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Abstract. We show that in the first sub-Riemannian Heisenberg group there are intrinsic

graphs of smooth functions that are both critical and stable points of the sub-Riemannian perimeter

under compactly supported variations of contact diffeomorphisms, despite the fact that they are

not area-minimizing surfaces. In particular, we show that if f : R2 → R is a C 1-intrinsic function,

and ∇f∇ff = 0, then the first contact variation of the sub-Riemannian area of its intrinsic graph

is zero and the second contact variation is positive.

1. Introduction

We want to address some new features of the sub-Riemannian perimeter in the
Heisenberg group. The notion of sub-Riemannian perimeter in the Heisenberg group,
the so-called intrinsic perimeter, has been enstablished as a direct and natural ex-
tension from the Euclidean perimeter in R

n. However, in many aspects, there are
fundamental differences that lead to new open questions [6, 7, 18, 10, 16].

Before a detailed explanation, let us introduce some basic notions and notations
we need in this introduction. The (first) Heisenberg group H is a three dimensional
Lie group diffeomorphic to R

3. However, when endowed with a left-invariant sub-
Riemannian distance, it becomes a metric space with Hausdorff dimension equal to
four; see [3].

By standard methods of Geometric Measure Theory, one defines the intrinsic

perimeter P (E; Ω) of a measurable set E ⊂ H in an open set Ω ⊂ H. We will denote
it also by A (∂E ∩ Ω).

Regular surfaces are topological surfaces in H that admit a continuously varying
tangent plane and they play an important role in the theory of sets with finite intrinsic
perimeter. They are the sub-Riemannian counterpart of smooth hypersurfaces in R

n.
Regular surfaces are locally graphs of so-called C 1-intrinsic functions R

2 → R. We
will focus on these functions and their graphs.

The space of all C 1-intrinsic functions will be denoted by C 1
W

and the graph of
f : R2 → R by Γf ⊂ H. It is well known that f ∈ C

1
W

if and only if f ∈ C
0(R2) and

the distributional derivative

∇ff = ∂ηf +
1

2
∂τ (f

2)
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is continuous, where we denote by (η, τ) the coordinates on R
2; see [1, 18]. If ω ⊂ R

2,
the intrinsic area of Γf above ω is

A (Γf ∩ Ωω) =

ˆ

ω

√

1 + (∇ff)2 dη dτ,

where Ωω = {(0, η, τ) ∗ (ξ, 0, 0) : (η, τ) ∈ ω, ξ ∈ R}, with ∗ denoting the group
operation in H.

An important open problem concerning C
1
W

is Bernstein’s problem: If the graph
Γf of f ∈ C 1

W
is a locally minimizer of the intrinsic area, is Γf a plane? See Section 2.4

for a precise statement and [4, 2, 17, 9] for further reading.
In the study of perimeter minimizers in H, we identify three main issues that

mark the gap from the Euclidean theory. First, the map f 7→ ∇ff is a nonlinear
operator. Such non-linearity reflects on the fact that basic function spaces like C 1

W

itself, or the space of functions with bounded intrinsic variation, are not vector spaces.
See Remark 2.3 for details.

Second, the area functional is not convex (say on C 1(R2)). In particular, there
are critical points that are not extremals, see [4]. In other words, a first variation
condition

(1)
d

dǫ

∣

∣

∣

∣

ǫ=0

A (Γf+ǫφ ∩ (Ωω)) = 0 ∀φ ∈ C
∞
c (ω)

does not characterize minimizers. However, if f ∈ C 1(R2), a second variation condi-

tion d2

dǫ2

∣

∣

∣

ǫ=0
A (Γf+ǫφ ∩ (Ωω)) ≥ 0 does, see [9].

Third, there are objects among sets of finite intrinsic perimeter with very low
regularity, see Remark 2.3. The standard variational approach as in (1) fails when
applied to these objects. More precisely, if f ∈ C

1
W

, then A (Γf+ǫφ ∩ (Ωω)) may be
+∞ for all ǫ 6= 0, all ω ⊂ R

2 open and all φ ∈ C ∞
c (ω) \ {0}. In another approach,

one can consider smooth one-parameter families of diffeomorphisms Φǫ : H → H with
Φ0 = Id and {Φǫ 6= Id} ⊂⊂ Ω, and take variations of A (Φǫ(Γf ) ∩ Ω). However, it
may happen again that A (Φǫ(Γf ) ∩ Ω) = +∞ for all ǫ 6= 0.

After further considerations, one understands that we need to restrict the choice
of Φǫ to contact diffeomorphisms, see Proposition 5.1. See also [3] and [12] for refer-
ences on contact diffeomorphisms. In this setting, we address the question whether,
despite this restriction, conditions on the first and second variations with contact
diffeomorphisms can single out minimal graphs. Our answer is no:

Theorem 1.1. There is f ∈ C 1
W

such that, for all Ω ⊂ H open and all smooth
one-parameter families of contact diffeomorphisms Φǫ : H → H with Φ0 = Id and
{Φǫ = Id} ⊂⊂ Ω, it holds

d

dǫ

∣

∣

∣

∣

ǫ=0

A (Φǫ(Γf) ∩ Ω) = 0 and
d2

dǫ2

∣

∣

∣

∣

ǫ=0

A (Φǫ(Γf) ∩ Ω) ≥ 0,

but Γf is not an area-minimizing surface.

In fact, all smooth solutions to the equation ∇f(∇ff) = 0 are examples of the
functions appearing in the theorem.

The proof of Theorem 1.1 is based on a “Lagrangian” approach to C 1
W

. Indeed, a
function f ∈ C 1

W
is uniquely characterized by the integral curves of the planar vector

field ∇f = ∂η + f∂τ . We will thus take variations of f via smooth one-parameter
families of diffeomorphisms φǫ : R

2 → R
2, i.e., by smoothly varying the integral
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curves of ∇f ; see Section 4. We will then prove that this approach is equivalent to
the use of contact diffeomorphisms Φǫ : H → H; see Section 5.

Finally, we will consider functions f ∈ C 1
W

that are solutions to the equation
∇f∇ff = 0 in a Lagrangian sense, that is, functions such that ∇ff is constant along
the integral curves of ∇f . We will characterize such functions as the ones for which
the integral curves of ∇f are parabolas, or, equivalentely, as the ones whose graph
Γf is ruled by horizontal straight lines. These functions are the ones appearing in
Theorem 1.1.

The paper is organized as follows. Section 2 is devoted to the presentation of all
main definitions. In the next Section 3, we study solutions to the equation ∇f∇ff =
0. We construct a Lagrangian variation of a function f ∈ C 1

W
in Section 4. In

Section 5, we prove some basic properties of contact diffeomorphisms. Section 6 is
devoted to the first contact variation and Section 7 to the second contact variation for
functions f ∈ C

1
W

. Finally, in Section 8 we prove our main theorem. An Appendix
is added as a reference for a few equalities that are applied all over the paper.

The author thanks his advisor Francesco Serra Cassano for many fruitful discus-
sions and Katrin Fässler for her comments and corrections on a draft of this paper.

2. Preliminaries

2.1. The Heisenberg group. The first Heisenberg group H is the con-
nected, simply connected Lie group associated to the Heisenberg Lie algebra h.
The Heisenberg Lie algebra h is the only three-dimensional nilpotent Lie algebra
that is not commutative. It can be proven that, for any two linearly independent
vectors A,B ∈ h \ [h, h], the triple (A,B, [A,B]) is a basis of h and [A, [A,B]] =
[B, [A,B]] = 0. The Heisenberg group has the structure of a stratified Lie group, i.e.,
h = span{A,B} ⊕ span{[A,B]}, see [14, 13].

We then identify H = (span{A,B, [A,B]}, ∗), where

p ∗ q := p+ q +
1

2
[p, q].

In the coordinates (x, y, z) = xA+yB+z[A,B], which are the exponential coordinates
of first kind, we have

(a, b, c) ∗ (x, y, z) =
(

a+ x, b+ y, c+ z +
1

2
(ay − bx)

)

.

The inverse is (x, y, z)−1 = (−x,−y,−z).
The elements A,B, [A,B] ∈ h induce a frame of left-invariant vector fields on H:

X := ∂x −
1

2
y∂z, Y := ∂y +

1

2
x∂z, Z := ∂z.

The horizontal subbundle is the vector bundle

H :=
⊔

p∈H

span{X(p), Y (p)} ⊂ TH.

The maps δλ(x, y, z) := (λx, λy, λ2z), λ > 0, are called dilations. They are group
automorphisms of H and for all λ, µ > 0 it holds δλ ◦ δµ = δλµ.

2.2. Intrinsic graphs and intrinsic differentials. A vertical plane is a plane
containing the z-axis. Explicitly, for θ ∈ R,

Wθ := {(η sin θ, η cos θ, τ) : η, τ ∈ R} ⊂ H.
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Vertical planes are the only 2-dimensional subgroups of H that are δλ-homogeneous,
i.e., δλ(Wθ) = Wθ for all λ > 0.

The intrinsic X-graph (or simply intrinsic graph) of a function f : R2 → R is
the set1

Γf :=
{

(0, η, τ) ∗ (f(η, τ), 0, 0) : η, τ ∈ R
2
}

=

{

(f(η, τ), η, τ − 1

2
ηf(η, τ)) : η, τ ∈ R

2

}

.

If one look at f as a function W0 → span{A}, then Γf = {p ∗ f(p) : p ∈ W0}. Left
translations and dilations of an intrinsic graph are also intrinsic graphs. For α ∈ R,
the vertical plane Warctan(α) is the intrinsic graph of the function f(η, τ) = αη. We
will use the map πX : H → R

2, πX(x, y, z) = (y, z+ 1
2
xy). Note that πX(p∗f(p)) = p.

For (η0, τ0) ∈ R
2 and f : R2 → R continuous, set f0 := f(η0, τ0) and p0 :=

(0, η0, τ0) ∗ (f0, 0, 0) = (f0, η0, τ0 − 1
2
η0f0). We say that f is intrinsically C 1, or be-

longing to C
1
W

, with differential ψ : R2 → R, if δλ(p
−1
0 Γf) converge to Warctan(ψ(η0,τ0))

in the sense of the local Hausdorff convergence of sets as λ→ ∞, and the convergence
is uniform on compact sets in (η0, τ0).

Notice that δλ(p
−1
0 Γf) = Γf(η0,τ0);λ , where

f(η0,τ0);λ(η, τ) = λ
(

−f0 + f
(

η0 +
η

λ
, τ0 + f0

η

λ
+

τ

λ2

))

.

Therefore, f belongs to C 1
W

with differential ψ if and only if f(η0,τ0);λ converge uni-
formly on compact sets to the function (η, τ) 7→ ψ(η0, τ0)η, as λ → +∞, and the
convergence is uniform on compact sets in (η0, τ0). Notice that ψ has to be continu-
ous.

The intrinsic gradient of a function f : R2 → R is the vector field on R
2 defined

as
∇f := ∂η + f∂τ .

We can express the intrinsic differentiability in terms of the differentiability of f
along the integral curves of ∇f : from [18, Theorem 4.95] we obtain the following
characterisation, which justify the notation ∇ff for the differential ψ of f ∈ C 1

W
.

Lemma 2.1. A continuous function f : R2 → R is in C 1
W

with differential ψ if
and only if for every p ∈ R

2 there exists a C 2-function gp : I → R, where I ⊂ R is a
neighbourhood of 0, such that











gp(0) = 0,

g′p(t) = f(p+ (t, gp(t))) ∀t ∈ I,

g′′p(t) = ψ(p+ (t, gp(t))) ∀t ∈ I.

Note that t 7→ p + (t, gp(t)) is an integral curve of ∇f and that gp is not unique
in general. Another interpretation of these curves will be useful:

Lemma 2.2. Let f ∈ C 1
W

. A curve γ : I → R
2 of class C 1, where I ⊂ R is an

interval, is an integral curve of ∇f if and only if the curve t 7→ γ(t) ∗ f(γ(t)) ∈ Γf is
a curve of class C

1 tangent to the horizontal bundle H .

Remark 2.3. In [11] it has been shown that there exists f ∈ C 1
W

whose intrinsic
graph Γf has Euclidean Hausdorff dimension (seen as a subset of the Euclidean R

3)

1In a different choice of coordinates in H, we can have (0, η, τ) ∗ (f(η, τ), 0, 0) = (f(η, τ), η, τ).
For instance, we will use these coordinates in Section 5.2.
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strictly larger than two. It is possible to prove, for example using Lemma 5.4, that
Γf+1 does not have locally finite intrinsic perimeter and in particular f + 1 /∈ C 1

W
.

This shows that C 1
W

is not a vector space.

2.3. Smooth approximation. A sequence {fk}k∈N ⊂ C 1
W

converges to f in
C 1
W

if fk and ∇fkfk converge to f and ∇ff uniformly on compact sets. The following
lemma has been proven in [1].

Lemma 2.4. If f ∈ C 1
W

then there is a sequence of functions {fk}k∈N ⊂ C ∞(R2)
that converges to f in C 1

W
.

2.4. Perimeter and Bernstein’s problem. The Lebesgue measure L 3 in R
3

is a Haar measure on H in the exponential coordinates introduced Section 2.1. Notice
that for any measurable set E ⊂ H

1 and any λ > 0 it holds L 3(δλ(E)) = λ4L 3(E).
Let 〈·, ·〉 be the left-invariant scalar product on the subbundle H such that (X, Y )

is an orthonormal frame and set ‖v‖ :=
√

〈v, v〉 for v ∈ H . The sub-Riemannian

perimeter of a measurable set E ⊂ H
1 in an open set Ω is

P (E; Ω) := sup

{
ˆ

E

divV dL
3 : V ∈ Γ(H), spt(V ) ⊂⊂ Ω, ‖V ‖ ≤ 1

}

,

where Γ(H) contains all the smooth sections of the horizontal subbundle and divV is
the divergence of vector fields on R

3. One can show that, for every V1, V2 ∈ C ∞(R3),

div(V1X + V2Y ) = XV1 + Y V2.

A set E has locally finite perimeter if P (E; Ω) <∞ for all Ω ⊂ H open and bounded.
If E has locally finite perimeter, the function Ω 7→ P (E; Ω) induces a Radon measure
|∂E| on H

1, which is concentrated on the so-called reduced boundary ∂∗E ⊂ ∂E.
Moreover, up to a set of |∂E|-measure zero and a rotation around the z-axis, ∂∗E is
the countable union of intrinsic graphs of C 1

W
functions. See [6] and [7] for further

reading.
A measurable set E has minimal perimeter if, for every bounded open set Ω ⊂ H

1

and every measurable set F ⊂ H
1 with symmetric difference E∆F ⊂⊂ Ω, we have

P (E; Ω) ≤ P (F ; Ω).

In this case, the reduced boundary ∂∗E of E is called area-minimizing surface. We
are interested in area minimizers that are global intrinsic graphs.

Conjecture 2.5. (Bernstein’s problem) If f ∈ C 1
W

is such that Γf is an area-
minimizing surface, then Γf is a vertical plane up to left-translations.

Such conjecture has been proven in the case f ∈ C 1(R2) in [9], while it has been
presented a counterexample in [17] with f ∈ C 0(R2) \ C 1

W
.

For an open domain ω ⊂ R
2, set

Ωω := {(0, η, τ) ∗ (ξ, 0, 0) : (η, τ) ∈ ω, ξ ∈ R}.
If f ∈ C 1

W
and Ef = {(0, η, τ) ∗ (ξ, 0, 0) ∈ R

2, ξ ≤ f(η, τ)}, then

P (Ef ; Ωω) =

ˆ

ω

√

1 + (∇ff)2 dη dτ.

If Ef has minimal perimeter, then, for every g ∈ C
1
W

with {f 6= g} ⊂⊂ ω, it holds
ˆ

ω

√

1 + (∇ff)2 dη dτ ≤
ˆ

ω

√

1 + (∇gg)2 dη dτ.

It is not known whether the converse implication holds.
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3. Lagrangian solutions to ∆
ff = 0

For f ∈ C 1
W

and v ∈ C 2(R2), we define the differential operator

(2) ∆fv := ∂2ηv + 2f∂η∂τv + f 2∂2τv +∇ff∂τv.

Notice that, if f ∈ C 2(R2), then

∆fv = ∇f (∇fv).

The next lemma will be a fundamental tool for extending some results beyond the
smooth case via approximation. The proof trivially follows from the explicit expres-
sions of the differential operators ∇f and ∆f .

Lemma 3.1. If {fk}k∈N ⊂ C 1
W

and {vk}k∈N ⊂ C 2(R2) are sequences converging
to f and v in their respective spaces, then the sequences {∇fkvk}k∈N and {∆fkvk}k∈N
converge to ∇fv and ∆fv uniformly on compact sets.

If f ∈ C 2(R2) is such that Γf is a minimal surface in H, then one shows that f
satisfies the differential equation (see [2])

(3) ∇f

(

∇ff
√

1 + (∇ff)2

)

= 0.

Equation (3) is equivalent, for f ∈ C 2(R2), to

(4) ∆ff = 0.

For a generic f ∈ C
1
W

, equation (4) has not the classical interpretation (2). However,
using a “Lagrangian interpretation” of ∇f (∇ff) = 0, we give the following definition:

Definition 3.2. A function f ∈ C 1
W

satisfies ∆ff = 0 in weak Lagrangian sense,
if for every p ∈ R

2 there is an integral curve γ of ∇f passing through p such that
∇ff is constant along γ.

If f ∈ C 2(R2) then ∆ff = ∇f(∇ff) = 0 if and only if ∇ff is constant along
all integral curves of ∇f , i.e., ∆ff = 0 holds in a strong Lagrangian sense, see
Remark 3.7.

Lemma 3.5 will characterize such functions by the integral curves of ∇f .

Lemma 3.3. Let A,B ∈ C 0(R). The map R
2 → R

2 given by

G : (t, ζ) 7→
(

t,
A(ζ)

2
t2 + B(ζ)t+ ζ

)

is a homeomorphism if and only if

(1) For all ζ, ζ ′ ∈ R

(1a) either A(ζ) = A(ζ ′) and B(ζ) = B(ζ ′),

(1b) or 2
(

A(ζ)−A(ζ ′)
)

(ζ − ζ ′) >
(

B(ζ)−B(ζ ′)
)2

.
(2) If there exists ζ0 ∈ R such that A(ζ0) > 0, then

lim sup
ζ→∞

(

ζ − B(ζ)2

2A(ζ)

)

= +∞.

(3) If there exists ζ0 ∈ R such that A(ζ0) < 0, then

lim inf
ζ→−∞

(

ζ − B(ζ)2

2A(ζ)

)

= −∞.
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Proof. Define g(t, ζ) = A(ζ)
2
t2 + B(ζ)t+ ζ , so that G(t, ζ) = (t, g(t, ζ)). We first

show that G is injective if and only if property (1) holds. For ζ ′ > ζ , define the
quadratic polynomial

Qζ′,ζ(t) = g(t, ζ ′)− g(t, ζ) =
A(ζ ′)−A(ζ)

2
t2 + (B(ζ ′)− B(ζ))t+ (ζ ′ − ζ).

The map G is injective if and only if for all ζ ′, ζ ∈ R with ζ ′ > ζ the polynomial Qζ′,ζ

has no zeros. If A(ζ ′) = A(ζ), then Qζ′,ζ is in fact linear, thus it has no zeros if and
only if B(ζ ′) = B(ζ) and we obtain property (1a). If A(ζ ′) 6= A(ζ), then Qζ′,ζ has no
zeros if and only if its discriminant is strictly negative, i.e., property (1b) holds.

Next, we assume that G is injective, i.e., that property (1) holds, and we will
show that G is surjective if and only if properties (2) and (3) hold. By the Invari-
ance of Domain Theorem, the fact that G is surjective is equivalent to G being a
homeomorphism. Notice that, since Qζ′,ζ(0) = ζ ′ − ζ > 0 for all ζ ′ > ζ , we have

(5) ζ ′ > ζ =⇒ ∀t ∈ R g(t, ζ ′) > g(t, ζ).

Suppose that G is surjective, hence a homeomorphism. Suppose ζ0 ∈ R is such
that A(ζ0) > 0. By (1) we have that A is monotone increasing, therefore A(ζ) > 0
for all ζ ≥ ζ0. It follows that if ζ ≥ ζ0 then

ζ − B(ζ)2

2A(ζ)
= inf

t∈R
g(t, ζ).

For M ∈ R define KM = {(η, τ) ∈ R
2 : g(η, ζ0) ≤ τ ≤ M}. Since A(ζ0) > 0,

the set KM is compact (possibly empty) for all M ∈ R. Next, for ζ ∈ R define
Uζ = G(R × (−∞, ζ)) = {(η, τ) : τ < g(η, ζ)}. Since G is surjective, the open sets
Uζ cover R

2. Hence, there is ζ1 ≥ ζ0 such that KM ⊂ Uζ1 . Using (5), we obtain

∀ζ ≥ ζ1 inf
t∈R

g(t, ζ) ≥M.

Since M is arbitrary, we have proven (2). Property (3) is proven with a similar
argument.

Now we prove the converse implication. Suppose that A and B satisfy properties
(2) and (3). In order to prove that G is surjective, we need only to prove that
limζ→∞ g(t, ζ) = +∞ and limζ→−∞ g(t, ζ) = −∞, for every t ∈ R.

If A(ζ) = A(0) for all ζ ≥ 0, then g(t, ζ) = g(t, 0) + ζ and thus limζ→∞ g(t, ζ) =
+∞. If A(ζ) ≤ 0 for all ζ ∈ R, then there is C > 0 such that 0 ≤ A(ζ)− A(0) ≤ C
for all ζ > 0. We may suppose A(ζ) > A(0) for ζ large enough. Thus, using (1b),

g(t, ζ) ≥ A(0)

2
t2 +B(0)t+ ζ + (B(ζ)− B(0))t

≥ A(0)

2
t2 +B(0)t+ ζ − |t|

√

2(A(ζ)− A(0))ζ

≥ A(0)

2
t2 +B(0)t+ ζ − |t|

√
2C
√

ζ.

The limit limζ→∞ g(t, ζ) = +∞ follows. Finally, if A(ζ0) > 0 for some ζ0 ∈ R,

then for all ζ ≥ ζ0 we have inft∈R g(t, ζ) = ζ − B(ζ)2

2A(ζ)
. Property (2) implies that

limζ→∞ g(t, ζ) = +∞.
The limit limζ→−∞ g(t, ζ) = −∞ is deduced similarly from (3). �
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Remark 3.4. If A,B ∈ C (R) satisfy properties (1), (2) and (3) of the previous
Lemma 3.3, then the function f defined by f(G(t, ζ)) = ∂tg(t, ζ) = A(ζ)t + B(ζ)
belongs to C 1

W
by Lemma 2.1. Moreover, the curves t 7→ g(t, ζ) are integral curves

of ∇f along which ∇ff(G(t, ζ)) = ∂2t g(t, ζ) = A(ζ) is constant. So, ∆ff = 0 in weak
Lagrangian sense. The graphs of these functions are examples of “graphical strips”
as introduced in [4]. For example, for any A ∈ C 0(R) non-decreasing, we can define
g(t, ζ) := A(ζ)t2 + ζ and we obtain a well defined f ∈ C 1

W
with ∆ff = 0 given by

f(t, A(ζ)t2 + ζ) = 2A(ζ)t.

The converse also holds, as the next lemma shows.

Lemma 3.5. Let f ∈ C 1
W

satisfying ∆ff = 0 in weak Lagrangian sense. Then
the curves t 7→ (t, g(t, ζ)), where ζ ∈ R and

(6) g(t, ζ) =
∇ff(0, ζ)

2
t2 + f(0, ζ)t+ ζ,

are the integral curves of ∇f along which ∇ff is constant. Moreover, the functions
ζ 7→ ∇ff(0, ζ) and ζ 7→ f(0, ζ) satisfy the conditions (1), (2) and (3) in Lemma 3.3.
In particular, τ 7→ ∇ff(η, τ) is non-decreasing, for all η ∈ R.

Proof of Lemma 3.5. Given a function gp : I → R like in Lemma 2.1 along
which ∇ff is constant, we have g′′p(t) = ∇ff(p) for all t ∈ I, i.e., gp is a polynomial
of second degree. Moreover, such a gp is unique for every p, because it is completely
determined by f(p) and ∇ff(p).

It follows that gp is defined on R. Indeed, suppose I = (a, b) and set q =
limt→b p+(t, gp(t)), which exists because gp is a polynomial. If gq : J → R is a function
like in Lemma 2.1 along which ∇ff is constant, then gq is uniquely determined by
f(q) and ∇ff(q), where

f(q) = lim
t→b

f(p+ (t, gp(t))) = lim
t→b

g′p(t),

∇ff(q) = lim
t→b

∇ff(p+ (t, gp(t))) = lim
t→b

g′′p(t).

Hence, gq(t) = gp(b+ t) for t < 0 and so gp can be extended beyond b. Similarly, we
can extend gp to values below a.

If we consider p = (0, ζ), then gp(t) = g(t, ζ), where g(t, ζ) is given in (6). If
p ∈ R

2, then the curve t 7→ p+(t, gp(t)) intersects the axis {0}×R at some point, and
thus gp is of the form described in (6) up to a change of variables in t. We conclude
that the map (t, ζ) 7→ (t, g(t, ζ)) is a homeomorphism. Therefore, the conditions
stated in Lemma 3.3 hold true.

Finally, since (f(0, ζ) − f(0, ζ ′))2 ≥ 0, then ζ 7→ ∇ff(0, ζ) is non-decreasing.
Since ∇ff(t, g(t, ζ)) = ∇ff(0, ζ) and since, for t ∈ R fixed, the map ζ 7→ g(t, ζ)
is a ordering-preserving homeomorphism R → R, then the map τ 7→ ∇ff(η, τ) is
non-decreasing as well, for all η ∈ R. �

Remark 3.6. Lemma 3.5 states in particular that, if ∆ff = 0 in weak La-
grangian sense then Γf is foliated by horizontal straight lines. Indeed, notice that
any parabola t 7→ g(t, ζ) in R

2 lifts to a straight line in Γf . In [9, Theorem 3.5]
Galli and Ritoré are able to prove that, if f ∈ C 1(R2) and if Γf is a minimal surface
in H, then Γf is foliated by horizontal straight lines, i.e., ∆ff = 0 holds in weak
Lagrangian sense.
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Remark 3.7. One may wonder wether Definition 3.2 for weak Lagrangian solu-
tions to ∆ff = 0 is equivalent to a stronger condition, namely that ∇ff is constant
along all integral curves of ∇f . This is the case when f ∈ C1(R2), because inte-
gral curves are unique at each point. The following example shows that strong and
weak conditions are not equivalent. Indeed, there are functions for which the curves
t 7→ (t, g(t, ζ)) described in Lemma 3.5 do not exhaust all the integral curves of ∇f .

Let h ∈ C 2(R) and define k : R2 → R by requiring that for each s ∈ R the
function t 7→ k(t, s) is the unique polynomial of second degree with k(s, s) = h(s),
∂tk(s, s) = h′(s) and ∂2t k(s, s) = h′′(s). Explicitly, we have

k(t, s) =
h′′(s)

2
t2 + (h′(s)− h′′(s)s)t+ h(s)− h′(s)s+

h′′(s)

2
s2.

If the map K(t, s) = (t, k(t, s)) is a homeomorphism R
2 → R

2, then we may define a
function f ∈ C 1

W
by f(K(t, s)) = ∂tk(t, s), as we did in Remark 3.4. Then t 7→ K(t, s)

are integral curves of ∇f and ∇ff(K(t, s)) = ∂2t k(t, s) = h′′(s). It follows that
∆ff = 0 holds in weak Lagrangian sense. However, s 7→ K(s, s) = (s, h(s)) is an
integral curve of ∇f , because f(K(s, s)) = h′(s). Since ∇ff(K(s, s)) = h′′(s), there
is no need for ∇ff to be constant along this curve.

As an example, consider h(s) = s3, for which we have k(t, s) = 3st2 − 3s2t + s3.
We show that the map K is in this case a homeomorphism. Define ζ(s) = s3,
A(ζ(s)) = 6s = 6ζ1/3, B(ζ(s)) = −3s2 = −3ζ2/3 and the functions g(t, ζ) and G(t, ζ)
as in Lemma 3.3. Since K(t, s) = G(t, ζ(s)) and since ζ(·) is a homeomorphism
R → R, we need only to show that G is a homeomorphism R

2 → R
2, i.e., that the

functions A and B satisfy all conditions of Lemma 3.3:

(1) Let ζ = ζ(s), ζ ′ = ζ(s′) ∈ R. If A(ζ) = A(ζ ′), then s = s′ and thus B(ζ) =
B(ζ ′). If instead A(ζ) 6= A(ζ ′), then s 6= s′ and thus

2(A(ζ)− A(ζ ′))(ζ − ζ ′)− (B(ζ)− B(ζ ′))2

= 2(6s− 6s′)(s3 − s′3)− 9(s′2 − s2)2 = 3(s− s′)4 > 0.

(2)&(3) Since ζ − B(ζ)2

2A(ζ)
= 1

4
s3 and since ζ → ±∞ if and only if s→ ±∞, then

lim
ζ→+∞

ζ − B(ζ)2

2A(ζ)
= lim

s→+∞

1

4
s3 = +∞

and

lim
ζ→−∞

ζ − B(ζ)2

2A(ζ)
= lim

s→−∞

1

4
s3 = −∞.

The function f can be explicitly computed as f(η, τ) = 3η2 − 3(τ − η3)2/3. Finally,
as we noticed before, s 7→ (s, s3) is an integral curve of ∇f and ∇ff(s, s3) = 6s is
not constant.

Lemma 3.8. Let f ∈ C 1
W

. If ∆ff = 0 in weak Lagrangian sense, then there is
a sequence {fk}k∈N ⊂ C ∞(R2) converging to f in C 1

W
such that ∆fkfk = 0 for all

k ∈ N.

Proof. Let {ρǫ}ǫ>0 ⊂ C
∞(R) be a family of mollifiers with spt(ρǫ) ⊂ [−ǫ, ǫ], ρǫ ≥

0, ρǫ(0) > 0 and
´

R
ρǫ(r) dr = 1. Fix f ∈ C 1

W
with ∆ff = 0. Set A(ζ) := ∇ff(0, ζ)

and B(ζ) := f(0, ζ). Define

Aǫ(ζ) :=

ˆ

R

∇ff(0, ζ − r)ρǫ(r) dr,
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Bǫ(ζ) :=

ˆ

R

f(0, ζ − r)ρǫ(r) dr,

gǫ(t, ζ) :=
Aǫ(ζ)

2
t2 +Bǫ(ζ)t+ ζ.

We claim that, for all ǫ > 0, all conditions stated in Lemma 3.3 hold for Aǫ and
Bǫ. Let ζ, ζ ′ ∈ R with ζ < ζ ′. First, suppose that Aǫ(ζ) = Aǫ(ζ

′). Notice that
A(ζ− r)−A(ζ ′− r) ≤ 0 for all r ∈ R, because A is non-decreasing. Thus, we deduce
from

0 = Aǫ(ζ)−Aǫ(ζ
′) =

ˆ

R

(A(ζ − r)−A(ζ ′ − r))ρǫ(r) dr

that (B(ζ − r)−B(ζ ′ − r))ρǫ(r) = 0 for all r ∈ R and therefore that Bǫ(ζ) = Bǫ(ζ
′),

i.e., (1a) holds.
Second, suppose that Aǫ(ζ) 6= Aǫ(ζ

′). Using Jensen’s inequality, we have

2
(

Aǫ(ζ)−Aǫ(ζ
′)
)

(ζ − ζ ′)

=

ˆ

R

2
(

A(ζ − r)−A(ζ ′ − r)
)(

(ζ − r)− (ζ ′ − r)
)

ρǫ(r) dr

>

ˆ

R

(

B(ζ − r)−B(ζ ′ − r)
)2
ρǫ(r) dr ≥

(
ˆ

R

(B(ζ − r)− B(ζ ′ − r))ρǫ(r) dr

)2

.

So, condition (1b) is also verified.
Suppose that Aǫ(ζ0) > 0 for some ζ0 ∈ R. By the monotonicity of A and the

positivity of ρǫ, we may assume A(ζ0) > 0. Let M > 0. Since property (2) of
Lemma 3.3 holds for A, there is ζ1 > ζ0 so that for all ζ > ζ1

M < ζ − B(ζ)2

2A(ζ)
=

2A(ζ)ζ − B(ζ)2

2A(ζ)
.

Using Jensen inequality, we have for all ζ > ζ1 + ǫ

2Aǫ(ζ)ζ −Bǫ(ζ)
2 ≥
ˆ

R

(

2ζA(ζ − r)−B(ζ − r)2
)

ρǫ(r) dr

= 2

ˆ

R

A(ζ − r)rρǫ(r) dr +

ˆ

R

(

2(ζ − r)A(ζ − r)− B(ζ − r)2
)

ρǫ(r) dr

≥ −2ǫ

ˆ

R

A(ζ − r)ρǫ(r) dr + 2M

ˆ

R

A(ζ − r)ρǫ(r) dr = 2Aǫ(ζ)(M − ǫ).

Thus, M − ǫ < ζ − Bǫ(ζ)2

2Aǫ(ζ)
for all ζ > ζ1 + ǫ. Since M was arbitrary, we obtain

property (2) of Lemma 3.3. Property (3) can be similarly obtained.
The functions Gǫ : R

2 → R
2, Gǫ(t, ζ) := (t, gǫ(t, ζ)), are homeomorphisms and,

as ǫ → 0, they converge to G0 uniformly on compact sets. It follows that G−1
ǫ also

converge to G−1
0 , as ǫ→ 0.

For ǫ > 0, define fǫ ∈ C ∞(R2) via

fǫ(t, gǫ(t, ζ)) = Aǫ(ζ)t+Bǫ(ζ).

By the continuity of Gǫ and G−1
ǫ in ǫ, fǫ and ∇fǫfǫ converge to f0 and ∇f0f0 uniformly

on compact sets. Finally, ∆fǫfǫ = 0 by construction. �
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4. A Lagrangian approach to contact variations

Proposition 4.1. Let φ = (φ1, φ2) : R
2 → R

2 be a C ∞-diffeomorphism. Let
f ∈ C 1

W
and assume

(7) ∇fφ1(p) 6= 0 ∀p ∈ R
2.

Define f̄ : R2 → R as

f̄ ◦ φ =
∇fφ2

∇fφ1
.

Then f̄ ∈ C 1
W

and

(8) ∇f̄ f̄ ◦ φ =
∆fφ2

(∇fφ1)2
− ∇fφ2

(∇fφ1)3
∆fφ1.

Notice that, if f ∈ C 1(R2), then f̄ ∈ C 1(R2) as well.

Remark 4.2. If {φǫ}ǫ>0 is a smooth one-parameter family of diffeomorphisms
φǫ : R2 → R

2 with φ0 = Id, then, for ǫ > 0 small enough, the functions fǫ defined by

fǫ ◦ φǫ =
∇fφǫ2
∇fφǫ1

.

belong to C 1
W

and converge to f in C 1
W

.

Proof. The idea is to transform via φ the integral curves of ∇f into the ones of
∇f̄ . Fix p = (η, τ), let q := (η̄, τ̄) := φ(p) and let gp : I → R be like in Lemma 2.1.
Thanks to the condition ∇fφ1 6= 0 and the Implicit Function Theorem, there exist
two C 2-function s : I → R and ḡq : s(I) → R, such that

q + (s, ḡq(s)) = φ(p+ (t, gp(t)), ∀t ∈ I.

Therefore
{

s(t) = φ1(η + t, τ + gp(t))− η̄,

ḡq(s(t)) = φ2(η + t, τ + gp(t))− τ̄ .

We define

f̄(q) := ḡ′q(0).

Notice that this value does not depend on the choice of gp, as far as t 7→ (t, gp(t)) is
an integral curve of ∇f .

We want to write ḡ′q(0). Set

pt := (η + t, τ + gp(t)).

First

d

dt
s(t) = ∂ηφ1(pt) + ∂τφ1(pt)g

′
p(t) = ∇fφ1(pt),

d

dt
ḡq(s(t)) = ∂ηφ2(pt) + ∂τφ2(pt)g

′
p(t) = ∇fφ2(pt).

Since
d

dt
ḡq(s(t)) = ḡ′q(s(t)) ·

d

dt
s(t),

we have for s = 0 = t

f̄(q) =
∇fφ2(p)

∇fφ1(p)
.
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∇f̄ f̄(q) is the derivative of f̄ along the curve q + (s, ḡq(s)) at s = 0, i.e.,

∇f̄ f̄(q) = ḡ′′q (0).

As above, we want to write down ḡ′′q (0) in a more explicit way.

d2

dt2
s(t)|t=0 = ∂2ηφ1(p) + ∂τ∂ηφ1(p)f(p)

+ ∂η∂τφ1(p)f(p) + ∂2τφ1(p)(f(p))
2 + ∂τφ1(p)∇ff(p) = ∆fφ1(p),

d2

dt2
ḡq(s(t))|t=0 = ∂2ηφ2(p) + ∂τ∂ηφ2(p)f(p)

+ ∂η∂τφ2(p)f(p) + ∂2τφ2(p)(f(p))
2 + ∂τφ2(p)∇ff(p) = ∆fφ2(p)

Since
d2

dt2
ḡq(s(t)) = ḡ′′q (s(t)) ·

(

d

dt
s(t)

)2

+ ḡ′q(s(t)) ·
d2

dt2
s(t),

we have

∇f̄ f̄(q) = ḡ′′q (0) =
d2

dt2
ḡq|t=0 − ḡ′q(0) · d2

dt2
s|t=0

( d
dt
s|t=0)2

=
1

(∇fφ1(p))2
·
(

∆fφ2(p)−
∇fφ2(p)

∇fφ1(p)
·∆fφ1(p)

)

.

By Lemma 2.1, the function f̄ belongs to C 1
W

. �

5. Contact transformations

A diffeomorphism Φ: H → H is a contact diffeomorphism if dΦ(H) ⊂ H , see [3,
12]. Contact diffeomorphisms are the only diffeomorphisms that preserve the sub-
Riemannian perimeter.

Proposition 5.1. Let Φ: H → H be a diffeomorphism of class C 2. If, for all
E ⊂ H measurable and all Ω ⊂ H open, it holds

(9) P (E; Ω) <∞ =⇒ P (Φ(E); Φ(Ω)) <∞,

then Φ is contact.

We will show in this section that any variation of an intrinsic graph Γf via
contact diffeomorphisms is equivalent to a variation of f via the transformations of
Proposition 4.1 and Remark 4.2.

Proposition 5.2. Let φ : R2 → R
2 be a C ∞-diffeomorphism and f, f̄ ∈ C 1

W
as

in Proposition 4.1. Then there is a contact diffeomorphism Φ: Ω → Φ(Ω), where Ω
and Φ(Ω) are open subsets of H with Γf ⊂ Ω, such that Φ(Γf ) = Γf̄ .

Proposition 5.3. Let Φǫ : H → H, ǫ ∈ R, be a smooth one-parameter family of
contact diffeomorphisms such that there is a compact set K ⊂ H with Φǫ|H\K = Id
for all ǫ and Φ0 = Id. Let f ∈ C ∞(R2). Then there is ǫ0 > 0 such that for all ǫ with
|ǫ| < ǫ0, the maps φǫ : R2 → R

2,

φǫ(p) := πX ◦ Φǫ(p ∗ f(p)),
form a smooth family of C

∞-diffeomorphism of R2. Moreover, if f ǫ is the function
defined via f and φǫ as in Proposition 4.1, then

Φǫ(Γf ) = Γfǫ.
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5.1. Proof of Proposition 5.1. We use an argument by contradiction. Assume
that Φ is not a contact diffeomorphism. Then there is an open and bounded set
Ω ⊂ H such that for all p ∈ Ω it holds dΦ(Hp) 6⊂ HΦ(p). Thanks to the following
lemma and Remark 2.3, we get a contradiction with the property (9).

Lemma 5.4. Let Φ: H → H be a diffeomorphism of class C 2. Let Ω ⊂ H be
an open and bounded set such that for all p ∈ Ω

dΦ(Hp) 6⊂ HΦ(p).

Let E ⊂ H be measurable. If P (E; Ω) < ∞ and P (Φ(E); Φ(Ω)) < ∞, then E has
finite Riemannian perimeter in Ω.

Proof. We extend the scalar product 〈·, ·〉 to the whole TH in such a way that
(X, Y, Z) is an orthonormal frame. The Riemannian perimeter is defined as

PR(E; Ω) := sup

{
ˆ

E

divU dL
3 : U ∈ Vec(TH), sptU ⊂⊂ Ω, ‖U‖ ≤ 1

}

.

Let U ∈ Vec(TH) with spt(U) ⊂⊂ Ω and ‖U‖ ≤ 1. Then there are V,W ∈
Vec(TH) with spt(V )∪spt(W ) = spt(U), V +W = U , V (p) ∈ Hp for all p, ‖V ‖ ≤ K
and ‖W‖ ≤ K, and Φ∗W (p) ∈ Hp for all p, where K ≥ 0 depends on Φ and Ω, but
not on U .

Remind that, if W is a smooth vector field on H, then2

div(Φ∗W ) = div(W ) ◦ Φ−1 · J(Φ−1).

Therefore
ˆ

E

divW dL
3 =

ˆ

Φ(E)

(divW ) ◦ Φ−1JΦ−1 dL
3 =

ˆ

Φ(E)

div(Φ∗W ) dL
3.

Moreover, since Ω is bounded, we can assume ‖ dΦ(v)‖ ≤ K‖v‖ for all v ∈ TΩ, where
K ≥ 0 is the same constant as above. Therefore

ˆ

E

divU dL
3 =

ˆ

E

divV dL
3 +

ˆ

E

divW dL
3

=

ˆ

E

divV dL
3 +

ˆ

Φ(E)

div(Φ∗W ) dL
3

≤ KP (E; Ω) +K2P (Φ(E); Φ(Ω)).

This implies that PR(E; Ω) ≤ KP (E; Ω) +K2P (Φ(E); Φ(Ω)) <∞. �

5.2. Proof of Proposition 5.2. In this case our choice of coordinates is
not helpful. So, we consider the exponential coordinates of second kind (ξ, η, τ) 7→
exp(ηB + τC) ∗ exp(ξA), using the notation of Section 2.1.

We define the map Φ as

Φ (ξ, η, τ) :=

(∇ξφ2

∇ξφ1
(η, τ), φ1(η, τ), φ2(η, τ)

)

Clearly, Φ is well defined and smooth on the open set

Ω := {(ξ, η, τ) : ∇ξφ1(η, τ) 6= 0},
2A sketch of the proof of this formula: it is clearer to show the dual formula div(Φ∗W ) =

div(W ) ◦Φ · J(Φ); consider W as a 2-form and the divergence as the exterior derivative d; remind
that dΦ∗ = Φ∗ d; the formula follows.
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Γf ⊂ Ω by the hypothesis of Proposition 4.1 and Φ(Γf ) = Γf̄ . In these coordinates,
the differential of Φ is

dΦ(ξ, η, τ) =







∂ξ

(

∇ξφ2
∇ξφ1

)

∂η

(

∇ξφ2
∇ξφ1

)

∂τ

(

∇ξφ2
∇ξφ1

)

0 ∂ηφ1 ∂τφ1

0 ∂ηφ2 ∂τφ2







Since φ is a diffeomorphism, Φ is a diffeomorphism if and only if ∂ξ

(

∇ξφ2
∇ξφ1

)

6= 0. A

short computation shows that

∂ξ

(∇ξφ2

∇ξφ1

)

=
det( dφ)

(∇ξφ1)2
,

which is non-zero.
Now, we need to show that Φ is a contact diffeomorphism. In this system of

coordinates, the left-invariant vector fields X, Y, Z are written as

X̃(ξ, η, τ) = ∂ξ, Ỹ (ξ, η, τ) = ∂η + ξ∂τ , Z̃(ξ, η, τ) = ∂τ .

We have

dΦ
(

X̃(ξ, η, τ)
)

= ∂ξ

(∇ξφ2

∇ξφ1

)

X̃(Φ(ξ, η, τ)),

dΦ
(

Ỹ (ξ, η, τ)
)

= ∇ξ

(∇ξφ2

∇ξφ1

)

X̃(Φ(ξ, η, τ)) +∇ξφ1Ỹ (Φ(ξ, η, τ)).

Therefore, dΦ(H) ⊂ H . �

5.3. Proof of Proposition 5.3. The functions φǫ : R2 → R
2 are well defined

and smooth for all ǫ ∈ R. Since Φǫ and all its derivative converge to Id uniformly
on H, there exists ǫ0 > 0 such that for all ǫ with |ǫ| < ǫ0, the vector field X is
not tangent to Φǫ(Γf) at any point. Therefore, det( dφǫ) 6= 0 for all such ǫ. Since
φǫ|πX(K) = Id, φǫ is a covering map and therefore it is a smooth diffeomorphism.

The last statement is a direct consequence Lemma 2.2. �

6. First contact variation

Similar formulas for the first and the second variation for the sub-Riemannian
perimeter in the Heisenberg group can be found in [4, 5, 8, 15].

In all the formulas below, we set ψ := ∇ff .

Proposition 6.1. Let f ∈ C
1
W

be such that Γf is an area-minimizing surface.
Then for all V1, V2 ∈ C ∞

c (R2) it holds

(10) 0 =

ˆ

R2

[

ψ
√

1 + ψ2

(

−2ψ · ∇fV1 − f ·∆fV1
)

+
√

1 + ψ2∂ηV1

]

dη dτ.

and

(11) 0 =

ˆ

R2

[

ψ
√

1 + ψ2
∆fV2 +

√

1 + ψ2∂τV2

]

dη dτ.

Proposition 6.2. Let f ∈ C ∞(R2) be such that for all V2 ∈ C ∞
c (R2) the

equation (11) holds. Then (10) holds as well for all V1 ∈ C ∞
c (R2).
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Proposition 6.3. A function f ∈ C
∞(R2) satisfies (11) for all V2 ∈ C

∞
c (R2) if

and only if

(12) (∇f + 2∂τf)∇f

(

ψ
√

1 + ψ2

)

= 0.

6.1. Proof of Proposition 6.1. Let f ∈ C 1
W

, ω ⊂ R
2 an open and bounded set

and V = (V1, V2) : R
2 → R

2 a smooth vector field with spt V ⊂⊂ ω. Let φǫ : R2 →
R

2 be a smooth one-parameter family of diffeomorphism such that {φǫ 6= Id} ⊂ spt V
for all ǫ > 0 and, for all p ∈ R

2,
{

φ0(p) = p,

∂ǫφ
ǫ(p)|ǫ=0 = V (p).

Notice that ∇fφǫ1 = ∂ηφ
ǫ
1 + f∂τφ

ǫ
1 is not zero for ǫ small enough, because ∇fφǫ1

converges to 1 uniformly as ǫ → 0. Hence, by Proposition 4.1, there is an interval
I = (−ǫ̂, ǫ̂) such that the function given by

(13) fǫ ◦ φǫ =
∇fφǫ2
∇fφǫ1

is well defined for all ǫ ∈ I. Define γ : I → R as

γ(ǫ) :=

ˆ

ω

√

1 + (∇fǫfǫ)2 dη dτ =

ˆ

ω

√

1 + ((∇fǫfǫ) ◦ φǫ)2Jφǫ dη dτ,

where we performed a change of coordinates via φǫ and

Jφǫ = ∂ηφ
ǫ
1∂τφ

ǫ
2 − ∂τφ

ǫ
1∂ηφ

ǫ
2

is the Jacobian of φǫ. Using equality (8) and Lemma 3.1, it is immediate to see that
γ is continuous.

Lemma 6.4. The function γ : I → R is continuously differentiable and

γ′(ǫ) =

ˆ

ω

[

((∇fǫfǫ) ◦ φǫ)
√

1 + ((∇fǫfǫ) ◦ φǫ)2
Af(ǫ)Jφǫ

+
√

1 + ((∇fǫfǫ) ◦ φǫ)2∂ǫJφǫ
]

dη dτ,

(14)

where

Af(ǫ) :=
∆f∂ǫφ

ǫ
2

(∇fφǫ1)
2
− 2

∆fφǫ2
(∇fφǫ1)

3
∇f∂ǫφ

ǫ
1

− ∇f∂ǫφ
ǫ
2

(∇fφǫ1)
3
∆fφǫ1 + 3

∇fφǫ2
(∇fφǫ1)

4
∇f∂ǫφ

ǫ
1 ·∆fφǫ1 −

∇fφǫ2
(∇fφǫ1)

3
∆f∂ǫφ

ǫ
1.

(15)

Proof of Lemma 6.4. First, suppose f ∈ C ∞(R2). Then γ ∈ C ∞(I) and

γ′(ǫ) =

ˆ

ω

[

((∇fǫfǫ) ◦ φǫ)
√

1 + ((∇fǫfǫ) ◦ φǫ)2
∂ǫ((∇fǫfǫ) ◦ φǫ)Jφǫ

+
√

1 + ((∇fǫfǫ) ◦ φǫ)2∂ǫJφǫ
]

dη dτ.

Applying the formula in Proposition 4.1 and the identity ∇f∂ǫ = ∂ǫ∇f , one obtains

∂ǫ((∇fǫfǫ) ◦ φǫ) = Af (ǫ)

and thus formula (14) holds in the smooth case.
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Next, suppose f = f∞ is the limit in C
1
W

of a sequence fk ∈ C
∞(R2), as in

Lemma 2.4. Notice that ∇fkφǫ1 is not zero for ǫ small enough and k large enough.
Indeed, |∇fkφǫ1 − ∇f∞φǫ1| ≤ ‖fk − f‖L ∞(sptV )‖∂τφǫ1‖L ∞(spt V ) and ∇f∞φǫ1 converges
to one uniformly on R

2 as ǫ → 0. Hence, there is an interval I ⊂ R centered at
zero such that the functions fk,ǫ as in Proposition 4.1 are well defined for ǫ ∈ I and,
without loss of generality, for all k ∈ N∪ {∞}. For k ∈ N∪ {∞}, define γk : I → R

as

γk(ǫ) :=

ˆ

ω

√

1 + (∇fk,ǫfk,ǫ)2 dη dτ

Define also the function η : I → R as the right-hand side of (14). From Lemma 3.1,
it follows that {Afk}k∈N converges to Af uniformly on I. Therefore, we have that
{γk}k∈N and {γ′k}k∈N converge to γ and η uniformly on I. We conclude that γ ∈
C

1(I) and γ′ = η. �

In order to evaluate γ′(0), notice that

∇fφ0
1 = 1, ∇fφ0

2 = f,

∇f∂ǫφ
ǫ
1|ǫ=0 = ∇fV1, ∇f∂ǫφ

ǫ
2|ǫ=0 = ∇fV2,

∆fφ0
1 = 0, ∆fφ0

2 = ψ,

∆f∂ǫφ
ǫ
1|ǫ=0 = ∆fV1, ∆f∂ǫφ

ǫ
2|ǫ=0 = ∆fV2.

Therefore

Af (0) = ∆fV2 − 2ψ∇fV1 − f∆fV1.

Moreover, using the facts ∂τφ
0
1 = ∂ηφ

0
2 = 0 and ∂ηφ

0
1 = ∂τφ

0
2 = 1 and that the

derivatives ∂ǫ, ∂η and ∂τ commute, we have

∂ǫJφǫ |ǫ=0 = ∂ηV1 + ∂τV2.

Putting all together, we obtain

γ′(0) =

ˆ

ω

[

ψ
√

1 + ψ2

(

∆fV2 − 2ψ · ∇fV1 − f ·∆fV1
)

+
√

1 + ψ2(∂ηV1 + ∂τV2)

]

dη dτ.

Since Γf is an area-minimizing surface, then γ′(0) = 0 for all V1, V2 ∈ C ∞
c (R2). Since

this expression is linear in V , then we obtain both conditions (10) and (11). �

6.2. Proof of Proposition 6.2. Let V1 ∈ C ∞(R2) and set V2 := fV1 ∈
C ∞
c (R2). Then

0 =

ˆ

R2

[

ψ
√

1 + ψ2
∆fV2 +

√

1 + ψ2∂τV2

]

dη dτ

=

ˆ

R2

[

ψ
√

1 + ψ2
(∇fψV1 + 2ψ∇fV1 + f∆fV1) +

√

1 + ψ2(∂τfV1 + f∂τV1)

]

dη dτ

=

ˆ

R2

[

ψ
√

1 + ψ2
(2ψ∇fV1 + f∆fV1) +

(

ψ∇fψ
√

1 + ψ2
+
√

1 + ψ2∂τf

)

V1

+
√

1 + ψ2(∇fV1 − ∂ηV1)

]

dη dτ
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=

ˆ

R2

[

ψ
√

1 + ψ2
(2ψ∇fV1 + f∆fV1)−

√

1 + ψ2∇fV1

+
√

1 + ψ2(∇fV1 − ∂ηV1)

]

dη dτ

=

ˆ

R2

[

ψ
√

1 + ψ2
(2ψ∇fV1 + f∆fV1)−

√

1 + ψ2∂ηV1)

]

dη dτ.

Hence (10) holds true for V1 as well. �

6.3. Proof of Proposition 6.3. We have for all V2 ∈ C ∞
c (R2)

ˆ

R2

[

ψ
√

1 + ψ2
∇f∇fV2 +

√

1 + ψ2∂τV2

]

dη dτ

= −
ˆ

R2

[

∇f

(

ψ
√

1 + ψ2

)

∇fV2 +
∂τfψ
√

1 + ψ2
∇fV2 + ∂τ (

√

1 + ψ2)V2

]

dη dτ

=

ˆ

R2

[

∇f∇f

(

ψ
√

1 + ψ2

)

V2 + ∂τf∇f

(

ψ
√

1 + ψ2

)

V2

+∇f (∂τf)
ψ

√

1 + ψ2
V2 + ∂τf∇f

(

ψ
√

1 + ψ2

)

V2 + (∂τf)
2 ψ
√

1 + ψ2
V2

− ψ
√

1 + ψ2
∂τψV2

]

dη dτ.

Therefore, using the fact that ∂τψ = ∇f(∂τf)+(∂τf)
2, we get that (11) is equivalent

to

∇f∇f

(

ψ
√

1 + ψ2

)

+ 2∂τf · ∇f

(

ψ
√

1 + ψ2

)

= 0. �

7. Second contact variation

Similarly to the previous sections, we set ψ := ∇ff .

Proposition 7.1. If the intrinsic graph of f ∈ C 1
W

is an area-minimizing surface,
then, for all V1, V2 ∈ C ∞

c (R2), we have

0 ≤ IIf(V1, V2) :=

ˆ

R2

[

(∆fV2 − 2ψ∇fV1 − f∆fV1)
2

(1 + ψ2)
3
2

+
ψ

(1 + ψ2)
1
2

(

−4∆fV2 · ∇fV1 − 2∇fV2 ·∆fV1

+6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)
2
)

+ 2
ψ

(1 + ψ2)
1
2

(∆fV2 − 2ψ∇fV1 − f∆fV1)(∂ηV1 + ∂τV2)

+ 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2)

]

dη dτ.

(16)
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7.1. Proof of Proposition 7.1. Let ω ⊂ R
2 be an open and bounded set

and V = (V1, V2) : R
2 → R

2 a smooth vector field with spt V ⊂⊂ ω. Let φǫ =
(φǫ1, φ

ǫ
2) : R

2 → R
2 be a smooth one-parameter family of diffeomorphism such that

{φǫ 6= Id} ⊂ spt V for all ǫ > 0 and, for all p ∈ R
2,

{

φ0(p) = p,

∂ǫφ
ǫ(p)|ǫ=0 = V (p).

Define Wi(p) := ∂2ǫφ
ǫ
i(p)|ǫ=0. Then W = (W1,W2) : R

2 → R
2 is a smooth vector field

with sptW ⊂⊂ ω.
As for the first variation, see Section 6.1, define

γ(ǫ) :=

ˆ

ω

√

1 + (∇fǫfǫ)2 dη dτ.

Lemma 7.2. The function γ : I → R is twice continuously differentiable and

γ′′(ǫ) =

ˆ

ω

[

Af(ǫ)
2

(1 + (∇fǫfǫ ◦ φǫ)2)
3
2

Jφǫ +
(∇fǫfǫ ◦ φǫ)Bf(ǫ)

(1 + (∇fǫfǫ ◦ φǫ)2)
1
2

Jφǫ

+ 2
(∇fǫfǫ ◦ φǫ)Af (ǫ)

(1 + (∇fǫfǫ ◦ φǫ)2)
1
2

∂ǫJφǫ + (1 + (∇fǫfǫ ◦ φǫ)2)
1
2∂2ǫ Jφǫ

]

dy dz,

(17)

where Af (ǫ) is defined as in (15) and

Bf (ǫ) :=
∆f∂2ǫ φ

ǫ
2

(∇fφǫ1)
2
− 2

∆f∂ǫφ
ǫ
2 · ∇f∂ǫφ

ǫ
1

(∇fφǫ1)
3

− 2
∆f∂ǫφ

ǫ
2 · ∇f∂ǫφ

ǫ
1

(∇fφǫ1)
3

− 2
∆fφǫ2 · ∇f∂2ǫ φ

ǫ
1

(∇fφǫ1)
3

+ 6
∆fφǫ2 · (∇f∂ǫφ

ǫ
1)

2

(∇fφǫ1)
4

− ∇f∂2ǫφ
ǫ
2 ·∆fφǫ1

(∇fφǫ1)
3

− ∇f∂ǫφ
ǫ
2 ·∆f∂ǫφ

ǫ
1

(∇fφǫ1)
3

+ 3
∇f∂ǫφ

ǫ
2 ·∆fφǫ1 · ∇f∂ǫφ

ǫ
1

(∇fφǫ1)
4

+ 3
∇f∂ǫφ

ǫ
2 · ∇f∂ǫφ

ǫ
1 ·∆fφǫ1

(∇fφǫ1)
4

+ 3
∇fφǫ2 · ∇f∂2ǫ φ

ǫ
1 ·∆fφǫ1

(∇fφǫ1)
4

+ 3
∇fφǫ2 · ∇f∂ǫφ

ǫ
1 ·∆f∂ǫφ

ǫ
1

(∇fφǫ1)
4

− 12
∇fφǫ2 · (∇f∂ǫφ

ǫ
1)

2 ·∆fφǫ1
(∇fφǫ1)

5

− ∇f∂ǫφ
ǫ
2 ·∆f∂ǫφ

ǫ
1

(∇fφǫ1)
3

− ∇fφǫ2 ·∆f∂2ǫφ
ǫ
1

(∇fφǫ1)
3

+ 3
∇fφǫ2 ·∆f∂ǫφ

ǫ
1 · ∇f∂ǫφ

ǫ
1

(∇fφǫ1)
4

.

Proof of Lemma 7.2. This lemma is a continuation of Lemma 6.4. First, suppose
f ∈ C ∞(R2). Then, the function γ is smooth and its second derivative is

γ′′(ǫ) =

ˆ

ω

[

(∂ǫ(∇fǫfǫ ◦ φǫ))2

(1 + (∇fǫfǫ ◦ φǫ)2)
3
2

Jφǫ +
(∇fǫfǫ ◦ φǫ)∂2ǫ (∇fǫfǫ ◦ φǫ)

(1 + (∇fǫfǫ ◦ φǫ)2)
1
2

Jφǫ

+ 2
(∇fǫfǫ ◦ φǫ)∂ǫ(∇fǫfǫ ◦ φǫ)

(1 + (∇fǫfǫ ◦ φǫ)2)
1
2

∂ǫJφǫ + (1 + (∇fǫfǫ ◦ φǫ)2)
1
2∂2ǫ Jφǫ

]

dy dz.

One checks by direct computation that

∂ǫ(∇fǫfǫ ◦ φǫ) = Af (ǫ),

∂2ǫ (∇fǫfǫ ◦ φǫ) = Bf (ǫ),

thus (17) is proven in the smooth case.
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Next, suppose f = f∞ is the limit in C
1
W

of a sequence fk ∈ C
∞(R2), as in

Lemma 2.4. Define fk,ǫ and I ⊂ R and γk : I → R as in the proof of Lemma 6.4.
Define also η : I → R as the right-hand side of (17). By Lemma 3.1, {Afk}k∈N
and {Bfk}k∈N converge to Af and Bf uniformly on I. Therefore, we have that the
convergences γk → γ and γ′k → γ′ and γ′′k → η are uniform on I. We conclude that
γ ∈ C 2(I) and γ′′ = η. �

Next, one can directly check that

γ′′(0) =

ˆ

ω

[

(∆fV2 − 2ψ∇fV1 − f∆fV1)
2

(1 + ψ2)
3
2

+
ψ

(1 + ψ2)
1
2

(

∆fW2 − f ·∆fW1

− 2ψ · ∇fW1 − 4∆fV2 · ∇fV1 − 2∇fV2 ·∆fV1

+ 6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)
2
)

+ 2
ψ

(1 + ψ2)
1
2

(∆fV2 − 2ψ∇fV1 − f∆fV1)(∂ηV1 + ∂τV2)

+ (1 + ψ2)
1
2 (∂ηW1 + ∂τW2 + 2(∂ηV1∂τV2 − ∂τV1∂ηV2))

]

dη dτ.

Finally, if Γf is an area-minimizing surface, then γ′(0) = 0 and γ′′(0) ≥ 0. Notice
that the terms containing W1 and W2 in the expression of γ′′(0) are zero because
γ′(0) = 0. So, the second variation formula (16) is proven. �

8. Contact variations in the case ∆
ff = 0

In this final section we prove our main result. We show that there is a quite large
class of functions in C 1

W
that satisfy both conditions on the first and second contact

variation. Since we know that the only intrinsic graphs of smooth functions that are
area minimizers are the vertical planes, our result shows that variations along contact
diffeomorphisms are not selective enough.

As usual, we set ψ := ∇ff .

Lemma 8.1. Let f ∈ C ∞(R2) be such that ∆ff = 0. Then

IIf(V1, V2) =

ˆ

R2

[

(∆fV2 − 2ψ∇fV1 − f∆fV1)
2

(1 + ψ2)
3
2

+ ∂τ

(

ψ

(1 + ψ2)
1
2

)

(

∇fV2 −∇f (fV1)
)2
]

dη dτ.

The proof is very technical and it is postponed to the last section below.

Theorem 8.2. Let f ∈ C 1
W

be such that ∆ff = 0 in weak Lagrangian sense.
Then both equalities (10) and (11) and also the inequality (16) are satisfied for all
V1, V2 ∈ C ∞

c (R2).

Proof. We first prove that both equalities (10) and (11) are satisfied. Let
{fk}k∈N ⊂ C ∞(R2) be a sequence converging to f in C 1

W
and such that ∆fkfk = 0,

as in Lemma 3.8. Fix V1, V2 ∈ C ∞
c (R2). Then (12) and (10) are satisfied by all fk

thanks to Propositions 6.2 and 6.3. Passing to the limit k → ∞, we prove that f
satisfies them too.

Now, we prove that the inequality (16) holds true. If f ∈ C
∞(R2), then we can

apply Lemma 8.1, where ∂τ

(

ψ

(1+ψ2)
1
2

)

= ∂τψ

(1+ψ2)
3
2
≥ 0 because of Lemma 3.5. So, (16)
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is proven for f smooth. For f ∈ C
1
W

, let {fk}k∈N ⊂ C
∞(R2) as in Lemma 3.8. From

Lemma 3.1 follows that, for fixed V1, V2 ∈ C ∞
c (R2), it holds

lim
k→∞

IIfk(V1, V2) = IIf(V1, V2),

thus IIf (V1, V2) ≥ 0. �

8.1. Proof of Lemma 8.1. The proof of this lemma is just a computation,
but quite elaborate. For making the formulas more readable, we decided to drop
the sign of integral along the proof. In other words, all equalities in this section are
meant as equalities of integrals on R

2. We will constantly use the formulas listed in
Appendix A together with ∇fψ = 0.

Before of all, we reorganise the integral in (16):

(∆fV2 − 2ψ∇fV1 − f∆fV1)
2

(1 + ψ2)
3
2

( a©)

+
ψ

(1 + ψ2)
1
2

(

+6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)
2
)

( b©)

+ 2
ψ

(1 + ψ2)
1
2

(

−2ψ∇fV1 − f∆fV1
)

∂ηV1( c©)

+ 2
ψ

(1 + ψ2)
1
2

∆fV2∂τV2( d©)

+
ψ

(1 + ψ2)
1
2

(

−4∆fV2 · ∇fV1 − 2∇fV2 ·∆fV1
)

( e©)

+ 2
ψ

(1 + ψ2)
1
2

(

∆fV2∂ηV1 + (−2ψ∇fV1 − f∆fV1)∂τV2
)

( f©)

+ 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2).( g©)

In the following lemmas we will study b©+ c©, d© and e© + f© + g© separately in
order to obtain the expansion of the square in the second term of the integral in
Lemma 8.1.

Lemma 8.3.

b©+ c© = ∂τ

(

ψ

(1 + ψ2)
1
2

)

(

∇f(fV1)
)2
.

Proof of Lemma 8.3.

b© =
ψ

(1 + ψ2)
1
2

(

6f∇fV1∆
fV1 + 6ψ(∇fV1)

2
)

=
ψ

(1 + ψ2)
1
2

(

3f∇f(∇fV1)
2 + 6ψ(∇fV1)

2
)

= 3
ψ

(1 + ψ2)
1
2

(

∇f (f(∇fV1)
2) + ψ(∇fV1)

2
)

= −3
ψ

(1 + ψ2)
1
2

f∂τf(∇fV1)
2 + 3

ψ2

(1 + ψ2)
1
2

(∇fV1)
2

= −3

2

ψ

(1 + ψ2)
1
2

∂τ (f
2)(∇fV1)

2 + 3
ψ2

(1 + ψ2)
1
2

(∇fV1)
2.
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c© = −2
ψ

(1 + ψ2)
1
2

(2ψ∇fV1 + f∆fV1)∂ηV1

= −2
ψ

(1 + ψ2)
1
2

(2ψ∇fV1 + f∆fV1)(∇fV1 − f∂τV1)

= −4
ψ2

(1 + ψ2)
1
2

(∇fV1)
2 + 4

ψ2

(1 + ψ2)
1
2

f∇fV1∂τV1

− 2
ψ

(1 + ψ2)
1
2

f∆fV1∇fV1 + 2
ψ

(1 + ψ2)
1
2

f 2∆fV1∂τV1.

We have two particular terms in this expression:

α© := 4
ψ2

(1 + ψ2)
1
2

f∇fV1∂τV1 + 2
ψ

(1 + ψ2)
1
2

f 2∆fV1∂τV1

= 2
ψ

(1 + ψ2)
1
2

∇f(f 2∇fV1)∂τV1

= −2
ψ

(1 + ψ2)
1
2

(f 2∇fV1)∇f∂τV1 − 2∂τf
ψ

(1 + ψ2)
1
2

(f 2∇fV1)∂τV1

= −2
ψ

(1 + ψ2)
1
2

f 2∇fV1(∇f∂τV1 + ∂τf∂τV1)

= −2
ψ

(1 + ψ2)
1
2

f 2∇fV1∂τ∇fV1 = − ψ

(1 + ψ2)
1
2

f 2∂τ (∇fV1)
2

= ∂τ

(

ψ

(1 + ψ2)
1
2

)

f 2(∇fV1)
2 +

ψ

(1 + ψ2)
1
2

∂τ (f
2)(∇fV1)

2

and

β© := −2
ψ

(1 + ψ2)
1
2

f∆fV1∇fV1

= − ψ

(1 + ψ2)
1
2

f∇f(∇fV1)
2 =

ψ2

(1 + ψ2)
1
2

(∇fV1)
2 +

ψ

(1 + ψ2)
1
2

f∂τf(∇fV1)
2

=
ψ2

(1 + ψ2)
1
2

(∇fV1)
2 +

ψ

(1 + ψ2)
1
2

∂τ (f
2)

2
(∇fV1)

2.

Therefore

c© = −4
ψ2

(1 + ψ2)
1
2

(∇fV1)
2 + α©+ β©

= −3
ψ2

(1 + ψ2)
1
2

(∇fV1)
2 + ∂τ

(

ψ

(1 + ψ2)
1
2

)

f 2(∇fV1)
2

+
3

2

ψ

(1 + ψ2)
1
2

∂τ (f
2)(∇fV1)

2.
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Putting this together,

b©+ c© = ∂τ

(

ψ

(1 + ψ2)
1
2

)

f 2(∇fV1)
2

= ∂τ

(

ψ

(1 + ψ2)
1
2

)

(∇f(fV1)− ψV1)
2

= ∂τ

(

ψ

(1 + ψ2)
1
2

)

((∇f(fV1))
2 + (ψV1)

2 − 2∇f(fV1)ψV1)

= ∂τ

(

ψ

(1 + ψ2)
1
2

)

((∇f(fV1))
2 − (ψV1)

2 − f∇f(ψV 2
1 ))

(∗)
= ∂τ

(

ψ

(1 + ψ2)
1
2

)

((∇f (fV1))
2 − (ψV1)

2 +∇ffψV 2
1 )

= ∂τ

(

ψ

(1 + ψ2)
1
2

)

(∇f(fV1))
2.

In (∗) we used formula (18). �

Lemma 8.4.

d© = ∂τ

(

ψ

(1 + ψ2)
1
2

)

(∇fV2)
2.

Proof of Lemma 8.4.

d© = 2
ψ

(1 + ψ2)
1
2

∆fV2∂τV2
(∗)
= −2

ψ

(1 + ψ2)
1
2

∇fV2∂τ∇fV2

= − ψ

(1 + ψ2)
1
2

∂τ (∇fV2)
2 = ∂τ

(

ψ

(1 + ψ2)
1
2

)

(∇fV2)
2.

In (∗) we used formula (18). �

Lemma 8.5.

e©+ f©+ g© = −2∂τ

(

ψ

(1 + ψ2)
1
2

)

∇f(fV1)∇fV2.

Proof.

g© = 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2)

= 2(1 + ψ2)
1
2 ((∇fV1 − f∂τV1)∂τV2 − ∂τV1(∇fV2 − f∂τV2))

= 2(1 + ψ2)
1
2 (∇fV1∂τV2 − ∂τV1∇fV2).

f© = 2
ψ

(1 + ψ2)
1
2

(

∆fV2∂ηV1 + (−2ψ∇fV1 − f∆fV1)∂τV2
)

= 2
ψ

(1 + ψ2)
1
2

(

∆fV2(∇fV1 − f∂τV1)− 2ψ∇fV1∂τV2 − f∆fV1∂τV2
)

= 2
ψ

(1 + ψ2)
1
2

(

−f∂τV1∆fV2 − f∂τV2∆
fV1 +∆fV2∇fV1 − 2ψ∇fV1∂τV2

)
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(∗)
= 2

ψ

(1 + ψ2)
1
2

(

ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2 + ψ∂τV2∇fV1+

+f∂τ (∇fV2)∇fV1 +∆fV2∇fV1 − 2ψ∇fV1∂τV2
)

= 2
ψ

(1 + ψ2)
1
2

(

ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2+

+f∂τ (∇fV2)∇fV1 +∆fV2∇fV1 − ψ∇fV1∂τV2
)

.

In (∗) we used formula (18).

f©+ g© = 2
(1 + ψ2)

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

+ 2
ψ

(1 + ψ2)
1
2

(

ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2

+f∂τ (∇fV2)∇fV1 +∆fV2∇fV1 − ψ∇fV1∂τV2
)

= 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

+ 2
ψ

(1 + ψ2)
1
2

(

f∂τ (∇fV1∇fV2) + ∆fV2∇fV1
)

.

e©+ f©+ g© =
ψ

(1 + ψ2)
1
2

(

−4∆fV2∇fV1 − 2∇fV2∆
fV1
)

+ f©+ g©

= 2
ψ

(1 + ψ2)
1
2

(

−∆fV2∇fV1 −∇fV2∆
fV1 + f∂τ (∇fV1∇fV2)

)

+ 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= 2
ψ

(1 + ψ2)
1
2

(

−∇f (∇fV2∇fV1) + f∂τ (∇fV1∇fV2)
)

+ 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= 2
ψ

(1 + ψ2)
1
2

∂τf∇fV2∇fV1 − 2∂τ

(

ψ

(1 + ψ2)
1
2

)

f∇fV1∇fV2

− 2
ψ

(1 + ψ2)
1
2

∂τf∇fV1∇fV2 + 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= −2∂τ

(

ψ

(1 + ψ2)
1
2

)

f∇fV1∇fV2

+ 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2).
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In particular, we have

1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= − 1

(1 + ψ2)
1
2

∂τ∇fV2V1 + ∂τ

(

1

(1 + ψ2)
1
2

)

∇fV2V1 +
1

(1 + ψ2)
1
2

∂τ∇fV2V1

= ∂τ

(

1

(1 + ψ2)
1
2

)

∇fV2V1

and

∂τ

(

1

(1 + ψ2)
1
2

)

= − 1

(1 + ψ2)
3
2

ψ∂τψ = −ψ∂τ
(

ψ

(1 + ψ2)
1
2

)

.

Therefore

e©+ f©+ g©

= −2∂τ

(

ψ

(1 + ψ2)
1
2

)

f∇fV1∇fV2 + 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= −2∂τ

(

ψ

(1 + ψ2)
1
2

)

f∇fV1∇fV2 − 2ψ∂τ

(

ψ

(1 + ψ2)
1
2

)

∇fV2V1

= −2∂τ

(

ψ

(1 + ψ2)
1
2

)

∇f(fV1)∇fV2. �

Appendix A. Useful formulas

In the case f ∈ C ∞(R2), the adjoint operator of ∇f is

(∇f)∗ = −∇f − ∂τf,

i.e., if A,B ∈ C ∞(R2) and one of them has compact support, then
ˆ

R2

A · ∇fB dη dτ = −
ˆ

R2

[

∇fA · B + ∂τf · A · B
]

dη dτ.

Notice that, if f is smooth, the following holds:

∂η = ∇f − f∂τ ,

∂τ∇f = ∇f∂τ + ∂τf∂τ .

If A,B,C ∈ C
∞(R2) and one of them has compact support, then

(18)

ˆ

R2

A · ∂τB · ∇fC dη dτ = −
ˆ

R2

(

∇fA · ∂τB · C + A · ∂τ∇fB · C
)

dη dτ.
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