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Abstract. In this paper we find some necessary and sufficient conditions on an entire function
g for the Volterra operator Vy(f)(z) = foz F(€)g'(€) d€ to be bounded between different weighted
spaces of entire functions H°(C) or Fock-type spaces F¢(C).

1. Introduction

Let 2 be the unit disc D or the complex plane C and, as usual, denote by H(£2)
the space of holomorphic functions in Q. Given g € H(2) the Volterra operator with
symbol g, to be denoted by Vj, is defined by

V,(f)(z) = / HO)g() e, = e, feH).

In the case Q@ = D, this operator was first introduced by Pommerenke [20]. He
showed that it is bounded on the Hardy space H?(D) if and only if ¢ € BMOA.
A bit later the result was extended to H?(D) for any 1 < p < oo by Aleman and
Siskakis [1, 4]. In particular, they showed that, for 1 < p < oo,

(1) VoDl < Collgllzaroal fllae, | € HP(D),

for a constant C,, > 0 depending only on p. The boundedness, compactness and other
properties of V, acting on spaces of holomorphic functions defined in the unit disc
have been deeply studied (see [5] for weighted Bergman spaces, [6, 15| for weighted
spaces of holomorphic functions H3°(D) and [17, 19| for several other spaces). The
reader is also referred to [2, 3| for different results concerning the spectra of the
Volterra operator in some cases.

In this article we are only concerned with spaces of entire functions. Throughout
the paper we write P for the space of polynomials (with the notation u,(z) = 2™) and
Ho(C) for the space of entire functions vanishing at the origin. For each 0 < p < oo,
0 <r < ocand f € H(C) we write My(f,7) = sup,—.|f(2)] and M,(f,7) =

1
( 027r |f(r€it)‘p§—fr> /p
Given 0 < p < oo and a measurable function ¢: (0,00) — R, we denote by
F2(C) the space of entire functions f such that [ |f(2)[Pe ?1*) dm(z) < oo and
we write

*° 1/p
Hf||f;> = (27)1/17 (/0 MP(f, 7’)7”6_”(") dr) .
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The classical Fock spaces F,(C) correspond to ¢(z) = %
For the limiting case F2(C) we shall also use the standard notation H>*(C)

where v(z) = e7?(#D) that is the space of entire functions f such that

11l e, = ANl = sup e~ Moo (f,7) < o0

As usual H)(C) denotes the subspace of H{°(C) of functions such that limj, .
v(lz))If ()] = 0.

It is well known that we can change the values of ¢ or v in a bounded interval
[0, Rg] and even that we can replace ¢ for another weight ¢ being continuous and
increasing so that HX(C) = H*(C) and F¢(C) = F?(C) with equivalent norms.
Since we are only interested in spaces containing the polynomials, that is P C H?(C)
or P C ﬂp>0 f;f’ (C), we shall impose the following assumptions on the weights:

(2) lim r™v(r) =0, Vm €N,
r—00
or
(3) / rme P dr < 0o, Vm €N, Vp > 0.
0

Due to the above considerations we introduce the following definition.
Definition 1.1. We write W for the class of functions ¢: [0,00) — R which are
continuous, increasing in [ry, 00) for some 7, > 0 and for each m € N satisfy

(4) sup e ?") < oo,
r>0

Notice that conditions (2), (3) and (4) are in fact equivalent. Examples of weights
in W to have in mind are p, (1) = fr® —ylogr for o, > 0 and v > 0.

The study of the Volterra operator on certain spaces of entire functions was
initiated by Constantin in [11]. She characterized continuity (and compactness) of
V, on the classical Fock spaces.

Theorem 1.1. [11, Theorem 1| Let 0 < p,q < co and 0 # g € Ho(C).

(i) Case 0 < p < q: V, is bounded from F,(C) into F,(C) if and only if g(z) =
az? + bz for some a,b € C.

(ii) Case q¢ < p: V, is bounded from F,(C) into F,(C) if and only if% -
and g(z) = az for some 0 # a € C.

<t

Later in collaboration with Pelaez [12]| the results were extended to a class of
Fock-type spaces ]—‘5’ (C) defined by certain smooth radial weights ¢. In [12] certain
class Z of twice differentiable and rapidly increasing weights was introduced. This
class includes examples such as ¢(r) = r® for @ > 2, ¢(r) = " for 3 > 0 or
¢(r) = . For weights in this class they obtained the complete characterization
of the symbols g which produce bounded Volterra operators V, acting from .7-"1? (C)
into F¢(C) (see [12, Theorem 3]). In particular for p = ¢ they showed that for
0# g € H(C) and ¢ € Z, the Volterra operator V; is bounded on F¢(C) if and only
if

9(2)

R T <

Also they generalized Theorem 1.1 as follows:
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Theorem 1.2. [12, Corollary 25| Let 0 < p,q < o0, 0 # g € Ho(C) and
o(r) =r* with a > 2.
(i) Case0 < p<gand 1+ (a—2)(1— ) > 0: V, is bounded from f¢(C) into

¢ . . . o 1 l
F2(C) if and only if g is a po]ynom1a] with deg(g) <2+ (a —2)(1— 5 + 7).

(ii) Case q < p: Vy is bounded from F)(C) into Fg(C) if and only if ¢ — > < 5+

D 2
and g is a polynomial with deg(g) < a — 2(1 — % + q)

The study for F2(C) = H(C) was considered by Bonet and Taskinen [9] for
certain classes of radial weights v. We refer also the interested reader to [8, 11, 13| for
results concerning the spectra of the Volterra operator in this setting. In [9] certain
class of weights J (see conditions appearing in |9, Proposition 3.2]) was introduced.
This class includes examples such as 1(r) = fr* — ylogr — dlog(log(1 + r)), for
some a, 3 > 0,7,0 € R, ¢(r) = (log(1 + r))*e — ylogr — dlog(log(1 + r)), for
some € > 0,7,0 € R or, more generally twice differentiable weights satisfying certain
conditions (see [9, Thm 3.6, Thm 3.7|). For such a class, using the notation v(z) for
the so-called associate weight of v (see [10]), they obtained (see |9, Theorem 3.4]) that
for 0 # g € H(C), v(2) = e~?(*) and w(z) = e7¥(?) with ¢ € J, the boundedness
of V, from H°(C) into H(C) is equivalent to the condition

(2w ()
(6) R (e <

As a consequence they established the following theorem.

Theorem 1.3. |9, Corollary 3.11] Let v(r) = e™#™ for § > 0 and o > 1 and
let 0 # g € Ho(C). Then V, is bounded on H*(C) if and only g is a polynomial of
deg(g) < [a], where [a] stands for the integer part of a > 0.

Observe that V, = TMy where My (f) = fg' and Z(f)(2) = [; f(§) d€. All the
previous results are obtained analyzing the action of M and I on the corresponding
spaces independently, and using the equivalent deﬁnition of the norm of f in the
spaces H;°(C) and F¢(C) in terms of the derivative f’ (see [9, Proposition 3.2]) or
Littlewood—Paley formula (see [12, Theorem 10|) respectively.

In this paper we would like to attack the boundedness of the Volterra operator
V, (and certain modification of it) directly and not relying on the boundedness of
the multiplication or differentiation operators independently. Note that the results
in [12] do not apply to ¢(r) = r* for 0 < a < 2 and not cover different weights ¢
and v and the results in [9] cover different weights but only for p = ¢ = co. We shall
present here some necessary and sufficient conditions for the boundedness of V, from
]:I‘f’ (C) into ]:(;Z’ (C) for different parameters 0 < p, ¢ < oo and different weights ¢ and
1 belonging to W, extending and providing some alternative proofs of some results
in [9, 11, 12].

Besides the introduction the paper is divided into four sections. The first section
contains some results on the class VW while the second one is devoted to some prelimi—
naries on the Volterra operator V; and its modification V =1 fo ) d¢
where Dg(z) = g(z) + 2¢'(z). The main contributions are in the last sectlons Where
some necessary and sufficient conditions for the boundedness of V, and f/g on weighted
spaces of holomorphic functions and Fock-type spaces and their applications are pro-
vided. It will be shown (see Corollary 4.6) that the existence of a function g # 0 such
that V; is bounded F?(C) into F.'(C) implies that V,, is also bounded F(C) into
FX(C) for all k € N such that g™ (0) # 0. This forces some relationship between p,
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q, ¢ and 1. In particular we will show that there is no entire function 0 # g € Ho(C)
such that V; maps boundedly H3°(C) into H?(C) for v; = e #eifim for i = 1,2
whenever a; > as or ay = ag and 51 > fe or o =, 1 =P and a; — Yo+ 71 < 1
(this actually explains the restriction aw > 1 in Theorem 1.3). Moreover once such
a function exists it must be a polynomial of degree less or equal than a; — 72 + 1.
In order to provide some sufficient conditions for the boundedness of V, for different
weights we shall introduce a function inspired by the so-called distortion function of

¢ considered in [12]. For each 0 < p < oo and weight ¢ the authors considered the

. [T se~PP(s)ds

function i, 4(1) = Hrmewem T 2 0, which was crucial to describe the norm of f

in F9(C) in terms of the derivative f’. We shall introduce for each pair (¢, ) of
weights and 0 < p < oo the function

—) (L1 [ empv(s) ) =1/p, 0<p<l1:
Hyog(r) = e (¢()+(f e s) p=1L
w e p=1)3(r) f e_pw(s ,ds)™h 1<p<oo
which will play an important role in finding sufficient conditions on the boudedness of

Vy. Namely we shall establish in Theorem 5.7 below that, for 0 < p < oo, ¢, € W
and g € H(C), the existence of a constant A > 0 such that

(7) My (Dg,r) < AHy (1), 1 >0.

implies that f/g is bounded from ]-";f (C) into ]:;/’ (C). As a consequence one generalizes,
at least for p = ¢, the results in [12] to a much wider class of weights.

2. Preliminaries on weights

We start by mentioning some classical families of weights. For each ¢, a,5 > 0
and v € R the consider the weights p. and ¢, g~ given by

1
p(r) = (10g(1 + r)) e
and
e PoB() = min{(1 + r)7, 77} e "

that is pqa p~(r) = r*—vylog(1+r) for v < 0 and @, 5, (r) = fr* —~logr for v > 0.
It is easy to see that p. and ¢, s, belong to W.

The examples ¢, 3, can be obtained from a single one ¢(r) = r using the follow-
ing modifications:

(8) ¢s(r) = o(fr), B >0,
(9) o) =o(r"), a>0,
(10) e~ = min{(1+7)7,77}e %", ~€R.

It is elementary to see that if ¢ belongs to W then ¢g, ¢(® and ®(y) also belong
to W.

Definition 2.1. Let 0 < p < oo and ¢ such that [~ e ()ds < oo for r > 0.
We define, for r > 0,

1 1 [
(11) O, (r) = —]—9 log (—/ e Po) ds) ,

or, equivalently e ?®r(r) = 1 [ ¢=pols
Lemma 2.1. Let 0 < p < oo and qb € W. Then
(1) (I)p S W7
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(ii) if ¢ € C*(0,00) and convex, then

(12) sup e~ (") < o0,
r>0

(iii) if ¢(r) = pa,p, for some o, 5 > 0 and v € R, then

(13) sup v M=) < oo,
r>0

Proof. (i) Clearly e~®»(") is decreasing and ®,(r) is increasing. Now for each
m € N with mp > 1 we have that

o0 o
yPme—pPp(r) — rpm—l/ e PP(s) 4 < / gPM=1o=p0(8) o « 0.
r 0

This shows that ®, € W.
(ii) Note that r¢/(r) > ¢/(1) = A for r > 1. Hence for r > 1

—pPp(r) _ = -po(t) gt < — / {(He—PP®) gt — —_ g—Po(r)
¢ r /,, ¢ — A, ¢ (t)e pAe

Since supg<,<; €?™ %) < oo this gives (12).
(iii) We claim that for any a € R there exists C, > 0 so that

(14) / te tdt < Core™", r>0.

Of course the result holds true for a < 0 with C, = 1. The case a € N follows by
induction and integration by parts. Now for a > 0 write a = Akg + (1 — \)k; with
0 <X <1 and kg, k; € NU{0}, apply Holder’s inequality and the previous case to
get (14). To show (13) we consider the cases v > 0 and v < 0 separately.

Case v > 0: From (14) we have

0o l/p o0 l/p
o~ P(r) — (1/ PV PPt dt) =C (1/ e dt)
rJ, " Jppre

< C/T'Y_%e—BTa — Cl’l"_%e_d)(”.

Case v < 0: Arguing as above,

1 00 . l/p 1 Py e’} 1 1/])
e—fbp(r) — (_/ (1 + t)P’Ye_PBt dt) < C (ﬂ/ sa_le—s dt)
rJ, T pBra

< C(14r)r=o/Pe Pt < pmp o),
The proof is complete. O

Let us now consider a subclass of differentiable weights wide enough to include
most of the classical weights.

Definition 2.2. Let us denote W, the collection of continuous functions ¢: [0, co)
— R such that ¢ € C*([ry, 00)) for some 74 > 0 and
(15) lim r¢'(r) = oo.
r—00

Note that the classical examples ¢, 3, and p. belong to W for any €, a, 5 > 0
and v € R.

Lemma 2.2. W, C W.



94 Oscar Blasco

Proof. Let ¢ € Wy. Then ¢'(r) > 0 in some interval (R,o0) and for each

m € N, L’Hospital’s rule gives lim,_, % = 00. In particular lim, . (¢(r) —
mlogr) = oo. Hence (2) holds and then ¢ € W. O

Proposition 2.3. Let 0 < p < oo and let ¢ be differentiable with ¢'(r) > 0 for
r > 0. Then

pEW, —= T, eW, <= lim /"% =,

r—00

Proof. Differentiating in the formula e 7% = 1 [*¢=¢()ds one has that
prody(r) = eP(®»(=¢(") 1 1. Now use L’Hospital’s rule to obtain

Te_p(b(r) X ’
Y prf(r) = Hm oo +1 = p lim rd'(r),
Thus both equivalences are shown. O]

Let us give a notation to the sequence of the norms of u; in the space .7-"1? for any
weight ¢ € WW and 0 < p < oc.

Definition 2.3. Let 0 <p < o0, ¢ € W and k € NU{0}. We define

00 1/p
(16) Culo) = ([T ar) = o)l
0
(17) Cr(¢,00) = sup rFe ¢ = [kl 7 -
0<r<oo

Next result is immediate and left to the reader.
Example 2.1. Let o, 8,p > 0, v > 0 and ¢ = ¢, 3. Then

(18) Culd,00) = (af) ™ = (k+7) w e =
and

pk+2+m k‘ 2
(19) CP(6,p) = (pB)~ . F(p +a+m)_

Remark 2.1. For 0 < p, p1,p2 < 00, k1, ko, k € NU {0} and ¢, ¢ € W we have
(20) Ck1+k2(¢ + @D,p) < min{0k1(¢ap)ck2 (¢> OO)> Ckz (¢,p)Ck1 (% OO)},

1 1 1
(21) Ck(¢ap3) S Ck(¢>p1)0k(¢>p2)> —=—+ )
D3 D1 D2
(22) Cr(d, p2) < Cr(d, p1)P/P2Ch(h, 00) 7P/P2 -y < py.

Lemma 2.4. Let ¢ € W and 0 < p < co. Then the sequences
(€16 p)Culé.p) ™) and (Ciss(6,9)/Cul6,)) _are increasing with

lim Lﬁlw’ ) lim C’l/k(¢ p) = o0.
ko Ci(o,p) koo
Proof. Case p = oo: Since e ?/k < =¢)/(k+1) for all r > 0 and k € N
then obviously (Ci(¢,00)'/*), is increasing. Let us show that (%)k is also
increasing. Since k = §(k — 1) + 3(k + 1), we have that
Gon) _20) (in) o)

O, 00) = supr T e T r T e < O_1(, 00)Y2Chs1 (6, 00) /2
r>0
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and then Cj1(¢, 00)/Ck(¢, 00) is increasing. Finally, using now that Cy (¢, 00)/* <
Crs1(0, 00)Y* 1) we have % > Cry1(, 00) 1) Hence limy_, oo % =
limy,_, 00 Ci(, 00)Y* = o0.

Case 0 < p < co: Applying Cauchy—-Schwarz we have

1S9 2 o0 0o
(/ pPRAPHL—pd(r) dr) < (/ yPR+2p+1 —po(r) dr) </ yPr+1,—pé(r) dr) )
0 0 0

This shows that Ciy1(¢,p)? < Crya(é,p)Cr(¢,p). Thus Chi1(0,p)/Cr(o,p) is in-
creasing. Now consider the measure dyu,(r) = Cy(d, p)Pre P*") dr defined in R*.
Of course, 11,(R") = 1 and (Co(¢, p) "' Ci(¢, p))** = ||w1| ok r+ ap,) Where uy(r) = 7.
This gives (Co(¢,p) ™' Ch, (¢, )" < (Co(d,p) " Cr,y (¢, p))"/** whenever ki < ky. In
particular (Co(¢,p) 'Cr(¢, p))*/* is increasing. Now taking into account that

Cr+1(0,p) )
— T > (O C VD)
ooy = (G (6:9Cka(0p) 4 = e
we conclude that limy_,o =5 Ck“ > limy o0 [|ur || o),y = llua]| oo,y = 00 The proof
is complete. -

Lemma 2.5. Let ¢ € VYW and 0 < p < co. Then

ky—k b=k
(23) Ck(¢7p) S Ck1 (¢7p>wck2(¢7p> k27k17 kl S k S k2-
In particular C3(¢, p) < Cou(6,p)Co(6,p) for all k € N,

Proof. Let us denote My = Cj(¢, 00) and Cp = Cy (¢, p) for 0 < p < co. We start

with the case p = oo. For each k, k1, ks € N such that % = ,% + %, we obviously

have M,lc/k < MZ{kl M,(ﬁl;e)/’”. Hence for each k1 < k < ko, choosing = £ k2=k ope

k kao—k1
kog—k k—ky

obtains M, < M,ff*kl M,’;jfkl.
For 0 < p < oo, arguing as in the previous lemma we can write for k1 < k < ks
1 _ 0 1-6
andp—k—m—i-Tthat

ol ot e ) < e e o 1 e

Now (23) follows since = & :2 - and 1 —0 = If%

Finally selecting k; = 0 and ky = 2k one gets M7 < My My and C? < Cg,Cy. O

Remark 2.2. The conditions appearing in Lemmas 2.4 and 2.5 are closely re-
lated to the ones appearing when defining the Denjoy—Carleman classes (see for
instance [16]).

3. Preliminaries on the Volterra operator

Given g € H(C) we denote by Mg, D and Z the multiplication, differentiation
and integration operators respectively, i.e. for f € H(C) we have

My(f)(z) =9(2)f(2), Df(z) = [f(2), Zf(2) Z/Ozf@) dg

Of course Z(H(C)) = Ho(C), Idyc) = DI and Idy,cy = D where Idx stands for
the identity operator acting on X. We denote by S and S~! the shift and backwards
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shift operators defined by

5740 = IO S 55 =2 = Y e,

z

foreach f = >~ a,u, € H(C). Using the notation P,,(f) for the Taylor polynomial
of degree m and R,,,f = f — P,,_1(f) for the remainder of degree m we have

Smf(z) = sz(z) — Z ak—mzk, S_mf(Z) _ Zakerzk _ Rmf(Z)
k=m k=0

Zm

This gives that S™S™ f = R,,f and S™"S™f = f for m € N.
Since P C F?(C) we have that f € F?(C) if and only if R, f € F¢(C) for any
m €N, 0 <p<ooand ¢ € W. Note that ||Smf||}-;a = ||f||7¢(m) for each 0 < p < o0

where ¢(,,) was defined by e=?tm ) = pme=9(r),
Lemma 3.1. Let m € N, 1 < p < oo and ¢ € W. Then
||5_mf||F;>(m) < (m+ D)1 fll 2

for f =377 g arur € FP(C).

Proof. For each k € N U {0}, » > 0 and p > 1 we have |ag|r* < M, (f,r) <
M,(f,r). Thus

(24) lar|Cr(d,p) < (20) 7| fll s, k€ NU{O}.
Therctore || Pycr ()52 < mll Ly |Ron(F)l s < (m+ 1) 7] amd
IS () s = 1Rom (Dl < G+ DI
This finishes the proof. O

As mentioned in the introduction the Volterra operator with symbol g is defined
by the formula

(25) Vo(f)(2) =ZIMpy(z) = Z/O f(tz)d (tz)dt, =z € C,

for each f € H(C).

Note that V, = 0 for any constant function ¢ and that also V() € H(C) for any
f € H(C). We shall consider the following modification to avoid these restrictions.
For each f,g € H(C) we write

(26) O A GLY GE

where D = DS, that is Df(z) =Y " (n+ 1)a,2" = zf'(2) + f(2).
Denoting I = S7'Z, we have for f = > 7  a,u, that

[e.e]

116 =3 s = [ e

n=0

and we obtain that V, = IMp,. In this way V, is well defined for ¢ € H(C) and
takes values in H(C). Moreover, for each f,g € H(C)

(27) Vo(f) = S Wsy(f), V(f) = SVs—14(f).
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Since V; is continuous (in the topology of the uniform convergence on compact
sets) from H(C) into Ho(C) and the map given by g — V; is linear and continuous
from #H,(C) into the space of continuous linear operators, using (27) similar results
hold for V,. Next result is immediate from the definitions.

Lemma 3.2. Let 0 < p,q < o0, ¢,¢ € W and g € H(C). Then V, is bounded
from F¢(C) into F¥(C) if and only if V-1, is bounded from F¢(C) into FLO ().

Other expressions for the operators above are given as follows:

Lemma 3.3. Let f,g € H(C) with f =Y~ _ bpum and g =Y .~ ayt,. Then

) wm@zzﬁ(Ejmea
(29) AGIEESS j% ( Y o+ 1)anbm> .

Proof. The proof is straightforward using

S ([ 0010 = S (5 o)
(5 )

n+m=j

The other formula follows from (27). O
Remark 3.1. From (28) and (29) we obtain for any f,g € H(C) and k € N,
‘/;I(u()):g_g(())v ‘N/g<UO>:gv VuO<f):O, Vuo(f):]fu

na,, (n+1) an
(30) o(ur) = uy, Z o(uk) = uy Z Un,

n+k n+k+1
and
~ > bn
(31) —kwEZ e, Vo) = b+ D D Sy

Let us reformulate the boundedness of ‘79 acting on ff (C). Note that for each
f=0 o bnuy, we can write

oo 1/2
(32) [f1l 72 = J% (Z 10,2 C2 (), 2)) .
m=0

Proposition 3.4. Let ¢, € W and g € H(C) with g = Y.~ anu,. Then V,
maps FJ(C) into Fy(C) if and only if the matrix A = (a(m, j))om =0 given by

m+1 C;j(¥,2) .
a(m, j) = T GemgGa ™S
’ 0, 0<j<m.

defines a bounded operator on (*(N U {0}).
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Proof. Using (32) and (29) we obtain

5 * 1 J
Vo ()l 72 sup — (= m+1)aj-mbn | C;(¥,2)7;
e \/27T||v3||21;]+1 ;::0 ’ ’ ’
1 (= j-m+1 C;(1,2)
= — sup i m oy | (0, 2)b] -
V2T () ll2=1 mzzo (Fm j+1 7T Cn(e,2)
Hence
~ ~ 2 1/2
Vol = sup (Y1 a(m, j)v
lella=1 \ =0 | =0
This gives the result. U

The analysis of V, for g € P actually depends only on the integration operator.

Let us denote by V;, and Vj, the operators Vi, and ‘N/uk for k € NU{0}. Hence from
(31) we obtain

(33) Vo=0, V=1, V,=kIS*! keN,
and
(34) Vo=1, Vi=(k+1)IS*, keN.

In particular V, = SV,_; for k € N. A simple consequence of Proposition 3.4 gives
the following particular case.

Corollary 3.5. Let k € N U {0} and ¢,7) € W. Then V, maps F3(C) into
F{(C) if and only if
m+k(¢ 2)

< .
e (m+ k+ 1)C(6,2) ~°°

The following reformulations are elementary and left to the reader.

Lemma 3.6. Let k € N, ¢, € W and 0 < p,q < co. The following statements
are equivalent:

(i) Vi: F2(C) — FP(C) is bounded.

(i) Vi FI(C) — }_f“)(C) is bounded.
(iii) Z ¢(k Y(C) — ]:f(C) is bounded.
(iv) I: ]—"d)“ V(C) = FYY(C) is bounded.

4. On necessary conditions for the boundedness

Taking into account that Vj(uy) = g — ¢(0) the first condition for V, to map
F2(C) into FY(C) is that g € FJ(C). In particular we have the following trivial
necessary condition.

Proposition 4.1. Let 0 < p,q < o0, ¢, € W and 0 # g € Ho(C). If
Vy: F2(C) = FY(C) is bounded, then there exists a constant A > 0 such that

(35) My(g,7) < AKy,(r), >0,

where

(36) Ky oz ch , zeC.
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Proof. Using (24) for V,(ug) = g(z) = > -, b,z" we obtain
<D lanlr™ < @)Y O, @) Viluo) [ zor”
n=0 n=0

< (2m) P9V, ||Co( Zo (¥, q)

This shows (35). O
Let us find a necessary condition for the boundedness of V, from ]-"I‘f’ (C) into
FY(C) in the case F/(C) C FZ(C).

q

Proposition 4.2. Let 0 < p,q < 0o, ¢,9 € W such that F(C) C F¢(C) and
0# g€ Ho(C). If Vy: F(C) — F¥(C) is bounded then there exists A > 0 such
that

(37) My (g,7m) < Ap(r), r>0.

Proof. Let Ay = max{1, HUOHFE’} and C' = || 1d HF;"(C LFic) We observe that
Vy(ug) = g € FY(C). Hence g € F¢(C) and ||g||F§> < CHQHF(;,/; < C|V,]|Ap. Since
Vo(g) = % we also obtain
This allows to iterate the procedure to obtain gn—T e FJ(C) < (C|VgllAo)™.

Recall that F¢(C) is a p-Banach space for p = min{p, 1}. Hence if ), ||f"”ff§ <

oo implies that Y f, € F?. Therefore choosing K > C||V,|| Ay we conclude that

Yoo fgﬁf’; € .7-“;’((3) for any sequence of complex numbers with sup,, |8,| < 1.

In particular, choosing 3, =1 for all n > 0 we obtain %% € F¢(C). Therefore
Joerel=h= ) Jdm(z) < oo and sup, g e ?1FD+ +2%2 < 50 in the cases p < oo and
p =00 respectlvely In both cases one gets R(g(z)) < K¢(|z|) + C. Selecting f,, as
(—1)™,4" and (—i)"™ one concludes that |g(z)| < A¢(]z]) for some constant A > 0 and
the proof is complete. O

2

Q

g
2

<C‘

, S ClIValPlluoll g < (ClIVglIA0)*.
‘7:11

A simple consequence of Proposition 4.2 is the following corollary.

Corollary 4.3. Let 0 < p < 00, ¢(r) = Yo~ for some a, > 0, v € R and
g < Ho(C)

(i) Case 0 < a < 1: V,: F(C) — F2(C) is bounded if and only if g = 0.

(i) Case a > 1: If Vy: F¢(C) — F2(C) is bounded then g € P and 1 < deg(g) <

a.

Let us now show that boundedness of V, or V, between spaces H2°(C) or F2(C)
forces certain a priori conditions on the weights.

Proposition 4.4. Let 0 < p,q < o0, ¢, € W, g(z) = > .2 ja,2" € H(C)
and define A = {n: a, # 0}. If V;: F2(C) — .7:1”((]) is bounded and k € A, then
Vit F2(C) — F¥(C) is also bounded and ||V;|| < | . In particular, I: F¢(C) —
FY(C) is bounded whenever g(0) # 0.

q
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Proof. Let kK € A. We have
o ; —ik6 d_@

(k + Dagw® = Dg(ew)e

, weC,
0 27

and therefore

Vif (2 /f k+1wdw—a—k;/ (/ Dg(e' ”“’de)dw
(/f )Dg(e"w) d )‘MZW-

Hence, makmg the change of variable e¢?w = w’ and denoting f.-i(2) = f(e™%2),
we have

5 2 ) - de
) = o [ Tl

In particular,

- [ ; do
Viflly < o [ W@l 1< 0500,

and
1 " io e 40
Viflt, < oo [ Il 57 0<a<t.
This gives, taking into account that || f.-| o= Imal £¢ for any radial weight, the
estimate ||‘~/kf||F¢ < ”|ZZ:| |f|l 7+ and the proof is complete. O
q P

Corollary 4.5. Let 0 < p,q < 00, ¢,» € Wand0 # g € H(C). Iff/g: ,7-;?(0) —
]:;l’(C) is bounded then there exists k € N and Ay > 0 such that

Cou(¥,q) < Ar(n +1)Cr(9,p), n=>0.
In particular,
TKy,(r) < AgS™" Ky (1), 7 >0,
where K, stands for the kernel given in (36).

Proof. Since 0 # g there exists k € A, that is a; # 0. Due to Proposition 4.4
and the fact Vi(u,) = (k + 1)1 (upsr) = %u,ﬁk we have %Hunﬂﬁ”ﬁp <

A ||un||]_-;z; In particular, for all n € N,

letneill e < Vil (4 1) ]|

This shows that

o0

’I’L n

r
IK = ASTFK, (1),
onr Z T 1)Ch (6 q) = F L O walr)

and the proof is complete. O

Corollary 4.6. Let 0 < p,q < oo, ¢, € W and let g(z) = >~ | a,z" € Ho(C)
such that Vy: F2(C) — FY(C) is bounded. Then Vi: F¢(C) — FY(C) is also
bounded for each k such that g*)(0) # 0. Moreover, the estimate ||V;|| < V4|
holds. In particular, T: F{(C) — F¥(C) is bounded whenever g'(0) # 0.

ool
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Proof. Recall that due to Lemma 3.2 we have that Vg-1,: F2(C) — ]-";p(”(C)
where e W) = pe=¥(") Therefore invoking Proposition 4.4 and Lemma 3.6 we ob-
tain that Vi : 72(C) — F¥(C) whenever g™ (0) # 0 and the corresponding estimate
in norm holds. O

Corollary 4. 7 Let o;, 3; > 0 and v; > 0 fori = 1,2, v(r) = e %801 and
w(r) = e o220 and 0 # g € Ho(C). Assume that V,: H*(C) — Hg"(C) is
bounded. Then either a; < g or ay = a9 and 1 < [y or a; = o, 1 = [ and
Y2 <1 + a3 — 1. Moreover, in the case a; = aw, 1 = P2 and § = a1 — v + 71 > 1,
then g € P with deg(g) < ¢.

Proof. Due to Corollary 4.6 we have that V}, is bounded from H{°(C) into H°(C)
for all k € N such that ¢®*)(0) # 0. Since Vj,(u,) = niJrkunJrk we have

n + k
Cn—i—k((paz,ﬁa’yw ) < ||Vk||

(Qpal By )7 n € N.

Now take into account Example 2.1 to obtain for all n € N

k+n+yg ktntyy  _ ktntvo n _|_ k nty _ntm

(E+n+9y2) @2 e =2 <[V (Chﬁl) o (TH-%) e e

(a2f2)”

Hence there exists C' > 0 such that

n k+"/2

n(L_L) n o] +”fl
n ‘a2 @ SC(O(2626)‘* (alﬁle) “1n @2 Vn € N.

This implies that a; < as.

n

In the case a; = ap the inequality becomes (&> < Cn

B2
This gives 51 < Ss. .
Y2—71 1

Finally in the case oy = aw, f1 = [ we would have n= 1 < (Cfor alln € N.
This implies H%_“ < 1. This gives, in particular, v5 < v + a3 — 1.

1— +W2 71

for all n € N.

To finish the proof notice that ¢*)(0) # 0 implies k¥ < a; — 72 +7; which implies
that g € P with deg(g) < a3 — 2 + 7. O

5. On sufficient conditions for the boundedness

Let us start presenting some sufficient conditions for the operators V, and ‘79 to
be bounded from F¢(C) into F(C) for any 1 < p < co and for general weights.

Proposition 5.1. Let ¢,v € W and g € H(C). Let us write g,(z) = g(rz) for
r > 0 and set

(38) Ag, ) = sup =Y g, || Brroa
and
(39) B(g, ) = sup e (g, ) o

(i) If A(¢,v) < oo, then both V, and V, are bounded from F2(C) into F¥(C)
for any 1 < p < 0. .
(ii) If B(¢,v) < oo, then both V, and V, are bounded from F2 (C) into F%(C).
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Proof. (i) Let 1 < p < oo and set A(¢, 1) = A. Since (g,) (w) = rg¢’(rw) for each

r >0 and |w| < 1, we have
£ (rw) = / £(6)(g,)/(€) de.
0

Hence, using the estimate (1) we have
(40) My(Vy(f), ) < Cpllgell BrroaMp(f, ), 7> 0.
Since \7g = SVs,, (Sg), = rS(g-) and [|Sg.||Broa = ||9:|| Brroa, we also have
. 1
My(Vy(f).r) = —Mp(Vsg(£),7) < Cyllgrllsaroaddy(f,7)-

Therefore, we conclude that

max{”%(f)”;:ga ||‘~/g(f)||fg} < 2%05/0 M;’(f, r)||gr||1éMOAr6—pw(r)dr
< G A7 /0 ME(f,r)re ™ dr = CLAY|| |1,

(ii) Let p = oo and set B(¢, ) = B. Without loss of generality we can assume
that ¢ € Ho(C). Hence g(z) = Zfo (zt)dt and thus Mi(g,r) < rMi(g,r) =
II(g:)|| z2- In particular,

(41) Ml(Dgur) < TMl(g/vr) + Ml(gvr) < 2TM1(9/7T) = 2H(gr>/HH1

Hardy’s inequality (see [14]) gives for f(z) = =, anz"

iy <yl
:0

< CQMl(f, ) r > 0.

Therefore,

Mo (Vyfor) < Codh((Dg) for) < Coll f |l oy e” Mi(Dy. 7)
< 2BCo||f|l 24y
This gives the boundedness of V, from F2(C) into F£(C).

To handle the case V, we use that M;(D(S™g),r) = M;(¢,r). Arguing as above,
we have

Moo(Vof,7) = 1Moo (Vs-10f,7) < CIf | 5 )€ 1(90) N1

and the result follows with the same argument. U

Proposition 5.2. Let ¢,1» € W where v is differentiable with ¢'(t) > 0 for
t >0 and g € Ho(C). Set

o =)
(42) By(ov) = sup (0 .

If By($,v) < 0o, then both V,, and V, are bounded from H*(C) to H*(C), where
U(Z) = €_¢(‘Z‘) and w(z) — 6—111(\2\)
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Proof. Let Bi(¢,%) = B;. Arguing as in (41) we obtain that M. (Dg,r) <
2||(g+) || <. Now for |z| = r we can estimate

W (f |</ F(2t) |Dgzt|dt</ Moo (f, 7)Mo (Dg, rt) dt
<1 [ MM Dyt =207y [ N g s
0
<2B|flly [ (0 ds = 2B (1) - ) < 2B 7]
0

This completes the proof for ‘79. The case V, follows similarly using that
Mo (D(S™g),7) = My (g',7). O
Let us apply the previous result to polynomials, in particular for V;, =V, .

Corollary 5.3. Let v(z) = e %6 for some 3 > 0, v € R and o > 1 and let
g € Ho(C). Then the following statements are equivalent:

(i) Vy: H*(C) = He(C) is bounded.
(ii) g € P and 1 < deg(g) < [p].

Proof. (i) = (ii) This is the case p = oo in Corollary 4.3.
(ii) = (i). It suffices to show that Vj is bounded on H°(C) for 1 < k < a.
Now for each 1 < k < [a] we have

lim gpaﬁ,*y(r) _ {aﬂa k= Qs

r—oo k-l o0, k<a.

We can then apply Proposition 5.2 for ¢ = ¢ = ¢, s, and g = u;, to finish the
proof. O

Let us get now some conditions depending on p for the boundedness on ]:;f’ (C).
We shall use the following result.

Lemma 5.4. Let 0 < p < oo, ¢ € W. If f € Fp*(C), then I(f) € F2(C).
Proof. Using that [ f(z fo f(zt)dt, for any 0 < p < oo we obtain

1 T
T)S/ Mé’(f,rt)dtﬁ;/ MP(f,t)dt
0 0
Therefore,

g <c [ ( | i dt) ar <o [ s ( I 6-p¢<r>dr) »

<C [ (st de = O,
0 P

The proof is now complete. O
Proposition 5.5. Let 0 < p < 00, ¢,1 € W and set
(43) Ay (¢, 4, p) = sup e? "M (Dg, 7).

r>0

If A(¢,%,p) < oo, then V; is bounded from F¢(C) into F¥(C).
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Proof. Let A;(¢,¢,p) = A;. Using Lemma 5.4 and recalling that re ?¥»(") =
froo e P¥)ds we have

Vo (DI = 11 Mpyfl}, < CllMpyf %,

< C/o MY(f,r)ME (Dg,r) (/T e_p’l’(s)ds) dr
< CAY / ME(f,r)re " dr,
0

The proof is finished. O

We can actually weaken the condition (43) in the case p > 1 using the following
modification of the p-distortion functions.

Definition 5.1. Let ¢, € W and 0 < p < oo. We define

Hw,qb,p(T) — 6\pr(r)—¢>(r)’ 0<p<l,

and
re—(@()+e=1)v(r)
Hy,gp(r) = [~ s 1<p< oo
In particular, Hy 4, (1) = em@{p1H®p()=6(r)
Remark 5.1. Note that for p > 1 we can write
(44) Hy (1) = e¥r(=90) o= D(p(r)=(1) — cp(¥p(r)=4(1)) b (r)=6(r)

In particular, due to (ii) in Lemma 2.1 if ¢ is differentiable and convex, then
V=) < Oy 4.(r), >R,

and for ¢» € W), from Proposition 2.3, one has
I < Ol ), 1> R

We shall use the following general fact.

Lemma 5.6. Let 1 < p < oo, let U, W: (0,00) — (0,00) be measurable func-
tions with W € L'((0,00)) and let G: [0,00) — R™ be a continuous function. As-
sume that there exists C' > 0 such that

(45) Glr) < C (% / T dt) W ), v >0,
Then T
(46) /0 h (% /0 PG dt)er(r) dr < C /0 T WU dr

for any continuous function F': [0,00) — R*.

Proof. For p =1 condition (45) becomes G(¢t)( [~ W (r)dr) < CtU(t) for t > 0
and the result follows from Fubini’s theorem.
Assume p > 1. For each R,e > 0 integrating by parts we have

/6 R (% /0 PG dt)prw(r) dr
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/ dt) ( A ) ( / ’ (t)G(t)dt)p< : ‘ZE? dt)
p/R</F()G()dt) Fr Gr( Al )
/ Wt dt)( / ()G(t)dt)

[ ([ rocwa)” roee ([ ) o

Now passing to the limit as R — oo and ¢ — 0, applymg (45) and Holder’s inequality
we have

g
(.

[T (] Foc >dt)prw<r> dr

<o [ ([ rocoa) s (/fovtzl e
o[ raone) o i)
cc{[ (¢ rosrsf i)

(/ PG (r)PW P (r (/W dt) r)l/p
( ( )G()dt) rW(r)dr) " < /0 oon(r)rU(r)dr>l/p.

This implies (46) and the proof is then complete. O]

Theorem 5.7. Let 0 < p < 00, ¢,9 € W and g € H(C). If there exists A > 0
such that

(47) Mo (Dg,r) < AHy 4,(r), 1 >0,
then V,, is bounded from F¢(C) into F¥(C).

Proof. The case 0 < p <1 was shown in Proposmon 5 5

Let us assume now that 1 < p < co. Writing V fo f(zt)Dg(zt) dt we
have for 0 < r < oo and 0 € [0, 27),

V,(/)(re)] < / | (ret)| Muo(Dg, rt) dt.

Using vector-valued Minkowski’s inequality we have

(48) M,,( / M,(f,t)Mw(Dg,t) dt

Let U(r) = e 7" and W (r) = e ?¥(") and observe that

Huwslt) = (3 [ Wi dt)_ UV (),
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Consider now F(t) = M,(f,t) and G(t) = M (Dg,t) and notice that (47) together
with (48) allow us to apply Lemma 5.6 to obtain

/0 Mé’(%(f),r)re_pw(r)dr < C/O Mg(f, r)re_p‘b(’")dr.

This finishes the proof. O

We can now extend the condition in Proposition 5.2 also for boundedness in
Fock-type spaces, at least for convex functions .

Corollary 5.8. Let 0 < p < oo and let » € W be differentiable and convex in
(0,00). If g € H(C) satisties

e(b(’“)—dJ(T’) MOO(Dg 7‘)
49 su ’
(49) T )
then V,: F2(C) = FY(C) is bounded.
Proof. First observe that

= A < o0,

! (r)e PYe(n) < / Y'(s)e PO ds < le—pw(r), r>0.
r b
Hence assumption (49) gives

Moy(Dg.1) < 2 e0-D@O-0) 05 (r)=0(r)
P

Hence, according to (44) we obtain the condition (47) in the case p > 1. On the other
hand, for 0 < p < 1 due to part (ii) in Lemma 2.1 to know that sup,.,e?" =¥ <
oo. Hence M, (Dg,r) < Ke¥»™W=90) = KH, ,.,(r). The result now follows from
Theorem 5.7. O

Corollary 5.9. Let 0 < p < 00, ¢(1) = @ap,(r) for 5> 0,7 >0 and o > 1
and let g € Ho(C). Then the following statements are equivalent:

(i) Vy: F2(C) — F2(C) is bounded.

(ii) g € P and 1 < deg(g) < [a].

Proof. (i) = (ii) This was shown in Corollary 4.3.

(i) = (i). Let 1 < k < [a] and let us show that V;: F(C) — F2(C)
is bounded, or equivalently Vj_;: F(C) — ]-}? W(C) is bounded. From Proposi-
tion 5.7 it suffices to see that (47) holds for g(z) = 2*~!. Recall that quﬁp( r) =
P =T edr) =) for p > 1 and Hy, (r) = =% for 0 < p < 1. Hence, in
particular for ¥ = ¢y = @as41 We have o(r) — ¢ (r) = log(r), we obtain, invoking
(iii) in Lemma 2.1, that

(50) H;7;7p(7") <Ort r>o0.

This gives

sg;l) H¢¢>p( 7)Mo (Dug—_1,7) < Cy SL>111) rk=e < oo.

The proof is now complete. O
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