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Abstract. We construct an a.e. approximately differentiable homeomorphism of a unit n-dim-

ensional cube onto itself which is orientation preserving, has the Lusin property (N) and has the

Jacobian determinant negative a.e. Moreover, the homeomorphism together with its inverse satisfy a

rather general sub-Lipschitz condition, in particular it can be bi-Hölder continuous with an arbitrary

exponent less than 1.

1. Introduction

1.1. The main result. It is well known that in the case of diffeomorphisms
the sign of the Jacobian JΦ carries topological information about the mapping Φ
in the sense that it tells us whether the diffeomorphism is orientation preserving
or orientation reversing. In fact, it is not difficult to prove, using the notion of
degree, that if Φ: Ω1 → Ω2 is a homeomorphism between domains in R

n and if Φ
is differentiable at points x1, x2 ∈ Ω1, then the Jacobian of Φ cannot be positive at
x1 and negative at x2, see [9, Theorem 5.22]. In particular, if a homeomorphism
between Euclidean domains is differentiable a.e., then either JΦ ≥ 0 a.e. or JΦ ≤ 0
a.e. On the other hand it is easy to construct a homeomorphism that is differentiable
a.e. and has the Jacobian equal zero a.e., see [16] and references therein.

Applications to areas like nonlinear elasticity [1, 12, 15], the theory of quasicon-
formal and quasiregular mappings [13], or the theory of mappings of finite distortion
[9], lead to study of homeomorphisms much less regular than diffeomorphisms. Yet,
it is still important to understand how the topological properties of these mappings
are related to the sign of the Jacobian. In particular, Sobolev homeomorphisms
need not be differentiable a.e. in the classical sense, although they are weakly and
approximately differentiable a.e.

A measurable function f : E → R, defined on a measurable set E ⊂ R
n, is said

to be approximately differentiable at x ∈ E if there is a measurable set Ex ⊂ E and
a linear function L : Rn → R such that x is a density point of Ex and

lim
Ex∋y→x

|f(y)− f(x)− L(y − x)|
|y − x| = 0.
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The mapping L is called the approximate derivative of f at x and it is denoted by
apDf(x). The approximate derivative is unique (if it exists). If a mapping Φ: E ⊂
R
n → R

n is approximately differentiable at x ∈ E, we define the approximate
Jacobian as JΦ = det apDΦ(x).

We will be interested in mappings that are approximately differentiable a.e.
Diffeomorphisms map sets of measure zero to sets of measure zero, so it is natural

to consider a similar property for classes of more general mappings. We say that a
mapping Φ: Ω → R

n, defined on an open set Ω ⊂ R
n, has the Lusin property (N) if

it maps sets of Lebesgue measure zero to sets of Lebesgue measure zero.
Thus homeomorphisms that are approximately differentiable a.e. and have the

Lusin property are far reaching generalizations of diffeomorphisms and yet it turns
out that for such mappings the classical change of variables formula is true [5, 6, 8].
Homeomorphisms that belong to the Sobolev space W 1,p are approximately differen-
tiable a.e. but they do not necessarily have the Lusin property. The Lusin property is
a strong additional condition that plays an important role in geometric applications
of Sobolev mappings.

In this context Hajłasz, back in 2001, asked the following questions: (see [9,
Section 5.4] and [10, p. 234]):

Question 1. Is it possible to construct a homeomorphism Φ: (0, 1)n → R
n,

n ≥ 2, which is approximately differentiable a.e., has the Lusin property (N) and at
the same time JΦ > 0 on a set of positive measure and JΦ < 0 on a set of positive
measure?

Question 2. Is it possible to construct a homeomorphism Φ: [0, 1]n → [0, 1]n,
n ≥ 2, which is approximately differentiable a.e., has the Lusin property (N), equals
to the identity on the boundary (and hence it is orientation preserving in the topo-
logical sense), but JΦ < 0 a.e.?

Question 3. Is it possible to construct a homeomorphism Φ: (0, 1)n → R
n,

n ≥ 2, of the Sobolev class W 1,p, 1 ≤ p < n− 1, such that at the same time JΦ > 0
on a set of positive measure and JΦ < 0 on a set of positive measure?

The answer to Question 1 is in the positive and it has been known to the authors
since 2001, but it has not been published until very recently. Namely, in the paper
[7] the authors answered in the positive both questions 1 and 2. Question 3 has
also been answered in a sequence of surprising and deep papers [2, 10, 11]. For
further motivation for the problems considered here we refer the reader to papers
[2, 7, 10, 11], especially to [7], because the results proved here are strictly related to
those in [7].

The uniform metric in the space of homeomorphisms of the unit cube Q = [0, 1]n

onto itself is defined by

(1.1) d(Φ,Ψ) = sup
x∈Q

|Φ(x)−Ψ(x)|+ sup
x∈Q

|Φ−1(x)−Ψ−1(x)|.

The main result of [7] reads as follows.

Theorem 1.1. There exists an almost everywhere approximately differentiable
homeomorphism Φ of the cube Q = [0, 1]n, n ≥ 2, onto itself, such that

(a) Φ|∂Q = id,
(b) Φ is measure preserving,
(c) Φ is a limit, in the uniform metric d, of a sequence of measure preserving

C∞-diffeomorphisms of Q that are identity on the boundary,
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(d) the approximate derivative of Φ satisfies

(1.2) apDΦ(x) =









1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1









a.e. in Q.

Note that (b) implies the Lusin condition (N). The proof given in [7] does not
give any estimates for the modulus of continuity of the homeomorphism Φ. One of
our main concerns in Theorem 1.1 were the conditions (b) and (c). Satisfying them
required the use of results of Dacorogna and Moser [4], which do not provide any
reasonable estimates for the modulus of continuity. So what can we say about the
regularity of Φ if we drop the conditions (b) and (c)? While Φ cannot be Lipschitz
continuous (because Lipschitz continuous functions are differentiable a.e.), it is nat-
ural to ask how close the modulus of continuity of Φ can be to the Lipschitz one. For
example, can Φ be Hölder continuous?

A positive answer is given in the next result, which is the main result of the
paper.

Theorem 1.2. Assume φ : [0,∞) → [0,∞) satisfies the following conditions:

(1) φ is increasing, concave, continuous and φ(0) = 0,

(2)

ˆ 1

0

ds

φ(s)
<∞,

(3) t 7→ t−αφ(t) is increasing on (0, 1) for some α ∈ (0, 1).

Then there exists a homeomorphism F of the cube Q = [0, 1]n, n ≥ 2, onto itself
such that

• F |∂Q = id,
• F has the Lusin property (N),
• F is approximately differentiable a.e.,
• the approximate Jacobian JF is negative a.e. in Q,
• for any x, y ∈ Q we have |F (x)−F (y)|+|F−1(x)−F−1(y)| ≤ C(n, φ)φ(|x−y|).

Here C(n, φ) denotes a constant that depends on n and φ only.
The function φ(t) = Ctβ, β ∈ (0, 1), satisfies properties (1), (2) and (3), so

both F and F−1 can be β-Hölder continuous at the same time. Also, for example,
φ(t) = t log2 t satisfies (1) near zero and it can be extended to [0,∞) in a way that
all conditions (1), (2) and (3) are satisfied. It is easy to see that in that case F and
F−1 are β-Hölder continuous with any exponent β < 1. In particular, F and F−1

can be in the fractional Sobolev space W s,p for all 0 < s < 1 and 1 < p <∞.
Condition (2) is the main estimate describing the growth of the function φ, while

(1) simply means that φ is a modulus of continuity and (3) is of a technical nature.
Condition (3) implies that φ is a modulus that is at least α-Hölder with some positive
exponent α. Since, in applications, we are interested in moduli very close to Lipschitz,
the condition (3) is not restrictive.

The proof of Theorem 1.2 involves lemmata of purely technical nature; they are
collected in Section 2. In order to give motivation for these technical arguments, we
will describe now the main ideas of the proof of Theorem 1.2.

1.2. How to prove the main result. The main building block in the proof of
Theorem 1.2 is the following result.
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Proposition 1.3. Assume φ : [0,∞) → [0,∞) satisfies

(1) φ is increasing, concave, continuous and φ(0) = 0,

(2)

ˆ 1

0

ds

φ(s)
<∞.

Then there exists an a.e. approximately differentiable homeomorphism Φ with the
Lusin property (N) of the cube Q = [0, 1]n, n ≥ 2, onto itself, and a compact set A
in the interior of Q, such that

• Φ|∂Q = id,
• |A| > 0,
• Φ is a reflection (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, 1−xn) with respect to the

hyperplane xn = 1
2

on A, Φ(A) = A, and Φ is a C∞-diffeomorphism outside
A,

• at almost all points of the set A

(1.3) apDΦ(x) =









1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1









,

• for any x, y ∈ Q we have |Φ(x)−Φ(y)|+|Φ−1(x)−Φ−1(y)| ≤ C(n, φ)φ(|x−y|).
Note that we no longer require the technical condition (3) from Theorem 1.2.
The set A in Proposition 1.3 is a Cantor set of positive measure defined in a

standard way as the intersection of a nested family of cubes inside Q. The homeo-
morphism Φ is a diffeomorphism outside A and it is a mirror reflection when restricted
to A. It easily follows that Φ has the Lusin property and that (1.3) is satisfied at all
density points of A.

The homeomorphism F from Theorem 1.2 is constructed as a limit of a sequence
of homeomorphisms Fk. The first homeomorphism F1 = Φ is defined as in Proposi-
tion 1.3. It has negative Jacobian in the set K1 = A. Note that in the complement
of A, F1 is a diffeomorphism, so in a small neighborhood of each point in Q\A, F1 is

almost affine. Modifying F1 slightly we can change it to a homoeomorphism F̃1 that
is affine in many small cubes {Qi}i in the complement of A.

A generic modification of a diffeomorphism in a way that it becomes affine in a
neighborhood of a point is described in Lemma 2.10.

Now, in each cube Qi we replace the affine map F̃1 by a suitably rescaled version
of the homeomorphism Φ from Proposition 1.3; it is rescaled in a way that it coincides
with the affine map F̃1 near the boundary of Qi. The resulting mapping F2 coincides
with F1 in a neighborhood of A, so it has negative Jacobian on A. Also in each cube
Qi ⊂ Q \ A, F2 is a rescaled version of the homeomorphism from Proposition 1.3
and hence it has negative Jacobian on a compact set Ai ⊂ Qi of positive measure.
Thus F2 has negative Jacobian on a compact set K2 = A ∪ ⋃iAi. Clearly K1 ⊂
K2. The homeomorphism F3 is constructed in a way that it coincides with F2 near
K2 = A ∪⋃iAi (and hence it has negative Jacobian on K2) and in the complement
of that set it has negative Jacobian on compact subsets of many tiny cubes. Thus
F3 has negative Jacobian on a compact set K3 that contains K2. We construct
homeomorphisms F4, F5, . . . and an increasing sequence of compact sets K4, K5, . . .
in a similar manner. The construction guarantees that |Q \ ⋃∞

k=1Kk| = 0. The
sequence of homeomorphisms {Fk} is a Cauchy sequence with respect to the uniform
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metric d. It is well known and easy to check that the space of homeomorphisms of
Q onto itself is complete with respect to the uniform metric d (see [7, Lemma 1.2]),
so the sequence {Fk} converges to a homeomorphism F . Since |Q \ ⋃∞

k=1Kk| = 0
and Fk has negative Jacobian on Kk, it follows that F has negative Jacobian almost
everywhere.

Each of the homeomorphisms Fk satisfies the continuity condition

(1.4) |Fk(x)− Fk(y)|+ |F−1
k (x)− F−1

k (y)| ≤ Ckφ(|x− y|),
because this is the estimate for Φ and Fk contains many rescaled copies of Φ. The
problem is that since the mappings became more and more complicated, the con-
stant Ck diverges to ∞ as k → ∞ and hence the homeomorphism F to which the
homeomorphisms Fk converge does not satisfy the desired estimate |F (x)− F (y)|+
|F−1(x)− F−1(y)| ≤ Cφ(|x− y|).

Note that in the argument above we never mentioned condition (3) from Theo-
rem 1.2, since this condition is not needed for Proposition 1.3. Actually, condition
(3) is used to overcome the problem with the blow up of the estimates described
above. Namely, we have

Lemma 1.4. Assume that

(1) φ : [0,∞) → [0,∞) is increasing, continuous, concave, φ(0) = 0,

(2)

ˆ 1

0

dt

φ(t)
<∞ and

(3) t 7→ t−αφ(t) is increasing on (0, 1) for some α ∈ (0, 1).

Then there exists ψ such that

(a) ψ : [0,∞) → [0,∞) is increasing, continuous, concave, ψ(0) = 0,

(b)

ˆ 1

0

dt

ψ(t)
<∞ and

(c) lim
t→0+

ψ(t)

φ(t)
= 0.

The conditions (1), (2) and (3) are the same as in Theorem 1.2 and conditions
(a), (b) are the same as conditions (1), (2) in Proposition 1.3. However, (c) means
that ψ(t) is much smaller than φ(t) when t > 0 is sufficiently small.

Now, we construct a homeomorphism Φ as in Proposition 1.3, satisfying |Φ(x)−
Φ(y)|+|Φ−1(x)−Φ−1(y)| ≤ Cψ(|x−y|), and we use it in the definition of the sequence
{Fk} constructed above. Property (c) of ψ implies that |Φ(x) − Φ(y)| + |Φ−1(x) −
Φ−1(y)| ≤ εφ(|x − y|), provided x and y are sufficiently close. That allows us to
control the constant in the inequality (1.4) so well that we can take the constant Ck
on the right hand side of (1.4) to be independent of k. Passing to the limit shows
that the limiting homeomorphism F also satisfies (1.4) with that constant.

1.3. How to prove Proposition 1.3. The set A from the statement of
Proposition 1.3 is a Cantor set constructed in a standard way. Let 1 = α0 > α1 >
α2 > . . . be a decreasing sequence of positive numbers such that 2αk+1 < αk. Let
Q0 = Q be the initial cube of edge-length α0 = 1. Let Q1 be the union of 2n cubes
inside Q, each of edge-length α1. These 2n cubes are ‘evenly’ distributed. Let Q2 be
the union of 2n · 2n = 22n cubes inside Q1, each of edge-length α2. Namely, inside
each of the 2n cubes in Q1 we have 2n smaller cubes of edge-length α2. Again, the
cubes are ‘evenly’ distributed, see Figure 2 in Section 3. The condition 2αk+1 < αk
is necessary, as otherwise there would not be enough space for the cubes of the next



152 Paweł Goldstein and Piotr Hajłasz

generation. The Cantor set is then defined as A =
⋂∞
k=0Qk. The volume of Qk

equals 2knαnk = (2kαk)
n. Hence, in order for the Cantor set to have positive measure,

we need limk→∞ 2kαk > 0.
The 2n cubes Qj , j = 1, 2, . . . , 2n, of the first generation, that form the set Q1,

are placed in two layers: 2n−1 cubes (j = 1, . . . , 2n−1) above the other 2n−1 cubes
(j = 2n−1 + 1, . . . , 2n). We choose indices in such a way that the cube Q2n−1+j is
right below the cube Qj .

The homeomorphism Φ will be constructed as a limit of diffeomorphisms Φk.
The diffeomorphism Φ1 of Q is identity near the boundary of Q and it exchanges
the cubes Qj from the top layer with the cubes Q2n−1+j from the bottom layer. For
each j = 1, 2, . . . , 2n−1, the mapping Φ1 restricted to Qj is a translation of Qj onto
Q2n−1+j and also Φ1 restricted to Q2n−1+j is a translation of Q2n−1+j onto Qj . This
construction of Φ1 is carefully described in Lemma 2.8.

The diffeomorphism Φ2 coincides with Φ1 in Q\Q1. Inside each cube Qj there is
a family of 2n cubes of the second generation. Now, the diffeomorphism Φ2 exchanges
cubes from the top layer of this family with the cubes from the bottom layer. The
diffeomorphism Φ2 does this in every cube Qj , j = 1, 2, . . . , 2n. The diffeomorphisms
Φk are defined in a similar way. The sequence {Φk} converges in the uniform metric
to a homeomorphism Φ.

The sequence of diffeomorphisms {Φk} reverses the vertical order of cubes used
in the construction of the Cantor set A. Hence, the limiting homeomorphism Φ
restricted to the Cantor set A is the reflection in the hyperplane xn = 1/2. Thus
Φ is approximately differentiable at the density points of A and the approximate
derivative satisfies (1.3). Also, it follows from the construction of the sequence {Φk}
that Φ is a diffeomorphism outside A, so it is differentiable there and the Lusin
property of Φ easily follows.

We already pointed out that the numbers αk used in this construction must satisfy
1 = α0 > α1 > . . ., 2αk+1 < αk and limk→∞ 2kαk > 0. That would be enough if we
wanted to obtain a homeomorphism Φ with all properties listed in Proposition 1.3
but the last one: |Φ(x)−Φ(y)|+|Φ−1(x)−Φ−1(y)| ≤ C(n, φ)φ(|x−y|). This condition
requires a much more careful choice of the sequence {αk}, since the numbers in the
sequence must be related to the function φ. This is done in Lemma 2.3.

The numbers βk = (αk−1 − 2αk)/4 are the distances of the cubes of the k-th
generation to the boundaries of cubes of the (k − 1)-st generation, see Figure 2 in
Section 3. Their properties are listed in Lemma 2.4.

1.4. Structure of the paper. Section 2 is of technical character: we recall
the definition and basic properties of the modulus of continuity there and then we
prove several lemmata needed in the proofs of Proposition 1.3 and Theorem 1.2. In
Section 3 we prove Proposition 1.3 and in Section 4 we prove Theorem 1.2.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments.

2. Auxiliary lemmata

This section starts with a definition and basic properties of the modulus of con-
tinuity, but then it is focused on technical lemmata that will be used later in the
proof of Proposition 1.3 and Theorem 1.2. Some of these lemmata have already been
mentioned in Introduction. The reader may skip this section, go directly to Section 3
and come back to the results of Section 2 whenever necessary.
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We say that a continuous, non-decreasing and concave function φ : [0,∞) →
[0,∞) such that φ(0) = 0 is a modulus of continuity of a function f : X → R defined
on a metric space (X, d) if

(2.1) |f(x)− f(y)| ≤ φ(d(x, y)) for all x, y ∈ X.

It is well known that every continuous function on a compact metric space has a
modulus of continuity. The construction goes as follows. If f is constant, then
we take φ(t) ≡ 0. Thus assume that f is not constant. Let φ1(t) = sup{|f(x) −
f(y)| : d(x, y) ≤ t}. Since the function f is uniformly continuous and bounded,
the function φ1 : [0,∞) → [0,∞) is non-decreasing and limt→0+ φ1(t) = 0. Also,
φ1(t) is constant for t ≥ diamX, so M = supt>0 φ1(t) is positive and finite. Clearly,
|f(x) − f(y)| ≤ φ1(d(x, y)) for all x, y ∈ X. To obtain a modulus of continuity (as
defined above), we define φ to be the least concave function greater than or equal to
φ1. Namely,

(2.2) φ(t) = inf{αt+ β : φ1(s) ≤ αs+ β for all s ∈ [0,∞)}.
It is easy to see that φ is concave and φ ≥ φ1, so (2.1) is satisfied and φ is nonnegative.
Moreover, concavity implies continuity of φ on (0,∞), see [14, Theorem A, p.4]. Since
α ≥ 0 in (2.2), φ is non-decreasing. It remains to show that limt→0+ φ(t) = 0. For
0 < β < M define α = sups>0(φ1(s) − β)/s. Note that α is positive and finite,
because φ1(s) − β < 0 for small s. Clearly, φ1(s) ≤ αs + β for all s > 0. Hence
φ(t) ≤ αt+ β, so 0 ≤ lim supt→0+ φ(t) ≤ β. Since β > 0 can be arbitrarily small, we
conclude that limt→0+ φ(t) = 0.

The moduli φ(t) = Ct describe Lipschitz functions and more generally φ(t) =
Ctα, α ∈ (0, 1], describe α-Hölder continuous functions. In this paper we are inter-
ested in functions with modulus of continuity satisfying the following conditions:

(1) φ : [0,∞) → [0,∞) is increasing, continuous, concave, φ(0) = 0,

(2)

ˆ 1

0

dt

φ(t)
<∞.

Here and in what follows, by an increasing function we mean a strictly increasing
function. The Lipschitz modulus of continuity φ(t) = Ct does not satisfy the condi-
tion (2). However, φ(t) = Ctα, α ∈ (0, 1), satisfies both conditions. Also, there is a
function φ that equals φ(t) = t log2 t near zero and has both properties (1) and (2).
A function with this modulus of continuity is Hölder continuous with any exponent
α < 1. Thus condition (2) means that φ is a sub-Lipschitz modulus of continuity
and it can be pretty close to the Lipschitz one.

In order to avoid confusion we adopt the rule that φ−1(t) will always stand for
the inverse function and not for its reciprocal.

Remark 2.1. Recall that a function ω satisfies the Dini condition if
´ 1

0
ω(t)/t dt <

∞. Although the following observation will not be used in the paper, one should note
that (2) is equivalent to φ−1(t)/t satisfying the Dini condition. Indeed, according to
Lemma 2.2(b) we have limt→0+ t/φ(t) = 0. Since concave functions are locally Lip-
schitz, [14, Theorem A, p.4], integration by parts yields

ˆ 1

0

dt

φ(t)
=

t

φ(t)

∣
∣
∣
∣

1

0

+

ˆ 1

0

tφ′(t) dt

φ2(t)
=

1

φ(1)
+

ˆ φ(1)

0

φ−1(s)/s ds

s
.

The last equality follows from the substitution s = φ(t). Also, for the integration by
parts to be rigorous, we should integrate from ε to 1 and then let ε → 0+.
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Now we will present some technical lemmata related to functions φ satisfying
(1) and (2). They will be needed later in the proof of Proposition 1.3. Since the
remaining part of this section is of purely technical nature, the reader might want to
skip it for now and return to it when necessary.

In Lemmata 2.2, 2.3, 2.4 and 2.5 below we assume that φ : [0,∞) → [0,∞) is a
given function that satisfies conditions (1) and (2).

Lemma 2.2.

(a) The function t 7→ t

φ(t)
is non-decreasing and

(b) lim
t→0+

t

φ(t)
= 0.

Proof. By concavity of φ and the assumption φ(0) = 0, if s > t > 0,

(2.3) φ(t) = φ
( t

s
s+

(

1− t

s

)

0
)

≥ t

s
φ(s) +

(

1− t

s

)

φ(0) =
t

s
φ(s),

which proves (a). Next, (a) implies that the limit in (b) exists; assume, to the
contrary, that limt→0+ t/φ(t) = c > 0. Then, for all t > 0, 1/φ(t) ≥ c/t and the
improper integral in (2) is divergent. This proves (b). �

Lemma 2.3. Let N > 0 be such that

(2.4)
1

2N

(

1 +

ˆ φ−1(2−N )

0

ds

φ(s)

)

= 1.

For k = 0, 1, 2, . . ., set

αk =
1

2N+k

(

1 +

ˆ φ−1(2−N−k)

0

ds

φ(s)

)

.

Then

(a) α0 = 1,
(b) 2αk+1 < αk,
(c) limk→∞ 2kαk = 2−N > 0,
(d) for all k we have αk ≤ 2−k and there exists Ko such that

(2.5)
1

2N+k
< αk <

1

2N+k−1
for all k ≥ Ko.

Proof. The existence of N > 0 satisfying (2.4) can be easily seen by taking limits
of the expression on the left hand side of (2.4) as N → ∞ and as N → 0+. The
properties (a)–(d) follow immediately from the definition of αk and the fact that
´ 1

0
ds/φ(s) <∞. �

Lemma 2.4. For k ≥ 1 define

βk =
1

4
(αk−1 − 2αk) =

1

2N+k+1

ˆ φ−1(2−(N+k−1))

φ−1(2−(N+k))

ds

φ(s)
.

Then

(a) φ(2βk) < 2−(N+k)+1,
(b) 2−(N+k) ≤ φ(4βk),
(c) the sequence {βk} is decreasing and limk→∞ βk = 0.
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Proof. Since, by assumptions, the function 1/φ(s) is decreasing, we have

(2.6) βk <
1

2N+k+1

(
φ−1(2−(N+k−1))− φ−1(2−(N+k))

)
2N+k ≤ 1

2
φ−1(2−(N+k−1)),

which proves (a). Similarly,

βk >
1

2N+k+1

(
φ−1(2−(N+k−1))− φ−1(2−(N+k))

)
2N+k−1

=
1

4

(
φ−1(2−(N+k−1))− 2φ−1(2−(N+k))

)
+

1

4
φ−1(2−(N+k)).

(2.7)

The function φ−1 is convex, φ−1(0) = 0, thus for any t > 0 we have

(2.8) φ−1(2t) ≥ 2φ−1(t).

Therefore, the expression 1
4

(
φ−1(2−(N+k−1))− 2φ−1(2−(N+k))

)
is non-negative and

ultimately

(2.9) βk ≥
1

4
φ−1(2−(N+k)),

which proves (b). Now, we claim that the sequence {βk} is decreasing. Indeed, by
(2.6),

βk <
1

2

(
φ−1(2−(N+k−1))− φ−1(2−(N+k))

)

=
1

2N+k+1

φ−1(2−(N+k−1))− φ−1(2−(N+k))

2−(N+k−1) − 2−(N+k)
.

Convexity of φ−1 implies that the difference quotient

φ−1(x)− φ−1(y)

x− y

is a non-decreasing function of both x and y. Therefore

βk <
1

2N+k+1

φ−1(2−(N+k−2))− φ−1(2−(N+k−1))

2−(N+k−2) − 2−(N+k−1)

=
1

4
(φ−1(2−(N+k−2))− φ−1(2−(N+k−1))) < βk−1,

where the last inequality follows from (2.7). This proves that the sequence {βk} is
decreasing. Finally, by taking k → ∞ in (a) we see that limk→∞ βk = 0, because φ is
increasing, continuous and φ(0) = 0. �

Lemma 2.5. For k ≥ 1 define λk = αk−1/βk. Then there exists a constant
C = C(φ) such that for all k ≥ 2,

(2.10) sup
ℓ<k

λℓ ≤ C(φ)λk.

Proof. We start by proving (2.10) for all k > Ko, where Ko is given as in (d),
Lemma 2.3. Lemma 2.4 yields

(2.11) λk =
αk−1

βk
≥ 2−N−k+1

βk
≥ φ(2βk)

βk
= 2

φ(2βk)

2βk
and

(2.12) λk ≤
2−N−k+2

βk
≤ 4

φ(4βk)

βk
= 16

φ(4βk)

4βk
≤ 16

φ(2βk)

2βk
,

where the last inequality follows from concavity of φ, see Lemma 2.2(a).
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Since both the sequence {βℓ} and the function φ(t)/t are non-increasing, the
sequence φ(2βℓ)/(2βℓ) is non-decreasing, so

sup
ℓ<k

λℓ ≤ sup
ℓ≤Ko

λℓ

︸ ︷︷ ︸
=Λ

+ sup
Ko<ℓ<k

λℓ ≤ Λ + 16 sup
Ko<ℓ<k

φ(2βℓ)

2βℓ
≤ Λ + 16

φ(2βk)

2βk

≤ Λ + 8λk ≤ (Λ + 8)λk = C(φ)λk,

(2.13)

where the inequalities in the last line are justified by the fact that λk > 1 for all k. Ob-
viously, the same (possibly with different C(φ)) holds for k ≤ Ko, since {λ1, . . . , λKo}
is a finite set of positive numbers. �

Lemma 2.6. Assume that

(a) φ : [0,∞) → [0,∞) is increasing, continuous, concave, φ(0) = 0,

(b)

ˆ 1

0

dt

φ(t)
<∞ and

(c) t 7→ t−αφ(t) is increasing on (0, 1) for some α ∈ (0, 1).

Then there exists ψ such that

(1) ψ : [0,∞) → [0,∞) is increasing, continuous, concave, ψ(0) = 0,

(2)

ˆ 1

0

dt

ψ(t)
<∞ and

(3) lim
t→0+

ψ(t)

φ(t)
= 0.

Proof. Set ak = φ−1(2−k). By an application of the Maclaurin–Cauchy integral
test, we have (cf. Figure 1, left)

∞∑

k=1

2k(ak − ak+1) ≤
ˆ a1

0

dt

φ(t)
≤

∞∑

k=1

2k+1(ak − ak+1).

Thus the convergence of the improper integral
´ a1

0
dt
φ(t)

is equivalent to the convergence

of the series
∑∞

k=1 2
k+1(ak − ak+1).

Denoting Ak = 2k+1(ak − ak+1) we have, by assumption (b), that
∑∞

k=1Ak <∞.
One easily checks that A−1

k is equal to the slope of the secant of graph of the func-
tion φ through (ak+1, 2

−(k+1)) and (ak, 2
−k) (cf. Figure 1, right). Thus, by concavity

of φ, the sequence {Ak} is non-increasing.

2k

2k+1

ak+1 ak

1
φ(t)

t

y

ak+1 ak

φ(t)

2−(k+1)

2−k

t

y

1
2k+1

ak − ak+1

Figure 1.
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Now, let

A′
k =

√
√
√
√

∞∑

ℓ=k

Aℓ −

√
√
√
√

∞∑

ℓ=k+1

Aℓ = Ak





√
√
√
√

∞∑

ℓ=k

Aℓ +

√
√
√
√

∞∑

ℓ=k+1

Aℓ





−1

.

Then

(2.14) lim
k→∞

A′
k

Ak
= lim

k→∞





√
√
√
√

∞∑

ℓ=k

Aℓ +

√
√
√
√

∞∑

ℓ=k+1

Aℓ





−1

= ∞,

by convergence of the series
∑
Aℓ.

Also,
∞∑

k=1

A′
k =

√
√
√
√

∞∑

k=1

Ak <∞.

However, the sequence {A′
k} need not be non-increasing.

To correct that, let us set A′′
k = minℓ≤k A

′
ℓ. The sequence {A′′

k} is, obviously,
non-increasing, moreover A′′

k ≤ A′
k, thus the series

∑
A′′
k is convergent.

Next, we prove that limk→∞A′′
k/Ak = ∞. Assume ℓ(k) ≤ k is such that A′′

k =
A′
ℓ(k). Since A′

k > 0 and A′
k → 0, we have

∀m∈N ∃ko ∀k>ko A′
k < A′

ℓ(m) = min{A′
1, . . . , A

′
m}.

Hence for k > ko

A′
ℓ(k) = min{A′

1, . . . , A
′
k} ≤ A′

k < A′
ℓ(m) = min{A′

1, . . . , A
′
m}

so ℓ(k) 6∈ {1, . . . , m} and thus ℓ(k) > m. This shows that ℓ(k) → ∞ as k → ∞. Now
(2.14) yields

A′′
k

Ak
=
A′
ℓ(k)

Ak
≥
A′
ℓ(k)

Aℓ(k)

k→∞−−−→ ∞.

Set bk =
∑∞

ℓ=k
A′′

ℓ

2ℓ+1 . The sequence {bk} is decreasing and limk→∞ bk = 0. More-

over, we have A′′
k = 2k+1(bk − bk+1).

Define ψ as a piecewise-linear function, affine on all intervals [bk+1, bk] and such
that ψ(bk) = 2−k. For t ∈ (bk+1, bk), ψ

′(t) = 1/A′′
k, thus ψ′ is non-increasing and

positive, which implies that ψ is concave and increasing.
The same argument through the Maclaurin–Cauchy integral test that, at the

beginning of the proof, gave us the equivalence between the convergence of the series
∑∞

k=1Ak and the condition (b) for φ, allows us to conclude the condition (2) from
the convergence of the series

∑∞
k=1A

′′
k. Also,

ψ(0) = lim
t→0+

ψ(t) = lim
k→∞

ψ(bk) = lim
k→∞

2−k = 0.

This ends the proof of (1). We still need to prove (3), i.e. that limt→0+
ψ(t)
φ(t)

= 0.

We will use the following non-standard version of the Stolz–Cesàro Theorem, [3,
Theorem 2.7.1].

Lemma 2.7. Let {ak} and {bk} be two sequences of real numbers convergent to
0 such that {ak} is strictly monotone and

lim
k→∞

bk+1 − bk
ak+1 − ak

= ℓ ∈ R ∪ {±∞}. Then lim
k→∞

bk
ak

= ℓ.
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Lemma 2.7 yields

lim
k→∞

bk
ak

= lim
k→∞

bk+1 − bk
ak+1 − ak

= lim
k→∞

A′′
k

Ak
= ∞.

Note that the condition (c) implies that whenever k > 1 and kt < 1, we have
φ(kt) > kαφ(t). Thus, for t ∈ (bk+1, bk], where k is sufficiently large

0 ≤ ψ(t)

φ(t)
≤ ψ(bk)

φ(bk+1)
≤ 2−k

(bk+1/ak+1)αφ(ak+1)
= 2

(
ak+1

bk+1

)α
k→∞−−−→ 0.

Therefore limt→0+
ψ(t)
φ(t)

= 0. �

For a diffeomorphism Φ: Ω → R
n of class C∞, Ω ⊂ R

n, we define

‖DΦ‖Ω = sup
x∈Ω

‖DΦ(x)‖ = sup
x∈Ω

sup
|ξ|=1

|DΦ(x)ξ| ,

‖(DΦ)−1‖Ω = sup
x∈Ω

‖(DΦ)−1(x)‖ = sup
x∈Ω

sup
|ξ|=1

∣
∣(DΦ(x))−1ξ

∣
∣ .

In order to obtain estimates on the modulus of continuity of the homeomorphism
Φ constructed in Proposition 1.3, we need Lipschitz estimates for the building block
of the construction: a ‘box-exchange’ diffeomorphism that switches top and bottom
layers of dyadic cubes of edge-length 0 < α < 1

2
within the unit cube.

Lemma 2.8. Assume that Q1, . . . , Q2n are the closed n-dimensional cubes of
edge-length 0 < α < 1

2
inside the unit cube Q = [0, 1]n, n ≥ 2, with dyadic (i.e. with

all coordinates equal 1/4 or 3/4) centers. Let β = (1 − 2α)/4. Then there exists a
smooth diffeomorphism Fα : Q→ Q such that

(a) Fα exchanges the ‘top layer’ cubes Qj with ‘bottom layer’ cubes Q2n−1+j in
such a way that the restriction of Fα to a β/10-tubular neighborhood of each
of Qj is a translation;

(b) Fα is identity near ∂Q,
(c) ‖DFα‖Q + ‖D(F−1

α )‖Q < C(n)/β for some constant C(n) dependent only on
n.

Proof. Suppose that we already constructed Fα for α ∈ [1
4
, 1
2
). If 0 < α < 1

4
, we

set Fα = F 1
4
.

Since the dyadic cubes Qj of edge-length α ∈ (0, 1
4
) are contained in the dyadic

cubes of edge-length 1/4, the mapping Fα = F 1
4

will exchange the cubes Qj, so it

will have the properties (a) and (b). The estimate (c) follows from the corresponding
estimate for F 1

4
:

‖DFα‖Q + ‖D(F−1
α )‖Q = ‖DF 1

4
‖Q + ‖D(F−1

1
4

)‖Q < 8C(n) <
2C(n)

β
,

since β < 1
4

when 0 < α < 1
4
.

Thus it remains to show the construction of the mapping Fα when 1
4
≤ α < 1

2
.

First, we sketch the construction of a smooth diffeomorphism Gγ : [−1, 1]n →
[−1, 1]n, γ ∈ (0, 1

2
], such that

(A) Gγ is identity near ∂[−1, 1]n,
(B) Gγ maps the cube [−(1 − γ), 1− γ]n to [−1

2
, 1
2
]n,

(C) Gγ acts on [−(1− 0.9γ), 1− 0.9γ]n as a homogeneous affine scaling transfor-
mation (i.e. a homothety),

(D) DGγ is bounded by C(n)/γ for some constant C(n) dependent only on n,
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(E) DG−1
γ is bounded by C(n), independently of γ.

Such a diffeomorphism can be constructed as follows: let D : Sn−1 → R denote the
distance of a point (r, ϑ) ∈ ∂[−1, 1]n, given in radial coordinates, to the origin, as a
function of the spherical coordinate ϑ:

Sn−1 ∋ ϑ 7→ (r, ϑ) ∈ ∂[−1, 1]n 7→ r ∈ R, i.e. D(ϑ) = r.

Fix ε ≪ γ and let Rε : S
n−1 → R approximate D smoothly from below:

0 < D(ϑ)−Rε(ϑ) < ε for all ϑ ∈ Sn−1.

Set rε = (1−0.9γ+2ε)Rε; one immediately checks that rε approximates (1−0.9γ)D
from above. Note that Rε − rε ≈ γ. Last, let ξ : [0, 1] → R be a smooth, increasing
function such that

ξ(t) =

{
1

2(1−γ)
for t ∈ [0, ε],

1 for t ∈ [1− ε, 1].

We can find such ξ with ξ′ bounded independently of γ; note that ξ(t) ≥ 1
2(1−γ)

≥ 1
2

for all t. Then we can define Gγ in radial coordinates as

Gγ(r, ϑ) =







id for r > Rε(ϑ),

(rξ
(

r−rε(ϑ)
Rε(ϑ)−rε(ϑ)

)

, ϑ) for rε(ϑ) ≤ r ≤ Rε(ϑ),

( r
2(1−γ)

, ϑ) for r < rε(ϑ).

Then Gγ is a smooth diffeomorphism satisfying conditions (A) to (C). To obtain (D)
and (E), note that Gγ is a radial map, thus to find bounds on DGγ and DG−1

γ it is
enough to estimate ∂r|Gγ| from above and below.

∂r|Gγ| = ξ

(
r − rε(ϑ)

Rε(ϑ)− rε(ϑ)

)

+ rξ′
(

r − rε(ϑ)

Rε(ϑ)− rε(ϑ)

)
1

Rε(ϑ)− rε(ϑ)
,

and thus
1

2
≤ ∂r|Gγ| ≤

C(n)

γ

for some constant C(n) depending only on n. This proves (D) and (E).
Dividing Q into 2n dyadic cubes of edge 1/2 and applying (rescaled by the factor

1/4 and translated) G4β = G1−2α to each of them we obtain a diffeomorphism Hα of
Q onto itself that shrinks the 2n cubes Qi of edge α to concentric cubes of edge 1/4
(extending by the same homothetic dilation to their small neighborhoods) and that
is equal to id near ∂Q. Obviously, DHα and DH−1

α satisfy analogous estimates as
those for DGα and DG−1

α .
Let F denote a diffeomorphism of Q that exchanges the ‘top’ cubes of edge-length

1/4 with their ‘bottom’ counterparts, together with their 1
40

-tubular neighborhoods
and that is equal to identity near ∂Q. Then Fα = H−1

α ◦F ◦Hα satisfies the conditions
(a) and (b). Moreover,

‖DFα‖Q + ‖DF−1
α ‖Q ≤ ‖DH−1

α ‖Q · ‖DF‖Q · ‖DHα‖Q
+ ‖DH−1

α ‖Q · ‖DF−1‖Q · ‖DHα‖Q ≤ C(n)/β. �

In the proof of Proposition 1.3 we shall use Lemma 2.8 to construct Fα for
α = α−1

k αk+1, where αk are as in Lemma 2.3. Recall that the numbers βk are defined
in Lemma 2.4. Since

β =
1

4
(1− 2α) =

1

4

(

1− 2αk+1

αk

)

=
βk+1

αk
,
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we have

Corollary 2.9. Assume αk are as in Lemma 2.3. Then for any k = 0, 1, 2, . . .
there exists a smooth diffeomorphism Fα, with α = α−1

k αk+1, that satisfies conditions
(a) and (b) of Lemma 2.8 and, moreover,

‖DFα−1
k αk+1

‖Q + ‖D(F−1

α−1
k αk+1

)‖Q < C(n)
αk
βk+1

.

The next lemma is similar to [7, Lemma 3.8], but some estimates are new. Let
us recall the notation used in [7].

‖D2Φ‖Ω = sup
x∈Ω

‖D2Φ(x)‖ = sup
x∈Ω

sup
|ξ|=|η|=1

∣
∣
∣
∣
∣

n∑

i,j=1

∂2Φ

∂xi∂xj
(x)ξiηj

∣
∣
∣
∣
∣
.

It follows from Taylor’s theorem that if Φ ∈ C∞ and x ∈ B(xo, r) ⊂ Ω, then

(2.15) |Φ(x)− Φ(xo)−DΦ(xo)(x− xo)| ≤ ‖D2Φ‖Ω|x− xo|2.
Lemma 2.10. Let G : Ω → R

n, Ω ⊂ R
n, n ≥ 2, be a C∞-diffeomorphism such

that

M = ‖DG‖Ω + ‖(DG)−1‖Ω + ‖D2G‖Ω <∞.

Let E = B(xo, 2r) ⋐ Ω, B = B(xo, r), D = B(xo, r/2) and let

T (x) = G(xo) +DG(xo)(x− x0)

be the tangent map to G at xo. If

(2.16) r <
(
10(M + 1)22ℓ

)−1
for some ℓ ∈ N,

then

(a) diamG(B) < 2−ℓ,
(b) T (D) ⊂ G(B) ⊂ T (E),
(c) there is a C∞-diffeomorphism G̃ which coincides with G on Ω \ B(xo, 4r/5)

and coincides with T on B(xo, 3r/5) such that

(d) the mapping G̃ is bi-Lipschitz on B with the bi-Lipschitz constant Λ = 2M ,
i.e.

Λ−1|x− y| ≤ |G̃(x)− G̃(y)| ≤ Λ|x− y| for all x, y ∈ B.

Sketch of the proof. Arguments that are similar to those that appear in the
proof of Lemma 3.8 in [7] will be sketched only; for details we refer the reader to [7].

Note that (a) follows immediately from the condition (2.16) and the bound
‖DG‖Ω < M since

|G(x)−G(y)| ≤ ‖DG‖Ω|x− y| ≤M · 2r < 2−ℓ for all x, y ∈ B.

In what follows, we assume, for simplicity, that xo = 0, i.e. that the balls B, D and
E are centered at the origin.

The mapping G̃ in (c), interpolating between G and T , is given as

G̃(x) = T (x) + φ(|x|/r)(G(x)− T (x)) = T (x) + L(x),

where φ ∈ C∞(R, [0, 1]) is non-decreasing, φ(t) = 0 for t ≤ 3/5 and φ(t) = 1 for
t ≥ 4/5; ‖φ′‖∞ ≤ 9. Clearly G̃ is C∞ smooth, it coincides with G on Ω \B(xo, 4r/5)
and it coincides with T on B(xo, 3r/5), but in order to complete the proof of (c) we

need to prove that G̃ is a diffeomorphism.
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Elementary calculations show that for x ∈ B we have ‖DL(x)‖ < 10Mr, which

in turn allows us, for x, y ∈ B, to estimate |G̃(x)− G̃(y)| from below:

(2.17) |G̃(x)− G̃(y)| ≥ 1

2
|DG(0)(x− y)|.

The inequality (2.17) shows that G̃ is injective on B, which suffices to prove that G
is a homeomorphism. Taking in (2.17) y = x + τv (for some arbitrary v ∈ R

n and
sufficiently small τ) gives

1

2
|DG(0)τv| ≤ |G̃(x)− G̃(x+ τv)|,

thus

|DG̃(x)v| = lim
τ→0

∣
∣
∣
∣
∣

G̃(x+ τv)− G̃(x)

τ

∣
∣
∣
∣
∣
≥ 1

2
|DG(0)v|,

and non-degeneracy of DG(0) implies non-degeneracy of DG̃(x), thus G̃ is a diffeo-
morphism. This completes the proof of (c).

Since the diffeomorphisms G and G̃ agree on the boundary of the ball B, G(B) =

G̃(B) so T (D) = G̃(D) ⊂ G̃(B) = G(B), which is the first inclusion in (b).
To prove the other inclusion, G(B) ⊂ T (E), we argue as follows. If x ∈ B, then

by (2.15)

|G(x)− T (x)| ≤ ‖D2G‖Ω|x|2 < Mr2.

On the other hand, the distance between the ellipsoids T (∂E) and T (B) is larger
than Mr2

(2.18) dist
(
T (∂E), T (B)

)
> Mr2,

so G(B) ∩ T (∂E) = ∅ and hence G(B) ⊂ T (E). To prove (2.18), observe that the
distance between the ellipsoids is minimized along the shortest semi-axis (this fact
follows easily from geometric arguments or from the Lagrange multiplier theorem),
i.e. if x ∈ ∂B is such that T (x) ∈ T (∂B) and T (2x) ∈ T (∂E) are on a shortest
semi-axis of the ellipsoid T (∂E), then

dist
(
T (∂E), T (B)

)
= |T (2x)− T (x)| = |DG(0)x| ≥ |x|

‖(DG(0))−1‖ >
r

M
> Mr2.

Finally, using the estimate ‖DL(x)‖ ≤ 10Mr and the fact that

‖DT (x)‖ = ‖DG(0)‖ ≤ M,

we immediately get

‖DG̃(x)‖ ≤ ‖DT (x)‖+ ‖DL(x)‖ ≤ (1 + 10r)M ≤ 2M.

Hence the Lipschitz constant of G̃ on B is bounded by 2M . To get an estimate for
the Lipschitz constant of G̃−1, we return to (2.17):

2M |G̃(x)− G̃(y)| ≥ 2‖(DG)−1‖Ω · 1
2
|DG(0)(x− y)|

≥ |DG(0)−1DG(0)(x− y)| = |x− y|,
which completes the proof of (d) and hence that of the lemma. �
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3. Proof of Proposition 1.3

The proof is a slight reworking of the construction in [7, Lemma 2.1]; the main
difference is that we no longer require Φ to be measure preserving, and in return we
obtain estimates on the modulus of continuity of Φ and Φ−1. Let the sequences {αk}
and {βk} be defined as in Lemma 2.3 and Lemma 2.4. Let Qk

1, . . . , Q
k
2n be the closed

n-dimensional cubes inside the unit cube Q = [0, 1]n, of edge-length α−1
k−1αk < 1/2,

with dyadic (i.e. with all coordinates equal 1/4 or 3/4) centers q1, . . . , q2n , qj =
(qj,1, . . . , qj,n−1, qj,n), such that q2n−1+j = (qj,1, . . . , qj,n−1, 1 − qj,n). That means the
first 2n−1 cubes are in the top layer and the last 2n−1 are in the bottom layer, right
below the corresponding cubes from the upper layer.

Our construction is iterative. The starting point is the diffeomorphism Φ1 =
Fα−1

0 α1
, constructed in Corollary 2.9. This diffeomorphism rigidly rearranges (trans-

lates) cubes Q1
j of the edge-length α−1

0 α1 = α1 inside the unit cube Q. Moreover,

with each of the cubes Q1
j , Φ1 translates also its neighborhood consisting of all the

points with distance less than β1/10.

The diffeomorphism Φ2 coincides with Φ1 on Q \⋃2n

j=1Q
1
j , but in the interior of

each cube Q1
j , rearranged by the diffeomorphism Φ1, Φ2 is a rescaled and translated

version of the diffeomorphism Fα−1
1 α2

. It rearranges 22n cubes of the edge-length

α1 · α−1
1 α2 = α2. Since the diffeomorphism Fα−1

1 α2
is identity near the boundary

of the cube Q, the rescaled versions of it, applied to the cubes Q1
j , are identity

near boundaries of these cubes and hence the resulting mapping Φ2 is a smooth
diffeomorphism. The diffeomorphism Φ3 coincides with Φ2 outside the 22n cubes of
the second generation rearranged by Φ2 and it is a rescaled and translated version of
the diffeomorphism Fα−1

2 α3
inside each of the cubes rearranged by the diffeomorphism

Φ2. It rearranges 23n cubes of the edge-length α2 · α−1
2 α3 = α3 etc.

The diffeomorphism Φk rearranges 2kn k-th generation cubes Qk
j (together with

their small neighborhoods). Denoting the union of all these k-th generation cubes
by Qk, we obtain a descending family of compact sets. Let

A =

∞⋂

k=1

Qk.

By (c), Lemma 2.3, |Qk| = 2knαnk has positive limit, thus A is a Cantor set of positive
measure.

Thanks to the fact that at each step the subsequent modifications leading from
Φk to Φk+1 happen only in the k-th generation cubes, of diameter

√
nαk, the sequence

Φk is convergent in the uniform metric in the space of homeomorphisms. Therefore,
the limit mapping Φ is a homeomorphism. On the Cantor set A, Φ acts as a reflection
(x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, 1−xn), and outside A, Φ is a diffeomorphism (for
each x ∈ Q\A there exists k ∈ N such that Φ restricted to a small neighborhood of x
coincides with Φk). Thus Φ is a.e. approximately differentiable and its approximate
derivative is equal to (1.3) in the density points of A. Also, Φ has the Lusin property.

We need yet to prove the continuity estimates for Φ.
Let us note the following observations on the construction of subsequent gener-

ations of cubes in our example:
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• Each k-th generation cube Qk
j has a well defined ‘ancestor’ cube Aℓ(Qk

j ) in
generation ℓ, for 0 ≤ ℓ ≤ k, i.e. for ℓ = 0, 1, . . . , k there exists a unique ℓ-th
generation cube Aℓ(Qk

j ) such that Qk
j ⊂ Aℓ(Qk

j ).

• Whenever ℓ < k, dist(Qk
j , Q \ Aℓ(Qk

j )) ≥ βℓ+1 + βℓ+2 + · · ·+ βk.
• Denote the union of the family of all ℓ-th generation cubes by Qℓ, for ℓ =
0, 1, . . .. Let k ∈ N and fix ℓ < k. The mapping Φk, restricted to Q̆ℓ

j :=

Qℓ
j \ Qℓ+1, coincides with Fα−1

ℓ αℓ+1
, translated and rescaled by a factor of αℓ.

Since the rescaling is both in the domain and in the range by the same factor,
Corollary 2.9 yields

‖DΦk‖Q̆ℓ
j
= ‖DFα−1

ℓ αℓ+1
‖Q ≤ C(n)

αℓ
βℓ+1

= C(n)λℓ+1.

(The last equality follows from the definition of λℓ+1, see Lemma 2.5.) More-
over, by construction, Φk in the set

N ℓ
j := {x ∈ Q : 0 < dist(x,Qℓ

j) < βℓ/10}
is an isometry—a translation. Similarly, Φk is a translation on the k-th gen-
eration cubes. Therefore on these sets ‖DΦk‖ = 1 (cf. Figure 2).

α0

α1

α2

β1

β2

here Φ2 = Fα1 , |DΦ2| 6 C(n)λ1.

Φ2 = rescaled Fα2/α1
,

|DΦ2| 6 C(n)λ2.

Figure 2. In white areas Φ2 is either Fα1
or a composition of a translation with a properly

rescaled mapping Fα2/α1
. In the shaded areas Φ2 is an isometry: translation or identity.

Next, we prove that, for any ℓ, the diffeomorphism Φℓ satisfies the modulus of
continuity estimate: for any x, y ∈ Q,

(3.1) |Φℓ(x)− Φℓ(y)| ≤ C(n, φ)φ(|x− y|),
with the constant C = C(n, φ) independent on ℓ.
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We prove it by induction. Setting Φo = id we may assume that (3.1) holds for
ℓ = 0. Indeed, according to Lemma 2.2(a) we have

|Φo(x)− Φo(y)| = |x− y| ≤
√
n

φ(
√
n)
φ(|x− y|).

In the inductive step, assume that for some k ∈ N the estimate (3.1) holds for all
ℓ < k.

Fix x, y ∈ Q, x 6= y. If both x and y lie outside the (k − 1)-st generation cubes
Qk−1, then, by the inductive assumption,

|Φk(x)− Φk(y)| = |Φk−1(x)− Φk−1(y)| ≤ C(n, φ)φ(|x− y|),
since Φk and Φk−1 coincide outside Qk−1. Thus, in what follows, we assume that
x ∈ Qk−1

j , where Qk−1
j ⊂ Qk−1 is a (k − 1)-st generation cube.

The sequence {βi} is decreasing to 0, thus either |x− y| > β1/10, or there exists
m ∈ N such that βm+1/10 < |x− y| ≤ βm/10. If |x− y| > β1/10, then

|Φk(x)− Φk(y)| ≤ diamQ =
√
n ≤

√
n

φ(β1/10)
φ(|x− y|) = C(n, φ)φ(|x− y|).

If βm+1/10 < |x− y| ≤ βm/10 and 1 < m ≤ k − 1, then

|x− y| ≤ βm
10

< βm + · · ·+ βk−1 ≤ dist(Qk−1
j , Q \ Am−1(Qk−1

j )).

This shows that x, y ∈ Am−1(Qk−1
j ) and

(3.2) |Φk(x)− Φk(y)| ≤ diam(Φk(Am−1(Qk−1
j ))) =

√
nαm−1,

because Φk(Am−1(Qk−1
j )) is again one of the (m− 1)-st generation cubes.

Last, if βm+1/10 < |x− y| ≤ βm/10 and m ≥ k, then

dist(y,Qk−1
j ) ≤ |x− y| ≤ βm

10
≤ βk

10
<
βk−1

10
,

thus either y ∈ Qk−1
j , or y ∈ Nk−1

j . We have, as observed at the beginning of the
proof,

‖DΦk‖Qk−1
j ∪Nk−1

j
≤ max{‖DΦk‖Nk−1

j
, ‖DΦk‖Q̆k−1

j
, ‖DΦk‖Qk

}
= max{1, C(n)λk, 1} = C(n)λk.

Since x, y ∈ Qk−1
j ∪Nk−1

j , the mean value theorem yields

|Φk(x)− Φk(y)| ≤ C(n)λk|x− y|.
By Lemma 2.5, λk ≤ C(φ)λm, which gives

(3.3) |Φk(x)− Φk(y)| ≤ C1(n, φ)λm
βm
10

= C(n, φ)αm−1.

Now, Lemmata 2.3, 2.4 and inequality (2.3) yield

αm−1 ≤ 2−(m−1) = 2N+22−(N+(m+1)) ≤ 2N+2φ(4βm+1)

≤ 40 · 2N+2φ(βm+1/10) ≤ 40 · 2N+2φ(|x− y|).
This, combined with the estimates in (3.2) and (3.3), proves the estimate (3.1).

Note that the inverse mapping Φ−1
ℓ is constructed in exactly the same way as

Φℓ; the only difference is that in Lemma 2.8, in place of the diffeomorphism F
exchanging ‘top’ and ‘bottom layer’ cubes of edge length 1

4
, we use its inverse F−1,

which obviously possesses the same properties as F (it is a diffeomorphism that is
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identity near ∂Q and it exchanges ‘top’ and ‘bottom layer’ cubes of edge length 1
4
,

together with their 1
40

-tubular neighborhoods). Therefore, an estimate analogous to

(3.1) holds for Φ−1
ℓ as well (possibly with a different constant):

|Φ−1
ℓ (x)− Φ−1

ℓ (y)| ≤ C(n, φ)φ(|x− y|).
Passing to the limit in the uniform metric d in the space of homeomorphisms we see
that if Φ = limℓ→∞Φℓ, then

|Φ(x)− Φ(y)| ≤ C(n, φ)φ(|x− y|)
and

|Φ−1(x)− Φ−1(y)| ≤ C(n, φ)φ(|x− y|). �

Remark 3.1. By the definition of βk (cf. Lemma 2.4) one immediately sees that
the convergence condition (2) on φ in Proposition 1.3 is natural and necessary for
our construction: (2) holds if and only if the series

∑
2kβk is convergent. Recall

(Figure 2) that βk is the distance from the boundary of the (k − 1)-st generation
cube to the k-th generation cube, thus 4β1 = 1 − 2α1 < 1, 4β1 + 8β2 = 1 − 4α2 < 1
and so on,

2β1 + 4β2 + 8β3 + · · ·+ 2kβk =
1

2

(
1− 2kαk

)
<

1

2
,

thus (2) is necessary for the sequence αk to be well adapted for our construction.

4. Proof of Theorem 1.2

Let φ satisfy conditions (1), (2) and (3) of Theorem 1.2 and let ψ be obtained
from φ according to the construction given in the proof of Lemma 2.6. In particular,
constants dependent on the choice of ψ depend on φ only.

The starting point of our iterative construction is the homeomorphism F1 = Φ,
given by Proposition 1.3, but with estimates dependent on ψ instead of φ. Then F1

is a.e. approximately differentiable in Q, it has the Lusin property, F1 = id near ∂Q
and there exists a compact set C1 = A of positive measure such that the Jacobian
JF1 is negative (equal −1) in almost every point of C1; F1 is a diffeomorphism outside
C1.

Moreover, for any x, y ∈ Q,

|F1(x)− F1(y)|+ |F−1
1 (x)− F−1

1 (y)| ≤ C(n, ψ)ψ(|x− y|) ≤ C(n, φ)φ(|x− y|),
with the last inequality true for some C(n, φ) thanks to (3), Lemma 2.6. We can
assume that C(n, φ) ≥ 6.

Assume thus, for the inductive step of the construction, that we already have a
homeomorphism Fk : Q→ Q satisfying

a) Fk is equal to identity near ∂Q,
b) Fk has the Lusin property,
c) there exists a compact set Ck ⊂ Q such that

• |Ck| > 0,
• for a.e. x ∈ Ck, the homeomorphism Fk is approximately differentiable

at x and its Jacobian JFk
(x) is negative,

• Fk is a diffeomorphism outside Ck.
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d) for any x, y ∈ Q,

|Fk(x)− Fk(y)| ≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|),

|F−1
k (x)− F−1

k (y)| ≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|).

In the inductive step we construct Fk+1 by modifying Fk in sufficiently small balls
outside Ck, enlarging the set of points at which the approximate Jacobian is negative.
To this end, let us choose an open set Ω such that Ω ⋐ Q \ Ck, |Ω| > 3

4
|Q \ Ck| and

|Fk(Ω)| > 3
4
|Q \ Fk(Ck)|.

Set

(4.1) M = 1 + ‖DFk‖Ω + ‖(DFk)−1‖Ω + ‖D2Fk‖Ω <∞.

We fill Ω with a finite family of pairwise disjoint balls {Bi}i∈I = {B(xi, ri)}i∈I ,
Bi ⋐ Ω, with sufficiently small radii ri, i.e. ri < ρ, with ρ to be determined later, in
such a way that

∣
∣
∣
∣
∣

⋃

i

Bi

∣
∣
∣
∣
∣
>

2

3
|Ω| and

∣
∣
∣
∣
∣

⋃

i

Fk(Bi)

∣
∣
∣
∣
∣
>

2

3
|Fk(Ω)|.

Assume ρ <
(
10(M + 1)22k+1

)−1
. Then we can modify Fk according to Lemma 2.10

inside each of the balls Bi, obtaining an approximately differentiable homeomorphism
F̃k which coincides with Fk on some neighborhoods of ∂Q and of Ck and which is
affine on each of the balls Di, concentric with Bi, but with radius ri/2. Namely

F̃k(x) = Ti(x) = Fk(xi)+DFk(xi)(x−xi) for x ∈ Di. Obviously, F̃k is an orientation
preserving diffeomorphism in Q\Ck. In particular, the affine maps Ti are orientation
preserving, with JTi = JFk

(xi) > 0.
Next, inscribe an n-dimensional cube Qi, with edges parallel to the coordinate

directions, into each of the ballsDi. Note that |Qi|/|Di| is a constant independent of i.
Denote by Si : Qi → Q the standard similarity (scaling + translation) transformation
between Qi and the unit cube Q. We define

Fk+1 =

{

F̃k in Q \⋃i∈I Qi,

F̃k ◦ S−1
i ◦ Φ ◦ Si in each of the Qi.

Then in each of the cubes Qi there is a positive measure Cantor set Ai such that

• S−1
i ◦ Φ ◦ Si|Ai

is a symmetry with respect to a certain hyperplane,
• outside Ai, S

−1
i ◦ Φ ◦ Si is a diffeomorphism of Qi onto itself, equal to the

identity near ∂Qi.

The homeomorphism Fk+1 on Ai is a composition of a symmetry (orientation-
reversing affine map with the Jacobian equal −1) and the orientation preserving affine
tangent mapping Ti with the Jacobian equal JFk

(xi) > 0. Thus JFk+1
is negative in

all the density points of Ai (in fact it is constant on the set of density points of Ai:
for a.e. x ∈ Ai it is equal to −JFk

(xi)).
Note that for each i, |Ai|/|Qi| = |A|/|Q| = |A| so |Ai| = |A||Qi|, where A is the

Cantor set constructed in Proposition 1.3. Note that |A| depends on the dimension
n and the choice of ψ and hence it depends on n and φ only. Since the sets Ai are
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pairwise disjoint we get
∣
∣
⋃

i

Ai
∣
∣ =

∑

i

|Ai| = |A|
∑

i

|Qi| = C(n, φ)
∑

i

|Bi|

≥ C(n, φ)
2

3
|Ω| ≥ C(n, φ)

2

3
· 3
4
|Q \ Ck| =

1

2
C(n, φ)|Q \ Ck|.

(4.2)

We define Ck+1 = Ck ∪
⋃

iAi. It easily follows from (4.2) that

(4.3)
∣
∣
∣Q \

⋃

k

Ck

∣
∣
∣ = 0.

Clearly, the homeomorphism Fk+1 has the corresponding properties a), b) and c). The
next step is proving the continuity estimate d) for Fk+1 and F−1

k+1. The arguments
are repetitive, thus we provide the details in the most complex cases and sketch the
remaining ones.

We first prove the estimate for the intermediate step F̃k. For points x, y ∈ Q we
have to consider several cases.

Let x, y 6∈ ⋃iBi. Then we have, by assumption,

|F̃k(x)− F̃k(y)| = |Fk(x)− Fk(y)| ≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|).

Similarly, for any x, y 6∈ ⋃i Fk(Bi),

|F̃−1
k (x)− F̃−1

k (y)| = |F−1
k (x)− F−1

k (y)| ≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|).
The remaining cases, when at least one of the points is in a ball Bi, are more

difficult. By (d), Lemma 2.10, the mapping F̃k is bi-Lipschitz in each of the closed
balls Bi, with bi-Lipschitz constant Λ = 2M .

Assume that ρ is such that for t < 2Λρ we have t/φ(t) < Λ−12−k−1 (recall that
by (b), Lemma 2.2, t/φ(t) → 0 with t → 0+). Since Fk depends on n, φ and k only,
the constant Λ = 2M (see (4.1)) depends on n, φ and k only and hence ρ depends
on n, φ and k only.

Let x, y ∈ Bi. Then |x− y| < 2ρ < 2Λρ, thus

(4.4) |F̃k(x)− F̃k(y)| ≤ Λ|x− y| ≤ φ(|x− y|)
2k+1

.

In the same way we prove that if x, y ∈ Fk(Bi), then |x− y| < 2Λρ and again

|F̃−1
k (x)− F̃−1

k (y)| ≤ Λ|x− y| ≤ φ(|x− y|)
2k+1

.

Let x ∈ Bi, y ∈ Bj , i 6= j. We note that the segment [x, y] must intersect the
boundaries of Bi and Bj; let z ∈ [x, y] ∩ ∂Bi and w ∈ [x, y] ∩ ∂Bj . We have then

F̃k(z) = Fk(z) and F̃k(w) = Fk(w); thus, by (4.4), the inductive assumption, and the
fact that φ is increasing,

|F̃k(x)− F̃k(y)| ≤ |F̃k(x)− F̃k(z)|+ |F̃k(z)− F̃k(w)|+ |F̃k(w)− F̃k(y)|

≤ φ(|x− z|)
2k+1

+ |Fk(z)− Fk(w)|+
φ(|w − y|)

2k+1

≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|) + φ(|x− y|)
2k

.

(4.5)

The estimates for F̃−1
k when x ∈ Fk(Bi), y ∈ Fk(Bj), i 6= j, are done in exactly the

same manner.
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Let x ∈ Bi and y 6∈ ⋃iBi. This case is settled in the same way: we decompose
the segment [x, y] into [x, z] ∪ [z, y], where z ∈ ∂Bi and use the triangle inequality;
also the estimates for F̃−1

k are done in exactly the same manner.
Ultimately, we obtain that for any x, y ∈ Q

(4.6) |F̃k(x)− F̃k(y)| ≤
(

1 +
1

2
+ · · ·+ 1

2k

)

C(n, φ)φ(|x− y|) + φ(|x− y|)
2k

,

and the same estimate for F̃−1
k .

Now, let us turn to Fk+1 and F−1
k+1. Outside the union of the cubes Qi we have

that Fk+1 coincides with F̃k, so d) follows from (4.6) and the fact that C(n, φ) > 2.
For x, y ∈ Qi we have, by Proposition 1.3,

|Fk+1(x)− Fk+1(y)| = |F̃k ◦ S−1
i ◦ Φ ◦ Si(x)− F̃k ◦ S−1

i ◦ Φ ◦ Si(y)|
≤ C(n, ψ)Λλ−1ψ(λ|x− y|) ≤ C(n, ψ)Λψ(|x− y|),

(4.7)

where λ > 1 is the scaling factor between Qi and the unit cube. We used here the
fact that F̃k is Λ-Lipschitz on Qi. The last inequality follows from (a), Lemma 2.2.
In the same way we prove that whenever x, y ∈ Fk(Qi), we have

(4.8) |F−1
k+1(x)− F−1

k+1(y)| ≤
C(n, ψ)

λ
ψ(λΛ|x− y|) ≤ C(n, ψ)Λψ(|x− y|).

Assume, in addition to the previous restrictions on ρ, that

ψ(t)

φ(t)
<

1

C(n, ψ)Λ2k
for t < 2Λρ,

where C(n, ψ) is the same constant as the one in inequalities (4.7) and (4.8). It is
easy to see that we can find such ρ depending on n, φ and k only. Recall that if
x, y ∈ Qi ⊂ Bi or x, y ∈ Fk(Qi) ⊂ Fk(Bi), then |x− y| < 2Λρ, so

(4.9) |Fk+1(x)− Fk+1(y)| ≤ C(n, ψ)Λψ(|x− y|) ≤ φ(|x− y|)
2k

and similarly

|F−1
k+1(x)− F−1

k+1(y)| ≤
φ(|x− y|)

2k
.

These estimates imply d).
Assume now that x ∈ Qi, y ∈ Qj. Then the segment [x, y] intersects ∂Qi and

∂Qj ; let z ∈ [x, y] ∩ ∂Qi and w ∈ [x, y] ∩ ∂Qj . Note that Fk+1(z) = F̃k(z) and

Fk+1(w) = F̃k(w). Proceeding exactly as in (4.5), we use the triangle inequality,
(4.6) and (4.9) to get

|Fk+1(x)− Fk+1(y)|

≤ φ(|x− z|)
2k

+
[(

1 +
1

2
+ . . .+

1

2k

)

C(n, φ)φ(|z − w|) + φ(|z − w|)
2k

]

+
φ(|w − y|)

2k

≤
(

1 +
1

2
+ . . .+

1

2k+1

)

C(n, φ)φ(|x− y|),

because 3/2k < C(n, φ)/2k+1. The same arguments prove the above estimate in the
case when x ∈ Qi, y 6∈ ⋃j Qj . The estimate for the inverse function F−1

k+1 follows in

exactly the same manner. This completes the proof of the inequalities in d) for k+1.
We proved that for all x, y ∈ Q and all k

(4.10) |Fk(x)− Fk(y)|+ |F−1
k (x)− F−1

k (y)| ≤ 4C(n, φ)φ(|x− y|).
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One can show as in [7] that the sequence {Fk} converges in the uniform metric
(1.1) to a homeomorphism F that has all properties listed in Theorem 1.2, but the
Lusin property (N). However, instead of referring to [7] we will use a straightforward
argument showing convergence of a subsequence of {Fk}. We proved in (4.10) that
both families {Fk} and {F−1

k } are equicontinuous. Since the families are bounded, it
follows from the Arzelà–Ascoli theorem that subsequences converge uniformly Fki ⇒
F and F−1

ki
⇒ G to some continuous mappings F andG. Since id = Fki◦F−1

ki
⇒ F ◦G

we conclude that F ◦G = id so F is a homeomorphism and that F−1
ki

⇒ F−1. Clearly
F |∂Q = id . Passing to the limit in (4.10) gives

|F (x)− F (y)|+ |F−1(x)− F−1(y)| ≤ 4C(n, φ)φ(|x− y|).
It follows from the construction that for m ≥ k, Fm|Ck

= Fk|Ck
so F |Ck

= Fk|Ck
.

Since on the set Ck the mapping F = Fk has the Lusin property, it is approxi-
mately differentiable, and JFk

= JF < 0 a.e. in Ck, it follows from (4.3) that F is
approximately differentiable a.e. with JF < 0 a.e.

Moreover, F has the Lusin property on the set
⋃

k Ck, and it remains to show
that |F (Q \⋃k Ck)| = 0. Equivalently, we need to show that

|Q \ F (Ck)| → 0 as k → ∞.

Since Ck+1 = Ck∪
⋃

iAi, it suffices to show that there is a constant C > 0, depending
on n and φ only, such that

∣
∣
∣F
(⋃

i

Ai

)∣
∣
∣ ≥ C|Q \ F (Ck)| = C|Q \ Fk(Ck)|.

Recall that ∣
∣
∣

⋃

i

Fk(Bi)
∣
∣
∣ >

2

3
|Fk(Ω)| >

1

2
|Q \ Fk(Ck)|,

so it suffices to show that |F (Ai)| ≥ C|Fk(Bi)|.
Let Ei = B(xi, 2ri). Recall that Ti(x) = Fk(xi) + DFk(xi)(x − xi). According

to (b), Lemma 2.10, Fk(Bi) = F̃k(Bi) ⊂ Ti(Ei). Since |Ti(Ei)| = 2n|Ti(Bi)|, we get
|Fk(Bi)| ≤ 2n|Ti(Bi)|.

Observe also that F (Ai) = Ti(Ai), so

|F (Ai)|
|Ti(Bi)|

=
|Ti(Ai)|
|Ti(Bi)|

=
|Ai|
|Bi|

= C(n)
|Ai|
|Qi|

= C(n)|A| = C(n, φ)

and hence
|F (Ai)| = C(n, φ)|Ti(Bi)| ≥ 2−nC(n, φ)|Fk(Bi)|.

This completes the proof of the Lusin property of the homeomorphism F . ✷
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