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Abstract. Let v(t) > 0 be a concave function such that
´ +∞

1
1

tv(t) dt = +∞. If the continued

fraction expansion of an irrational number 0 < θ < 1 has the coefficient ak which satisfies

log2 ak ≤ kv(k), k = 1, 2, · · · ,

the Julia set of e2πiθz + z2 is locally connected and has Lebesgue measure zero. It extends the

results of Petersen and Zakeri [10].

1. Introduction

Let 0 < θ < 1 be an irrational number with the continued fraction expansion
θ = [0; a1, a2, · · · ]. In [10], Petersen and Zakeri proved that if log2 ak = O(k), the
Julia set of Pθ(z) = e2πiθz + z2 is locally connected and has Lebesgue measure zero.
In the paper, we extend their results by the following theorem.

Theorem 1.1. Let v(t) > 0 be a concave function such that
´ +∞
1

1
tv(t)

dt = +∞.

If the continued fraction coefficient ak satisfies that

log2 ak ≤ kv(k), k = 1, 2, · · · ,

the Julia set of Pθ(z) is locally connected and has Lebesgue measure zero.

For example the functions log t, log t log log t, · · · satisfy the conditions of the
Theorem 1.1.

Corollary 1.2. Let n be a fixed integer. If the continued fraction coefficient ak
satisfies that

log2 ak ≤ k · log k · log log k · · · · log log · · · log︸ ︷︷ ︸
n

k,

the Julia set of Pθ(z) is locally connected and has Lebesgue measure zero.

The proof of Theorem 1.1 bases on the existence of solutions of the degenerate
Beltrami equation developed by Iwaniec and Martin [3, 6, 7]. We first give a reformu-
lation of their theorem, then prove the homeomorphic solution satisfies the Lusin’s
condition N . Finally we can prove the theorem by a classical argument. The area
estimation in [10] given by Petersen and Zakeri is important for us.
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2. Definitions and known results

In this section we introduce some definitions and known results.
Let µ(z) be a measurable function compactly supported in the plane C and

|µ(z)| < 1 almost everywhere. If the distortion function K(z) = 1+|µ(z)|
1−|µ(z)| has an upper

bound, the existence of the solution of the the Beltrami equation fz̄ = µ(z)fz is
well-known by the measurable Riemann mapping theorem, see [1, 8]. When K(z) is
unbounded, the following well-known theorem was given by David [4], see also [2].

Theorem 2.1. David [4] If the distortion function K(z) satisfies

|{z ∈ C : K(z) > t}| = O(e−pt)

for a constant p > 0, the Beltrami equation fz̄ = µ(z)fz has a principal W 1,1
loc

-solution.
Moreover, the principal homeomorphism maps sets of Lebesgue measure zero to sets
of measure zero.

The homeomorphic solution in Theorem 2.1 is usually called the David home-
omorphism. The more general solutions of the degenerate Beltrami equation was
developed by Iwaniec and Martin [3, 6].

Theorem 2.2. [3, Theorem 20.5.2] Suppose A(x) is a strictly increasing smooth

function with A(1) = 1, which satisfies that
´ +∞
1

A(x)
x2

dx = +∞ and limx→+∞ xA′(x)
= +∞. If the distortion function K(z) satisfies

eA(K(z)) ∈ L1
loc(C),

the Beltrami equation fz̄ = µ(z)fz admits a unique principal solution f ∈ W 1,P
loc (C)

with P (t) = t2

A−1(log t2)
. Moreover, any solution h ∈ W 1,P

loc (C) to this Beltrami equation

admits a factorization

h = φ ◦ f,

where φ is a holomorphic function.

Here W 1,P
loc (C) is the Sobolev–Orlicz space with the regularity function P (x). For

its definition, we first introduce the Orlicz space.
A Young function A is a strictly increasing convex function. The Orlicz space

LA(Ω) is defined as

LA(Ω) =

{
u ∈ L1(Ω) : ∃λ > 0 s.t.

ˆ

Ω

A

(
|u|

λ

)
< +∞

}
,

which is a Banach space equipped with the Luxemburg norm, ‖u‖LA(Ω) = inf{k >

0:
´

Ω
A( |u|

k
) ≤ 1}. If the Young function A(t) is doubling (i.e. A(2t) < cA(t)), the

Orlicz space coincides with the set

LA(Ω) =

{
u ∈ L1(Ω) :

ˆ

Ω

A(|u|) < +∞

}
.

The Young conjugate is defined as Ã(s) = sup{st− A(t) : t ≥ 0}. When the Young

function A(t) and its Young conjugate Ã are both doubling, the Orlicz space LA(Ω)
is reflexive. In particular, every bounded sequence has a weakly convergent subse-
quence.

The Orlicz–Sobolev space W 1,A
loc (Ω) is the set of functions u(z) ∈ W 1,1

loc (Ω) for
which |Du(z)| ∈ LAloc(Ω), where |Du(z)| is the operator norm of the first generalized
derivatives Du(z).
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Let ψ(t) be the inverse function of t = A(x) in Theorem 2.2 and let ϕ(t) =
ψ(log t). The function ϕ(t) is strictly increasing on [e,+∞) with ϕ(e) = 1. We have

lim
t→+∞

tϕ′(t)

ϕ(t)
= lim

t→+∞

ψ′(t)

ψ(t)
= lim

x→+∞

1

xA′(x)
= 0,

and
ˆ +∞

e

1

tϕ(t)
dt =

ˆ +∞

1

1

ψ(t)
dt = +∞.

Now define two functions

P (t) =
t2

A−1(log t2)
=

t2

ϕ(t2)
, Φ(t) =

ˆ t2

e

1

ϕ(s)
ds.

We have W 1,P
loc (C) = W 1,Φ

loc (C). In fact, P (t) and Φ(t) are comparable near ∞. Here
we give the details for completeness. For α > 0, we have

(
tα

ϕ(t)

)′
=
αtα−1ϕ(t)− tαϕ′(t)

ϕ2(t)
=
tα−1

ϕ(t)

(
α−

tϕ′(t)

ϕ(t)

)
> 0.

So ϕ(t)
tα

is strictly decreasing, which implies limt→∞
ϕ(t)
tα

= 0. Consider the integral
ˆ t

e

1

ϕ(s)
ds =

t

ϕ(t)
− e +

ˆ t

e

sϕ′(s)

ϕ2(s)
ds.

Since limt→+∞
tϕ′(t)
ϕ(t)

= 0, we can assume tϕ′(t)
ϕ(t)

< ε for t > t(ε). Then

ˆ t

e

sϕ′(s)

ϕ2(s)
ds =

ˆ t(ε)

e

sϕ′(s)

ϕ2(s)
ds+

ˆ t

t(ε)

sϕ′(s)

ϕ2(s)
ds ≤Mε + ε

ˆ t

e

1

ϕ(s)
ds.

Thus we have

t

ϕ(t)
− e ≤

ˆ t

e

1

ϕ(s)
ds ≤

1

1− ε

(
t

ϕ(t)
− e+Mε

)
,

which implies limt→+∞

´ t

e
1

ϕ(s)
ds

t
ϕ(t)

= 1 since limt→∞
t

ϕ(t)
= ∞. Therefore we have

limt→+∞
P (t)
Φ(t)

= 1.

The function Φ(t) satisfies the condition
´ +∞√

e

Φ(t)
t3
dt = +∞, which is the corollary

of the following equality
ˆ +∞

√
e

P (t)

t3
dt =

ˆ +∞

√
e

1

tϕ(t2)
dt =

1

2

ˆ +∞

e

1

tϕ(t)
dt = +∞.

Furthermore the functions Φ(t
5
8 ) and Φ(t) are convex near ∞. Indeed, for α > 0, we

have
d

dt
Φ
(
t
1
2
+α
)
=

d

dt

(
ˆ t1+2α

e

1

ϕ(s)
ds

)
= (1 + 2α)

t2α

ϕ(t1+2α)
.

Since tα

ϕ(t)
is strictly increasing, the function Φ(t

1
2
+α) is convex near ∞.

The function Φ(t) and the Young conjugate Φ̃(s) are doubling. So the Orlicz
space LΦ(Ω) is reflexive and coincides with the set {u(z) :

´

Ω
Φ(|u|) < +∞}. The

following is the details. The derivatives of Φ satisfy that

Φ′(t) =
2t

ϕ(t2)
, Φ′′(t) = 2

ϕ(t2)− 2t2ϕ′(t2)

ϕ2(t2)
.
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Then

lim
t→+∞

Φ′(t)t

Φ(t)
= lim

t→+∞

Φ′(t)− tΦ′′(t)

Φ′(t)
= lim

t→+∞
2
t2ϕ′(t2)

ϕ(t2)
= 0.

Since

Φ(2t)− Φ(t)

Φ(2t)
=

Φ′(ξ)t

Φ(2t)
<

Φ′(2t)t

Φ(2t)
=

1

2

Φ′(2t)2t

Φ(2t)
,

we have limt→+∞
Φ(2t)
Φ(t)

= 1.

The function Φ(t) and its Young conjugate Φ̃(s) satisfy Φ̃′(Φ′(t)) = t by defini-

tion. In fact, if Φ̃(s) = st− Φ(t), we have 0 = s− Φ′(t), which yields

Φ̃(Φ′(t)) = Φ′(t)t− Φ(t).

By taking the derivative, we obtain the equality above. Since

lim
s→+∞

Φ̃′(s)s

Φ̃(s)
= lim

t→+∞

Φ̃′(Φ′(t))Φ′(t)

Φ̃(Φ′(t))
= lim

t→+∞

tΦ′(t)

Φ′(t)t− Φ(t)
= 0,

we have lims→+∞
Φ̃(2s)

Φ̃(s)
= 1.

The Orlicz–Sobolev space in Theorem 2.2 satisfies W 1,P
loc (C) ⊂ W 1,p

loc (C) for 1 ≤
p < 2. Indeed, the function tα

ϕ(t)
is strictly increasing for α > 0, then we have

x2

ϕ(x2)
> cxp.

The following theorem shows that the Jacobian of the function in W 1,P
loc (C) is

locally integrable. Recalled that W 1,P
loc (C) = W 1,Φ

loc (C) and the function Φ(t) satisfies

that Φ(t
5
8 ) is convex near ∞ and

´ +∞√
e

Φ(t)
t3
dt = +∞.

Theorem 2.3. [6, Theorem 7.2.1] Let f = u+ iv ∈ W 1,P
loc (C) be an orientation-

preserving mapping. Then the Jacobian J(z, f) is locally integrable and
ˆ

C

η(z)J(z, f) = −

ˆ

C

u(z) dη ∧ dv

for every test function η ∈ C∞
0 (C).

By Theorem 2.3, every solution in W 1,P
loc (C) in Theorem 2.2 has locally integrable

Jacobian. A function f(z) on a domain Ω ⊂ C is said to be of finite distortion if the
following three conditions are satisfied:

(1) f ∈ W 1,1
loc (Ω),

(2) J(z, f) ∈ L1
loc(Ω), and

(3) there is a measurable function K(z) ≥ 1, finite almost everywhere, such that

|Df(z)|2 ≤ K(z) J(z, f) almost everywhere in Ω.

Let f(z) ∈ W 1,1
loc (C) be a solution to the Beltrami equation fz̄ = µ(z)fz. If |µ(z)| < 1

holds for almost every z ∈ C, the condition (3) is satisfied automatically. Then
f(z) ∈ W 1,1

loc (C) is a solution of finite distortion if and only if it has locally integrable

Jacobian. Note that a homeomorphism f(z) ∈ W 1,1
loc (C) has locally integrable Jaco-

bian, in particular, it is a mapping of finite distortion. For more properties of the
mapping of finite distortion one can see [5].
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3. Solutions of the degenerate Beltrami equation

First we give a reformulation of Theorem 2.2 by the following theorem. It is
exactly Theorem 2.1 of David [4] if we take the function v(t) = 1 in Theorem 3.1.

Theorem 3.1. Let v(t) > 0 be a concave function such that
´ +∞
1

1
tv(t)

dt = +∞.

If the distortion function K(z) satisfies

|{z ∈ C : K(z) > tv(t)}| = O(e−pt)

for a constant p > 0, the Beltrami equation fz̄ = µ(z)fz admits a unique principal so-
lution of finite distortion. Moreover, any solution of finite distortion to this Beltrami
equation admits a factorization

h = φ ◦ f,

where φ is a holomorphic function.

The solution of finite distortion to this Beltrami equation lies in the Sobolev–
Orlicz space W 1,P

loc (C), where P (t) = t2

v(log t) log t
. The functions log t, log t log log t, · · ·

satisfy the condition in Theorem 3.1.

Proof. Since v(t) > 0 is a concave function, then v(t) is increasing. If limt→+∞ v(t)
<+∞, the conclusion holds by Theorem 2.1 of David. So we assume that limt→+∞v(t)
= +∞ in the following. Further assume that v(1) = 1.

By assumption, the distortion function K(z) satisfies

|{z ∈ C : K(z) > tv(t)}| < ce−pt,

where c > 0 and 0 < p < 1. Let t = 1
q
log x with 0 < q < p. It becomes

∣∣∣∣
{
z ∈ C : K(z) >

1

q
log x v

(
1

q
log x

)}∣∣∣∣ < c

(
1

x

) p
q

.

Let ψ(t) = t
q
v
(
t
q

)
. It satisfies limt→+∞

t
ψ(t)

= 0 and
´ +∞
1

1
ψ(t)

dt = +∞. Let A(x) be

the inverse function of x = ψ(t). Then the distortion function K(z) satisfies

|{z ∈ C : eA(K(z)) > x}| < c

(
1

x

) p
q

.

Applying the Fubini’s theorem on a bounded domain Ω ⊂ C, we have
ˆ

Ω

eA(K(z)) dσ =

ˆ

Ω

dσ

ˆ eA(K(z))

1

dx =

ˆ +∞

1

dt

ˆ

{z∈Ω: eA(K(z))>x}
dσ

≤

ˆ +∞

1

c

(
1

x

) p
q

dx < +∞.

So the distortion function K(z) satisfies eA(K(z)) ∈ L1
loc(C).

The function A(x) satisfies that

lim
x→+∞

1

xA′(x)
= lim

t→+∞

ψ′(t)

ψ(t)
= lim

t→+∞

(
1

t
+

1

q

v′( t
q
)

v( t
q
)

)
= 0,

where the last equality is because v′(t) is decreasing and limt→+∞ v(t) = +∞. Next,
ˆ +∞

1

A(x)

x2
dx = −

A(x)

x

∣∣∣
+∞

1
+

ˆ +∞

1

A′(x)

x
dx = −

A(x)

x

∣∣∣
+∞

1
+

ˆ +∞

1

1

ψ(t)
dt.
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Since limx→+∞
A(x)
x

= limt→+∞
t

ψ(t)
= 0 and

´ +∞
1

1
ψ(t)

dt = +∞, we have
´ +∞
1

A(x)
x2

dx =
+∞.

Therefore the function A(x) and K(z) satisfy the conditions of Theorem 2.2.

Then the Beltrami equation fz̄ = µfz has a unique principal solution f ∈ W 1,P
loc (C)

with

P (t) =
t2

ψ(log t2)
=

t2

1
q
log t2v(1

q
log t2)

.

By Theorem 2.3, it has locally integrable Jacobian, then it is a mapping of finite
distortion. The regularity function P (t) can be simplified by an equivalent function

t2

v(log t) log t
. In fact, the functions v(αt) and v(t) are comparable. That is, for a constant

α > 0, there is a constant c′ > 1 such that 1
c′
v(t) ≤ v(αt) ≤ c′v(t). The following is

the detail. If α > 1, we have

v(αt)− v(α)

v(t)− v(1)
= α

v′(αξ)

v′(ξ)
≤ α.

Thus v(t) ≤ v(αt) ≤ c′v(t). If α < 1, we have v(αt) ≤ v( 1
α
(αt)) ≤ c′v(αt). So we

always have 1
c
v(t) ≤ v(αt) ≤ c′v(t).

Conversely, let h(z) be a solution of finite distortion to this Beltrami equation.
The Jacobian J(z, h) is locally integrable by definition. Let ϕ(t) = ψ(log t). The
function t

ϕ(t)
is increasing as shown before. For each K ≥ 1, by considering the two

cases, either t2 ≤ ϕ−1(K) or t2 > ϕ−1(K), we always have

t2

ϕ(t2)
≤
ϕ−1(K)

K
+
t2

K
,

which yields t2

ϕ(t2)
≤ ϕ−1(K) + t2

K
. Then

|Dh|2

ψ(log |Dh|2)
≤ eA(K(z)) +

|Dh|2

K(z, h)
= eA(K(z)) + J(z, h).

Thus the solution h lies in W 1,P
loc (C). By Theorem 2.2, there is a holomorphic function

φ such that h = φ ◦ f . �

The following corollary is used in the proof of Theorem 1.1.

Corollary 3.2. Let v(t) > 0 be a concave function such that
´ +∞
1

1
tv(t)

dt = +∞.

If the area
|{z ∈ C : K(z) > kv(k)}| = O(e−pk), k = 1, 2, · · · ,

for a constant p > 0, the Beltrami equation fz̄ = µ(z)fz admits a unique principal
solution of finite distortion.

Proof. Let A(t) be the area of the set {z ∈ C : K(z) > tv(t)}. In particular,
A(t) ≤ A(k) for every k ≤ t < k + 1. In particular, the area function A(t) satisfies

A(t) ≤ Ak < ce−pk < ce−p(t−1).

So the corollary holds by Theorem 3.1. �

Next we prove that the solution of finite distortion to the Beltrami equation in
Theorem 3.1 satisfies the Lusin’s condition N .

Theorem 3.3. Let h(z) be a solution of finite distortion to the Beltrami equation
fz̄ = µ(z)fz in Theorem 3.1. Then h(z) maps sets of Lebesgue measure zero to sets
of measure zero.
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Proof. By Theorem 3.1, the solution h(z) of finite distortion to the Beltrami
equation fz̄ = µ(z)fz admits a factorization

h = φ ◦ f,

where φ is an analytic function. The analytic function maps sets of Lebesgue measure
zero to sets of measure zero. So we only need prove the theorem for the principal
solution f(z), which is a homeomorphic solution.

Let v(t) > 0 be the concave function with v(1) = 1 and
´ +∞
1

1
tv(t)

dt = +∞. The

distortion function K(z) satisfies

|{z ∈ C : K(z) > tv(t)}| = O(e−pt)

for a constant p > 0 by the assumption. Let A(x) be the inverse function of x = tv(t).
Let ρD be the hyperbolic metric on the unit disk D. The distortion function of µ

satisfies Kµ(z) = eρD(0,µ(z)). For each z ∈ D, let d(z) = A(eρD(0,µ(z))), which implies
that eρD(0,µ(z)) = tv(t)|t=d(z).

Now we define another Beltrami coefficient ν(z). If d(z) ≤ 1, we take ν(z) = 0.
Otherwise, we take ν(z) to be a point on the geodesic line between 0 and µ(z) such
that

eρD(0,ν(z)) = d(z).

As a result, we have
eρD(ν(z),µ(z)) = v(d(z)),

which follows the equality eρD(0,ν(z))eρD(ν(z),µ(z)) = eρD(0,µ(z)) = tv(t)|t=d(z). The con-
dition

|{z ∈ C : Kµ(z) > tv(t)}| = O(e−pt),

is equivalent to
|{z ∈ C : d(z) > t}| = O(e−pt).

Then we have
|{z ∈ C : eρD(0,ν(z)) > t}| = O(e−pt),

and
|{z ∈ C : eρD(ν(z),µ(z)) > v(t)}| = O(e−pt).

Solving the Beltrami equation gz̄ = νgz, we will obtain a David homeomorphism g(z)
by Theorem 2.1. Define another Beltrami coefficient

κ(w) =
µ(z)− ν(z)

1− ν(z)µ(z)

(
∂zg

|∂zg|

)2

, w = g(z), z ∈ C,

which satisfies that

1 + |κ|

1− |κ|
=

1 +
∣∣∣ µ−ν1−νµ

∣∣∣

1−
∣∣∣ µ−ν1−νµ

∣∣∣
= eρD(ν(z),µ(z)).

In particular, we have |{w ∈ C : Kκ(w) > v(t)}| = O(e−pt). Since v(t) is concave, we
have v(t) ≤ ct. Then the distortion function Kκ satisfies that

|{w ∈ C : Kκ(w) > ct}| = O(e−pt).

Also by Theorem 2.1 we can solve the Beltrami equation Fz̄ = κFz to obtain a David
homeomorphism F (z). Since µF = µf◦g−1 , by the uniqueness part in Theorem 2.2
we have

F = φ ◦ f ◦ g−1,

where φ is a conformal mapping.
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As a result, the mapping f = φ−1 ◦ F ◦ g decomposes to a conformal mapping
and two David homeomorphisms, which all maps sets of Lebesgue measure zero to
sets of measure zero. Then f(z) also maps sets of Lebesgue measure zero to sets of
measure zero. �

By Theorem 1.3 in [5], a homeomorphism of finite distortion f ∈ W 1,1
loc (Ω) with

K(z) ∈ L1(Ω) satisfies that f−1 ∈ W 1,2
loc (f(Ω)). Then f−1 also satisfies the Lusin’s

condition N . As a result, both of f and f−1 are absolutely continuous and map the
Lebesgue measurable set to the Lebesgue measurable set. Furthermore,

|f(E)| =

ˆ

E

J(z, f)

for any measurable set E.

4. The quadratic polynomial with a Siegel disk

Let Pθ(z) = e2πiθz+z2 be a quadratic polynomial, where 0 < θ < 1 is an irrational
number with the continued fraction expansion θ = [0; a1, a2, · · · , ak, · · · ]. Consider
the Douady–Ghys Blaschke model

fθ(z) = e2πitz2
z − 3

1− 3z
.

Here 0 < t = t(θ) < 1 is the unique parameter for which the critical circle map
fθ|S1 : S1 → S

1 has rotation number θ. The function fθ has a double critical point
at z = 1 and it is a critical circle map, i.e., a real-analytic homeomorphism of S1

with a critical point. It was proved by Yoccoz [12] that a critical circle map with an
irrational rotation number can be topologically conjugated with the rigid rotation
Rθ(z) = e2πiθz.

Theorem 4.1. (Yoccoz) Let f : S1 → S
1 be a critical circle map with irrational

rotation number θ. Then there exists a homeomorphism h : S1 → S
1 such that

f = h−1 ◦Rθ ◦ h. This h is uniquely determined once normalized by h(1) = 1.

Furthermore by the construction of Yoccoz (see the appendix of [10]), h can
be extended to a homeomorphism H : D → D with the controlled dilatation. The
construction bases on two cell decompositions of unit disk D, denoted by Γ and Γ′.
The cells in the decompositions are labeled by some integers, called their level. The
closer the cell is chosen to the boundary of unit disk D, the higher its level and the
smaller its Euclidean diameter will be. The homeomorphism H(z) maps each cell
γ of level n in Γ to a unique cell γ′ of level n in Γ′. The area of cells in Γ and the
dilatation of H(z) are controlled by the following theorem of Yoccoz. More details
can be found in the Theorem 6.5 in the appendix of [10].

Theorem 4.2. (Yoccoz) The area of the union of all the m-cells for all m > k
satisfies that

area

( ∞⋃

m=k

{γ : γ is an m-cell of Γ}

)
= O(σk)

for a universal constant 0 < σ < 1. For any k-cell γ of Γ, the homeomorphismH : γ →
γ′ is a quasiconformal mapping with the dilatation K(H|γ) = O(1 + (log ak+1)

2).

We assume H(0) = 0 and define

F (z) =

{
fθ if |z| ≥ 1,

H−1 ◦Rθ ◦H if |z| < 1,
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Then F is a degree 2 topological branched covering of the sphere. It is holomorphic
outside of D and is topologically conjugate to Rθ on D. The “Julia set” J(F ) is
defined to be the closure of the set

{z ∈ C : F ◦n(z) ∈ S
1 for some n ≥ 1},

which serves as a model for the Julia set J(Pθ). The following theorem on the
property of the Julia set J(F ) can be found in [9, 11].

Theorem 4.3. (Petersen, Lyubich) For every irrational 0 < θ < 1 the Julia set
J(F) is locally connected and has Lebesgue measure zero.

If the coefficient ak in the continued fraction expansion of θ satisfies that log2 ak =
O(k), Petersen and Zakeri [10] proved that the Julia set of the quadratic polynomial
Pθ(z) = e2πiθz + z2 is locally connected and has Lebesgue measure zero. The crucial
part in their proof is the following area estimation.

Theorem 4.4. [10, Theorem B] There exist a universal constant 0 < β < 1 and
a constant C > 0 (depending on θ) such that

area(E) +
∑

k

area(F−k
θ (E)) ≤ C(area(E))β.

for every measurable set E ⊂ D.

Now we can prove the Theorem 1.1 by a classical argument as in [10].

Proof of the Theorem 1.1. First pull back µH(z) by the mapping F (z) and
define a measurable function µ(z):

µ(z) =





µH(z) if z ∈ D,

µH(F
◦n(z))∂zF

◦n(z)
∂zF ◦n(z)

if z /∈ D and F ◦n(z) ∈ D,

0 elsewhere.

Let γ be a cell of level k in Γ. The dilatation of the homeomorphism H(z) on
γ satisfies that K(H|γ) = O(1 + (log ak+1)

2) by the Theorem 4.2. By assumption

log2 ak ≤ kv(k), where v(t) > 0 a concave function such that
´ +∞
1

1
tv(t)

dt = +∞.

Then there is a constant C1 independent of k such that K(H|γ) < C1kv(k). Therefore
we have

{z ∈ D : KH(z) > C1kv(k)} ⊂
∞⋃

m=k

{γ : γ is an m-cell of Γ}.

By the Theorem 4.2, the area satisfies area (
⋃∞
m=k{γ : γ is an m-cell of Γ}) = O(σk),

which yields
area({z ∈ D : KH(z) > C1kv(k)}) = O(σk).

By the Theorem 4.4, the dilatation function K(z) of µ(z) satisfies that

area({z ∈ C : K(z) > C1kv(k)}) ≤ C(area({z ∈ D : KH(z) > C1kv(k)}))
β,

which implies that for p = β log 1
σ
, we have

area({z ∈ C : K(z) > C1kv(k)}) = O(e−pk).

The function ω(t) = C1v(t) is concave with
´ +∞
1

1
tω(t)

dt = +∞. By the Corollary 3.2,

the Beltrami equation fz̄ = µ(z)fz has a homeomorphic solution H ∈ W 1,1
loc (C). Now

we normalize H by H(0) = 0, H(1) = −e2πiθ/2 and define

P := H ◦ F ◦ H−1.
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If z /∈ D and F ◦n(z) ∈ D, the function F = fθ is analytic. Then

µH◦F (z) = µH(F (z)) ·
∂zF

−1(F (z))

∂zF−1(F (z))
= µH(F (z)) ·

∂zF (z)

∂zF (z)
= µH(z).

If z ∈ D, the function F = H−1 ◦Rθ ◦H ,

H ◦ F = H ◦H−1 ◦Rθ ◦H.

Since H◦H−1|D is conformal, we have µH◦F = µH for z ∈ D. As a result, µH◦F = µH
for almost every z ∈ C.

Once we show H ◦ F ∈ W 1,1
loc (C\{1}), P (z) is analytic on C\{1} by the proof of

the uniqueness part of Theorem 3.1 since µH◦F = µH. As a result, P (z) is analytic on
C since P (z) is continuous on z = 1. Then by the normalization, P (z) = e2πiθz+ z2.
From P = H ◦ F ◦ H−1, we obtain that the Julia set J(P ) is locally connected and
has measure zero by Theorem 4.3.

Now we show that H ◦ F ∈ W 1,1
loc (C\{1}). First on C\D, H ◦ F = H ◦ fθ, so we

have H ◦ F ∈ W 1,1
loc (C\D). On the disk D,

H ◦ F = H ◦H−1 ◦Rθ ◦H ∈ W 1,1
loc (D).

The mapping H ◦H−1 ◦ Rθ is conformal, so we have H ◦ F ∈ W 1,1
loc (D). Finally on

a sufficiently small disk U ⊂ C\{1}, H ◦ F is a homeomorphism which is almost
everywhere differentiable, then

ˆ

U

J(z,H ◦ F ) ≤ |H ◦ F (U)| < +∞.

As a result,
ˆ

U

|D(H ◦ F )| =

ˆ

U

√
K(H ◦ F )

√
J(H ◦ F )

≤

(
ˆ

U

J(H ◦ F )

ˆ

U

K(H ◦ F )

) 1
2

< +∞,

which implies H ◦ F ∈ W 1,1(U). Then we have H ◦ F ∈ W 1,1
loc (C\{1}). �
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