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Abstract. We prove that the Teichmüller space of hyperbolic surfaces with given boundary
lengths equipped with the arc metric (resp. the Teichmüller metric) is almost isometric to the
Teichmüller space of punctured surfaces equipped with the Thurston metric (resp. the Teichmüller
metric).

1. Introduction

Let S be an oriented surface of genus g with n boundary components such that
n ≥ 1. The Euler characteristic of S is χ(S) = 2 − 2g − n. Throughout this
paper we assume that χ(S) < 0. Recall that a marked complex structure on S
is a pair (X, f) where X is a Riemann surface and f : S → X is an orientation
preserving homeomorphism. Two marked complex structures (X, f) and (Y, h) are
called equivalent if there is a conformal map homotopic to f ◦ h−1. Denote by [X, f ]
the equivalence class of (X, f). The set of equivalence classes of marked complex
structures is the Teichmüller space denoted by Tg,n.

Let X be a Riemann surface with boundary. There exist two different hyperbolic
metrics on X. One is of infinite area obtained from the Uniformization theorem,
the other one is of finite area obtained from the restriction to X of the hyperbolic
metric on its (Schottky) double such that each boundary component is a smooth
simple closed geodesic (see §2.1). The second one is called the intrinsic metric on
X. In this paper when we mention a hyperbolic metric on a surface with nonempty
boundary we mean the second one. The correspondence between complex structure
and hyperbolic metric provides another approach for the Teichmüller theory. Recall
that a marked hyperbolic surface (X, f) is a hyperbolic surface X equipped with an
orientation-preserving homeomorphism f : S → X, where f maps each component
of the boundary of S to a geodesic boundary of X. Two marked hyperbolic surfaces
(X, f) and (Y, h) are called equivalent if there is an isometry homotopic to f ◦ h−1

relative to the boundary. The Teichmüller space Tg,n is also the set of equivalence
classes of marked hyperbolic surfaces. For simplicity, we will denote a point [X, f ] in
Tg,n by X, without explicit reference to the marking or to the equivalence relation.

https://doi.org/10.5186/aasfm.2018.4320
2010 Mathematics Subject Classification: Primary 32G15, 30F60, 51F99.
Key words: Teichmüller space, almost isometry, Thurston metric, Teichmüller metric, arc

metric.
This work is partially supported by NSFC, No. 11271378. M. Jiang is partially supported by

Chuangxin Qiangxiao Program, No. E410706.



366 Manman Jiang, Lixin Liu and Huiping Pan

Let β1, · · · , βn be the boundary components of S. For any Λ = (λ1, . . . , λn)
∈ Rn

≥0, let Tg,n(Λ) ⊂ Tg,n be the set of the equivalence classes of marked hyperbolic
metrics whose boundary components have hyperbolic lengths (l(β1), . . . , l(βn)) = Λ.
In particular, Tg,n(0) is the Teichmüller space of surfaces with n punctures. It is
clear that Tg,n =

⋃
Λ∈Rn

+
Tg,n(Λ). Let Γ = {γ1, · · · , γ3g−3+n} be a pants decompo-

sition of S, i.e., the complement of Γ on S consists of 2g − 2 + n pairs of pants
{Ri}2g−2+n

i=1 . Let µ be a set of disjoint simple closed curves whose restriction to any
pair of pants Ri consists of three arcs, such that any two of the arcs are not free
homotopic with respect to the boundary of Ri. The pair (Γ, µ) is called a mark-
ing of S. For any X ∈ Tg,n, let (L, T ,Λ) be the corresponding Fenchel–Nielsen
coordinates with respect to the marking (Γ, µ), where L = (l1, · · · , l3g−3+n) repre-
sents the lengths of {γ1, · · · , γ3g−3+n}, T = (t1, · · · , t3g−3+n) represents the twists
along {γ1, · · · , γ3g−3+n} and Λ = (λ1, . . . , λn) represents the lengths of the bound-
ary components (for details about Fenchel–Nielsen coordinates we refer to [4]). The
Fenchel–Nielsen coordinates induce a natural homeomorphism between Teichmüller
spaces Tg,n(Λ) and Tg,n(0) in the following way:

ΦΓ : Tg,n(Λ) −→ Tg,n(0),

(L, T ,Λ) 7−→ (L, T , 0).

The goal of this paper is to compare various metrics on the Teichmüller spaces
Tg,n(Λ) and Tg,n(0) via the homeomorphism ΦΓ.

Definition 1.1. Two metric spaces (X1, d1) and (X2, d2) are called almost iso-
metric if there exist a map f : X1 → X2, two positive constants A and B, such that
both of the following two conditions hold.

(1) For any x, y ∈ X1,

|d2(f(x), f(y))− d1(x, y)| ≤ B.

(2) For any z ∈ X2, there exists x ∈ X1 such that

d2(z, f(x)) ≤ A.

1.1. The Thuston metric and the arc metric. An essential simple closed
curve on S is a simple closed curve which is not homotopic to a single point or a
boundary component. An essential arc is a simple arc whose endpoints are on the
boundary and which is not homotopic to any subarc of the boundary. Let S(S) be
the set of homotopy classes of essential simple closed curves on S, A(S) be the set of
homotopy classes of essential arcs on S, and B(S) be the set of homotopy classes of
the boundary components.

For any X1, X2 ∈ Tg,n(Λ), define

dTh(X1, X2) := log sup
[α]∈S(S)

lX2([α])

lX1([α])

and

dA(X1, X2) := log sup
[α]∈A(S)

lX2([α])

lX1([α])
.

From the works [16] and [11], both dTh and dA are asymmetric metric on Tg,n(Λ),
which are called the Thurston metric and the arc metric respectively. Moreover, the
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authors [11] observed that

dA(X1, X2) = log sup
[α]∈A(S)∪B(S)∪S(S)

lX2([α])

lX1([α])
.

Our first result is the following.

Theorem 1.2. (Tg,n(Λ), dA) and (Tg,n(0), dTh) are almost isometric. More pre-
cisely, there is a constant C1 depending on the surface S and boundary lengths Λ
such that,

|dA(X1, X2)− dTh(ΦΓ(X1),ΦΓ(X2))| ≤ C1.

Remark 1. Papadopoulos and Su [17] considered the case where Λ is close to
zero, they showed that the constant C1 in Theorem 1.2 will tend to zero if Λ tends
to zero.

Proof of Theorem 1.2. To prove Theorem 1.2, it suffices to verify that they
satisfy the two conditions in Definition 1.1. The first condition follows from Theo-
rem 1.3 and Theorem 1.4. The second condition follows from the fact that ΦΓ is a
homeomorphism. �

Theorem 1.3. The arc metric and the Thurston metric are almost-isometric
in Tg,n(Λ). More precisely, there is a constant C2 depending on the surfaces S and
boundary lengths Λ such that,

|dA(X1, X2)− dTh(X1, X2)| ≤ C2.

Remark 2. Liu, Papadopoulos, Su and Théret [11, Theorem 3.7] proved that dTh
and dA are almost isometric on the ε0-relative ε-thick part of the Teichmüller space of
surfaces with boundary. Later, Liu, Su and Zhong [12, Theorem 1.5] proved that the
symmetrizations of these two metrics dL(X1, X2) := max{dTh(X1, X2), dTh(X2, X1)}
and dAL(X1, X2) := max{dA(X1, X2), dA(X2, X1)} are almost isometric on the ε thick
part of the Teichmüller space of surfaces with boundary.

Theorem 1.4. [16] (Tg,n(Λ), dTh) and (Tg,n(0), dTh) are almost isometric. More
precisely, there is a constant C3 depending on the surfaces S and boundary lengths
Λ such that,

|dTh(X1, X2)− dTh(ΦΓ(X1),ΦΓ(X2))| ≤ C3.

1.2. The Teichmüller metric. The arc metric and the Thurston metric de-
scribe the deformation of hyperbolic metric on the surface, while the Teichmüller
metric describes the deformation of conformal structure (complex structure). Given
two marked complex structures [X1, f1] and [X2, f2], the Teichmüller metric is defined
by

dT ([X1, f1], [X2, f2]) =
1

2
log inf{K(f) : f is isotopic to f1 ◦ (f2)−1},

where K(f) represents the quasiconformal dilation of f .
For closed surfaces, Kerckhoff expressed the Teichmüller metric in terms of the

extremal length of simple closed curves in the following way. For any X1, X2 in the
Teichmüller space,

(1) dT (X1, X2) :=
1

2
sup
[α]

log
ExtX2([α])

ExtX1([α])
,

where the sup ranges over all essential simple closed curves on the surface.
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For surfaces with boundary, Liu, Papadopoulos, Su and Théret ([10]) developed
similar result. They described the Teichmüller metric in terms of the extremal lengths
of essential arcs and boundary components.

The theorem below is our second main result.

Theorem 1.5. For small ε, (Tg,n(ε), dT ) and (Tg,n(0), dT ) are almost isometric.
More precisely, for any X, Y ∈ Tg,b(ε),

|dT (X1, X2)− dT (ΦΓ(X1),ΦΓ(X2))| ≤ log(n+ 3).

Remark 3. The constant log(n+ 3) is not optimal.

The organization of this paper is as following. In §2, we recall some basic concepts
and facts. In §3, we prove Theorem 1.3. In §4, we prove Theorem 1.5. Finally, we
collect a few questions in §5.

2. Preliminaries

2.1. (Schottky) double and Teichmüller map. Let X be a Riemann surface
with nonempty boundary. We can represent X as H/G, where H is the upper half
plane and G is a torsion-free Fuchsian group of second kind. There is an infinite set
I of open intervals I on the extended real axis R ∪ ∞ such that G acts properly
discontinuously on H ∪ J ∪ L where L is the lower half plane and J is the union of
all I ∈ I. The surface Xd := (H ∪J ∪L)/G is called the (Schottky) double of X and
Xq := L/G is called the mirror image of X. The restriction of the hyperbolic metric
on Xd to X is called the intrinsic metric on X. It is clear that in the intrinsic metric
each boundary component is a simple closed geodesic. The double of any essential
geodesic arc on X is a simple closed geodesic on Xd.

An admissible quadratic differential on X is the restriction to X of a holomorphic
quadratic differential qd on Xd such that

(1) at each puncture on X, qd has at worst a first order pole,
(2) ∂X is an qd-horizontal line.

Note that the symmetry requires that the zeroes of qd on ∂X have even order. Away
from the zeroes of qd, there is a local coordinate ζ = ξ + iη such that qd = dζ2. Let
ζ̄ = Kξ+ iη, 0 < K <∞. ζ̄ defines a new Riemann surface Xd

qd
. The map f : ζ 7→ ζ̄

is called the Teichmüller map from Xd to Xd
qd

with initial quadratic differential qd.
The restriction of f to X is called the Teichmüller map from X to X̄ with initial
quadratic differential q. Given two marked Riemann surfaces [X1, f1], [X2, f2] with
boundary, there is a unique Teichmüller map f : X1 → X2 homotopic to f2 ◦ f−1

1

minimizing the quasiconformal dilation [1] such that the initial quadratic differential
is an admissible quadratic differential on X.

2.2. Measured lamination. Given a hyperbolic surface X with nonempty
geodesic boundary, a simple geodesic is one of the four types below:

• an essential simple closed geodesic;
• a geodesic boundary component;
• an essential geodesic arc;
• an infinite geodesic in the interior.

A geodesic lamination m on X is a closed subset of X consisting of mutually disjoint
simple geodesics which are called leaves of this geodesic lamination. A transverse
invariant measure µ of a geodesic lamination m is a Radon measure defined on
every arc k transverse to the support of m such that µ is invariant with respect to
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any homotopy of k relative to the leaves of m. A measured geodesic lamination
is a lamination m endowed with a transverse invariant measure µ. For simplicity,
we denote by µ the measured geodesic lamination (m,µ). Each measured geodesic
lamination µ induces a functional iµ over S(S) ∪ B(S) in the following way:

iµ : S(S) ∪ B(S) −→ R≥0,

[α] 7−→ i(µ, [α]) := inf
α′∈[α]

ˆ
α′
dµ.

Two measured geodesic laminations µ, µ′ are said to be equivalent if i(µ, [α]) =
i(µ′, [α]) for any [α] ∈ S(S) ∪ B(S). Denote by ML(X) the space of equivalence
classes of measured geodesic laminations on X equipped with the topology that µn
converges to µ if for any [α] ∈ S(S) ∪ B(S), i(µn, [α]) converges to i(µ, [α]). Since
there is a one-to-one correspondence between ML(X) and ML(X ′) for two differ-
ent hyperbolic metrics X and X ′, we denote by ML(S) the space of equivalence
classes of measured geodesic lamination without pointing to any specific hyperbolic
metric. Hubbard and Masur ([8]) proved that there is a homeomorphism between
ML(S) and the space of the horizontal measured foliations of admissible quadratic
differentials on X. For surfaces of finite type, S(S)×R+ is dense inML(S) in this
topology. But for the surfaces with boundary, this is no longer true. The simplest
counterexample is an essential geodesic arc since it is not in the closure of S(S)×R+.
Let ML0(S) be a subset of ML(S) consisting of measured foliations whose leaves
are either essential simple closed geodesics or infinite geodesics in the interior. It is
clear that S(S)×R+ is dense inML0(S).

2.3. Extremal length. Let α be a simple closed curve or an essential arc,
and X be a Riemann surface. A conformal metric on X is a metric which can be
expressed as ρ(z)|dz| locally. The extremal length of α on X is defined by

(2) ExtX(α) := sup
ρ

l2ρ(α)

Area(ρ)
,

where the sup ranges over all the conformal metrics on X, Area(ρ) is the area of X
endowed with the metric ρ, and lρ(α) := infα′∈[α]

´
α′
ρ |dz|. It is clear that

l2aρ(α)/Area(aρ) = l2ρ(α)/Area(ρ)

for any positive constant a. There exist a unique conformal metric up to scaling
realizing the supremum which is called the extremal metric (see [18]). The extremal
length is a conformal invariant. For surfaces without boundary, Kerckhoff extended
the definition of extremal length from S(S) × R+ to ML(S). For surfaces with
boundary, this extension also holds by considering the double Xd of X.

The following lemmas will be used in this paper.

Lemma 2.1. Suppose X ∈ Tg,n(S). Let µ = µ1 + µ2 + · · · + µk be a measured
geodesic lamination where µj ∈ R+ × (S(S) ∪ B(S)), j = 1, 2, · · · , k. Then

max
1≤j≤k

{ExtX(µj)} ≤ ExtX(µ) ≤ k2 max
1≤j≤k

{ExtX(µj)}.

Proof. Let ρi, ρµ be the extremal metrics of µi and µ respectively such that
Area(ρi) = Area(ρµ) = 1, i = 1, 2, · · · , k. Without loss of generality, we assume that
ExtX(µ1) = max1≤j≤k{ExtX(µj)}. Then

ExtX(µ) ≥
l2ρ1(µ)

Area(ρ1)
≥

l2ρ1(µ1)

Area(ρ1)
= ExtX(µ1).
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On the other hand,

ExtX(µ) = l2ρµ(µ) = (lρµ(µ1) + lρµ(µ2) + · · ·+ lρµ(µk))
2

≤ (
√

ExtX(µ1) +
√

ExtX(µ2) + · · ·+
√

ExtX(µk))
2

≤ k2 max
1≤j≤k

{ExtX(µj)}. �

Lemma 2.2. (Maskit [13]) Let Y ∈ Tg,n(0) and α be a nontrival simple closed
curve, then

(1) lX(α) and ExtX(α) goes to zero together, and

lim
lX(α)→0

lX(α)/ExtX(α) = π,

(2) lX(α)
π
≤ ExtX(α) ≤ lX(α)

2
elX(α)/2.

Remark 4. The statements above also holds for X ∈ Tg,n(Λ) with Λ ∈ Rn
+. In

fact, suppose X ∈ Tg,n(Λ), let Xd be the double of X. Let α be a simple closed
curve on X and αd be its double on Xd. Then lX(α) = lXd(α)/2 and ExtX(α) =
ExtXd(α)/2.

2.4. Fenchel–Nielsen coordinates. Let R be a pair of pants with boundaries
{γ1, γ2, γ3}. Let a1, a2, a3 be three geodesic arcs orthogonal to the boundaries (see
Figure 1(a)). Choose an orientation for each boundary such that R is on the left. Let
γi : [0, 1] → γi be a parametrization of γi with constant speed such that γ1([0, 1/2]),
a3, γ2([0, 1/2]), a1, γ3([0, 1/2]), a3 consist a hexagon. We call this parametrization
a stand parametrization. A homeomorphism f between two pairs of pants R,R′ is
called boundary coherent if f ◦ γi(s) = γ′i(s) for s ∈ [0, 1] and i = 1, 2, 3.

(a) (b)
Figure 1.

For two pairs of pants R,R′, if l(γi) = l(γ′) for some i = 1, 2, 3, we can paste R
and R′ along γ, γ′ in the following way (see Figure 1(b))

γi(s) = γ′i(t− s)

for some t ∈ R. We say R and R′ are pasted along γi with twist t.
Now we give an explaination for the Fenchel–Nielsen coordinates (L, T ,Λ). Let

Γ = {γ1, · · · , γ3g−3+n} be a pants decomposition of X and {R1, · · · , R2g−2+n} be
the corresponding 2g − 2 + n pairs of pants with stand parametrization. L and Λ
determine these 2g − 2 + n pairs of pants, and T tells us how to paste these pairs of
pants.
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3. Proof of Theorem 1.3

Let γ ∈ A(S) be an arc connecting the boundary components βi and βj (βi may
equal to βj). Then for any hyperbolic structure X, there is a unique geodesic in the
relative homotopy class of γ, which is orthogonal to βi, βj at each endpoint. We still
denote it by γ. It is not hard to see that a tubular neighborhood of βi ∪ βj ∪ γ is a
topological pair of pants. Let us call this pants determined by γ.

Proof of Theorem 1.3. It follows from the definitions that

dTh(X1, X2) ≤ dA(X1, X2)

for any X1, X2 ∈ Tg,n.
To control the arc metric from above by the Thurston metric, it suffices to find

an essential simple closed curve α for each essential arc γ ∈ A′(S) := {γ ∈ A(S) :
lX2(γ) > lX1(γ)} (α depends on γ) such that

lX2(α)

lX1(α)
≥ C

lX2(γ)

lX1(γ)

for some constant C which depends on the surface S and the boundary lengths Λ.
We discuss for the two cases.

Case (1). γ connects two different boundary components βi, βj, see Figure 2(b).
Then there is another simple closed cure α ∈ S(S), such that βi, βj, α are the bound-
aries of the pants determined by γ.

(a) (b)
Figure 2.

For any X ∈ Tg,n(L) with lX(βi) = λi, lX(βj) = λj, we have

(3) cosh(lX(γ)) =
cosh λi

2
cosh

λj
2

+ cosh lX(α)
2

sinh λi
2

sinh
λj
2

.

Let λ = max1≤i,j≤n

{
sinh λi

2
sinh

λj
2
,

cosh
λi
2

cosh
λj
2

+1

sinh
λi
2

sinh
λj
2

}
. Therefore

e
lX (α)

2

2λ
≤ cosh(lX(γ)) ≤ λe

lX (α)

2 .

On the other hand,
elX(γ)

2
≤ cosh(lX(γ)) ≤ elX(γ),

So we get
−2 log 2λ ≤ lX(α)− 2lX(γ) ≤ 2 log 2λ.

Let K = log 2λ.
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• If lX(γ) ≥ K, then

1 ≤ lX(α)

lX(γ)
≤ 3.

• If lX(γ) ≤ K, set r0 = min1≤i,j≤n cosh−1

(
cosh

λi
2

cosh
λj
2

sinh
λi
2

sinh
λj
2

)
, it follows from (3)

that

lX(γ) ≥ r0,

and

lX(α) ≤ x0 := 2 max
1≤i,j≤n

cosh−1

(
Ksinh

λi
2

sinh
λj
2
− cosh

λi
2

cosh
λj
2

)
.

For any γ ∈ A′(S) := {γ ∈ A(S) : lX2(γ) > lX1(γ)}, we consider the following
situations.

• If lX2(γ) ≥ lX1(γ) ≥ K, then

lX2(α)

lX1(α)
≥ lX2(γ)

3lX1(γ)
.

• If lX2(γ) ≥ K ≥ lX1(γ), then

lX2(α)

lX1(α)
≥ lX2(γ)

lX1(γ)

lX1(γ)

x0

≥ lX2(γ)

lX1(γ)

r0

x0

.

• If K ≥ lX2(γ) ≥ lX1(γ), then

lX2(α)

lX1(α)
≥ 1 ≥ lX2(γ)

lX1(γ)

r0

K
.

Let C1 = max{1
3
, r0
x0
, ro
K
}, we have

log
lX2(α)

lX1(α)
≥ C1

lX2(γ)

lX1(γ)
.

Case (2). γ connects βi to itself for some boundary component βi, see Figure 3(a).
Then there exist another two simple closed curves α, δ ∈ C(S), such that βi, α, δ are
the boundaries of the pants determined by γ.

(a) (b)
Figure 3.
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Hence

cosh2(
lX(γ)

2
) = sinh2 lX(α)

2
sinh2 b = sinh2 lX(α)

2
(cosh2 b− 1)

= sinh2 lX(α)

2

(cosh lX(α)
2

cosh λi
2

+ cosh lX(δ)
2

sinh lX(α)
2

sinh λi
2

)2

− 1


=

[
cosh lX(δ)

2
+ cosh

(
lX(α)

2
+ λi

2

)] [
cosh lX(δ)

2
+ cosh

(
lX(α)

2
− λi

2

)]
sinh2 λi

2

.

On the other hand,

e
−λi
2 cosh

lX(α)

2
≤ cosh

(
lX(α)

2
± λi

2

)
≤ e

λi
2 cosh

lX(α)

2
.

From the discussions above, we get

e
−λi
2

sinh λi
2

≤
cosh (lX(γ))

2(
cosh lX(δ)

2
+ cosh lX(α)

2

) ≤ e
λi
2

sinh λi
2

.

Then

log
e
−λi
2

2 sinh λi
2

≤ lX(γ)−max{lX(δ), lX(α)} ≤ log
4e

λi
2

sinh λi
2

.

Note that

cosh
lX(α)

2
≤ sinh

lX(βi)

2
sinh

lX(γ)

2
.

Therefore

lX(γ) ≥ 2 sinh−1 1

sinh lX(βi)
2

= 2 sinh−1 1

sinh λi
2

.

The same as the discussion in Case 1, we have

max{ lX2(α)

lX1(α)
,
lX2(δ)

lX1(δ)
} ≥ max{lX2(δ), lX2(α)}

max{lX1(δ), lX1(α)}
≥ C2

lX2(γ)

lX1(γ)

for some constant C2.
Combing Case(1) and Case(2) we know that for any arc γ ∈ A′(S), we can find

a simple closed curve α′ ∈ S(S), such that

lX2(α
′)

lX1(α
′)
≥ C

lX2(γ)

lX1(γ)
,

where C = max{C1, C2}. Consequently,

dA(X1, X2)− logC ≤ dTh(X1, X2) ≤ dA(X1, X2). �

4. Proof of Theorem 1.5

As we mentioned in the introduction, Liu, Papadopoulos, Su and Théret [10]
described the Teichmüller metric on the Teichmüller space of surfaces with boundary
via the extremal lengths of essential arcs and the boundary components. Follow the
idea in [10], we get the following approximation.
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Proposition 4.1. For small ε, X, Y ∈ Tg,n(ε), we have∣∣∣∣∣dT (X, Y )− 1

2
sup

[α]∈S(S)

∣∣∣∣log
ExtY (α)

ExtX(α)

∣∣∣∣
∣∣∣∣∣ ≤ log(n+ 2).

Proof. Let Xd, Y d be the double of X, Y respectively. It follows from (1) that

dT (X, Y ) = dT (Xd, Y d)

=
1

2
sup

α∈ML(Xd)

∣∣∣∣log
ExtY d(α)

ExtXd(α)

∣∣∣∣ ≥ 1

2
sup

α∈S(S)∪B(S)

∣∣∣∣log
ExtY (α)

ExtX(α)

∣∣∣∣ .
It remains to prove the other direction. Let qd be the initial quadratic differential

associated to the Teichmüller map between Xd and Y d. Let hd be the horizontal
measured lamination of qd. Then

dT (X, Y ) = dT (Xd, Y d) =
1

2

∣∣∣∣log
ExtY d(hd)
ExtXd(hd)

∣∣∣∣ .
Recall that ∂X is a qd- horizontal line (see §2.1), hd can be decomposed as

hd =
∑n

i=1 aiβi + µ, where ai ≥ 0, βi is a measured lamination represented by a
boundary component of X, and µ is an interior measured geodesic lamination, i.e.,
aiβi ∈ R≥0×B(S), µ ∈ML0(S). Since R+×S(S) is dense inML0(S), there exists
{ciδi}∞i=1 ⊂ R+ × S(S) such that ciδi → µ as i→∞. Therefore,

dT (X, Y ) = lim
j→∞

1

2

∣∣∣∣log
ExtY d(

∑n
i=1 aiβi + cjδj)

ExtXd(
∑n

i=1 aiβi + cjδj)

∣∣∣∣ .
For each j ≥ 1, let µj ∈ {a1β1, a2β2, · · · , anβn, cjδj} such that

ExtY d(µj) = max
1≤k≤n

{ExtY d(akβk),ExtY d(cjδj)}.

It follows from Lemma 2.1 that

dT (X, Y ) ≤ 1

2
lim
j→∞

∣∣∣∣log
(n+ 1)2ExtY (µj)

ExtX(µj)

∣∣∣∣
≤ 1

2
sup

α∈S(S)

∣∣∣∣log
ExtY (α)

ExtX(α)

∣∣∣∣+
1

2
sup

β∈B(S)

∣∣∣∣log
ExtY (β)

ExtX(β)

∣∣∣∣+ log(n+ 1)

≤ 1

2
sup

α∈S(S)

∣∣∣∣log
ExtY (α)

ExtX(α)

∣∣∣∣+ log(n+ 2)

where we use the first result of Lemma 2.2 in the last inequality. �

Next, we estimate the extremal lengths. Let X ∈ Tg,n(0), {p1, · · · , pn} be
the punctures of X. It is well known that every puncture has a cusp neighbour-
hood consisting of horocycles of length less than 1 (see [4], for example). Let
{Dε

1, · · · , Dε
n} be the corresponding cuspidal neighborhoods with boundary lengths

ε, Cuspε(X) :=
⋃

1≤i≤nD
ε
i and Xε := X\Cuspε(X). The following proposition is key

to prove Theorem 1.5.

Proposition 4.2. For small ε, there is a constant Cε such that for any α ∈ S(S)
and any X ∈ Tg,n(0),

1 ≤ ExtXε(α)

ExtX(α)
≤ Cε.

Moreover, Cε → 1 as ε→ 0.
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Remark 5. Minsky [14, Lemma 8.4] proved a similar result by a different method
without the description of Cε when ε tends to zero.

Proof. Before proving the proposition, we make some conventions. For any
simple closed curve α, denote by Lρ(α) the length of α under the metric ρ and lρ(α)
the length of the geodesic representative of α under the metric ρ. Since Xε ⊂ X, it
follows from the definition that ExtXε(α) ≥ ExtX(α).

Let {p1, · · · , pn} be the punctures of X and {Dε
1, · · · , Dε

n} be the corresponding
cuspidal neighborhoods with boundary lengths ε. Recall that each puncture pi has
a cuspidal neighbourhood D1

i with boundary length 1 such that D1
i ∩ D1

j = ∅ for
i 6= j. Let Gi be the infinite cyclic group generated by a simple closed curve which
is homotopic to pi. Let D∗ = {w : 0 < |w| < 1} be the punctured unit disc equipped
with the hyperbolic metric ρ = |dw|/(|w| log |w|−1). Let πi : D∗ 7→ X be a covering
map such that the fundamental group of D∗ corresponds to Gi and that X coincides
with the push-forward of ρ. In this setting, Dε

i is conformal to the punctured disc
D∗R(ε) = {w : 0 < |w| < R(ε)} where R(ε) = exp(−2π/ε). It is clear that R(ε) <

1/2R(1) for small ε.
The remaining of the proof will be split into two cases.

Case 1. ExtXε(α) ≤
√
ε. It is clear that ExtX(α) ≤ ExtXε(α) ≤

√
ε. Let φ be the

quadratic differential on X whose horizontal measured foliation hφ is equivalent to
α. Denote by |φ| the induced flat metric on X, then |φ| is the extremal metric of α,
i.e.,

(4) ExtX(α) =
l2|φ|(α)

‖φ‖
,

where ‖φ‖ =
´
X
|φ| and l|φ|(α) is the length of the geodesic homotopic to α under |φ|.

To estimate ExtXε(α), we need to estimate the length of ∂Dε
i , denoted by L|φ|(∂Dε

i),
under the flat metric |φ|. Recall that φ has a simple pole at pi, it has the following
expression in D∗R(1),

φ(w) dw2 = (ψ(w)/w) dw2,

where ψ is holomorphic. Note that |ψ(w)| is subharmonic and
´ 2π

0
|ψ(reiθ)| dθ is an

increasing function of r. For simplicity, set R1 = R(ε) and R2 = R(1) = exp(−2π),
then

L|φ|(∂D
ε
i) =

ˆ 2π

0

√
|ψ(R1eiθ)|

R1

R1 dθ ≤
(

2π

ˆ 2π

0

|ψ(R1e
iθ)| dθ

)1/2

≤
(

2π

R2 −R1

ˆ R2

R1

dr

ˆ 2π

0

|ψ(reiθ)| dθ
)1/2

≤

(
2π

R2 −R1

ˆ
D∗R2

|φ|r dr dθ

)1/2

≤
(

4π

R2

‖φ‖
)1/2

.

(5)

Cutting X along the critical leaves of hφ, we get a cylinder Aα. Let Aε,α ⊂ Aα
be the maximal cylinder whose core curve is homotopic to α and which is contained
in Xε (see Figure 4). Denote by Hα and Hε,α the heights of Aα and Aε,α respectively.
Then Hα =

√
(ExtX(α))−1‖φ‖ and

Hε,α ≥ Hα − 2 max
1≤i≤n

L|φ|(∂D
ε
i) ≥ Hα −

(
16π

R2

‖φ‖
)1/2

.
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Hence

ExtXε(α)

ExtX(α)
≤

ExtAε,α(α)

ExtAα(α)
=

Hα

Hε,α

≤ 1 +
√

32πe2πε1/4.

Figure 4.

Case 2. ExtXε(α) ≥
√
ε. Let φε be the quadratic differential on Xε whose horizon-

tal measured foliation hφε is equivalent to α. Denote by |φε| the induced flat metric
on Xε, then |φε| is the extremal metric of α. Note that ∂Xε =

⋃n
i=1 ∂D

ε
i is contained

in the critical leaves of hφε , so ∂Dε
i is a geodesic under the metric |φε|. Hence

L|φε|(∂D
ε
i) ≤

√
ExtXε(∂Dε

i)‖φε‖.

Let Ai = D1
i \Dε

i , then Ai is conformal to the annulus D∗R(1)\D∗R(ε) = {w : R(ε) <

|w| < R(1)}. Therefore

ExtXε(∂D
ε
i) ≤ ExtAi(∂D

ε
i) = 2π(log

R(1)

R(ε)
)−1 = (1/ε− 1)−1 ≤ 2ε.

Figure 5.

On the other hand, |φε| defines a conformal metric ρε on X, which coincides
with |φε| on Xε and vanishes elsewhere. For any simple closed curve α, set ei :=
α ∩ Dε

i . Let eji be a component of ei (see Figure 5). Dε
i\e

j
i has two components,

one is homeomorphic to a disc , denoted by Ej
i and the other is homeomorphic to a

punctured disc. Let f ji = ∂Ej
i \e

j
i . It follows that f

j
i ⊂ ∂Dε

i and f
j
i ∩ fki = ∅ if j 6= k.

We construct a new simple closed curve α′ from α via replacing eji by f
j
i . It is clear
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that α′ is homotopic to α and that α′ is contained in Xε. Then

Lρε(α) ≥ L|φε|

(
α\
(⋃

eji

))
= L|φε|(α

′)− L|φε|
(⋃

f ji

)
≥ L|φε|(α

′)−
n∑
i=1

L|φε|(∂D
ε
i) ≥

√
ExtXε(α)‖φε‖ − n

√
2ε‖φε‖

≥ (1− n
√

2ε1/4)
√

ExtXε(α)‖φε‖,

where we use ExtXε(α) ≥
√
ε in the last inequality. As a consequence,

ExtX(α) ≥ (lρε(α))2

Area(ρε)
=

(infα′∈S(S) Lρε(α))2

Area(ρε)
≥ (1− 2nπ

√
2ε1/4)2ExtXε(α),

where α′ ranges over every simple closed curve homotopic to α.
Let Cε = max{(1 − 2nπ

√
2ε1/4)−2, 1 +

√
32πe2πε1/4}. Combining Case 1 and

Case 2, we get
ExtXε(α)

ExtX(α)
≤ Cε

for any α ∈ C0(S). Moreover, Cε → 1 as ε→ 0. �

Corollary 4.3. For small ε, there is a constant Cε such that for any interior
measured laminations µ and any X ∈ Tg,n(0),

1 ≤ ExtXε(µ)

ExtX(µ)
≤ Cε.

Moreover, Cε → 1 as ε→ 0.

The last step of the proof is to quasiconfromally embed X ∈ Tg,n(ε) into Φ(X) ∈
Tg,n(0) in some nice way. We need the following theorem due to Buser, Makover,
Muetzel and Silhol [5].

Theorem 4.4. [5, Theorem 2.1] Let l1, l2 > 0, 0 < ε < 1/2, and set ε∗ =
2
π
ε. Let Yl1,l2,ε be a pair of pants with boundary length l1, l2, ε, and set Y ε∗

l1,l2,0
=

Yl1,l2,0\Cuspε∗(Yl1,l2,0). Then there exists a boundary coherent (see §2.4 for the defi-
nition) quasiconformal homeomorphism

φ : Yl1,l2,ε → Y ε∗
l1,l2,0

with dilation qφ ≤ 1 + 2ε2.

Remark 6. Under the assumptions of Theorem 4.4, it is clear that there ex-
ists a boundary coherent quasiconformal homeomorphism φ : Yl1,ε1,ε2 → Y ε1∗,ε∗2

l1,0,,0
with

dilation qφ ≤ (1 + 2ε21)(1 + 2ε22).

Proof of Theorem 1.5. The second condition in Definition 1.1 follows from
the fact that Φ is a homeomorphism. It remains to verify the first condition. Let
X ∈ Tg,n(ε) and Φ(X) ∈ Tg,n(0). It follows from Theorem 4.4 that there exists a
quasiconformal homeomorphism g1 from X1 to X1,ε∗ := Φ(X1)\Cuspε∗ (resp. g2 from
X2 to X2,ε∗ := Φ(X2)\Cuspε∗ ) with dilation K(gi) ≤ Πn

j=1(1 + 2ε2j), i = 1, 2. This
can be obtained in the following way. Let {R1, · · · , R2g−2+n} be the 2g−2+n pairs of
pants associated to the pants decomposition Γ. If ∂Ri ∩ ∂X 6= ∅, Let h1 : R1 → R1,ε∗
be the map obtained from Theorem 4.4, otherwise let hi : Ri → Ri be the identity
map. Gluing {hi}2g−2+n

i=1 via the Fenchel–Nielsen coordinates, we obtained the desired
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maps. Hence, for any interior simple closed curve α ∈ S(S),
1

K(g1)
≤ ExtX1(α)

ExtX1,ε∗(α)
≤ K(g1),

1

K(g2)
≤ ExtX2(α)

ExtX2,ε∗(α)
≤ K(g2).

Combining with Proposition 4.2, we have
1

C ′ε
≤ ExtX1(α)

ExtΦ(X1)(α)
≤ C ′εCε,

1

C ′ε
≤ ExtX2(α)

ExtΦ(X2)(α)
≤ C ′εCε,

where C ′ε = Πn
j=1(1 + 2ε2j) and Cε is the constant in Proposition 4.2.

Now the theorem follows from the Kerckhoff’s formula on Tg,n(0), and Proposi-
tion 4.1. �

5. Further study and questions

5.1. Nielsen extension. LetX be a hyperbolic surface with geodesic boundary.
The infinite Nielsen extension X∞ of X is a punctured surface (see [3]). For any
Λ ∈ Rn

+, we can define a map Ψ: Tg,n(Λ) → Tg,n(0) which associate the infinite
Nielsen extension X∞ to any X ∈ Tg,n(Λ). It is natural to ask the following question.

Question 1. Given ε ∈ Rn
+, is Ψ: Tg,n(ε)→ Tg,n(0) an almost isometry?

Unlike the Fenchel–Nielsen map ΦΓ, we do not know whether Ψ is a homeomor-
phism. But for small ε, Ψ is indeed an almost isometry.

Theorem 5.1. For small ε, Ψ: Tg,n(ε) → Tg,n(0) is an almost isometry with
respect to the Teichmüller metric.

Proof. The theorem follows from Proposition 5.2 and Proposition 5.5. �

Proposition 5.2. For X, Y ∈ Tg,n(ε),

|dT (X, Y )− dT (X0, Y0)| ≤ log(n+ 3),

where X0 = Ψ(X), Y0 = Ψ(Y ).

Proof. It follows from Proposition 4.1 and Proposition 5.3. �

Proposition 5.3. Given Λ = (λ1, · · · , λn) ∈ Rn
+. For X ∈ Tg,n(Λ), let X0 ∈

Tg,n(0) be the infinite Nielsen extension of X. There is a constant CΛ such that for
any α ∈ S(S) and any X ∈ Tg,n(Λ),

1 ≤ ExtX(α)

ExtX0(α)
≤ CΛ.

Moreover, CΛ → 0 as Λ→ 0.

Proof. Since X ⊂ X0, ExtX(α) ≥ ExtX0(α). For the right inequality, we distin-
guish two cases.

Case 1. ExtX(α) ≤ 4n2λeλ/2, where λ = max1≤i≤n λi. By Lemma 2.2 and
Proposition 5.4, there are constants ε0, c1, c2 such that if ExtX(α) < ε0, then c1 ≤
ExtX(α)
ExtX0

(α)
≤ c2 for any α ∈ S(S). If ε0 ≤ ExtX(α) ≤ 4n2λeλ/2, then ε0

4n2λeλ/2
≤

ExtX(α)
ExtX0

(α)
≤ 4n2λeλ/2

ε0
.

Case 2. ExtX(α) ≥ 4n2λeλ/2, where λ = max1≤i≤n λi. Applying the method used
in Case 2 in the proof of Proposition 4.2, we get

ExtX(α) ≤ 4ExtX0(α).
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The second part follows directly from Proposition 4.2. �

Proposition 5.4. [6] Given Λ = (λi, · · · , λn) ∈ Rn
+ and λ = max1≤i≤n λi. For

X ∈ Tg,n(Λ), let X∞ be the infinite Nielsen extension of X. Let α be a simple closed
curve. If α is homotopic to one of the boundary components, lX∞(α) = 0. Otherwise
k∞lX(α) < lX∞(α) < lX(α), where k∞ = Π∞i=1[1− (2/π) tan−1(2 sinhλ/2i)].

Proposition 5.5. For small ε ∈ Rn, Ψ: Tg,n(ε) → Tg,n(0) is almost surjective,
i.e., there is a constant Cε such that Tg,n(0) is contained in the Cε neighbourhood of
Ψ(Tg,n(ε)).

Proof. For any X ∈ Tg,n(0), let {Dε1
1 , · · · , Dεn

n } be the cuspidal neighbourhoods
with boundary lengths ε. Let X̂ε := X\

(⋃
1≤k≤nD

εk
k

)
. It is clear that X is the

infinite Nielsen extension of X̂ε. Let Xε = Φ−1
Γ (X) ∈ Tg,n(ε) be the preimage of X

under the map ΦΓ, X0
ε the infinite Nielsen extension of Xε. By Theorem 4.4, there is

a Kε-quasiconformal map between X̂ε and Xε. Combining with Proposition 5.2, we
have

dT (X,X0
ε ) ≤ dT (X̂ε, Xε) + log(n+ 3) ≤ Kε + log(n+ 3).

Since X ∈ Tg,n(0) is an arbitrary point, this means that Ψ is almost surjective for
small ε, which verifies the second condition in Definition 1.1. �

5.2. Improving Theorem 1.5. In Theorem 1.5, we assume that the boundary
component has small boundary length. We ask the following questions.

Question 2. Does Theorem 1.5 still hold if we remove the condition that ε is
small ?

Let R,R′ be two pairs of pants such that ∂R = {γ1, γ2, γ3} and ∂R′ = {γ′1, γ′2, γ′3}.
Assume that l(γ1) = l(γ′1), l(γ2) = l(γ′2), l(γ3) = l3 and l(γ′3) = l′3. One possible way
to answer Question 2 is to find a boundary coherent quasiconformal map f : R→ R′

with quasiconformal dilation only depends on l3, l′3.

Question 3. Can we replace the constant log(n+3) in Theorem 1.5 by a constant
C(ε) such that C(ε)→ 0 if ε→ 0?

5.3. Infinite type surfaces. A surface is of infinite type if it has infinite genus
or infinite boundary boundary component or infinite punctures. In [2], the authors
studied the Fenchel–Nielsen coordinates of the Teichmüller space of infinite type
surfaces. In [9], the authors studied the length spectrum metric and the Teichmüller
metric on the Teichmüller space of infinite type surfaces.

Question 4. Study similar questions for the Teichmüller space of infinite type
surfaces. More formally, whether Theorem 1.2 and Theorem 1.5 are still true if the
surface in consideration has infinite genus?
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