

(2.18) lallrae+y < (B Ixal Lo -

In particular, if (X, d, p) := (R", | - |, dx) is the classical Euclidean space, then
(p(+), oo)-atom was first introduced in [67].

For any p(-) € P(X) with 0 < p_ < py < 1, any sequences {\;}exn C C and
{Bj,}jen of balls in X, let

219 Ay ens {Byen) = {Z {MB)} }

jeN HXB]‘ HLP(‘)(X L)

By |65, Lemma 5.9], we know that, if p, € (0, 1], then, for any sequences {\;};en C
C and {B;}jen of balls in X,

(2.20) >IN < AN e, {Bj}en).
JEN

The following lemma establishes the atomic decomposition of 77()(X’), which is
a generalization of [67, Theorem 2.16] on the metric measure space of homogeneous
type.

Proposition 2.13. Let p € C"°8(X) with p, € (0, 1]. Then, for any f €
TPO(X), there exist {\j}jen C C and a family {a;}jen of (p(+), oo)-atoms such
that, for almost every (z, t) € X7,

(2.21) fla, t) =" Naj(x, t)
jEN
and
C U ooy < AN Yen, {Bitjen}) < Cllfllpve sy,

where, for any j € N, B; is the ball associated with a; and C a positive constant
independent of f. Moreover, if f € TPO(XT) N T?(X"), then (2.21) holds true in
both TPO)(X*) and T?(X™).

To prove Proposition 2.13, we need the following lemma which is just [43, Lem-
mas 2.9 and 2.16] (see also [12, Chapter III, Theorem 1.3] and [51, Lemma 2.2|).

Lemma 2.14. [43| Let Q be a proper open subset of X and () < oo. For any
x € X, let r(x) := dist(x, Q) /t. Then there exist a positive constant M € N and a
sequence {x;}jen of points in X such that, if rj := r(x;) for any j € N, then
(1) Q= Ujen By, 75);
(ii) B(w;, ri/4) N B(x;, rj/4) =0 for any i # j;
(iii) for any j € N, #{i € N: B(x;, 5r;) N B(z;, 5r;) # 0} < M, where §E denotes
the cardinality of the set E.
Moreover, there exists a family {¢;};en of non-negative functions on X such that
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(iv) for any j € N, supp ¢; C B(z;, 2r;);

(v) for any j € N and x € B(z;, r;), ¢;(x) > 1/M;

(vi) ZjeN b = X

We prove Proposition 2.13 by borrowing some ideas from the proofs of [51, The-
orem 1.1] and [67, Theorem 2.16] (see also |59, Theorem 3.1]).

Proof of Proposition 2.13. Let f € TP (X7). For any k € Z, let
Op :={r € X: A(f)(x) > 2"} and O} :={r € X: M(xo,)(x) > 11},

where v € (0, 1) is a constant, which is determined later, and M denotes the Hardy—
Littlewood maximal function as in (2.8). Then it is easy to see that, for any k € Z,
Oy, is open, Ok41 C Oy and Oy, C O; which is guaranteed by v € (0, 1). By the fact
that f € TPO(X+) with 0 < p_ < py < 1, we find that, for any k € Z, u(Oy) < o0,
which, together with the boundedness of M from L'(X) to the weak Lebesgue space
WL'(X), further implies that (O}) < 155 u(Ok) < 0. Let 1 € (0, 1) be a fixed
constant. By an argument similar to that used in the proof of [51, (2.3)] (see also
[59, p.513]), we know that there exists a v € (0, 1) such that

UT-.0npUE|.

keZ

(2.22) supp f C

where E C X' satisfies [, d“t J&t ),

If there exists some k € Z such that Of = X, then u(X) < oo. This implies
that X is bounded, indeed, X is a ball (see [46, Lemma 5.1]). In this case, let
Iy := {1}, Bg1 = X and thl = 1. If O; is a proper subset of X for any k € Z,
by applying Lemma 2.14 with 2 := Oj, therein, we obtain a set [, C N of indices, a
family { By, ;}jer, == {B(xk, j, 21k ;) }jer, of balls and a family {¢y ;};es, of functions
satisfying that, for any j € Iy, supp ¢, ; C By, ; and Zjelk ®k,j = xo;- Then it is
easy to see that, for any k € Z and (z, t) € X',

XT1 (0N (07,05 ) = D G @)Xy 00T (01, ) () 1).
Jjely
From this and (2.22), we deduce that, for almost every (z, t) € X7,

Zf z, tXTl n( \Tl 7I(Ok+1)(x t>
keZ

=N @ k(@ X1 Op\T1-y(0p, ) (5 1)

ke€Z jely,

For any k € Z and j € I, let

(2.23) ar = 270 Xy | s ) FOR X o001,
and
(2.24) Ap,j = 2" HXBM H;j(')(?() ‘

Then we have f =3, Zjelk Ak, jag, . By an argument similar to that used in the
proof of [51, (2.4)] and Lemma 2.12, we conclude that, for any k € Z and j € I,
supp ai, j C T'(Cy) B, j), where C;) = 2+ , and ay, ; is a uniform harmless positive
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constant multiple of a (p(-), co)-atom. Moreover, by an argument similar to that used
in the proof of |67, Theorem 2.16|, we find that

(2.25) A ({M,jrez jens {Cum Br,jtrezjen) S I fllmeo e,

where the implicit positive constant depends on 7 and .

Next, we prove the reverse inequality. Indeed, by the fact that a; ; is a (p(-), 00)-
atom associated with the ball C,)B), ; for any k € Z and j € I, we know that
supp A(ax, ;) C C(y By, ; and, for any ¢ € (1, 0o),

A M zacry < 1(Con BN Ixcon s oo
From this, the fact that p_ € (0, 1] and Lemma 2.4, it follows that

ZZ|)‘kJ|A a, ;)

k€EZ jel,

{Z > [k Al )P } -

kE€Z jely,

||f||TP<->(X+) = ||A( ||LP()(X =

Lr()(X)

IN

(2.26) o)

Al Ak
.
S {ZZ [II IJI XC(")Bk’j] }

kez jer, L1XCon Br g lrO ) LrO)(X)

~ A (i} {CwBr}) -

To complete the proof of Proposition 2.13, it remains to show that, if f €
TPO(X+) N T?(XT), then the series

(2.27) F=>00 Mjon;

keZ jely,

converges in both 770)(X+) and T?(X*). Indeed, if f € TP0)(XT), by an argument
similar to that used in (2.26), we find that, for any N € N,

Alf= Y Mjar,
1

|)\ | p— p_
b
N Z [ ; )ch)Bk,j]

k|+151>N ||XC(71)Bk,j||LP(')(X

Lr()(X)

This, together with (2.25) and the dominated convergence theorem (see, for example,
[23, Lemma 3.2.8]), implies that

lim [|A f — Z )\k,jahj

N—o0

k| +]j] <N O ()
p— ) p—
Z Ak, il
< 3 ‘ »J —
~ 1\}520 [HXC By ,||Lp(->(X)XC(")Bk’j 0
pg1>N LI B

Lp(-)()()
Hence, (2.27) converges in TP0)(X7).
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If f € T*(XT), by the Fubini theorem and (2.3), we obtain

A f — Z )\kJCI,kJ

|k|+17]|<N

12(x)
(2.28) u du(y) dt .
S | 2 e O g )
S L Y ot o 0%
|k|+[51>N

On the other hand, from Lemma 2.14(iii), (2.23) and (2.24), we deduce that, for
almost every (y, t) € X,

SN wgar iy, OIS 1y, 1.
ke€Z jely

This, combined with (2.28) and the Lebesgue dominated convergence theorem, fur-
ther implies that

lim [|A f — Z )\k,jakd

N—o0 -
|k|+]7]<N L2(X)

d dt
/ /hm | Ak, jak. i (Y, t)|2 1) =0.

t
|k|+15]>N

Therefore, (2.27) converges in T?(X™). This finishes the proof of Proposition 2.13.
U

3. Molecular characterization of Hf(')(X)

In this section, we establish the molecular characterization of H f(')(/'\f ). We begin
with recalling some notions.

Definition 3.1. Let L satisfy Assumptions 2.6 and 2.7 and p(-) € P(&X) with
p+ € (0,1]. Assume M € N and € € (0, 00). A function m € L*(X) is called a
(p(+), M, €)-molecule if m € R(LM) (the range of L) and there exists a ball B :=
B(xp, rg) C X with x5 € X and rp € (0, co) such that, for any k& € {0, ..., M}
and j € Z,

(3.1) |65 L 0| ) < 27702 B xsl o

Definition 3.2. Let L satisfy Assumptions 2.6 and 2.7 and p() € P(X) with
p+ € (0, 1]. Assume M € N and ¢ € (0, co). For a measurable function f on X,
f= 2;11 Ajm; is called a molecular (p(-), M, €)-representation of f if {m;},en is a
family of (p(-), M, ¢)r-molecules, the summation converges in L?(X) and {);}jen C
C satisfies that A({\;};en, {B;}jen) < 00, where, for any j € N, B; is the ball
associated with m;. Let

H‘Z(?Vf()() :={f: f has a molecular (p(-), M, ¢)-representation}.
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Then the variable molecular Hardy space Hﬁf'}\’f()() is defined to be the completion

of Hi%f(?( ) with respect to the quasi-norm
10 ey ey = inf {A({Aﬂ'}jGNa {Bj}jen):

f= Z Ajm; is a molecular (p(-), M, 5)—representation},

=1

where A({\;}jen, {Bj}jen) is as in (2.19) and the infimum is taken over all the
molecular (p(-), M, €)-representations of f as above.

The following theorem establishes the molecular characterization of H f(')(X ).

Theorem 3.3. Let L satisfy Assumptions 2.6 and 2.7 and p(-) € C'8(X) with
p+ € (0, 1). Assume M € NN (2(L — 1), 00) and e € (£, c0). Then HY' ) (X)

2
and H z(')(X ) coincide with equivalent quasi-norms.

Remark 3.4. (i) If (X, d, p) :== (R™, | - |, dx) is the classical Euclidean space,
Theorem 3.3 is just |60, Theorem 3.14] and the ranges of M and e coincide with
those of [60, Theorem 3.14], respectively.

(ii) If p(-) = p € (0, 1] is a constant exponent, from Theorem 3.3, we deduce
that, for any given M € Nﬂ%(% —3)ande € (%, 00), H75,(X) and HF(X) coincide
with equivalent quasi-norms. This is just [24, Theorem 3.15] and the ranges of M
and ¢ coincide with those of |24, Theorem 3.15], respectively.

(iii) Let p(-) € P(X) with p; € (0, 1]. Define Hff'f)i;jM(X) as the space of all
finite linear combinations of (p(-), M, €)r-molecules. Then, by Theorem 3.3 and an
argument similar to that used in the proof of |60, Proposition 3.13], we know that,
if MeNn(2 (= —3),00)and e € (— 00), then Hf(ﬁn 4 (%) is dense in H?(X)

with respect to the quasi-norm || - ||Hp< ()"

To prove Theorem 3.3, we first show that Hi(g\f()() c [HPY () n L2 (X)),

Proposition 3.5. Let L satisfy Assumptions 2.6 and 2.7, and p(-) € C'8(X)

with p, € (0, 1]. Assume M € NN (£ (— — 1), 00) and e € ( , 00). Then there

exists a positive constant C' such that, for any f € H L(3\4 (X),

||f||HII:(')(X) S C||f||H€(,J)\/}E(X)

Proof. Let f € Hﬁ(’g\’/f()( ). Then, by Definition 3.2, we know that there exist
{\;}jexn € C and a family {m;},en of (p(-), M, €)-molecules, associated with balls
{Bj}jen of X, such that

(3.2) f:ZAjmj in L*(X)

and

(3.3) 1 a0, 20y ~ AU A Hjens {Bjljeny),
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where A({\;};en, {B;}jen) is as in (2.19). By (3.2) and (2.16), we find that

which implies that there exists a subsequence of {S L(Z;\le Ajm;)}nen, without loss
of generality, we may use the same notation as the original sequence such that, for
almost every z € X,

lim = 07
N—o0

L?(X)

Se(f)(x) = lim Sp (ZA m]>

Hence, for almost every x € X, it holds true that

Sp(f)(z) < Z [ AL (my) (@ ZZ (AL (my) (@) xu () ()

j=1 i=

From this, Remark 2.1 and the fact that p_ € (0, 1], it follows that

ISL (o0 ey = NESLCHTPI 50
LP=(x)
<D D P [Se(my)xvs )P .
(3.4) =0 || j=1 L7= (x)
00 00 p% p=
=> {Z A7 [SL(mj)XUi(Bj)]p}
=0 ]| Li=1 L) (X)

To prove Proposition 3.5, we only need to show that there exist positive constants

C and 0 € (D (— — 1), 00) such that, for any (p(-), M, €),-molecule m, associated

with a ball B := B(zpg, rp) for some x5 € X and rp € (0, 00), and i € Z .,

(3.5) ISe(m)ll2@imy < €27 (B s oo -

Indeed, if (3.5) holds true, we then find that, for any i € Z, and j € N,

if 1/2
2 HXBJ'HLP(')(X) SL(mj)XUi(Bj) L2(20) S (B
By this and Lemma 2.4, we know that
{z s}
=1 Lr()(X)
1
(3.6) p(A_1) o)
G- Z [2 e 530 oy i, |

LP(')(X)

<27 PG A ens {Bjjen).
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Combining (3.6), (3.4), (3.3) and the fact that 6 > D(p% — 1), we further conclude
that, for any f € HY'\7(X) N L2(X),

1

—i[0—D(A—1)p_
1SL(F) vy S {22 G2l } A{{Aj}jen, {Bj}ien) S I Flgpeyse s

which is the desired result.
Next, we prove (3.5). Indeed, when i € {0, ..., 10}, by (3.1), € € (£, o0) and
the fact that Sy, is bounded on L*(X) (see (2.16)), we obtain

(3.7) IScm)ll2 ey S Il S (B2 xsl oo

When i € Z, N[11, o), for any given n € (0, 1), we write

ISc(m)|| 2.3y = / /OO /B(x , 12 Le="E (m) (y)]? ‘i;z; )tjlt du(x)]
Ll [ e e

du(y) dt 2
" / / / "'7@4 = T+1L
l +(B) J2inrg J B(z,t) Vx, t)t ()

To estimate II, by (2.16), (3.1) and the fact that ¢ € (p%, 00), we know that

L)
U;(B) 21y g B(z,t)

—4AM d#( ) dt
(3.9) L VTN “@]

< (2%rg) M M| Sy g (r52M LM

< 9-2inM H(T§2L_1)M (m)

(3.8)

IN

(t2L)M+16—t2L (L—M(m)) (y) ’2

1

m)) HLZ(Ui(B))
< 275 [ BYY2 7 -

‘L2(X)

To estimate I, for any i € Z, N [11, 00), let
Si(B) == (2i+1B) \ (Qi—2B) and §Z(B) = (2i+2B) \ (2i_33) ‘

If t € (0, 2rp) and = € U;(B), then it is easy to see that B(z, t) C S;(B). From
this, we deduce that

2 2 t2L
t"Le” <mx~ c) (v)
/i(B)/O /Si(B) [5:(B)]
2ipr g
Ahwh
U;(B) J0 B(z,t)

= 11 + Ig.

* dply) dt :
Wd“@]

I<

(3.10)

2L L (mxgi(3)> (?J)‘2 % du(x)] |
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For Iy, by the boundedness of Sy, on L*(X) (see (2.16)) and (3.1), we obtain
i€ i 1/2 -1
L < |18 (mxs) | e, S [65.00 ey S 27 @B

—i(e—D -
<2 (e 2)[M(B)]1/2’|XB’|L;(-)(X)'

For I;, by Remark 2.8(i), we know that {tée‘tL}bo satisfies the Davies-Gaffney
estimates. From this and the fact that dist([S;(B)]¢, S;(B)) ~ 2'rp, it follows that

(3.11) (%) ™

1

2’”77‘8 (ZTB) dt 2
I < e~ _@ g
5 [/ ol I gy o)

1
s o NN dt :
< . d
~ ||m||L2(X) [/UZ(B)/O (QZTB) V(flf, t)t M(z) )

where ¢ is a positive constant and N € N is determined later. By (2.3), we find that,
for any z € U;(B),

/21'717,3( ¢ )N dt Z /2J717~B tN ldt
0 2irg Vix, t)t G-tnpg V'

(3.13) < @)™V Z (27 p)N [V (w, 27r)]

j=—o0

(3.12)

< 9 iV Z 931N 9 (i=jn) D [V(zs, QJUTB)}_l
j=—00
Moreover, by (2.2), we know that, for any j € Z with j <1,
[V(ZL’B, QjUTB)}_l S 2(i—j7])D [V(ZL’B, QiT’B)}

From this and (3.13), we deduce that, for any i € Z, N[11, o0) and x € U;(B),

/217»3 ¢ Nt < oiN ZZ: 21N Q2i=imD 1/ (3 2"7’3)}_1
o 227~B V(l” t)t ~ )

j=—o0

-1

,S 9—i(N—2D)(1-n) {V(mB, 2@,3)}—1'
This, combined with (3.12), implies that

1y £ 250200 o g S 27520 Bk

From this, (3.11), (3.10), (3.9) and (3.8), it follows that, for any (p(~), M, e)L-
molecule m associated with ball B C X and i € Z N[11, c0),

(3.14) 150m) 2y S 2 B2 sl o
where
f := min {%(N —2D)(1—n), e — g, 2M77} .
By the fact that M > (— —3)and e € ( , 00), we choose some 7 € (0, 1) and

N € N large enough such that 6 € (D (p— - %), 00), which, together with (3.14) and

(3.7), implies that (3.5) holds true. This finishes the proof of Proposition 3.5. O
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The following proposition shows that [Hf(')(X) NLA(X)] C Hi(g\f(é\?)

Proposition 3.6. Let L satisfy Assumptions 2.6 and 2.7 and p(-) € C'°%(X) with
p+ € (0, 1]. Assume M € N and ¢ € (0, 00). Then, for any f € Hf(')(é\?) N LX),
there exist {\;}jen C C and a family {m;};en of (p(-), M, €)-molecules, associated
with balls {Bj}jen of X, such that f =322, A\jm; in L*(X) and

A({Aitiens ABitien) < Cllfll o)

where A({\;}jen, {Bj}jen) is as in (2.19) and the positive constant C' is independent
of f.

Proof. Forany f € H'(X)NL2(X) and (z, t) € X, let F(x, t) := t2Le L (f)(x).
By |3, Theorem F|, we know that t>Le~""" is bounded from L?(X) to T?(X*). This,
together with f € Hf“()() N L2(X), implies that F € TPO(X+*)NT?(X™). Then, by
Proposition 2.13, we conclude that there exist {\;}jexn C C and a family {a;};en of
(p(+), oo)-atoms, associated with balls {B;},;en of X, such that

(3.15) F=> Na; in T*(xT)nTrO(x")
j=1
and
(3.16) A({Aj}jens {Bjtien) ~ [Ellzrey ey ~ I o -

Let M € N. By the H,-functional calculi for L, we find that

o dt
(317)  f=Cun / (2L)MH et <t2Le_t2L( f)) — = mu(F) in LX(RY),

0
where C(yy) is a positive constant such that Cayy i~ {2(M+2) =2t 4 =1 and the
operator 7y, 1, is defined by setting, for any G € T?(X") and z € X,

> dt
ms(G)(a) = [ (ED UG 1)) T

0
By (2.16), Lemma 2.12 and an argument similar to that used in the proof of |60,
Lemma 3.11|, we conclude that ) 1 is bounded from T?(X*) to L*(X) and, for
any (p(-), oo)-atom a associated with ball B C X, my (a) is a harmless positive

constant multiple of a (p(-), M, ¢)-molecule associated with B. By this, (3.17) and
(3.15), we know that

f=Canmu L <Z Ajaj) = Cony Y Njmurp(ay)  in LX),
7j=1

j=1
which is a (p(:), M, €)-molecular representation of f. This, together with (3.16),
then finishes the proof of Proposition 3.6. U
Using Propositions 3.5 and 3.6, we can now prove Theorem 3.3.
Proof of Theorem 3.3. To prove this theorem, by a density argument, we only

need to show that, if M € NN (%(p% — 1), 0) and ¢ € (p%, 00), then

H’i("g\’f(?( )= [H POy N LA(x )] with equivalent quasi-norms.
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Indeed, by Proposition 3.5, we find that H’i(g\;()() C [Hf(')(X) NL%(X)] and, for any
f e HYP (),
(3.18) 1oty 17 g

On the other hand, from Proposition 3.6, we deduce that [Hf(')()\?) N L*(X)] C
H’i(g\;()\?) and, for any f € [Hf(')(X) N L*(X)],

1y S 19 ey

This, together with (3.18), then finishes the proof of Theorem 3.3. O

4. Dual space of H?")(Xx)

Let L satisfy Assumptions 2.6 and 2.7. In this section, we show that the dual
space of Hz(')()() is just the BMO-type space BMO%LL*(X). Here and hereafter,
we denote by L* the adjoint operator of L on L*(X).

Let p(-) € P(X) with py € (0, 1], L satisfy Assumptions 2.6 and 2.7 and 2y € X
be a fixed point. Then, for any M € N and ¢ € (0, o), define

MM (X) = {M = LM(): v € DY), il pgep, vy < oo} ,
where D(L*) denotes the domain of LM and

||M||M;’(.1;I,L(X)

(4.1)

M

. L1

= sup 2’ [V(l’o, 2])} : ||XB($0,1)||LP(')(X) Z HL_k(:u)HLZ(U.(B(xO 1))
JEL+ k=0 ’ 7

M, * L e, M *
My (X) = ) (Mp<->7L(X)> :
€€(0,00)
Here and hereafter, (M;(];4L(X))* denotes the dual space of M;’(.J;/{L(X), namely, the
set of all bounded linear functionals on M;(]‘)JL(X) and, for any f € (M;(];/[L(X))*
and g € M;’({;{L(X), (f, 9)m denotes the duality between (M;(];4L(X))* and
e, M
M (X)),
Remark 4.1. Let p(-) € C8(X) with p, € (0, 1], ¢ € (0, 0c0) and M € N.

Observe that, if 4 € M;(]Si . (X), then p is a harmless positive constant multiple of
a (p(-), M, €)r-molecule associated with the ball B(zg, 1) for xy as in (4.1). Con-
versely, if m is a (p(-), M, €)r-molecule associated with some ball B of X', then
m e M (X).

Definition 4.2. Let p(-) € P(X) with p, € (0, 1], M € N and L satisfy As-
sumptions 2.6 and 2.7. An element f € M%’)*L(X) is said to belong to BMO%LL* (X)
if

(B)]2
(42) Wlwvoy, o = sme o1,

1
2 2

(1= )" (1))

BcXx HXBHLP(-)(X

du(fv)]

< 00,
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where the supremum is taken over all balls B of X and L* denotes the adjoint operator
of L on L?(X).

Remark 4.3. (i) We point out that (4.2) is well defined. Indeed, for any t €
(0, 00), denote either (I +>L*)~" or e=**L" by Ay .. Then, for any f € M%;L(X),
(I — Ay )M(f) € L2 .(X) in the sense of distributions (see [35, 36]). That is, for any
ball BC X, ¢ € L*(B), ¢ € (0, 00) and M € N, (I — A, )™ () € M) (X) and

43 I— A )™ =(f, (I — A )" .
(4.3) (=2 (1), 0) = (£, U= 4)" (9)
(ii) An element f € M%’;L*(R") is said to belong to BMO%LL(X) if it satisfies
(4.2) with L* replaced by L.
We have the following characterizations of the spaces BMO% ), (X))

Lemma 4.4. Let p(-) € C*(X) with p, € (0,1] and M € N. Then f €
BMO%)’L(X) if and only if f € M%)TL*(X) and

B)]3 2 3
I lagons e 2y = sup = ||xB||Lp<) {/) (I+r30)7" " (f)(:c>) du(:c)} < o0,

(OF

where the supremum is taken over all balls B of X. Moreover, there exists a positive
constant C' such that, for any f € BMO%%L(X),

-1
||fHBMOA{) L

Lemma 4.5. Let p(-) € C'°5(X) with p, € (0, 1] and M € N. Then there exists
a positive constant C' such that, for any f € BMO%LL(X),

% 2 —t2L
S Tallmoce ||><B||Lp<><x U/ (L) e (f)e)

where the supremum is taken over all balls B of X and T(B) is as in (2.17) with
a=1.

x) < ||fHBMo§f;)ﬁes( < CHfHBMO”{) LX)

< Cllfllpno

2 du(zx)dt
t p(-), L( )

The proofs of Lemmas 4.4 and 4.5 are similar to those of [36, Lemmas 8.1 and
8.3], respectively, the details being omitted.

In this section, we also need the following dyadic cubes due to Christ [11, Theo-
rem 11|, which shows that the metric measure space X has a dyadic grid analogous
to that of the Euclidean space.

Lemma 4.6. [11]| There exist a family of open sets, {Qa.k acr,, ez, of X, where
It denotes some (possibly finite) index set depending on k, and constants §, ay €

(0, 1) and C € (0, oo) such that

(i) for any k € Z, (X \ Uney, Qork) = 0;
(ii) if i > k, then either Qq i C Qpr Or Qu,i N Qs =0
(iii) for any fixed k € Z, o € I, and i < k, there exists a unique 5 € I; such that
Qo k C Qp,i; _
(iv) for any k € Z and « € I, the diameter of Q... is not bigger than C6*;
(v) for any k € Z and « € Iy, there exists a ball B(zq, i, apdk) C Qa, k-
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Lemma 4.7. Let p(-) € C%(X) withp, € (0,1],0 <& <¢e < 0o, M € N and
M>M+&+2L2. Fixxzge€ X asin (4.1). Suppose that f € M%)TL(X) satisfies

(4.4) / = + L)~ " (fz(x”z du(x) < co.

l’ ZL’Q)]D+E

Then, for any (p(-), M, e)-molecule m, it holds true that

du(z) dt
t Y

{(f, m)am = Coany //X+ (L) Me " (f) (@) Le~PE (m) ()

where C(y) is a positive constant, depending on M, which satisfies

> dt
0 t

The proof of Lemma 4.7 is analogous to that of [39, Proposition 4.6], the details
being omitted. The only difference is that, instead of dealing with atoms as in [39],
we work on molecules by decomposing the underline space X into annuli according
to the ball associated with the molecule. This idea has been used in the proof of [36,
Lemma 8.4].

Remark 4.8. By Lemma 4.6 and an argument similar to that used in the proof
of [39, Corollary 4.3| (see also [60, Remark 4.6]), we find that, if € € (;—f), 00), then,

for any f € BMO%LL*(X), f satisfies (4.4). Indeed, let B := B(xg, 1) with z; as in
(4.1). Then, for any f € BMO%%L*(X), we have

o[l S N@E

l’ 1’0)]D+g

I L z)|?
(4.5) Z/U - (x’) xj)][(){;( ) du(z)

s_ZﬂD*a [ =@ @ dute).

U;(B)

()

In what follows, let all the notation be the same as in Lemma 4.6. For any j € Z,
choose k; € Z such that C'6% < 27 < C§i~! and let

(4.6) M; = {8 € I,: Qpx, N Blxo, C6"~1) # 0}

Then, by this and Lemma 4.6(i), we find that, for any j € Z,,

(4.7) Uj(B) € B(zo, ") € | Qauo.
BEM]‘

Moreover, by (iv) and (v) of Lemma 4.6 and the fact that C6* < 1, we know that,
for any 8 € M;, there exists some 25, € (g, such that

(48) B(Zﬁ,km a05k°) C Qﬁ,ko C B(Zﬁ,km 5’5’“0) C B(Z@ko, 1)
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From (4.5), (4.7), (4.8) and Lemma 4.4, we deduce that

J<22“’+@ Z/B S LY )] )

geM; Y B(z,kg,1
(4.9)

[V(Zﬁ,kov 1)]_1 HfHBMO

22 109 Z HXBZMO 1)

i= BeM;
By (4.6), (4.8) and Lemma 4.6(iv) with k& = k¢, we conclude that
B(2s4, 1) C Blao, 1 4+ 14 C8% 1) € B(xg, 3C6% 1) € B(wo,367127).

2
LPO)(X) o, (X)"

1
s

This, together with the fact that, for any given r € (0, p_), X(ze,36-127) S 27 [M(x3B)]
and Lemma 2.2, implies that

D 1 D
(4.10) HXB(Zﬁ,kovl) L) (X) S 27 |[MGs)l LP0O)(X) S HXBHL”(')(X)'
On the other hand, by (2.3), we have
(4.11) [V (2,0 D] S 277 [V (0, D]

Since ¢ € (i—?, 00), it follows that there exists r € (0, p—) such that & € (22, c0). For
such an r, by (4.9), (4.10) and (4.11), we find that

J 5 22_j( ||f||BMoM
§=0

it X8l V (@0, 1]

2 2 -1
~ ”fHBMO%%L(X)HXBHLP(')(X)[V(IO’ 1)] < 00.

Hence, f satisfies (4.4). This shows that the above claim holds true.
Theorem 4.9. Let p(-) € C'%(X) with p; € (0,1], M € NN (£ (— — 1), )
and € € ( , 00). Then (Hf(')()())* coincides with BMO%LL*(X) in the following

sense:

(i) Let g € BMO%_),L*(X). Then, for any f € Hﬁf'f)i;fM(X), the linear functional
ly, given by l,(f) := (g, f)m, has a unique bounded extension to Hf(')(é\?)
and there exists a positive constant C' such that, for any g € BMO%LL*(X),

||lg||(H§(')(X))* < CHQHBMO%)YL*(X)'

(ii) Conversely, let g € (Hf(')()())*. Then g € BMO%LL*(X) and, for any [ €
Hff'f)ifﬁ(é\f), it holds true that g(f) = (g, f)m. Moreover, there exists a
positive constant C such that, for any g € (Hﬁ(')(X))*,

Ifp(-)=pe(0,1]is a Constant exponent, Theorem 4.9 has been proved in |24,
Theorems 3.28 and 3.29|. In particular, if (X, d, p) := (R™, ||, dz) is the Euclidean
space, Theorem 4.9 coincides with [60, Theorem 4.8].

Proof of Theorem 4.9.  We first prove (i). Let g € BMO%%L*(X). By the

fact that the space H{f'f)i;f (X)) is dense in H?(R™) with respect to the quasi-
norm || - ||Hp(.)(X) (see Remark 3.4(iii)), to show (i), it suffices to show that, for any
L
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f e 2 (X) with e € (0, 00) and M € N,
(4.12) g. Faal < lolovion, .ol ooy

Next, we prove (4.12). For any f € Hff'f)iﬁM(X), it is easy to see that f €

Hp(')(X) N L2(X), namely, t2Le "F(f) € TPO(X) N T?(XT). By Proposition 2.13,
we know that there exist {);}52, C C and a family {a;}52, of (p(-), 0o)-atoms,
associated with balls {B;}en of X, such that

L " E(f) =Y Na; in TPOXT)NTHXT)
j=1

and
A({Nj}jen, {Bj}jen) ~

From this, Lemma 4.7, Remark 4.8, the Holder inequality, the fact that {a;};en are
(p(+), oo)-atoms, Lemma 4.5 and (2.20), we deduce that, for any f € Hf('f)i;fM(X),

o il = |Con ], (10 o)L T )

t
Sy \(tszMe—t%*(g)(x)\ oy, 1)) 2L

o0

S Z Y [//T (L) M e (g)(x)

[//Twa e O 5 )dt]

_1
S Z Ailllgllemon . ollxs;lleo oy 1(B)] 2 llagllzza+)

£2Le "L (f)|

PO (XF) ~ HfHHz(')(X)'

2 du(x) dt] :

t

< Z Milllgllemor .y S AEA ens {Bi}jen)llgllmmor . x)

||fHHP(>(X 191l Bmon My LX)
namely, (4.12) holds true. This finishes the proof of (i).

Next, we prove (ii). Let g € (Hf(')(é\?))*. Then we know that, for any f €
Hp(')(?()
L 9

1901 < Nl 20

Observing that, for any (p(-), M, €),-molecule m, ||mHHp(.>(X) < 1, we obtain
L
(4.13) 9] S 19l g0 -

On the other hand, from Remark 4.1, it follows that, for any h € M;(];4 . (X) with

2| pyge = 1, h is a harmless positive constant multiple of a (p(:), M, €)r-

()
p() L
molecule associated with the ball B(zg, 1) for xy as in (4.1). Combining this and
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(4.13), we find that, for any € € (0, 00), g € (M;(A)JL(X))* Hence, g € M%’)TL(X)
and, for any h € M;’(,];{L(X),

(4.14) (g, By = g(h).
Next, we show that
(4.15) lgllenop, .y S M9ll grpe ey

Indeed, by Assumption 2.7, it is easy to see that, for any ball B C X, ¢ € L*(B)
with ||§0||L2(B) = 1,

[N(B)]% _ erBl\M
HXBHLP(‘)(X) u )7(e)

is a harmless positive constant multiple of a (p(-), M, €)-molecule. From this, (4.3),
(4.14) and (4.13), we deduce that, for any ¢ € L?(B) with |¢[|125) = 1,

B [ (=) @) @)pta) dute)

||XB||LP(')(X)
B)]z M
N BBy,
||XB||LP(')(X)
which implies that, for any ball B C X,

(B)]?
HXBHLP(')(X) [/B

Thus, (4.15) holds true, which completes the proof of (ii) and hence the proof of
Theorem 4.9. U

S Hg”(Hg(')(X))*’

M

[NIES

2

(1-)" (@)

d,u(x)] < llgll (HPO) (X))

5. Variable Hardy spaces associated with
non-negative self-adjoint operators

In this section, motivated by [55, 56|, we establish the non-tangential and the
radial maximal function characterizations of Hz(')()( ), when L is a non-negative
self-adjoint operator, on L?*(X), having a Gaussian upper bound. Throughout this
section, we always assume that L is an operator satisfying the following two condi-
tions.

Assumption 5.1. L is a non-negative self-adjoint operator on L?(X).

Assumption 5.2. The kernel W; of e for any ¢ € (0, co) is a measurable
function on X x X and has a Gaussian upper bound, namely, there exist positive
constants C' and ¢ such that, for any ¢ € (0, c0) and x, y € X,

2
£ (el Y,

V(z, V1) t

Remark 5.3. (i) If L is a one-to-one operator satisfying Assumptions 5.1 and
5.2, then L falls into the scope of operators satisfying Assumptions 2.6 and 2.7. If L
is an operator which only satisfies Assumptions 5.1 and 5.2, but is not one-to-one,
then L may not have a bounded holomorphic functional calculus on L?(X’). However,
even for such an operator, instead of bounded holomorphic functional calculus, we

Wiz, y)
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can use functional calculus via the spectral theorem (see (5.1) below) and we know
that all the results obtained in the preceding sections still hold true.

(ii) Observe that the Gaussian upper bound for W; is further inherited by the
time derivatives of Wy, namely, for any k € N, there exist positive constants c(;) and
C(x) such that, for any ¢ € (0, co) and almost every z, y € X,

'gfkwt(x y>‘ %e@ (‘C“”M)

(see 35, (7.2)]).

Recall that, in [64, Chapter XI|, if L is a non-negative self-adjoint operator on
L*(X) and E7(\) denotes a spectral family associated with L, then, for every bounded
Borel function F': [0, co) — C, define the operator F/(L): L*(X) — L?(X) as follows:

(5.1) F(L) := /0 T O dEL(N).

Remark 5.4. The holomorphic functional calculus defined as in (2.13) coincides
with the above bounded Borel functional calculus when L is a non-negative self-
adjoint operator on L?(X). Indeed, if L is non-negative self-adjoint on L*(X) and
Y € W(S)) with pu € (0, 7), then, by (2.13), we know that ¢)(L) is defined as follows:

_ / B(E)(E1 — L)~ de,

where v := {re®: r € (0, c0)} U {re ®: r € (0, c0)}, for any given v € (0, p), is a
curve consisting of two rays parameterized anti-clockwise. This, together with the
fact that, for any £ € C\ (0, 00), (1 —L)"' = [[Z(§—=A)""dEL(X) (see, for example,
[40, p.357|) and the Cauchy theorem, 1mphes that

/w (61— L) dt = /¢ / NN dEL () d
_ / / PONE— N dEdEL () = / () dEL (V)

Hence, (5.1) coincides with (2.13) when L is a non-negative self-adjoint operator on
L*(X).

In particular, for any ¢ € (0, oo), the operator cos(tv/L) is well defined on L?(X).
It follows from [54, Theorem 2| and [14, Theorem 3.4] (see also [10, 58]) that the inte-

gral kernel Kcos(t V) of cos(ty/L) has the following finite speed propagation property
for solutions of the corresponding wave equation:

(5.2) supp Koo iv7) C {(2,y) € X x Xt d(x,y) <t}

The following lemma is just [35, Lemma 3.5|, whose proof is essentially based on (5.2).
In what follows, for any f € S(R) (the class of Schwartz functzons on R), its Fourier
transform f is defined by setting, for any ¢ € R, f(f fR Ye ¢ .,
We also denote the class of all infinitely differentiable functlons on R Wlth compact
supports by C°(R).

Lemma 5.5. [35] Let ¢ € C°(R) be an even function with supp¢ C (—1, 1)
Let ® denote the Fourier transform of ©). Then, for any k € Z, and t € (0, 00), the
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integral kernel K 2y).q Ty Of (t2L)*®(tV/'L) satisfies

SuppK(ﬁL)n@(tﬁ) C {(x,y) e X x X: d(flf,y) < t}

Recall that, in [56], the non-tangential maximal function f; and the radial max-
imal function f; are defined, respectively, by setting, for any f € L?*(X) and = € X,

(5-3) fi(@):= sup (e H()(y)],
(y,t)el(x)

where I'(z) is as in (1.2) with @ = 1, and

(5.4) @)= s [ ()]

Then we introduce the variable Hardy spaces associated with the non-tangential or
the radial maximal function, respectively, as follows.

Definition 5.6. Let p(-) € P(X) with p, € (0, 1].
(i) The Hardy space H z(') (X) is defined to be the completion of the space

,max

{F € LX) 1l o) < o0}
with respect to the quasi-norm HfHH’L(') x) = 170 o () -

(ii) The Hardy space Hf(') (X) is defined to be the completion of the space

,;rad

{1 €220): il o < )
with respect to the quasi-norm HfHH’L(;)ad(X) = HfZFHLp(.)(X) :

The following theorem is the main result of this section, which shows that the
Hardy spaces H"(X), H ﬁ)ad(?( yand H ffﬁlax()( ) coincide each other with equivalent
quasi-norms.

Theorem 5.7. Let p(-) € C°5(X) with p_ € (0, 1] and L be an operator sat-
isfying Assumptions 5.1 and 5.2. Then the Hardy-type spaces H'(X), Hf%d()()

and H zglax()( ) coincide each other with equivalent quasi-norms.

Remark 5.8. (i) In particular, if (X, d, p) := (R™, | - |, dz) is the classical
Euclidean space, Theorem 5.7 was obtained in [66].

(i) If p(-) = p € (0, 1] is a constant exponent, Theorem 5.7 is just [56, Theo-
rem 1.3].

To show Theorem 5.7, we first establish the following several propositions.

Proposition 5.9. Let p(-) € C¢(X) with p_ € (0, 1] and L be an operator
satisfying Assumptions 5.1 and 5.2. Then the space Hfg)ad()\f ) coincides Hffgmx(é\f )
with equivalent quasi-norms.

Proof. Let f € L*(X)N Hffgad()(). Then, by (5.3) and (5.4), it is easy to see

that, for any = € X, f; (x) < fi(x). From this and a density argument, we deduce
that

(5.5) ) () € HYO) ().

L,max
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Next, we establish the reverse inclusion. Let N € N. Define the maximal function
M3 by setting, for any f € L*(X) and z € X,

d(z,y)
t

M= s [ 0] |

yeX, t€(0,00

Then, for any f € L*(X) and x € X, we obtain

fite) = sup | H(f)(y)

(y, )T ()

(5:6) < s [1s ST BT e

(y,t)el(z

<2V sup [1 + il
)

T yex,te(0,00

= )] =2 M (1)),

where I'(z) is as in (1.2) with @ = 1. On the other hand, by [56, (3.4)], we find that,
if @ € (0,1) and N > 2D, then, for any f € L*(X) and almost every = € X,

1/0

k% 0

(5.7) Mg (@) < [M([H]) @]
where D is as in (2.2) and M as in (2.8). Fix some 6 € (0,p_) and N € N such that
N6 > 2D. From (5.7), (5.6), Lemma 2.2 and Remark 2.1(iii), it follows that, for any
fe LX),

* *ok + 0 1/6

12 ooy S IME (Dl S || [M (1£717)]
o [11/6
~ [l (1527)

+
L%i ¥) S HfL HLP(')(X)'
This, combined with a density argument, implies that Hf(') (x) c HY) (X). By

() (X)

(
,;rad L,max

this and (5.5), we then complete the proof of Proposition 5.9. U

We now establish the atomic characterization of Hf(')()( ) via beginning with
recalling some notions.

Definition 5.10. Let L satisfy Assumptions 5.1 and 5.2, p(-) € P(X) with
pi € (0, 1] and M € N. A function a € L?(X) is called a (p(-), M) -atom, associated
with L, if there exist a function b € D(LM) (the domain of L) and a ball B :=
B(xg, rg) C X with zp € X and rg € (0,00) such that a = LM (b) and, for any
ked{o,..., M},

(i) supp L*(b) C B;

(i) [rBL) (O)lzacey < rB (1B lIXBI ooy )

Definition 5.11. Let L satisfy Assumptions 5.1 and 5.2, p(-) € P(X) with
p+ € (0, 1] and M € N. For a measurable function f on &, f =27 \;a; is called
an atomic (p(-), M)-representation of f if {a;};en is a family of (p(-), M) -atoms, the
summation converges in L?(X) and {\; };en C C satisfies that A({\;}jen, {Bj}jen) <

oo, where, for any j € N, B; is the ball associated with a; and A({\;};en, {B;}jen)
is as in (2.19). Let

H‘z(";t’M(X) := {f: f has an atomic (p(-), M)-representation} .
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Then the variable atomic Hardy space Hffgt7M(X) is defined to be the completion of

Hﬁ(,';hM(X) with respect to the quasi-norm
HfHHﬁf!c,M(X) = inf {A({)\j}jeN’ {Bj}jEN):

f= Z Aja; is an atomic (p(-), M)—representation},
j=1

where A({\;}jen, {B;}jen) is as in (2.19) and the infimum is taken over all the

atomic (p(-), M)-representations of f as above.

The following proposition establishes the atomic characterization of H f(')(X ).

Proposition 5.12. Let L satisfy Assumptions 5.1 and 5.2, and p(-) € C'°8(X)

(i) Assume M € N. Then, for any f € Hf(')(X)ﬂL2(X), there exist {\; }jexn C C
and a family {a;}jen of (p(-), M)p-atoms, associated with balls {B;};en of
X, such that f =322, Aja; in L*(X) and

A({Ajten, {Bjljen) < CHfHHg(')(X)’

where the positive constant C' is independent of f.

(ii) Assume M € (%(YDL — 2), 00). Then there exists a positive constant C such

that, for any f € Hi(,';t,M(X),

1102y < CUF Nz,

To prove Proposition 5.12, we need some preliminary. Take a positive function
¢ € C*(R) with supp¢ € (—1, 1). Let ® be the Fourier transform of . For any
M € Z, and 7 € R, let ¥(x) := 22D P(z) and consider the operator 7y 1, which
is defined by setting, for any F € T?(X ") and x € X,

dt

(5.8) T (F)(z) = /0 T WVI)(F(, 1)) -

The operator my 1, is bounded from T?(X™) to L*(X). Indeed, let F € T?(X™).
Then, by the fact that L is self-adjoint, Lemma 2.12 and [3, Theorem F|, we find
that, for any g € L*(X) with ||g||z2(x) = 1,

/X o, (F)(2)g(@) dpu(x) dt

[ [ rem e D
w(VI)g)

< |V F || 72+

T2(x+)

Sl | [ [revDol,, ¢ "

L2(x) t

S IFr2anllgllziey S 1F Nz,

which further implies that 7y 7, is bounded from T?(X ™) to L*(X).
The following lemma plays a key role in the proof of Proposition 5.12.

Lemma 5.13. Let p(-) € P(X) and L satisfy Assumptions 5.1 and 5.2. Assume
that A is a (p(+), oo)-atom associated with a ball B C X. Then, for any M € N,
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there exists a positive constant C(yy, independent of A, such that Ciyyme,(A) is a
(p(+), M)-atom associated with 2B.

Proof. Let A be a (p(-), oo)-atom associated with a ball B := B(xp, rg) for
some zp € X and rg € (0, 00). Define

o dt
(5.9)  a:=me(A) and bi= / PO LBV I)(AC, 1)) T,
0
where my 1, is as in (5.8). Then we obtain a = L (b). Moreover, by Lemma 5.5 and
the fact that supp A C T'(B), we know that, for any k € {0, ..., M},
(5.10) supp L*(b) C 2B.

On the other hand, when k € {0, ..., M}, by (5.9), (5.8) and the fact that L is
self-adjoint, we find that, for any g € L*(X),

[ 0B G @t duta)
= [ [ e L VI AL ) @) G dute)

= [ [ O A, O DI D ) ) dute) -

From this, the fact that supp A C T(B), Lemma 2.12 and (2.18), we deduce that,
for any k € {0, ..., M} and g € L*(X) with | g||r2x) = 1,

[ 0B 0 @)ae) duta)

< p2M A(z, 21104y T) (g) ()] dp)
<ot [ 1A 0l D eV D) 6) @) due) G

(L) eV I)(g)|

< BN All 2+

T2(X+)
1 _
=15 | Allrzen lgll2ey S 78 B2 B Lo (a0

which further implies that
1 _
1BLY ) oy S P2 OB sl

Combining this and (5.10), we then complete the proof of Lemma 5.13. O

Using Lemma 5.13, we now show Proposition 5.12.

Proof of Proposition 5.12. We first prove (i). For any f € H*"(X)NL2(X) and
(z,t) € X*, let F(x, t) := t2Le "L(f)(x). By |3, Theorem F|, we know that ¢*Le~*~
is bounded from L?(X) to T?(X*). This, together with f € Hi(')(X)ﬂLz(X), implies
that F' € TPO(X+) N T?(X7T). Then, by Proposition 2.13, we further conclude that

there exist {\;}jen € C and a family {a;};en of (p(-), co)-atoms, associated with
balls {B;},en of X, such that

(5.11) F=> Naj in T*(X")NnT"0x")
j=1

and
(5.12) A({Aj}jens {Bj}en) ~ [ Ellzee ey ~ (1 gpo s
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where A({)\j}jeN, {Bj}jGN) is as in (219)
Let M € N and 7wy 1 be as in (5.8). By the bounded holomorphic functional
calculi for L, we find that

(5.13)
> dt
f = Can / (L)1) (L H(f)) T = Canmeu(F) in LA(R"),
0
where C(yy is a positive constant such that Ciupy [~ M2 (1)t 4 = 1. From
the fact that 7y, 1 is bounded from T%(X™") to L*(X), (5.11) and (5.13), we deduce
that

(514) f = C(M)WM,L (Z )xja]) = C(M) Z >\j7TM,L(aj) in L2(X)
j=1 i=1

Moreover, by Lemma 5.13, we find that {my; (a;)}jen is a harmless positive con-
stant multiple of a family of (p(-), M)r-atoms. Thus, (5.14) is an atomic (p(-), M)-
representation of f. This, together with (5.12), then finishes the proof of (i).

The proof of (ii) is similar to that of Proposition 3.5, the details being omitted.
This finishes the proof of Proposition 5.12. O

Proposition 5.14. Let p(-) € C'8(X) with p_ € (0, 1] and L be an operator
satisfying Assumptions 5.1 and 5.2. Then there exists a positive constant C' such

that, for any f € H'V(X),
HfHHZ(,;'E)ax(X) < CHfHHz(')(X)'

Proof. Let f € H?(X) N L2(X). By (i) of Proposition 5.12, we know that
there exist {\;}jen C C and a family {a;};jen of (p(:), M) -atoms with M € N,
associated with balls {B;};en of X, such that

(5.15) f=Y XNa; in L*X)
jEN
and
(5.16) A Yiens {B5}en) S 1100 -
Next, we prove that, for any f € H?"(X) N L2(X),
(517) ||f||H€(;3\ax(X) S A({)‘j}jEN’ {Bj}jeN)‘

To this end, we first show that the non-tangential maximal function f; is bounded
on L?(X). Indeed, let f € L*(X). Then, by Assumption 5.2, (2.2) and (2.3), we
conclude that, for any z € X, t € (0,00) and y € B(z,1),

1 [d(y,2)]?
< e 2 |f(2)|du(z
/XV(y,t) |f(2)| dp(z)

)| =

/X Wea(y, 2)f(2) du(2)

iing

1 _4d
(518) ' / oo P N C)

J

) /B )

<
Il
o

N
<
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2]D —479

> Vo / L EI)

2/\

7=0

2/\

Y 2P M(f)(x) S M(f)(@),

7=0

where U;(B(y,t)) is as in (1.3) with B replaced by B(y,t). Hence, we find that,
for any f € L*(X) and z € X, f}(z) < M(f)(x). By this and the fact that M is
bounded on L?(X), we know that f; is bounded on L?*(X). Combining this, (5.15)

and the Riesz theorem, we conclude that, for any f € H Z(')(X )N L*(X) and almost
every r € X,

<D INla) @) < 0> M) (@) xwsy (@)-
j=1 7=1 k=0

Thus, we have

o o p—
1Ny < [ZZ |Aj|<a]>LxUk<BJ>] ,
k=0 j=1 LZ;’_*(X)
(5.19) e
o o0 p_
<3 ISt}
k=0 || Lj=1 LPO)(X)
We now claim that there exist positive constants C' and 0 € (D(p% — 1),00) such

that, for any k € Z and (p(-), M)r-atom a, associated with ball B := B(xp,rpg) for
some zp € X and g € (0, 00),

1 _
(5.20) lazll 2o (my < €27 10(B)]? lIxa o ) -

If this claim is true, then, by (5.19) and an argument similar to that used in (3.6),
we obtain (5.17), which, together with (5.16), then completes the proof of Proposi-
tion 5.14.

Next, we prove the above claim (5.20). Indeed, when k£ € {0, 1, 2}, by the
boundedness of f; on L?(X) and Definition 5.10, we obtain

lazll 2wz S lallzze) S B2l 0 -

When k£ € N and k > 3, for any = € Ui(B), we write

ai() = sw | Ha)(y)
(y,t)el(z)
(5.21) < sup ’e‘t2L(a)(y)’+ sup ’e‘t%(a)(y)’
te(0,c2knr g] te[c2knrg,00)
d(z,y)<t d(z,y)<t

=: I(z) + II(2),

where ¢ € (0,00) and 1 € (0,1) are constants which are determined later, and I'(z)
is as in (1.2) with o = 1.
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We first estimate I. Observe that, for any k € NN[3, 00), z € U(B), y € B(x,1)
and z € B,

d(y, z) = d(z, xp) — d(x, y) — d(z, vp)
> ok lyp — 2kpy — g > (1 — 25771 2F 2y
Fix ¢ small enough such that 1—¢23""! € (0, 1). Then, by Assumption 5.2 and (2.3),
we find that, when & € N and k > 3, for any x € Ui(B),

I(2) < sup /X Wa(y, 2)a(2)]| dpu(=)

te(0,2kMr )
d(z,y)<t
5.92 S | e el duce)
) sup e t a(z)|du(z
( ) ~ te(0,2knr ) J & V(y7 t)
d(z,y)<t

1 akr,
S osup / e T |a(z)| du(z).
1e(0.261r5] J Bagrs) V(T 1)
By (2.3) and (2.2), we know that, for any z € Uy(B) and t € (0, ¢2*rp],

- 1+d(:5,:)sB)D L 1+2k7’BD 1
~ t V(ZL’B, t) ~ t V(I’B, t)

_ (25 2b 1 _ (25 2b 1
~ t V(I’B, Qk’f’B) ~ t V(I’B, ’I“B)

This, combined with (5.22) and the Hoélder inequality, implies that, for any = €
Uk(B),

1) < (%)w 1 ()] du()
x) < sup e_c_tr / a(z)| du(z
te(0,c2k1r | t V(xBu TB) B(zp,rB)

_eak(1—n) _
Se S [1(B)] 1/2||CL||L2(;\./ S22 kNHXBHLp()(X

)’
where N € NN (p%, 00) is a fixed constant. Hence,

1
(5.23) l2@my < 277" [12°B)]? Ixal o a <27 M S)[u(B))2 X100 )

Next, we estimate 1. For any x € Uy(B), we have

I(z) = sup r2M¢2M ‘(t2L)M6_t2L (r§2Mb) (y)’
te[c2k’77“B,oo)
d(z,t)<t

5 2—2M77k ( —2Mb)L o (I)

where b € D(LM) such that a = L (b) and, for any f € L?(X) and = € X,
(ED)"e () )|,

sz(SC) ‘= sup
(v, t)eT(z)

where I'(z) is as in (1.2) with o = 1. By this, Remark 5.3(ii) and an argument similar
to that used in (5.18), we find that, for any = € Uy (B),

H( )<2 2MnkM( _2Mb)( )

Thus, we obtain

_ 1/2 —
11T 2 my S 27 (B X8 o ey
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By taking some M € (£ (% — 1), 00) and n € (0, 1), we have 2Mn > D(p% -1

Combining this, (5.23) and (5.21), we obtain (5.20), which completes the proof of

Proposition 5.14. U
Let F' be a measurable function on X*. For any a € (0, 00) and = € X, define
(5.24) Falx):= sup |F(y,1)],

(v, )€l (2)
where I',(z) is as in (1.2).

Lemma 5.15. Let p(-) € C8(X) with0 < p_ < p; < oo and0 < ay < a; < 00.
If A € (0, p_), then there exists a positive constant C' such that, for any measurable

function F on X7,
e
[l < (1+2) 1,

Proof. Let 0 < ay < a3 < oo and A € (0,p_) be as in the assumption of this
lemma. By (5.24), we know that, for any x € X, there exists some (y, t) € 'y, ()
such that F; (z) < 2|F(y, t)|. From this, we deduce that, for any z € B(y, ast),

* ~ 1 *
Fag(z> = sup ‘F(Z, t)| Z ‘F(yv t)‘ Z §Fa1(x)7
(Z,t)€lay (2)

which, together with the fact that d(x,y) < a;t, further implies that, for any € X,

1., 1 1 RPN
LFO”( >] = V(y, ast) /B(y,agt) o)) dn(2)
V(z, d(z, y) + ast) 1
- V(y, Oégt) V(I, d(.flf, y) + Oégt)

. A
x / [F2,(2)] ducz)
B(z, d(z,y)+ast)

Viz, (a1 + a)t) RPN
S Vg M (E) @

Moreover, by (2.2) and (2.3), we have

(5.25)

V(z, (a1 + an)t) < (1 + ﬂ) ’ V(z, ast)

< (1 + ﬂ)D {1 ; dle, y)} V(y, ast) < (1 + Z—:)w V(y, ast).

[6%) Oégt

Combining this and (5.25), we find that, for any x € X,

2D

Fw s (14 2) 7 v (1)) @]

Therefore, by the fact that A € (0, p_), Remark 2.1(iii) and Lemma 2.2, we obtain

@) S (1 i Z_;) ) H [M <[F52}A> (x)}% L0 ()

2D 2D
A

1
T
ra < (17 2) I boa

I,
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which completes the proof of Lemma 5.15. O
Let ¢ € S(R) be an even function. Then, for any f € L*(X) and x € X, define

¢ho(f)@) = sup  |p(tVI)(f)(y)|-

(y,t)€Ta ()

Lemma 5.16. Let p(-) € C°8(X) and L satisfy Assumptions 5.1 and 5.2. Let
0 < ag < oy < oo. Assume that ¢, v € S(R) are even functions satisfying ¢(0) =

1(0) = 1. Then there exists a positive constant C := C(, 4, a;,as), depending on ¢,
¥, ay and am, such that, for any f € L*(X),

(5'26) ‘ )HLP(‘)(X) :

Proof. For any x € X, let ®(z) := ¢(x) —1(z). To prove (5.26), by Lemma 5.15,
it suffices to show that, for any f € L*(X),

(5.27) | @3

)HLP(')(X) —

i1 Hm-)(;c) HLW(X) '

Indeed, let \ € (i—?, o0). Then, from the proof of [56, Proposition 2.3|, we deduce

that there exists a positive constant C', depending on ¢ and ), such that, for any
fel?X)andz € X,

sVDN0)| <0 s [1+ 222 uevDine),

5€(0,00)
zeX

sup
(y, 1)l ()

where T'(x) is as in (1.2) with @ = 1. Thus, we find that, for any f € L*(X) and
r e X,

* p— d(l‘, Z) —Ap- p_
2@ S s 1+ A e
[ee} —Ap— Do
Sl +> s [+ S D)
D= P

sz [0 05 (F) ()]

This, combined with Remark 2.1(iii) and Lemma 5.15, implies that

1

192l o, S {zw (] }

S
LP= (x

3 02 (]| )}p_

2

I ztgg 1

<
Il
o

1
p_
* p—
, (f)‘ Lp(-)()()}
1

RLEa] [ )} IS

2Dp_
—JAp— (1+23) 7

AN

{
{
{

*7 (f)} i;(-)(x) )
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where 1 € (0, p_) is a positive constant such that i—D < % < A. By the fact that

S (;—?, 00), we know that such a constant 1 always exists. Thus, we obtain (5.27)
and hence (5.26), which then completes the proof of Lemma 5.16. U

The following proposition shows that H?") (X) Hifgt7M(X).

L,max
Proposition 5.17. Let M € N, p(-) € C'8(X) and L satisfy Assumptions 5.1
and 5.2. Then, for any f € Hf(') (X)N L*(X), f has an atomic (p(-), M )-represen-

,max
tation, namely, there exist {\;};en C C and a sequence {a;};en of (p(-), M) -atoms,

associated with balls {B;}jen, such that f =3, Aja; in L*(X) and

jEN
(5.28) A }sen; {Bi}ien) < Cllfllp0 vy
where the positive constant C' is independent of f. Moreover, Hﬁfﬁ)aax(x) C Hﬁfgtv u(X)

and there exists a positive constant C such that, for any f € H fglax()( )
(5.29) 1l 0 < 1o

Proof. To prove Proposition 5.17, we first claim that it suffices to show that,
for any f € Hﬁfﬁlax()() NL*(X), f has an atomic (p(-), M)-representation and (5.28)
holds true. Indeed, if this claim holds true, then, from (5.28) and a density argument,
we deduce that (5.29) holds true.

Now, we prove the above claim. Let ¢ € C®(R) be an even function with
suppp C (=1, 1) and ® the Fourier transform of ¢. Given any M € N, for any
r € R, let U(x) := 2 ®(z). By the properties of the functional calculus of L (see,

for example, |64, Chapter XI|), we know that, for any f € L?(X),
o dt
(5.30) f=cy' / (VL) Le " (f) — i L*(X),

0
where ¢y == [;° U(t)t2e " & For any z € R\ {0}, let

(5.31) n(x) = cgl/ U(tr)t2a%e 5= cgl/ U(y)ye ™ dy
1 x

and 7(0) := 1. Then it is easy to see that n € S(R) is an even function. From (5.31),
it follows that, for any given 0 < a < b < oo and any f € L*(X),

n(aVZ) (F) =0 (W) () = ' / W(VD)PLe () % in L(X).

For any f € L?(X) and z € X, let
Mi(f)a) = s [[ELeH())] + o (W) ()]
(y,t)€l's ()

where I's(z) is asin (1.2) with & = 5. Then, from Lemma 5.16, (5.27) and Lemma 5.15,
we deduce that, for any f € Hff') (X)N LX),

max

(5.32) ML ()l ooy 2y S ||f||H§<;3)aX(X)'

In what follows, fi)r any open subset O of X, denote by O the tent over O with
aperture 4, namely, O := T4(O), where T4(O) is as in (2.17) with o = 4. For any
1 € 74, let

O;:={zeX: M(f)(z)>2'}.
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Then we can decompose X+ as follows:
(5.33) xt=Jo = (0:\0m) = U
i€Z i€Z i€Z

Noticing that, for any ¢ € Z, O; is an open subset with p(0;) < 0o, by Lemma 2.14,
we find that, for any ¢ € Z, there exists a sequence {B; i }ren = {B(&ik, Tik) bren Of
balls, with {& k}tren C X and 7y = dist(&; x, OE)/Q for any k& € N, such that

(i) Oi = U2 Big;

(i) {3Bik}ren are pairwise disjoint.

For any measurable subset £ C X, let

R(E) :={(y, t) € X: dist(y, F) < 2t}.

Forany v € Z and k € Z,, let
(5.34) R(Bip) =0 and Ej;:=E)

R(B)\ | R(B.)

By this and the fact that O; = U2, B, x, we conclude that /O\Z C [UjenR(B;,;)] and
[Eiy gy VEiy ky] = 0 if 4y # i3 or ky # ko. From this, (5.33) and (5.34), we deduce that

v -ylan]yme|}

k—1
:U EZm(U R(Bi,k)\UR( lj )] UUEzk
1€Z keEN j=0 i€Z keEN

By this and (5.30), we know that, for any f € Hff') (X)n

=33 & / VL) (XEiythLe‘ﬂL(f))d? in L2(X)

i€Z keEN
see |56, p. 11| for more details on this fact). For any ¢ € Z and k € N, let
(see | y
, > _ dt
)‘Lk = 2Z||XBi,k||LP(')(X)> bi k= 0\111)‘ / t2M(I>(t\/Z) (XEi,kt2L6 tQL(f)) 7

0
and

> dt
ai,k = LM(buk) = C\pl)\lk /0 \I](t\/Z) (XEi’ktzLe_ﬁL(f)) 7

Then we have f =, > g Aigaig in L*(X). Moreover, by [56, p.12], we know
that, when i € Z and k € N, for any j € {0, ..., M},
(5.35) supp L’ (bix) € B(&ik, 8ri)

and there exists a positive constant C' := Cy), depending on V¥, such that

2M —1
( sz Zk HLOO( < Cri,k HXsz |Lp(-)(X)’

This, together with (5.35), implies that {a; x }icz, ren is a harmless positive constant
multiple of a family of (p(-), M) -atoms associated with balls {8B, \ }icz ren. There-
fore, to complete the proof of this proposition, it remains to show that

A({Niktiez ken, {8Bikticz ken) S HfHHZ(,;lax(X)'
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Indeed, we have

A({)‘i,k}iez, keEN, {SBi,k}iGZ, kEN)

1

B Niklxsp, 177 - B in_ =
-lizx] | [ 2 v
Lr()(X)

X884 Ml o0 (2

i€Z keN i€Z keN L0 ()
By this, the fact that, for any ball B of X, xsp S M(XiB)v Remark 2.1(iii),

Lemma 2.3 and the above properties (i) and (ii) of B;x, we conclude that, for any
given r € (0, p_),

A({)‘i,k}iez, keEN, {SBi,k}iGZ, kEN)

Nk

sz o ()]}

i€Z keN Ly(;\f)

- ) oo P

< {Z > 2, } S {Z 22‘pr1}

i€Z keN LrO() i€Z LrO)

| s

~ {Z QZpXOi\Oi+1} S HML(f)HLP(-)(X) :

i€Z L0 ()

This, combined with (5.32), then finishes the proof of Proposition 5.17. O

Finally, using the above several propositions, we show Theorem 5.7.

Proof of Theorem 5.7. Let p(-) € C'°8(X) with p_ € (0, 1] and L be an operator
satisfying Assumptions 5.1 and 5.2. Then, from Proposition 5.9, we deduce that

(5.36) Hf%d(X) = H?Y) (X)) with equivalent quasi-norms.

L,max

Let M € NN (g(p—{ — 3), 00). Then, by Proposition 5.12 and a density argu-

ment, we find that the space H f(')(é\f ) coincides the space H i(a)t 1 (&) with equivalent
quasi-norms. Combining this and (5.29), we conclude that, for any f € H? © (X),

L,max

||f||H£(.)(X) < ||f||H§(.) )" This, together with Proposition 5.14, implies that

H f(')(X )= H} 0 (X) with equivalent quasi-norms.

L,max
By this and (5.36), we then complete the proof of Theorem 5.7. O
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