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Abstract. We show that in the first sub-Riemannian Heisenberg group there are intrinsic
graphs of smooth functions that are both critical and stable points of the sub-Riemannian perimeter
under compactly supported variations of contact diffeomorphisms, despite the fact that they are
not area-minimizing surfaces. In particular, we show that if f: R? — R is a ¢ '-intrinsic function,
and V/V/ f = 0, then the first contact variation of the sub-Riemannian area of its intrinsic graph
is zero and the second contact variation is positive.

1. Introduction

We want to address some new features of the sub-Riemannian perimeter in the
Heisenberg group. The notion of sub-Riemannian perimeter in the Heisenberg group,
the so-called intrinsic perimeter, has been enstablished as a direct and natural ex-
tension from the Euclidean perimeter in R”. However, in many aspects, there are
fundamental differences that lead to new open questions [6, 7, 18, 10, 16].

Before a detailed explanation, let us introduce some basic notions and notations
we need in this introduction. The (first) Heisenberg group H is a three dimensional
Lie group diffeomorphic to R3. However, when endowed with a left-invariant sub-
Riemannian distance, it becomes a metric space with Hausdorff dimension equal to
four; see [3].

By standard methods of Geometric Measure Theory, one defines the intrinsic
perimeter P(E;(2) of a measurable set £ C H in an open set 2 C H. We will denote
it also by &7 (0F N Q).

Regular surfaces are topological surfaces in H that admit a continuously varying
tangent plane and they play an important role in the theory of sets with finite intrinsic
perimeter. They are the sub-Riemannian counterpart of smooth hypersurfaces in R™.
Regular surfaces are locally graphs of so-called ¢! -intrinsic functions R?> — R. We
will focus on these functions and their graphs.

The space of all ¢'-intrinsic functions will be denoted by %5, and the graph of
f:R* = R by 'y C H. It is well known that f € €y if and only if f € €°(R?) and
the distributional derivative

VI =0, + 50:(f)
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is continuous, where we denote by (7, 7) the coordinates on R?; see [1, 18]. If w C R?,
the intrinsic area of I'y above w is

(N0 = / 1+ (VIR dydr,

where Q, = {(0,7,7) % (£,0,0): (n,7) € w, & € R}, with * denoting the group
operation in H.

An important open problem concerning 6w is Bernstein’s problem: If the graph
['; of f € Gy is alocally minimizer of the intrinsic area, is 'y a plane? See Section 2.4
for a precise statement and [4, 2, 17, 9] for further reading.

In the study of perimeter minimizers in H, we identify three main issues that
mark the gap from the Euclidean theory. First, the map f — V/f is a nonlinear
operator. Such non-linearity reflects on the fact that basic function spaces like €y
itself, or the space of functions with bounded intrinsic variation, are not vector spaces.
See Remark 2.3 for details.

Second, the area functional is not convex (say on %'(R?)). In particular, there
are critical points that are not extremals, see [4]. In other words, a first variation
condition

) Sl AN @) =0 e W)

e=0

does not characterize minimizers. However, if f € €!(R?), a second variation condi-
tion - & (e N () > 0 does, see [9].
e=0

de?

Third, there are objects among sets of finite intrinsic perimeter with very low
regularity, see Remark 2.3. The standard variational approach as in (1) fails when
applied to these objects. More precisely, if f € Gy, then & (I'tip N (Q,)) may be
+o0 for all € # 0, all w C R? open and all ¢ € €>°(w) \ {0}. In another approach,
one can consider smooth one-parameter families of diffeomorphisms ®,.: H — H with
¢y = Id and {®. # Id} CC Q, and take variations of o/ (®.(I'y) N Q). However, it
may happen again that o7 (®.(I'y) N Q) = 400 for all € # 0.

After further considerations, one understands that we need to restrict the choice
of ®, to contact diffeomorphisms, see Proposition 5.1. See also [3] and [12] for refer-
ences on contact diffeomorphisms. In this setting, we address the question whether,
despite this restriction, conditions on the first and second variations with contact
diffeomorphisms can single out minimal graphs. Our answer is no:

Theorem 1.1. There is f € Gy such that, for all @ C H open and all smooth
one-parameter families of contact diffeomorphisms ®.: H — H with ®; = Id and
{®. =1d} CC Q, it holds

d d?

A(@LHNY =0 and —| F(@(0;)NQ) >0,
€ e=0

de|._,
but I'; is not an area-minimizing surface.

In fact, all smooth solutions to the equation V/(V/f) = 0 are examples of the
functions appearing in the theorem.

The proof of Theorem 1.1 is based on a “Lagrangian” approach to @y . Indeed, a
function f € %4 is uniquely characterized by the integral curves of the planar vector
field V/ = 9, + f0,. We will thus take variations of f via smooth one-parameter
families of diffeomorphisms ¢.: R?> — R?2, i.e., by smoothly varying the integral
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curves of V7: see Section 4. We will then prove that this approach is equivalent to
the use of contact diffeomorphisms ®.: H — H; see Section 5.

Finally, we will consider functions f € %y that are solutions to the equation
V/V/f = 0in a Lagrangian sense, that is, functions such that V7 f is constant along
the integral curves of V/. We will characterize such functions as the ones for which
the integral curves of V/ are parabolas, or, equivalentely, as the ones whose graph
I't is ruled by horizontal straight lines. These functions are the ones appearing in
Theorem 1.1.

The paper is organized as follows. Section 2 is devoted to the presentation of all
main definitions. In the next Section 3, we study solutions to the equation V/V/ f =
0. We construct a Lagrangian variation of a function f € % in Section 4. In
Section 5, we prove some basic properties of contact diffeomorphisms. Section 6 is
devoted to the first contact variation and Section 7 to the second contact variation for
functions f € %4y Finally, in Section 8 we prove our main theorem. An Appendix
is added as a reference for a few equalities that are applied all over the paper.

The author thanks his advisor Francesco Serra Cassano for many fruitful discus-
sions and Katrin Fassler for her comments and corrections on a draft of this paper.

2. Preliminaries

2.1. The Heisenberg group. The first Heisenberg group H is the con-
nected, simply connected Lie group associated to the Heisenberg Lie algebra b.
The Heisenberg Lie algebra b is the only three-dimensional nilpotent Lie algebra
that is not commutative. It can be proven that, for any two linearly independent
vectors A, B € b\ [, ], the triple (A4, B,[A, B]) is a basis of h and [A,[A, B]] =
[B, [A, B]] = 0. The Heisenberg group has the structure of a stratified Lie group, i.e.,
h = span{ A, B} @ span{[A, B|}, see |14, 13].

We then identify H = (span{ A, B, [A, B]}, %), where

1
p*q:=p+q+§[ ql.

In the coordinates (z,y, z) = v A+yB+z|A, B], which are the exponential coordinates
of first kind, we have

1
(a,b,¢) x (x,y,2) = (a+x,b+y,c+z+§(ay—bx)).

The inverse is (z,y,2)"! = (—x, —y, —2).
The elements A, B, [A, B] € b induce a frame of left-invariant vector fields on H:

1 1
X:=0,— §y02, Y :=0,+ 51’@, Z = 0,.

The horizontal subbundle is the vector bundle
H := |_| span{ X (p), Y (p)} € TH.
peH

The maps 0y (z,y, 2) := (Ax, Ay, A\%2), A > 0, are called dilations. They are group
automorphisms of H and for all A, u > 0 it holds 65 0 0, = 0x,-

2.2. Intrinsic graphs and intrinsic differentials. A vertical plane is a plane
containing the z-axis. Explicitly, for 8 € R,

Wy :={(nsinf,ncosd,7): n,7 € R} C H.
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Vertical planes are the only 2-dimensional subgroups of H that are §,-homogeneous,
ie., (5)\(W9> = Wy for all A > 0.

The intrinsic X -graph (or simply intrinsic graph) of a function f: R? — R is
the set!

Ly = {(0,n,7)*(f(n,7),0,0): n,7 € R?*}
= {(f(n77—>77777—_ %Uf(ﬁﬂ')) n,TE Rz} :

If one look at f as a function Wy — span{A}, then I'y = {p* f(p): p € Wy}. Left
translations and dilations of an intrinsic graph are also intrinsic graphs. For a € R,
the vertical plane Wyctan(a) is the intrinsic graph of the function f(n,7) = an. We
will use the map wx: H — R? wx(z,y, 2) = (y, 2+ 32y). Note that wx (p* f(p)) = p.

For (9, 7) € R? and f: R?> — R continuous, set fy := f(ny,70) and py :=
(0,70, 70) * (f0,0,0) = (fo,m0,70 — 37M0fo). We say that f is intrinsically €', or be-
longing to Gy, with differential ¢: R* — R, if 5>\(palff) converge t0 Warctan (4(no,70))
in the sense of the local Hausdorff convergence of sets as A — oo, and the convergence
is uniform on compact sets in (19, 79).

Notice that 6, (py'T'y) = Lt moms Where

f(no,To);A(naT) = A (—fo + f (770 + 2,7‘0 + fog + %)) .

Therefore, f belongs to 6y with differential ¢ if and only if f,, ).\ converge uni-
formly on compact sets to the function (n,7) — ¥ (1o, 70)n, as A — 400, and the
convergence is uniform on compact sets in (g, 79). Notice that ¢ has to be continu-
ous.

The intrinsic gradient of a function f: R?> — R is the vector field on R? defined
as

v/i= Oy + fO:.

We can express the intrinsic differentiability in terms of the differentiability of f
along the integral curves of V/: from [18, Theorem 4.95] we obtain the following
characterisation, which justify the notation V/ f for the differential 1 of f € €3y

Lemma 2.1. A continuous function f: R*> — R is in Gy with differential v if
and only if for every p € R? there exists a €*-function g,: [ — R, where  C R is a
neighbourhood of 0, such that

gp(U) =0
9,(t) = flp+ (t,95(1))) Vtel,
gy(t) = v(p+ (t,gp(t))) Vel

Note that t — p + (, g,(t)) is an integral curve of V/ and that g, is not unique
in general. Another interpretation of these curves will be useful:

Lemma 2.2. Let f € 6. A curve v: I — R? of class €', where I C R is an
interval, is an integral curve of V7 if and only if the curve t — ~(t) * f(y(t)) € [y is
a curve of class € tangent to the horizontal bundle H.

Remark 2.3. In [11] it has been shown that there exists f € €4 whose intrinsic
graph I'; has Euclidean Hausdorff dimension (seen as a subset of the Euclidean R?)

'In a different choice of coordinates in H, we can have (0,7,7) * (f(1,7),0,0) = (f(n,7),1,7).
For instance, we will use these coordinates in Section 5.2.
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strictly larger than two. It is possible to prove, for example using Lemma 5.4, that
I';41 does not have locally finite intrinsic perimeter and in particular f + 1 ¢ Gy .
This shows that %5 is not a vector space.

2.3. Smooth approximation. A sequence {fi}ren C G converges to f in
€ if fr and V/* fy, converge to f and V/ f uniformly on compact sets. The following
lemma has been proven in [1].

Lemma 2.4. If f € €5 then there is a sequence of functions { fi }ren C €*>°(R?)
that converges to f in Gy

2.4. Perimeter and Bernstein’s problem. The Lebesgue measure £ in R3
is a Haar measure on H in the exponential coordinates introduced Section 2.1. Notice
that for any measurable set £ C H' and any A > 0 it holds Z3(6,(F)) = M.Z3(E).

Let (-, -) be the left-invariant scalar product on the subbundle H such that (X,Y)
is an orthonormal frame and set ||v|| := \/(v,v) for v € H. The sub-Riemannian
perimeter of a measurable set £ C H' in an open set ) is

P(E;Q) := sup {/ divV d2?: vV e T(H), spt(V) cc Q, |[V] < 1},
E

where I'(H) contains all the smooth sections of the horizontal subbundle and divV is
the divergence of vector fields on R®. One can show that, for every V;, Vo € € (R?),
divii X +WBY) = XV + Y4,

A set E has locally finite perimeter if P(E;€)) < oo for all Q C H open and bounded.
If £ has locally finite perimeter, the function Q2 — P(E;(2) induces a Radon measure
|OE| on H', which is concentrated on the so-called reduced boundary 0*E C OE.
Moreover, up to a set of |0F|-measure zero and a rotation around the z-axis, 0*E is
the countable union of intrinsic graphs of 6y, functions. See [6] and [7] for further
reading.

A measurable set E has minimal perimeter if, for every bounded open set Q ¢ H*
and every measurable set F' C H! with symmetric difference EAF CC Q, we have
P(E;Q) < P(F;Q).

In this case, the reduced boundary 0*F of F is called area-minimizing surface. We
are interested in area minimizers that are global intrinsic graphs.

Conjecture 2.5. (Bernstein’s problem) If f € €y, is such that I'; is an area-
minimizing surface, then I'y is a vertical plane up to left-translations.

Such conjecture has been proven in the case f € ¢'(R?) in [9], while it has been
presented a counterexample in [17] with f € €°(R?) \ G-
For an open domain w C R?, set

QUJ = {(O? /)7? T) * (6? 0’0): (/)7? T) E w’ 5 E R}
It f € Gy and By = {(0,7,7) * (€,0,0) € R?, € < f(n,7)}, then

P(Es; Q) = / V1+(V/f)2dndr.

If E; has minimal perimeter, then, for every g € 6y with {f # g} CC w, it holds

/\/1+(fo)2d’r]d7'§/\/1+(Vgg)2d7]d7'.

It is not known whether the converse implication holds.
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3. Lagrangian solutions to Aff =0
For f € 6y and v € €?(R?), we define the differential operator
(2) Ay =020 +2f0,0,v + f20%v + V! fo,v.
Notice that, if f € €*(R?), then
Ay = VvIH(Viv).
The next lemma will be a fundamental tool for extending some results beyond the

smooth case via approximation. The proof trivially follows from the explicit expres-
sions of the differential operators V/ and A7.

Lemma 3.1. If {fi}ren C G5y and {vy tren C €?(R?) are sequences converging
to f and v in their respective spaces, then the sequences {V/* v, } ren and { A% vy }ren
converge to V/v and Afv uniformly on compact sets.

If f € ¢*(R?) is such that I'; is a minimal surface in H, then one shows that f
satisfies the differential equation (see [2])

f
(3) w1 __)_y
1+ (VIf)?
Equation (3) is equivalent, for f € €*(R?), to
(4) Al f=o.

For a generic f € G4, equation (4) has not the classical interpretation (2). However,
using a “Lagrangian interpretation” of V/(V/ f) = 0, we give the following definition:

Definition 3.2. A function f € €y, satisfies A/ f = 0 in weak Lagrangian sense,
if for every p € R? there is an integral curve v of V/ passing through p such that
V/ f is constant along +.

If f e %*R?) then ATf = V/(V/f) = 0 if and only if V/f is constant along
all integral curves of V/, i.e., A/f = 0 holds in a strong Lagrangian sense, see
Remark 3.7.

Lemma 3.5 will characterize such functions by the integral curves of V.

Lemma 3.3. Let A, B € ¢°(R). The map R?> — R? given by

G: (t,() — (t, @ﬁ + B(()t + C)

is a homeomorphism if and only if
(1) For all(,{' e R
(1a) either A(¢) = A(¢’) and B(¢) = B({'),

(1b) or 2(A(¢) = A (€ = ¢) > (B() = B(C)".
(2) If there exists (y € R such that A((y) > 0, then

. B(¢)? )
lim sup ( = +o00.
(—o0 (O

(3) If there exists (o € R such that A((y) < 0, then

lim inf (< - fﬁ%) =
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Proof. Define g(t,¢) = #tz + B(¢)t + ¢, so that G(t,¢) = (¢,9(t,()). We first
show that G is injective if and only if property (1) holds. For ' > (, define the
quadratic polynomial

Qeclt) = glt.¢) — g(t.) = XA 2y (¢~ Bieye+ (¢ -0

The map G is injective if and only if for all (', { € R with ¢’ > ¢ the polynomial Q.
has no zeros. If A({') = A(C), then Q¢ ¢ is in fact linear, thus it has no zeros if and
only if B(¢") = B(() and we obtain property (la). If A((") # A((), then Q¢ ¢ has no
zeros if and only if its discriminant is strictly negative, i.e., property (1b) holds.
Next, we assume that G is injective, i.e., that property (1) holds, and we will
show that G is surjective if and only if properties (2) and (3) hold. By the Invari-
ance of Domain Theorem, the fact that G is surjective is equivalent to G being a
homeomorphism. Notice that, since Q¢ ¢(0) = (" — ¢ > 0 for all ' > ¢, we have

(5) (>¢ = VteR g(t,{)>g(t]).

Suppose that G is surjective, hence a homeomorphism. Suppose (y € R is such
that A(¢p) > 0. By (1) we have that A is monotone increasing, therefore A({) > 0
for all ¢ > (p. It follows that if ¢ > (, then

B(¢)*

2a() gt ©)-

For M € R define Ky = {(n,7) € R?: g(n, () < 7 < M}. Since A({y) > 0
the set K, is compact (possibly empty) for all M € R. Next, for ( € R define
Us=GR x (—00,C)) ={(n,7): 7 < g(n,¢)}. Since G is surjective, the open sets
U: cover R?. Hence, there is ¢; > (o such that Ky, C Ug,. Using (5), we obtain

g_

VO G infg(t Q) = M,

Since M is arbitrary, we have proven (2). Property (3) is proven with a similar
argument.

Now we prove the converse implication. Suppose that A and B satisfy properties
(2) and (3). In order to prove that G is surjective, we need only to prove that
im0 g(¢, () = +00 and lim¢_,_ g(t, () = —o0, for every t € R.

If A(¢) = A(0) for all ¢ > 0, then g(¢,¢) = g(t 0) + ¢ and thus lim;_,o g(¢,¢) =
+oo. If A(¢) <0 for all ¢ € R, then there is C' > 0 such that 0 < A(¢) — A(0) < C
for all ¢ > 0. We may suppose A(¢) > A(0) for ¢ large enough. Thus, using (1b),

0
o(t.0) > (W+B<ﬁ+ow3@—3mm
2@t2+3 0)t+ ¢ — [t|v/2(A A(0))¢
A(0
> ; )2 + B(0)t + ¢ — [t|[V2C/C.
The limit lim¢,o ¢g(¢,{) = +oo follows. Finally, if A({y) > 0 for some (, € R,
then for all ¢ > (o we have inf,er g(t,() = ¢ — % Property (2) implies that

lime 00 g(2, () = +00.
The limit lim.,_, ¢g(¢,{) = —oo is deduced similarly from (3). O
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Remark 3.4. If A, B € ¥ (R) satisfy properties (1), (2) and (3) of the previous
Lemma 3.3, then the function f defined by f(G(t,()) = 0g(t, () = A(Q)t + B(C)
belongs to €4 by Lemma 2.1. Moreover, the curves t — g(t,() are integral curves
of V/ along which V/ f(G(t,()) = 82g(t,¢) = A(C) is constant. So, A/ f = 0 in weak
Lagrangian sense. The graphs of these functions are examples of “graphical strips”
as introduced in [4]. For example, for any A € €°(R) non-decreasing, we can define

g(t,¢) := A(Q)t* + ¢ and we obtain a well defined f € € with A/ f = 0 given by
F(t A +¢) = 2A(0)1.

The converse also holds, as the next lemma shows.

Lemma 3.5. Let f € €y, satisfying A/ f = 0 in weak Lagrangian sense. Then
the curves t — (t,g(t,()), where ( € R and

V7 £(0,
() ot.0)= i 4 p0.0 ¢
are the integral curves of V/ along which V' f is constant. Moreover, the functions
¢ — V7 £(0,¢) and ¢ — £(0,() satisfy the conditions (1), (2) and (3) in Lemma 3.3.
In particular, T — V7 f(n, ) is non-decreasing, for all n € R.

Proof of Lemma 3.5. Given a function g,: I — R like in Lemma 2.1 along
which V7 f is constant, we have ¢//(t) = V/ f(p) for all t € I, i.e., g, is a polynomial
of second degree. Moreover, such a g, is unique for every p, because it is completely
determined by f(p) and V/ f(p).

It follows that g, is defined on R. Indeed, suppose I = (a,b) and set ¢ =
limy,, p+(t, g,(t)), which exists because g, is a polynomial. If g,: J — R is a function
like in Lemma 2.1 along which V/ f is constant, then g, is uniquely determined by
f(q) and V/ f(q), where

flg) =Tim f(p + (¢, 9,(1))) = lim g, (),
V7 f(q) =lim V' f(p+ (t,g,(1))) = lim gy (¢).

Hence, g,(t) = g,(b+t) for t < 0 and so g, can be extended beyond b. Similarly, we
can extend g, to values below a.

If we consider p = (0,(), then g,(t) = ¢(t,(), where g(t,() is given in (6). If
p € R?, then the curve t — p+(t, g,(t)) intersects the axis {0} x R at some point, and
thus g, is of the form described in (6) up to a change of variables in . We conclude
that the map (¢,{) — (¢,9(¢,()) is a homeomorphism. Therefore, the conditions
stated in Lemma 3.3 hold true.

Finally, since (f(0,¢) — £(0,¢))? > 0, then ¢ — V/£(0,() is non-decreasing.
Since V/f(t,g(t,¢)) = V/f(0,¢) and since, for t € R fixed, the map ¢ — g(¢,()
is a ordering-preserving homeomorphism R — R, then the map 7 — V/f(n, 1) is
non-decreasing as well, for all n € R. O

Remark 3.6. Lemma 3.5 states in particular that, if A/f = 0 in weak La-
grangian sense then I'; is foliated by horizontal straight lines. Indeed, notice that
any parabola t — g¢(t,¢) in R? lifts to a straight line in I';. In |9, Theorem 3.5]
Galli and Ritoré are able to prove that, if f € €*(R?) and if I'; is a minimal surface
in H, then T'; is foliated by horizontal straight lines, i.e., A/ f = 0 holds in weak
Lagrangian sense.
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Remark 3.7. One may wonder wether Definition 3.2 for weak Lagrangian solu-
tions to Af f = 0 is equivalent to a stronger condition, namely that V/ f is constant
along all integral curves of V/. This is the case when f € C*(R?), because inte-
gral curves are unique at each point. The following example shows that strong and
weak conditions are not equivalent. Indeed, there are functions for which the curves
t — (t,g(t,¢)) described in Lemma 3.5 do not exhaust all the integral curves of V/.

Let h € €*(R) and define k: R? — R by requiring that for each s € R the
function t — k(t,s) is the unique polynomial of second degree with k(s,s) = h(s),
Oik(s,s) = h'(s) and 02k(s,s) = h"(s). Explicitly, we have

kit,5) = 5 4 () = W(s)s)t 4 h(s) — W(s)s + A2

If the map K (t,s) = (t, k(t, s)) is a homeomorphism R? — R?, then we may define a
function f € Gy by f(K(t,5)) = dik(t, s), as we did in Remark 3.4. Then ¢ — K (¢, s)
are integral curves of V/ and V7Y f(K(t,s)) = 9%k(t,s) = h"(s). It follows that
AJf = 0 holds in weak Lagrangian sense. However, s — K(s,s) = (s, h(s)) is an
integral curve of V/, because f(K(s,s)) = h/(s). Since V/ f(K(s,s)) = h"(s), there
is no need for V/ f to be constant along this curve.

As an example, consider h(s) = s3, for which we have k(t,s) = 3st? — 35t + s>.
We show that the map K is in this case a homeomorphism. Define ((s) = s,
A(L(s)) = 65 = 6¢1/3, B(((s)) = —3s% = —3(¢%? and the functions g(t, () and G(t, ()
as in Lemma 3.3. Since K(t,s) = G(t,((s)) and since ¢(-) is a homeomorphism
R — R, we need only to show that G is a homeomorphism R? — R?, i.e., that the
functions A and B satisfy all conditions of Lemma 3.3:

(1) Let ¢ =((s),¢" = ((s") € R. If A(¢) = A({'), then s = §" and thus B(() =

B(¢'). If instead A(C) # A(("), then s # s" and thus

2(A(¢) = A = ¢) = (B(¢) = B(¢)?
=2(6s — 65')(s* — ) = 9(s” — 5%)* = 3(s — 5')* > 0.
(2)&(3) Since ¢ — B(C = 153 and since ¢ — 4o if and only if s — +00, then

1
. B(()? N

1 = lim -s° =+
CHJPC 2A(C) Jm s 00

and (0
B(¢)* .. 14
CLmooC B 2A(C) sgr—noo ZS -
The function f can be explicitly computed as f(n,7) = 31> — 3(1 — 1%)?/3. Finally,
as we noticed before, s — (s,s%) is an integral curve of V/ and V7 f(s, s3) = 6s is

not constant.

Lemma 3.8. Let f € 6. If AYf =0 in weak Lagrangian sense, then there is
a sequence { fy}ren C €*(R?) converging to f in G5 such that AJxf,, = 0 for all
k€ N.

Proof. Let {pc}eso C €°(R) be a family of mollifiers with spt(p.) C [—¢€, €], pe >
0, p(0) > 0 and [g pe(r)dr = 1. Fix f € Gy with A/ f =0. Set A(¢) := V' f(0,()
and B(¢) := f(0,(). Define

_ /R VI F(0,¢ — r)pu(r) dr,
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B.(¢) = /R £(0,¢ = r)pe(r) dr.
A

ge(t,C) :== #i@ + B.(Q)t + .

We claim that, for all e > 0, all conditions stated in Lemma 3.3 hold for A. and
B.. Let (,¢" € R with ¢ < ¢’. First, suppose that A.(¢) = Ac(¢'). Notice that
A(C—r)—A(¢C'—7r) <0 for all » € R, because A is non-decreasing. Thus, we deduce
from

0= A(0) = A(0) = [ (A =) = A = ) dr

R

that (B(C —r)— B(¢' —r))pe(r) = 0 for all » € R and therefore that B.({) = B.({’),
i.e., (1a) holds.
Second, suppose that A.(¢) # A(¢’). Using Jensen’s inequality, we have

2(A0) = AL~ C)
= [ 24 =) = AC =) (=) = (€ =)l dr

> [ Bc =) - B¢ =)o = ([ B0 - BE = n dr)2 .

So, condition (1b) is also verified.

Suppose that A.((y) > 0 for some ¢, € R. By the monotonicity of A and the
positivity of p., we may assume A((y) > 0. Let M > 0. Since property (2) of
Lemma 3.3 holds for A, there is ¢; > (p so that for all { > (3

B(¢)* _ 2A(¢Q)¢ — B(¢)?

M<Cm540 = 240

Using Jensen inequality, we have for all { > (; + ¢

2A(C)C — B.(C)? > / (2CA(C — 1) — B(C — 1)?) pelr) dr

R

=2 [ A= rratrar+ [ =A== BEC- 1) plr)dr
> —ze/RA@ — )pe(r) dr + 2M/RA(§ ) pu(r) dr = 24.(C) (M — o).

Thus, M —e < ( — f;ic(g for all ( > (; + €. Since M was arbitrary, we obtain

property (2) of Lemma 3.3. Property (3) can be similarly obtained.
The functions G¢: R? — R?, G(,¢) := (t,g.(t,()), are homeomorphisms and,
as € — 0, they converge to G uniformly on compact sets. It follows that G-! also

converge to Gy, as € — 0.
For € > 0, define f. € €>~(R?) via

fE(ta gﬁ(ta C)) = AE(C)t + BE(C)'

By the continuity of G, and G_t in e, f. and V7« f. converge to fo and V/0 f uniformly
on compact sets. Finally, A/cf. = 0 by construction. U
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4. A Lagrangian approach to contact variations

Proposition 4.1. Let ¢ = (¢1,¢2): R? — R? be a ¢*-diffeomorphism. Let
[ € 6 and assume

(7) Vigi(p) #0 VpeR?
Define f: R?> = R as

Wy,
A
Then f € € and
_ f f
(8) Vifop= o2 V0 pry

(Vi) (Vig)?
Notice that, if f € €1(R?), then f € €*(R?) as well.

Remark 4.2. If {¢}.5¢ is a smooth one-parameter family of diffeomorphisms
¢°: R? — R? with ¢° = Id, then, for ¢ > 0 small enough, the functions f. defined by

V75

oo = S

belong to ¢ and converge to f in 64y

_ Proof. The idea is to transform via ¢ the integral curves of V7 into the ones of
V7. Fix p= (n,7), let q := (7, 7) := ¢(p) and let g,: I — R be like in Lemma 2.1.
Thanks to the condition V/¢; # 0 and the Implicit Function Theorem, there exist
two ¢-function s: I — R and g,: s(I) — R, such that

q+(5,94(5)) = o(p+ (t, gp(1)), Vtel.
Therefore
s(t) = o1(n + 1,7+ gp(t)) — 1,
{gq<s<t>> = 1,7+ gy(0) — 7
We define
f(q) = g,(0).
Notice that this value does not depend on the choice of g,, as far as t — (¢, g,(t)) is

an integral curve of V/.
We want to write g;(0). Set

pei=(n+1t, 7+ gy(t)).

First
L st) = 0,01(0) + 0.01(p)g)(1) = V01,
d
agq(s(t)) = Opb2(pt) + 87¢2(pt)g;/>(t) = Vf¢2(pt)-
Since

we have for s =0=1¢
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V7 f(q) is the derivative of f along the curve q + (s,7,(s)) at s = 0, i.e.,
v/ f(q) = 3,(0).
As above, we want to write down g;(0) in a more explicit way.
d2

@S(tﬂt:o = 82¢1(p) + 0-0,01(p) f (p)

+ 0,0:¢1(p) f (p) + 0201 (p) (f (p))? + B-01(p) V7 f(p) = A 1 (p),
(s o = B2a(p) + 0:0,00(0) F (9)
+ 0,0-¢2(p) f (p) + 0202(p) (f (p))? + Or2(p) V7 f(p) = A o (p)

Since ) ) 2
(o0 = g5 - (5500} + 0 3500
we have
dz —/ 42
Vf_ — 3"(0) = ng|t:0 - gq(O) : WSL?:O
f(q) = 3,(0) ERRE
= ; . f _ V' ¢a(p) AL )
~ R (e - S ).
By Lemma 2.1, the function f belongs to 6. 0

5. Contact transformations

A diffeomorphism ®: H — H is a contact diffeomorphism if d®(H) C H, see [3,
12]. Contact diffeomorphisms are the only diffeomorphisms that preserve the sub-
Riemannian perimeter.

Proposition 5.1. Let ®: H — H be a diffeomorphism of class €>. If, for all
E C H measurable and all 2 C H open, it holds
(9) P(E;Q)<oc0 = P(P(F);P(Q)) < oo,
then ® is contact.

We will show in this section that any variation of an intrinsic graph I'; via

contact diffeomorphisms is equivalent to a variation of f via the transformations of
Proposition 4.1 and Remark 4.2.

Proposition 5.2. Let ¢: R? — R? be a €>-diffecomorphism and f, f € € as
in Proposition 4.1. Then there is a contact diffecomorphism ®: @ — ®(2), where )
and ®(€2) are open subsets of H with I'y C Q, such that ®(I'y) =T';.

Proposition 5.3. Let ®: H — H, € € R, be a smooth one-parameter family of
contact diffeomorphisms such that there is a compact set K C H with ®|g\ x = Id
for all ¢ and ®° = 1d. Let f € €>°(R?). Then there is ¢y > 0 such that for all ¢ with
le| < €, the maps ¢¢: R? — R?,

¢“(p) :==mx 0 D (p * f(p)),

form a smooth family of € *°-diffeomorphism of R?. Moreover, if f¢ is the function
defined via f and ¢° as in Proposition 4.1, then
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5.1. Proof of Proposition 5.1. We use an argument by contradiction. Assume
that ® is not a contact diffeomorphism. Then there is an open and bounded set

) C H such that for all p € Q it holds d®(H,) ¢ Hs). Thanks to the following
lemma and Remark 2.3, we get a contradiction with the property (9).

Lemma 5.4. Let ®: H — H be a diffeomorphism of class €2. Let Q C H be
an open and bounded set such that for all p € {2
d®(H,) ¢ He).

Let E C H be measurable. If P(E;Q) < oo and P(®(E); ®(£2)) < oo, then E has
finite Riemannian perimeter in €.

Proof. We extend the scalar product (-,-) to the whole TH in such a way that
(X,Y, Z) is an orthonormal frame. The Riemannian perimeter is defined as

P#(E;Q) := sup{/ divU d.Z%: U € Vec(TH), sptU cC Q, |U]| < 1}.
E

Let U € Vec(TH) with spt(U) cC Q and ||U| < 1. Then there are V,W €
Vec(TH) with spt(V)Uspt(W) =spt(U), V4+W = U, V(p) € H, for all p, |V] < K
and ||W| < K, and &, W (p) € H,, for all p, where K > 0 depends on ¢ and €2, but
not on U.

Remind that, if W is a smooth vector field on H, then?

div(®, W) = div(W) o &1 . J(®1).
Therefore
/ diviV d.2° = / (diviV) o @1 Jo 1 d.2? = / div(®, W) d.Z3.
E P(E) (E)

Moreover, since €2 is bounded, we can assume || d®(v)|| < K ||v]| for all v € T2, where
K > 0 is the same constant as above. Therefore

/ divU d.&° = / divV 4.3 + / diviV d.¢3
FE FE

E
— / divV .23 + / div(®, W) d.23
E ®(E)
< KP(E;Q) + K?P(®(E); ®(Q2)).
This implies that Py(FE;Q) < KP(E;Q) + K?P(®(E); ®(Q)) < co. O

5.2. Proof of Proposition 5.2. In this case our choice of coordinates is
not helpful. So, we consider the exponential coordinates of second kind (&, 7, 7) —
exp(nB + 7C') x exp(£A), using the notation of Section 2.1.

We define the map ® as

Ve,

R e IR s)
Clearly, @ is well defined and smooth on the open set
Q.= {(€>77>7—): v§¢l(na 7_) 7é O}>
2A sketch of the proof of this formula: it is clearer to show the dual formula div(®*W) =

div(W) o ®@ - J(P); consider W as a 2-form and the divergence as the exterior derivative d; remind
that d®* = ®* d; the formula follows.
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I'y C Q by the hypothesis of Proposition 4.1 and ®(I'y) = I';. In these coordinates,

the differential of & is
£ 2 £ 2 £ 2
0 (T2) 0,(Z2) o (Z2)
dq)(gv 7, T) = 0 877(251 87—(251
0 Ond2 Or 2

Since ¢ is a diffeomorphism, ® is a diffeomorphism if and only if O (ggii) #0. A

short computation shows that

P (V%z) o det(do)
“\Vép ) (Vip)?

which is non-zero.
Now, we need to show that ® is a contact diffeomorphism. In this system of
coordinates, the left-invariant vector fields X, Y, Z are written as

X(&n71)=0, Y(n71)=0,+80, Z(&n7T)=0.

We have
4 (X'(g,n,r)> ) @i—ii) X(®(&,m, 7)),
a® (Y (¢.n.7)) = V¢ (gif) X(®(&.1,7)) + VY (2(&,m,7)).

Therefore, d®(H) C H. O

5.3. Proof of Proposition 5.3. The functions ¢¢: R? — R? are well defined
and smooth for all ¢ € R. Since ®¢ and all its derivative converge to Id uniformly
on H, there exists ¢y > 0 such that for all € with |¢] < ¢, the vector field X is
not tangent to ®¢(I'y) at any point. Therefore, det(d¢®) # 0 for all such e. Since
| xy () = Id, ¢ is a covering map and therefore it is a smooth diffeomorphism.

The last statement is a direct consequence Lemma 2.2. O]

6. First contact variation

Similar formulas for the first and the second variation for the sub-Riemannian
perimeter in the Heisenberg group can be found in [4, 5, 8, 15].
In all the formulas below, we set ¢ := V/ f.

Proposition 6.1. Let f € 6y be such that I'; is an area-minimizing surface.
Then for all Vi,V € €°°(R?) it holds

(10) 0:/R2 {\/%71&2 (=2¢-VIVi— f-ATVy) + \/1+¢2a77v1] dn dr.

and
(11) 0= / [LAf‘/Q ++/1+ ¢25TV2] dndr.
Rz [ /14 2

Proposition 6.2. Let f € ¥*(R?) be such that for all V, € €>(R?) the
equation (11) holds. Then (10) holds as well for all Vi € €>°(R?).
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Proposition 6.3. A function f € €>(R?) satisfies (11) for all V, € €>°(R?) if
and only if

; [
(12) (V' +20, )V ( 1+¢2> 0

6.1. Proof of Proposition 6.1. Let f € G, w C R? an open and bounded set
and V = (V1,V): R? — R? a smooth vector field with spt V CC w. Let ¢¢: R* —
R? be a smooth one-parameter family of diffeomorphism such that {¢¢ # Id} C spt V
for all € > 0 and, for all p € R?,

°(p) = p,
et (p)]e=0 = V (p).

Notice that V/¢§ = 8,05 + f0,¢5 is not zero for € small enough, because V7§
converges to 1 uniformly as e — 0. Hence, by Proposition 4.1, there is an interval
I = (—¢€, €) such that the function given by

Vi,

13 00 =
(13) oot = G
is well defined for all € € I. Define v: I — R as

= / V14 (Vif)2dndr = / V1+ (Ve f) o ¢€)2 T4 dndr,
where we performed a change of coordinates via ¢ and

Joe = 0y$10-¢5 — 0-¢10, 9%
is the Jacobian of ¢¢. Using equality (8) and Lemma 3.1, it is immediate to see that
7y 1s continuous.

Lemma 6.4. The function vv: I — R is continuously differentiable and

o [ (o)
Vo= [w (Vi f) asf)?Af( e

(14)
+ V14 (VI fo) 0 ¢9)20.Jye | dndr,
where
AT 0.5 AT S
I T A
V710,95 e A2 f £ e \2r o
IR N A N 7 )

Proof of Lemma 6.4. First, suppose f € €°°(R?). Then v € €>(I) and

/6 ((vfef) ¢) f6 €
70 = [ | A (T 1) ) s

+ 1+ (VI f.) 0 )20, T4 | dndr.

Applying the formula in Proposition 4.1 and the identity V/9, = 0.V, one obtains
D((VIefe) 0 ) = Ag(e)

and thus formula (14) holds in the smooth case.
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Next, suppose f = f. is the limit in 63 of a sequence f, € €>°(R?), as in
Lemma 2.4. Notice that V/*¢$ is not zero for € small enough and k large enough.
Indeed, |V/*¢§ — VI=¢5| < ||fi — fllzspev) 10701l 2 (spev) and V=i converges
to one uniformly on R? as ¢ — 0. Hence, there is an interval I C R centered at
zero such that the functions fj . as in Proposition 4.1 are well defined for € € I and,
without loss of generality, for all k € NU{oo}. For k € NU {oo}, define 74: I - R
as

ve(€) = /w \/1 + (Ve fr )2 dndr

Define also the function 7 : I — R as the right-hand side of (14). From Lemma 3.1,
it follows that {Ay, }ren converges to Ay uniformly on /. Therefore, we have that
{7k }ren and {7} bren converge to v and n uniformly on I. We conclude that v €

€Y (I) and o = 7. O
In order to evaluate 7/(0), notice that
vigi=1, VIgh= 1.
V0 |e=o = VIV, VI0edle=o = VIV,
ATg) =0, Ay =,
A 9.¢i|e=o = AW, A 8.5 o = A Vs,
Therefore

Ap(0) = ATV, — 29V V — fAfvl

Moreover, using the facts 9,¢) = 9,05 = 0 and 9,¢) = 0,¢5 = 1 and that the
derivatives O, 0, and 0, commute, we have

8€J¢e e=0 — 8,7‘/1 —l— 87—‘/2

Putting all together, we obtain

10 = [ | = @ —2 vV - A

+ T+ 920,V + aTvz)] dn dr.

Since I'; is an area-minimizing surface, then 7/(0) = 0 for all Vi, V5 € €>°(R?). Since
this expression is linear in V', then we obtain both conditions (10) and (11). O

6.2. Proof of Proposition 6.2. Let V; € €°(R?) and set V, := fVi €
CKCOO(RZ). Then

0:/
R?2

:/mﬁ

f
- = S UV AT + <L% " W&f) v

— AV, + /14420, Vg} dndr

—_
\.Q_|_

<

(Y]

(VIQVi + 20V Vi + fFATVL) + /1 4+ 020, f V1 + f&Vl)] dndr

€+
<

+ V1 4+ AV = 9,1) } dndr
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= [R [71ﬁ¢2 20V + fATVE) — 1T+ 402V

1L+ 2(VIV; — 8,71/1)} dndr
Y
= ——— 2V Vi + fATVY) — 1+ ¢20,V1) | dndr.
/112[W(¢ 1+.f 1) +'l/) 771) nar
Hence (10) holds true for Vi as well. O
6.3. Proof of Proposition 6.3. We have for all V5, € €>*(R?)

/RQ \/%vavﬁ/ﬁ VI+ 020V, | dpdr
= —/R2 v/ <\/%7¢2> VIV, + %v% +0,(V/T+ 0A)Vs| dndr
- [ () e (ﬁ)
+ v/ (&f)ﬁ% + 0, v/ ( ) ﬁ%
—\/%Waﬂm dpdr.
tTOherefore, using the fact that 9,4 = V/ (0, f) + (0. f)?, we get that (11) is equivalent
viv! (ﬁ) +20,.f-v! (ﬁ) —0. N

7. Second contact variation
Similarly to the previous sections, we set 1) := V/ f.

Proposition 7.1. If the intrinsic graph of f € €% is an area-minimizing surface,
then, for all Vi, Vy € €°(R?), we have

[(Asz — 2pVIV; — fFATV)?
(1+v2)3
(—4AfV2 . val _ Qva2 . Afv1

0 < I (V4 Va) :=
< II;(V1, Va) /R2
P
(1+y?)}
(16) +6f - VIV ATV 4 6y - (VIV)?)
_ v
(1+14?)
+2(1 +¢%)2 (9,10, Ve — 0,119, V5) | dpdr.

+2 (ATV, = 2¢V7 V) — FAIVL) (9,1 + 8 V5)

N
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7.1. Proof of Proposition 7.1. Let w C R? be an open and bounded set
and V = (V1,V5): R? — R? a smooth vector field with sptV CC w. Let ¢¢ =
(¢S, ¢5): R? — R? be a smooth one-parameter family of diffeomorphism such that
{¢¢ # 1d} C spt V for all € > 0 and, for all p € R?,

°(p) = p,
0e9°(p)|e=0 = V(p)-

Define W;(p) := 02¢5(p)|c=o- Then W = (Wy, Ws): R* — R? is a smooth vector field
with spt W CC w.
As for the first variation, see Section 6.1, define

v(e) := / V1+ (Vief)2dndr.
Lemma 7.2. The function v: I — R is twice continuously differentiable and
, Ag(e)? V/ef. 0 ¢¢)By(e
o LT (Voo T T 0 (T foo 99)3
(V1.0 6 A5(0
(1+ (VFefe o 69)2)z
where Ay (e) is defined as in (15) and

(17)

Oedye + (1 + (VI f. 0 6)2)20% )4 | dydz,

Bl =m0~ 2 (wiare (V7577
A VIeT | Ay (V0.69)°
(V7g5)3 (Vi)
- Vfafcbi : Afgbi . vf85¢§ ) Af05¢i + 3Vfae¢§ : Afgbi : VfaEQZﬁ
(V71g5)3 (V71g5)3 (VIp5)t
L o VI005 V9005 Mg Vh- VU0 Ao
(VIp5)4 (Vi)
L g VI08 V00 Moo Vids - (V060) - Al
(VIg9)t (V1)
| VIO DG VI ARG VI65 Ao VY0
(Vig9)3 (Vigi)? (Vigi)t

Proof of Lemma 7.2. This lemma is a continuation of Lemma 6.4. First, suppose
f € €(R?). Then, the function v is smooth and its second derivative is

vio- [ | OV S0 0)! (VS0 )0V o)
w L+ (Ve feo ¢)?)2 (14 (V/efeog)?)z

(V7 fe 0 ¢) (V7 fe 0 ¢°)
(14 (Ve fe0¢)?)2

One checks by direct computation that

O(VI fe 0 ) = Ag(e),

O2(VF fo 0 ¢°) = Byl(e),

J¢e

+2 Oy + (14 (VP fo 0 ¢6)2)20% T4 | dy dz.

thus (17) is proven in the smooth case.
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Next, suppose f = f. is the limit in 63 of a sequence f, € €>°(R?), as in
Lemma 2.4. Define f;. and I C R and 74: [ — R as in the proof of Lemma 6.4.
Define also n: I — R as the right-hand side of (17). By Lemma 3.1, {Ay, }ren
and {By, }ren converge to Ay and B uniformly on /. Therefore, we have that the
convergences v, — v and v, — v and 7, — 7 are uniform on /. We conclude that
v € €*(I) and 7" = 1. O

Next, one can directly check that
ATV, — 2V — FATV )2
v”(O)z/[( Vo 20VTH T O (AW — f AW
w (1+42)2 (1+4?)2
— 2 - VfVVl —4AfV2 . val _ QvaQ . Afvl
+6f-VIVi- AV 460 - (VIVA)?)

+ 2ﬁ(AfV2 — VIV, — fAfVl)(anVl 4,V

Finally, if I'y is an area-minimizing surface, then 4'(0) = 0 and 7”(0) > 0. Notice
that the terms containing W; and W, in the expression of +”(0) are zero because
7'(0) = 0. So, the second variation formula (16) is proven. O

8. Contact variations in the case Aff =0

In this final section we prove our main result. We show that there is a quite large
class of functions in %5 that satisfy both conditions on the first and second contact
variation. Since we know that the only intrinsic graphs of smooth functions that are
area minimizers are the vertical planes, our result shows that variations along contact
diffeomorphisms are not selective enough.

As usual, we set 1) := V/ f.

Lemma 8.1. Let f € €*°(R?) be such that A/ f = 0. Then

AV, — 20V Vy — fATT)?
nf<v1,v2>=/R2 {( 2 (lfwg); )

w f f 2
o. [ —Y ) (v = v (fVi))? | dndr.
+ ((1+¢2)2>( (fV1))" | dn

The proof is very technical and it is postponed to the last section below.

Theorem 8.2. Let f € 6y be such that A/ f = 0 in weak Lagrangian sense.
Then both equalities (10) and (11) and also the inequality (16) are satisfied for all
Vi, Vo € €°(R?).

Proof. We first prove that both equalities (10) and (11) are satisfied. Let
{fi}ren C €>=(R?) be a sequence converging to f in 6y and such that Afk f =0,
as in Lemma 3.8. Fix V},V, € €>°(R?). Then (12) and (10) are satisfied by all f;,
thanks to Propositions 6.2 and 6.3. Passing to the limit k& — oo, we prove that f

satisfies them too.
Now, we prove that the inequality (16) holds true. If f € €>(R?), then we can

apply Lemma 8.1, where 0T< v ) = 9% _ > () because of Lemma 3.5. So, (16)
(1+42)2 (14+42)2
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is proven for f smooth. For f € 65y, let {fi} ren C €(R?) as in Lemma 3.8. From
Lemma 3.1 follows that, for fixed Vi, Vo € €°°(R?), it holds

Jim IT 5, (Vi, Vo) = I 4(VA, Va),
—00

thus I1,(Vy,Va) > 0. 0

8.1. Proof of Lemma 8.1. The proof of this lemma is just a computation,
but quite elaborate. For making the formulas more readable, we decided to drop
the sign of integral along the proof. In other words, all equalities in this section are
meant as equalities of integrals on R?. We will constantly use the formulas listed in
Appendix A together with V/v¢ = 0.

Before of all, we reorganise the integral in (16):

(ATV, = 29VIV) — FATV)?

@) (1+¢2)2

(®) + ﬁ (+6f - Vi - ATV + 60 - (W17)%)

©) " 2# (—269/ V4 — FATA) 0,15

(@) + 2ﬁﬁ V20, Vs

(©) +ﬁ (—4ATV, - VIV, — 27T, - ATT)

(®) " 2# (A2 Vi + (=20%V; — FATR),V3)
(®) +2(1+ 4?2 (9,10, Va — 0, V10, Va).

In the following lemmas we will study ®+©, @ and © + () + @ separately in
order to obtain the expansion of the square in the second term of the integral in
Lemma 8.1.

Lemma 8.3.

_ Y i 2
®+© =0, <(1+w2)%) V()"

Proof of Lemma 8.3.

__ v
o= (1+142)
_ Y TNIRTAY )2
T (3FV/ (VD)2 + 60(V/11)?)
_ Y f f1/7\2 AVAY

3y gy (VIR +0(VIW)?)

¢2

Y
=—3——fO.f(VIV)?P+3—
<1+w2>§f V) (1+¢2)2
w2
o, (VI V)2 +3——
(PIVIR? +3 o

(6/VIVIATV, + 6(VI17)?)

(NI

NI

D=

(V/)?

3 Y

R F1/7\2
2(1+92): v
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© = 2 2TV (Ao,
-5 +¢¢2>% UV + FATV(VIVE - f0, 1)
_ ¥ (V/IV1)? +4 v fYVIVi0, Vv,
et T At T
- (1fw2)%fAfv1va1+2ﬁfwvlavl.
We have two particular terms in this expression:
@=1—" otV pavia
(L44?)z (1+92)2
= 2ﬁvf(f2va1)arv1
- —2ﬁ<f2val>wm ~20 - LAY
-5 fwz)l POV 1 0, [0, 1)
= 2 PO = - P (T
- ((1 +ww2)%) T (1 +ww2)é OV
and
O = —2(1 +w¢2)% fATVIVIV
Y P> Y
- - IV (V) = (V)2 - fO (V)
T VT = e (VIR S 0 (V)
2 2
— w 1( fV)2 w 187'(f )(va>2
(1+v?)z (I+y2)z 2
Therefore
¢2 1712
©=- (1+w2)%(v Vi) +@+®
2
== (1+ww2)é( J 1)2 T<(1+ww2)é)f2(val)2
Y
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Putting this together,

O+© =0 | gy | SN
_ o, (H%% (VI (Vi) — VA
=0 (G ) TPV ) =29 (i
:87(1;2%%(GﬂU%D”-WWV—fVWW@»
@a<u;2%)«v%ﬂwf—wmﬁ+va@>
:a<uf¢gywﬁmﬁ

In (x) we used formula (18).

¥
=0, — | (V)2
@ <(1+¢2)§>( )

Lemma 8.4.

Proof of Lemma 8.4.
Y

- AT RV 1,0,v!
@ 2(1+¢2)% 20 V5 2(1+¢2)%V V50, V'V,
_ w f 2 w f 2
= — -0, (VI'V5)* =0, - | (VI V5)~.
(1+¢2)2 ( 2) <(1 +¢2)2) ( 2)

In (x) we used formula (18).

Lemma 8.5.

@+@+@=4a< s

(1+42)z

) VI (fV)VIVs.

® = 2(1 + %)

=2(1+¢?)

= 2(1+¢?)

(1 +w¢2)é (Af‘/éan‘/l + (—Qwvf‘/l — fAf‘/l)aq—‘/g)

= 2(1 ;/;2) (ATVR(VIVL = fO, V1) — 20V V10,V — FATVI0,Vh)
v

(817‘/187—‘/2 - 87‘/1817‘/2)
(VIVI — f0,1)0.Vy — 0, Vi(VIVy — £0,V3))
(V0 Va — 0.1V 13).

[N l—= M

®

N

=2 (—fOVIAIV, — fO VLAV + ATVRVIV) — 20V 110, V5)

(1+42)z
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P
(1+42)z
+ 10, (VIVR)VIVE + ATV, VIV, — 29V 140, 13)
_ (G ! rvyo!
—2—— s o) (VO VAV IV + f0,(VIV1)V Vot
+ O (VIVR)VIVL + AT VVIV — VI V10 Vs) |

(VO VIVIVa + fO.(VIVI) VIV, + 90 VoV Vi +

In (x) we used formula (18).

5 (1 + %)
< +y2)3

o Y

(1+92)3
+10- (VI Vo) VIVL + ATV — i VIV0,13)

= 2%@‘ V10, V3 — 0. ViV/ V)

(1+9?)
Y
+ 2

O+® = -(VIV10,Vy — 0.ViVIV)

r (VO ViVIVs + fO,(VIV)VIV,

D=

+2———— (fO-(V/ViVI V) + ATV, V)

(1+92)

=2———— (=ATVVIV, = VIVLATY, + £0,(VIViVIG))
f _ f

i W)%(v V10,V — 0. ViV V3)

=2————— (=V/(V/WV'W) + f0,(VI ViV V%))

——— (VIV10: V3 = 0,1V V%)

(1+¢?)z

Y !

—— | VIV,

(1+¢2)2 )2

7¢ 0 fVIVIVIVy + 22—
(1+92)2 (1+9?)z

— 20, <7¢ )fvalv%
(1+14?)z

=2— 0 VIV, - 20,
(1+92

-2

1

m(vaﬁrvz RN RAVZATSY

+2
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(VIV10,Va — 0, ViV V)
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In particular, we have

m(vf V10:Vy — 0, ViV V)
- avivvito (—L L )vuns 1 _aviuy
(1+19?%)2 (1+12)2 (14+92?)2
=0, | ——= | V/»W
e
and
1 1 (0
o, | ——— | = —————vop = —vo, [ —— | .
((1+¢2)2> (1+¢2)§¢ v v ((1+¢2)2>
Therefore
©@+O+®
_ Y RVRvIAT 1 Vo Ve — /
20, 0109} v 2+2(1+¢2)%(V V10 Vo — 0. V1V V3)
- _ v v, — BN 2
(0
=20, | ——— | V/(f/\)V/ 1% O
2 RERTIE VI fV)VIV,

Appendix A. Useful formulas
In the case f € €°°(R?), the adjoint operator of V/ is
(V) =V — 0,1,
ie., if A, B € €*°(R?) and one of them has compact support, then
/ A-V/Bdydr = —/ [VfA-B+8Tf-A-B] dndr.
R? R?
Notice that, if f is smooth, the following holds:
0, = V7' - fo,,
0.V =V710, +0,f0..
If A, B,C € ¥>(R?) and one of them has compact support, then

(18) /A-@TB-VdendT:—/ (VIA-0.B-C+A-9,V/B-C)dndr.
R? R?
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