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Abstract. Let F = H + G be a locally injective and sense-preserving harmonic mapping of

the unit disk D in the complex plane C, where H and G are holomorphic in D and G(0) = 0.

In this paper, under the assumption that H maps conformally D onto a convex domain we obtain

modified forms of some results shown for a mapping F such that F (D) is a convex domain in C in

the references [11] and [12].

1. Introduction

Let Ω be a domain in C. A mapping F : Ω → C is said to be Lipschitz (resp. co-

Lipschitz ) in Ω if there exists a constant L > 0 (resp. C > 0) such that the following
inequality

|F (z1)− F (z2)| ≤ L|z1 − z2| (resp. C|z1 − z2| ≤ |F (z1)− F (z2)|)
holds for all z1, z2 ∈ Ω. We call F bi-Lipschitz in Ω if F is both Lipschitz and co-
Lipschitz in Ω. If F is a differentiable mapping at a point z ∈ Ω, then the differential
dzF and the Jacobian J[F ](z) of F at z satisfy respectively

(1.1) dzF (h) = ∂F (z)h + ∂̄F (z)h , h ∈ C,

and
J[F ](z) = |∂F (z)|2 − |∂̄F (z)|2,

where ∂ := 1
2
(∂x − i∂y) and ∂̄ := 1

2
(∂x + i∂y) are the so-called formal derivatives

operators. Given a ∈ C and r ∈ R we write D(a, r) := {z ∈ C : |z − a| < r}. Let
D := D(0, 1) and T := {z ∈ C : |z| = 1} stand for the unit disk and the unit circle,
respectively. From (1.1) it follows that for every z ∈ Ω where F is differentiable,

d+
z F := max

h∈T
| dzF (h)| = |∂F (z)| + |∂̄F (z)|
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and

d−

z F := min
h∈T

| dzF (h)| =
∣

∣|∂F (z)| − |∂̄F (z)|
∣

∣ .

A twice continuously differentiable mapping F : Ω → C is said to be a harmonic
mapping if it satisfies the Laplace equation ∂̄∂F = 0 in Ω. Lewy’s Theorem [7]
tells us that a harmonic mapping F in Ω is locally injective in Ω if and only if its
Jacobian J[F ](z) 6= 0 for every z ∈ Ω. A harmonic mapping F in Ω is said to be
sense-preserving if J[F ](z) > 0 for every z ∈ Ω. Suppose that F is a sense-preserving
diffeomorphic mapping in Ω. Then for every K ≥ 1, F is a K-quasiconformal
mapping in Ω if and only if

K(F ) := sup
z∈Ω

d+
z F

d−

z F
= sup

z∈Ω

|∂F (z)| + |∂̄F (z)|
|∂F (z)| − |∂̄F (z)| ≤ K.

Evidently, a sense-preserving diffeomorphic bi-Lipschitz mapping is always quasicon-
formal, while the converse is not true, in general.

Harmonic quasiconformal mappings are natural generalizations of conformal ones.
Recently, many mathematicians have studied such an active topic and obtained many
interesting results; cf., e.g., [1, 3, 6, 11, 12, 13, 14, 15]. It is known that every harmonic
mapping F defined in D admits the canonical representation F = H + G, where H
and G are holomorphic in D and are uniquely determined by the condition G(0) = 0.
In this case we call H (resp. G) the holomorphic part (resp. the anti-holomorphic

part) of F . One can refer to [3] and the references therein for more details about
harmonic mappings.

Given a function f : T → C and z = eiθ ∈ T we define

f ′(z) := lim
u→z

f(u)− f(z)

u− z
,(1.2)

ḟ(z) := lim
t→θ

f(eit)− f(eiθ)

t− θ
,(1.3)

provided the limits exist as well as f ′(z) := 0 and ḟ(z) := 0 otherwise. Obviously,

(1.4) ḟ(z) = izf ′(z) and |ḟ(z)| = |f ′(z)|.
We recall that the harmonic conjugate operator A is defined for a function f : T → C

integrable on T and z ∈ T as follows:

(1.5) A[f ](z) :=
1

2π
lim
r→1−

ˆ 2π

0

f(eit) Im
eit + rz

eit − rz
dt,

whenever the limit exists and A[f ](z) := 0 otherwise. It is known that for a.e. z ∈ T

the limit exists; cf. [4, Chap. III, Lemma 1.1]. For any Lebesgue measurable function
f : T → C we set

‖f‖∞ := ess sup
z∈T

|f(z)|.

Let L∞(T) denote the class of all such functions f with ‖f‖∞ < +∞.
In 2014, the first and second authors of this article improved Kalaj’s result [6,

Theorem 3.2] and obtained the following theorem; see [12, Theorem 3.4].

Theorem A. Let F : D → C be a sense-preserving injective harmonic mapping

such that F (D) is a bounded convex domain in C. Then the following conditions

are equivalent to each other:

(i) F is a quasiconformal and Lipschitz mapping;
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(ii) F is a quasiconformal mapping and its boundary limiting valued function f
is a Lipschitz mapping;

(iii) F is a quasiconformal mapping and the holomorphic part H of F is a bi-

Lipschitz mapping;

(iv) F is a bi-Lipschitz mapping;

(v) F has a continuous extension to the closure cl(D) of D and its boundary

limiting valued function f is absolutely continuous and satisfies the following

condition

0 < df , ‖ḟ‖∞ < +∞ and ‖A[ḟ ]‖∞ < +∞,

where

df := ess inf
z∈T

|ḟ(z)|.

For a sense-preserving harmonic mapping F = H +G in D, let

µF (z) :=
G′(z)

H ′(z)
, z ∈ D,

be the second complex dilatation of F . Then µF is a holomorphic mapping of D and

‖µF‖∞ := ess sup
z∈D

|µF (z)| = sup
z∈D

|µF (z)| ≤ 1.

In 2012 the first and second authors of this article proved the following theorem;
see [11, Theorem 3.8].

Theorem B. Suppose that F is a sense-preserving injective harmonic mapping

of D and that F (D) is a convex domain. Let F = H +G be the canonical represen-

tation of F . Then the following five conditions are equivalent to each other:

(i) F is a quasiconformal mapping;

(ii) there exists a constant L1 such that 1 ≤ L1 < 2 and

(1.6) |F (z2)− F (z1)| ≤ L1|H(z2)−H(z1)|, z1, z2 ∈ D;

(iii) there exists a constant l1 such that 0 ≤ l1 < 1 and

(1.7) |G(z2)−G(z1)| ≤ l1|H(z2)−H(z1)|, z1, z2 ∈ D;

(iv) there exists a constant L2 ≥ 1 such that

(1.8) |H(z2)−H(z1)| ≤ L2|F (z2)− F (z1)|, z1, z2 ∈ D;

(v) H ◦ F−1 and F ◦H−1 are bi-Lipschitz mappings.

Moreover, the following implications hold: (1.6) ⇒ ‖µF‖∞ ≤ L1 − 1, (1.7) ⇒
‖µF‖∞ ≤ l1 and (1.8) ⇒ ‖µF‖∞ ≤ 1− 1

L2

.

In this paper we consider the case where F is a sense-preserving harmonic map-
ping of D such that the holomorphic part H of F is convex, that is, H is injective and
H(D) is a convex domain. Then we show Theorem 4.2 and Theorem 3.3, which give
modified forms of Theorem A and Theorem B, respectively, under the assumption
that H is convex, instead of the assumption that F (D) is a convex domain. This is
done in Sections 4 and 3, respectively, where also some quite essential relevant results
are presented. In Section 2 we study the mappings of the form (2.1), which are very
useful in the context of harmonic mappings with the injective holomorphic part; cf.
Remark 2.1. As a result we infer Theorem 2.8 and Corollary 2.9, much relative to
[11, Theorems 3.2 and 3.4]. It is worth pointing out that some results are proved
in a more general case, where the convexity property is replaced by the rectifiably
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arcwise connectivity one; cf. [8]. For example Corollary 3.2 gives a variant of the
classical result by Clunie and Sheil-Small; cf. [1, Corollary 5.8]. In Section 5 we give
examples which illustrate our considerations.

2. Anti-holomorphic distortion of the identity mapping

Given a nonempty set Ω ⊂ C and a mapping φ : Ω → C we define the following
mapping

(2.1) Ω ∋ z 7→ I[φ](z) := z + φ(z).

Remark 2.1. The operator I is useful while studying harmonic mappings F =
H + G in D in the case where the holomorphic part H of F is injective. Then the
obvious decomposition holds

(2.2) F (z) = I[G ◦H−1] ◦H(z), z ∈ D.

The mapping I[G ◦H−1] is harmonic in H(D). Its holomorphic part is the identity

mapping and the anti-holomorphic one coincides with G ◦H−1.

By L+(φ) and L−(φ) we denote the Lipschitz constant of φ and the co-Lipschitz

constant of φ, respectively, i.e.,

L+(φ) := sup

{

∣

∣

∣

φ(z)− φ(w)

z − w

∣

∣

∣
: z, w ∈ Ω, z 6= w

}

L−(φ) := inf

{

∣

∣

∣

φ(z)− φ(w)

z − w

∣

∣

∣
: z, w ∈ Ω, z 6= w

}

.

Note that φ is a Lipschitz (resp. co-Lipschitz) mapping if and only if L+(φ) < +∞
(resp. L−(φ) > 0), and so φ is a bi-Lipschitz mapping if and only if L+(φ) < +∞
and L−(φ) > 0.

Lemma 2.2. If φ is a Lipschitz mapping in Ω, then I[φ] is Lipschitz with

(2.3) L+(I[φ]) ≤ 1 + L+(φ).

If additionally L+(φ) < 1, then I[φ] is co-Lipschitz with

(2.4) L−(I[φ]) ≥ 1− L+(φ);

in particular, I[φ] is injective in Ω.

Proof. For any Lipschitz mapping φ : Ω → C and z, w ∈ Ω we see by (2.1) that

| I[φ](z)− I[φ](w)| ≤ |z − w|+ |φ(z)− φ(w)| ≤ (1 + L+(φ))|z − w|,
which yields (2.3). If additionally L+(φ) < 1, then

| I[φ](z)− I[φ](w)| ≥ |z − w| − |φ(z)− φ(w)| ≥ (1− L+(φ))|z − w|.
Hence the inequality (2.4) holds and | I[φ](z)− I[φ](w)| > 0 provided z 6= w, and so
I[φ] is injective in Ω. �

For a C1-mapping φ in a domain Ω ⊂ C we define

(2.5) D+(φ) := sup
z∈Ω

d+
z φ = sup

z∈Ω

(

|∂φ(z)| + |∂̄φ(z)|
)

as well as

(2.6) D−(φ) := inf
z∈Ω

d−

z φ = inf
z∈Ω

∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣.
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Lemma 2.3. If φ is a C1-mapping in a domain Ω ⊂ C, then

(2.7) D+(φ) ≤ L+(φ) and D−(φ) ≥ L−(φ).

In particular, if φ is a holomorphic mapping in Ω, then

(2.8) D+(φ) ≤ L+(I[φ])− 1

as well as

(2.9) D+(φ) ≤ 1 ⇒ D+(φ) ≤ 1− L−(I[φ]).

Proof. Fix z ∈ Ω. Then D(z, rz) ⊂ Ω for some rz > 0 and

(2.10) φ(w)− φ(z) = ∂φ(z)(w − z) + ∂̄φ(z)(w − z) + o(w − z), w ∈ D(z, rz),

where o : C → C is a function such that o(w)/w → 0 as w → 0. Since ∂φ(z) =
|∂φ(z)|eiα and ∂̄φ(z) = |∂̄φ(z)|eiβ for certain α, β ∈ R, we conclude from (2.10) that
for all r ∈ (0; rz) and θ ∈ R,

∣

∣

∣

φ(z + reiθ)− φ(z)

r

∣

∣

∣
=

∣

∣

∣
|∂φ(z)|ei(α+θ) + |∂̄φ(z)|ei(β−θ) +

o(reiθ)

r

∣

∣

∣
.

Passage to the limit with r → 0+ leads to

(2.11) L+(φ) ≥ |∂φ(z)| + |∂̄φ(z)| = d+
z φ

for θ := (β − α)/2, and to

(2.12) L−(φ) ≤
∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣ = d−

z φ

for θ := (π + β − α)/2. Therefore the inequalities (2.7) follow directly from the ones
(2.11) and (2.12), respectively.

Assume now that φ is a holomorphic mapping in Ω. Then

d+
z I[φ] = 1 + |φ′(z)| = 1 + d+

z φ, z ∈ Ω.

Applying now the first inequality in (2.7) with φ replaced by I[φ] we derive the
inequality (2.8). If D+(φ) ≤ 1, then

d−

z (I[φ]) =
∣

∣1− |φ′(z)|
∣

∣ = 1− |φ′(z)| = 1− d+
z φ, z ∈ Ω.

Applying this time the second inequality in (2.7) with φ replaced by I[φ] we obtain
the implication (2.9), which completes the proof. �

According to [8], for any M ≥ 1 a domain Ω in C is said to be rectifiably M-

arcwise connected if for all z, w ∈ Ω there exists an arc γ joining the points z and w
in Ω with the length |γ|1 ≤ M |w− z|. Note that Ω is a convex domain if and only if
Ω is a rectifiably 1-arcwise connected domain.

Lemma 2.4. Given M ≥ 1 let φ be a C1-mapping in a rectifiably M-arcwise

connected domain Ω. Then the following implications hold:

(i) If D+(φ) < +∞, then φ and I[φ] are Lipschitz with

(2.13) L+(φ) ≤ M D+(φ) and L+(I[φ]) ≤ 1 +M D+(φ);

(ii) If D+(φ) < 1/M , then I[φ] is co-Lipschitz with

(2.14) L−(I[φ]) ≥ 1−M D+(φ).
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Proof. Fix M ≥ 1 and assume that Ω is a rectifiably M-arcwise connected
domain and φ is a C1-mapping in Ω. Fix arbitrarily chosen distinct points z, w ∈ Ω.
Then there exists a path γ : [0; 1] → Ω connecting the points γ(0) = z and γ(1) = w
such that |γ|1 ≤ M |w − z|. Since γ is a uniformly continuous mapping, the image
γ([0; 1]) is a compact subset of the domain Ω, and consequently there exist r > 0 and
n ∈ N such that

(2.15) γ([t− 1/n; t+ 1/n] ∩ [0; 1]) ⊂ D(γ(t), r) ⊂ Ω, t ∈ [0; 1].

Write Zp,q := {k ∈ Z : p ≤ k ≤ q} for p, q ∈ Z. Setting Z0,n ∋ k 7→ tk := k/n and

[0; 1] ∋ t 7→ γk(t) := tγ(tk) + (1− t)γ(tk−1), k ∈ Z1,n,

we conclude from (2.15) that for each k ∈ Z1,n, γk([0; 1]) ⊂ Ω. Therefore

|φ(w)− φ(z)| =
∣

∣

∣

n
∑

k=1

(φ(γ(tk))− φ(γ(tk−1))
∣

∣

∣

≤
n

∑

k=1

|φ(γk(1))− φ(γk(0))| =
n

∑

k=1

∣

∣

∣

ˆ 1

0

d

dt
(φ ◦ γk)(t) dt

∣

∣

∣

≤
n

∑

k=1

ˆ 1

0

|∂φ(γk(t))γ′

k(t) + ∂̄φ(γk(t))γ
′

k(t)| dt

≤
n

∑

k=1

ˆ 1

0

(|∂φ(γk(t))|+ |∂̄φ(γk(t))|)|γ′

k(t)| dt

=

n
∑

k=1

ˆ 1

0

D+(φ)(γk(t))|γ′

k(t)| dt ≤ D+(φ)

n
∑

k=1

ˆ 1

0

|γ′

k(t)| dt.

Since
n

∑

k=1

ˆ 1

0

|γ′

k(t)| dt =
n

∑

k=1

|γ(tk)− γ(tk−1)| ≤ |γ|1 ≤ M |w − z|,

we see that
|φ(w)− φ(z)| ≤ M D+(φ)|w − z|.

Thus φ is Lipschitz with L+(φ) ≤ M D+(φ), and the implications (i) and (ii) follow
directly from Lemma 2.2, which completes the proof. �

Lemma 2.5. Given M ≥ 1 let φ be a C1-mapping in a domain Ω such that φ(Ω)
is a rectifiably M-arcwise connected domain. If φ is injective in Ω and D−(φ) > 0,
then φ is co-Lipschitz with

(2.16) L−(φ) ≥ D−(φ)

M
.

Proof. Under the assumptions of the lemma there exists the inverse mapping
f : φ(Ω) → Ω to φ and

(2.17)
∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣ = d−

z φ ≥ D−(φ) > 0, z ∈ Ω.

Hence

| J[φ](z)| =
∣

∣|∂φ(z)|2 − |∂̄φ(z)|2
∣

∣(2.18)

=
(

|∂φ(z)| + |∂̄φ(z)|
)

·
∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣

≥
∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣

2 ≥ D−(φ)2 > 0, z ∈ Ω.
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Since φ is a C1-mapping in Ω, we conclude from (2.18) that f is differentiable in
φ(Ω) and

∂f ◦ φ(z) = ∂φ(z)

J[φ](z)
and ∂̄f ◦ φ(z) = − ∂̄φ(z)

J[φ](z)
, z ∈ Ω.

Combining this with (2.17) and (2.18) we see that for every z ∈ Ω,

|∂f ◦ φ(z)|+ |∂̄f ◦ φ(z)| = |∂φ(z)| + |∂̄φ(z)|
| J[φ](z)| =

1
∣

∣|∂φ(z)| − |∂̄φ(z)|
∣

∣

=
1

d−

z φ
≤ 1

D−(φ)
.

Therefore D+(f) ≤ 1/D−(φ) < +∞, and by Lemma 2.4, f is a Lipschitz mapping in
φ(Ω) with L+(f) ≤ M D+(f) ≤ M/D−(φ) < +∞. Since L−(φ) = 1/L+(f), we see
that φ is co-Lipschitz and the inequality (2.16) holds, which proves the lemma. �

Remark 2.6. Note that if Ω is a convex domain, then from Lemma 2.3 and
Lemma 2.4 we deduce that the equalities hold in place of the first inequality in (2.7),
the inequality in (2.8) and the second inequality in (2.9). Suppose now that Ω is
an arbitrary simply connected domain in C. If φ is an injective C1-mapping in Ω
and φ(Ω) is a convex domain, then combining the second inequality in (2.7) with the
inequality (2.16) we obtain D−(φ) = L−(φ), and so the equality holds in place of the
second inequality in (2.7).

Corollary 2.7. Given M ≥ 1 and R > 0 let H be a conformal mapping in D such

that H(D) is a rectifiably M-arcwise connected domain and D(H(0), R) ⊂ H(D).
Then H is co-Lipschitz with

(2.19) L−(H) ≥ D−(H)

M
≥ R

4M
.

Proof. Under the assumption of the corollary we see that the mapping D ∋ z 7→
H̃(z) := H(z) − H(0) maps D onto a rectifiably M-arcwise connected domain and

D(0, R) ⊂ H̃(D). Since H̃(0) = 0 we conclude from [10, Corollary 3.1] (see also [5,
Theorem 2.5]) that

|H ′(z)| = |H̃ ′(z)| ≥ R

4
, z ∈ D.

Therefore D−(H) ≥ R/4, and so the second inequality in (2.19) holds. Lemma 2.5
now shows that H is a co-Lipschitz mapping and the first inequality in (2.19) holds,
which is our claim. �

Let us consider the following deformations of a harmonic mapping F = H + G
in D,

(2.20) D ∋ z 7→ Fε(z) := H(z) + εG(z), ε ∈ C.

Using now the decomposition (2.2) we derive the following theorem.

Theorem 2.8. Let F = H + G be a sense-preserving harmonic mapping in

D. Suppose that H is injective, H(D) is a rectifiably M-arcwise connected domain

with a given M ≥ 1 and that F is not a conformal mapping. Then for every ε ∈
D(1/M‖µF‖∞), Fε is a quasiconformal harmonic and co-Lipschitz mapping.

Proof. Fix ε ∈ D(1/M‖µF‖∞). By setting H(D) ∋ z 7→ φ(z) := εG ◦H−1(z) we
see that for every z ∈ H(D),

(2.21) |φ′(z)| =
∣

∣

∣

∣

ε
G′(H−1(z))

H ′(H−1(z))

∣

∣

∣

∣

= |ε||µF (H
−1(z))| ≤ |ε|‖µF‖∞.
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Hence M D+(φ) ≤ M |ε|‖µF‖∞ < 1. From Lemma 2.4 it follows that I[φ] is bi-
Lipschitz, and so I[φ] is quasiconformal. Since Fε = I[φ] ◦ H , Fε is a quasiconfor-
mal mapping as a composition of quasiconformal ones. By the conformality of H ,
D(H(0), R) ⊂ H(D) for a certain positive number R. Then by Corollary 2.7 we
see that H is a co-Lipschitz mapping. Therefore Fε is a co-Lipschitz mapping as a
composition of co-Lipschitz ones, which proves the theorem. �

Let us recall that a holomorphic function H : D → C is said to be convex if H is
injective and H(D) is a convex domain, i.e., H maps conformally D onto a convex
domain.

Corollary 2.9. Let F = H +G be a sense-preserving harmonic mapping in D.

Suppose that H is convex and that F is not a conformal mapping. Then for every

ε ∈ D(1/‖µF‖∞), Fε is a quasiconformal harmonic and co-Lipschitz mapping. In

particular, if additionally F is quasiconformal, then F is a co-Lipschitz mapping.

Proof. Fix ε ∈ D(1/‖µF‖∞). Since H(D) is convex, we see that H(D) is
rectifiably 1-arcwise connected. From Theorem 2.8 it follows that Fε is a quasi-
conformal harmonic and co-Lipschitz mapping. If F is additionally quasiconformal,
then 1 ∈ D(1/‖µF‖∞), and hence F is a co-Lipschitz mapping since F = F1. This
completes the proof. �

3. A counterpart of Theorem B

Lemma 3.1. Given M ≥ 1 suppose that F = H + G is a sense-preserving

harmonic mapping in D, H is injective in D and H(D) is a rectifiably M-arcwise

connected domain. Then the following estimations hold:

(3.1) |G(z2)−G(z1)| ≤ M‖µF‖∞|H(z2)−H(z1)|, z1, z2 ∈ D,

as well as

(1−M‖µF‖∞)|H(z2)−H(z1)| ≤ |F (z2)− F (z1)|
≤ (1 +M‖µF‖∞)|H(z2)−H(z1)|, z1, z2 ∈ D.

(3.2)

If additionally M‖µF‖∞ < 1, then F ◦H−1 is a bi-Lipschitz mapping with

(3.3) L+(F ◦H−1) ≤ 1 +M‖µF‖∞ and L−(F ◦H−1) ≥ 1−M‖µF‖∞.

Proof. Under the assumption of the lemma we define the mapping φ := G◦H−1.
Then D+(φ) = ‖µF‖∞ ≤ 1, and by Lemma 2.4, L+(φ) ≤ M D+(φ) = M‖µF‖∞. This
yields the estimation (3.1). Using the formula (2.2) we have F = I[φ] ◦ H . From
Lemma 2.4 it follows that L+(I[φ]) ≤ 1 + M D+(φ) = 1 + M‖µF‖∞, which implies
the second estimation in (3.2). If M‖µF‖∞ ≥ 1, then the first estimation in (3.2) is
obvious. Otherwise, we have M‖µF‖∞ < 1. Applying Lemma 2.4 once more we see
that L−(I[φ]) ≥ 1 − M D+(φ) = 1 − M‖µF‖∞, and so the first estimation in (3.2)
holds in both cases. Since F ◦ H−1 = I[φ] we obtain the inequalities (3.3), which
completes the proof. �

Corollary 3.2. Given M ≥ 1 suppose that F = H + G is a sense-preserving

harmonic mapping in D, H is injective in D and H(D) is a rectifiably M-arcwise

connected domain. Then the following inequality

(3.4) |G(z2)−G(z1)| < max(1,M‖µF‖∞)|H(z2)−H(z1)|
holds for all z1, z2 ∈ D such that z1 6= z2. If additionally M‖µF‖∞ ≤ 1, then F is an

injective mapping.
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Proof. Fix z1, z2 ∈ D such that z1 6= z2. Under the assumption of the corollary
suppose that M‖µF‖∞ ≥ 1 and

(3.5) |G(z2)−G(z1)| = M‖µF‖∞|H(z2)−H(z1)|.
Since H is injective, we can consider the following holomorphic function

D \ {z1} ∋ z 7→ Φ(z) :=
G(z)−G(z1)

H(z)−H(z1)
.

From Lemma 3.1 it follows that |Φ(z)| ≤ M‖µF‖∞ for z ∈ D \ {z1}. Hence and
by (3.5) we see that the function |Φ| attains the maximum value at the point z2.
Then by the maximum principle for holomorphic functions we conclude that Φ is a
constant function. Since Φ(z) → G′(z1)/H

′(z1) as z → z1 and F is sense-preserving,
we conclude from (3.5) that

M‖µF‖∞ = |Φ(z2)| =
∣

∣

∣

G′(z1)

H ′(z1)

∣

∣

∣
= |µF (z1)| < 1,

which contradicts the assumption M‖µF‖∞ ≥ 1. Therefore, if M‖µF‖∞ ≥ 1, then
the equality (3.5) does not hold, and so

(3.6) |G(z2)−G(z1)| < M‖µF‖∞|H(z2)−H(z1)|.
If M‖µF‖∞ < 1, then by Lemma 3.1,

|G(z2)−G(z1)| ≤ M‖µF‖∞|H(z2)−H(z1)| < |H(z2)−H(z1)|.
Combining this with (3.6) we get the inequality (3.4). Assume now that M‖µF‖∞ ≤
1. From the inequality (3.4) it follows that for all z1, z2 ∈ D such that z1 6= z2,

|F (z2)− F (z1)| = |H(z2)−H(z1) +G(z2)−G(z1)|
≥ |H(z2)−H(z1)| − |G(z2)−G(z1)| > 0.

Therefore, F is an injective mapping, which completes the proof. �

Theorem 3.3. Let F = H + G be a sense-preserving harmonic mapping in D

such that H is convex. Then F is injective and the following five conditions are

equivalent to each other:

(i) F is a quasiconformal mapping;

(ii) there exists a constant L1 such that 1 ≤ L1 < 2 and

(3.7) |F (z2)− F (z1)| ≤ L1|H(z2)−H(z1)|, z1, z2 ∈ D;

(iii) there exists a constant l1 such that 0 ≤ l1 < 1 and

(3.8) |G(z2)−G(z1)| ≤ l1|H(z2)−H(z1)|, z1, z2 ∈ D;

(iv) there exists a constant L2 ≥ 1 such that

(3.9) |H(z2)−H(z1)| ≤ L2|F (z2)− F (z1)|, z1, z2 ∈ D;

(v) H ◦ F−1 and F ◦H−1 are bi-Lipschitz mappings.

Proof. Under the assumption of the theorem we see that H(D) is a convex
domain. Therefore H(D) is a rectifiably M-arcwise connected domain with M := 1.
Hence M‖µF‖∞ ≤ 1, and by Corollary 3.2, F is an injective mapping. Applying
Lemma 3.1 we see that the condition (i) implies the remaining conditions (ii)–(v).
Thus we need to show the inverse implications. Setting φ := G ◦ H−1 we see that
F = I[φ] ◦H and G = φ ◦H .
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(ii) ⇒ (iii): From the condition (3.7) it follows that L+(I[φ]) ≤ L1. Then
Lemma 2.3 shows that D+(φ) ≤ L+(I[φ]) − 1 ≤ l1 := L1 − 1 < 1. Applying now
Lemma 2.4 with M := 1 we see that L+(φ) ≤ l1, which leads to the estimation (3.8).
Thus (ii) implies (iii).

(iii) ⇒ (iv): From the condition (3.8) it follows that L+(φ) ≤ l1 < 1. Then
Lemma 2.2 shows that L−(I[φ]) ≥ 1−L+(φ) ≥ 1−l1 > 0. Setting now L2 := 1/(1−l1)
we see that L2 ≥ 1 and the the estimation (3.9) holds. Thus (iii) implies (iv).

(iv) ⇒ (v): From the condition (3.9) we have L−(I[φ]) ≥ 1/L2. Applying now
Lemma 2.4 with M := 1 we see that L+(I[φ]) ≤ 1 + D+(φ) ≤ 2. Therefore I[φ] is a
bi-Lipschitz mapping. Since F ◦H−1 = I[φ], F ◦H−1 is a bi-Lipschitz mapping, and
so is the inverse mapping H ◦ F−1. Thus (iv) implies (v).

(v) ⇒ (i): Since the mapping F is sense-preserving, the condition (v) implies
that F ◦H−1 is a quasiconformal mapping. Thus F is a qusiconformal mapping as a
composition of a qusiconformal one with the conformal mapping H . Thus (v) implies
(i), which completes the proof. �

Remark 3.4. Let F = H + G be a sense-preserving harmonic mapping in D

such that H is injective. Then the conditions (i)–(v) in Theorem 3.3 are involved by
the implications: (iii) ⇒ (ii), (iii) ⇒ (iv) and (iv) ⇒ (i). Moreover, the following
implications hold: (3.7) ⇒ ‖µF‖∞ ≤ L1 − 1, (3.8) ⇒ ‖µF‖∞ ≤ l1 and (3.9) ⇒
‖µF‖∞ ≤ 1 − 1

L2

. If additionally F is injective, then the implication (ii)⇒(i) holds.

Note that we do not assume here that Ω := H(D) is a convex domain.
For the proof let us consider the mapping φ := G ◦ H−1. Then F = I[φ] ◦ H

and G = φ ◦H . Since F is a sense-preserving harmonic mapping in D, the mapping
φ := G ◦H−1 satisfies the condition

(3.10) |φ′(z)|2 =
∣

∣

∣

∣

G′(H−1(z))

H ′(H−1(z))

∣

∣

∣

∣

2

= 1− J[F ](H−1(z))

|H ′(H−1(z))|2 < 1, z ∈ Ω,

and so d+
z φ < 1 for z ∈ Ω. Since H is a conformal mapping and F = I[φ] ◦H we see

that

(3.11) ‖µF‖∞ = D+(φ) ≤ 1.

Assume that the condition (3.7) holds. Then L+(I[φ]) ≤ L1, and by Lemma 2.3
we get D+(φ) ≤ L+(I[φ]) − 1 ≤ L1 − 1. Combining this with (3.11) we see that
‖µF‖∞ ≤ L1 − 1. This yields the implication (3.7) ⇒ ‖µF‖∞ ≤ L1 − 1. Thus the
condition (ii) implies ‖µF‖∞ < 1, and so F is a quasiregular mapping. Hence the
implication (ii)⇒(i) holds provided F is injective.

Assume now that the condition (3.8) holds. Then L+(φ) ≤ l1 < 1. By Lem-
mas 2.2 and 2.3 we see that D+(φ) ≤ L+(I[φ])−1 ≤ L+(φ) ≤ l1 < 1. Combining this
with (3.11) we obtain ‖µF‖∞ ≤ l1, which yields the implication (3.8) ⇒ ‖µF‖∞ ≤ l1.

Assume finally that the condition (3.9) holds. Then L−(I[φ]) ≥ 1/L2. The
condition (3.9) implies, by the injectivity of H , that F is injective. Since D+(φ) ≤ 1,
we conclude from Lemma 2.3 that D+(φ) ≤ 1 − L−(I[φ]) ≤ 1 − 1/L2. Combining
this with (3.11) we have ‖µF‖∞ ≤ 1 − 1/L2. This yields the implication (3.9) ⇒
‖µF‖∞ ≤ 1− 1/L2, which leads to the implication (iv) ⇒ (i).

The implications (iii) ⇒ (ii) and (iii) ⇒ (iv) follow directly from Lemma 2.2 and
the inequality L+(φ) ≤ l1.
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4. A counterpart of Theorem A

Let P[f ] stand for the Poisson integral of an integrable function f : T → C, i.e.,

D ∋ z 7→ P[f ](z) :=
1

2π

ˆ 2π

0

f(eit)
1− |z|2
|eit − z|2 dt.

If f is continuous, then the Poisson integral P[f ] provides the unique solution to the
Dirichlet problem for the unit disk D with the boundary function f . This means
that P[f ] is a harmonic mapping in D which has a continuous extension to the closed
disk cl(D) and its boundary limiting valued function coincides with f . Given an

absolutely continuous function f : T → C we know that ḟ is integrable on T, and
therefore we can define

(4.1) d∗f := ess inf
z∈T

Im
(

ḟ(z)A[ḟ ](z)
)

.

Lemma 4.1. Let K ≥ 1 and let F be a K-quasiconformal and Lipschitz har-

monic mapping in D. Then F has a continuous extension F̃ to the closure cl(D) of

D and the restriction f of F̃ to T is absolutely continuous on T and satisfies the

following conditions

(4.2) ‖A[ḟ ]‖∞ ≤
√
2 L+(F ) and ‖ḟ‖∞ ≤ L+(F )

as well as

(4.3)
K

K2 + 1

(

|A[ḟ ](z)|2 + |ḟ(z)|2
)

≤ Im
(

ḟ(z)A[ḟ ](z)
)

for a.e. z ∈ T;

in particular

(4.4) d∗f ≥ K

K2 + 1

(

ess inf
z∈T

|A[ḟ ](z)|2 + d2f
)

.

If additionally F is a co-Lipschitz mapping, then

(4.5) d∗f ≥ L−(F )2 , df ≥ L−(F )2√
2 L+(F )

and ess inf
z∈T

|A[ḟ ](z)| ≥ L−(F )2

L+(F )
.

Proof. Let F be a Lipschitz harmonic mapping in D. Then L+(F ) < +∞.

From [12, Theorem 3.2] we know that F has a continuous extension F̃ to the closure
cl(D) and that the restriction f of F̃ to T is absolutely continuous and satisfies the
inequalities (4.2).

Assume now that F is additionally K-quasiconformal with a given K ≥ 1. Then
‖µ[F ]‖∞ ≤ (K − 1)/(K + 1), and so

(4.6)
|∂F (z)|2 + |∂̄F (z)|2
|∂F (z)|2 − |∂̄F (z)|2 =

1 + |µ[F ](z)|2
1− |µ[F ](z)|2 ≤ K2 + 1

2K
, z ∈ D.

Since F = P[f ], we conclude from [12, Corollary 1.3 and (1.18)] that for a.e. z ∈ T,

lim
r→1−

∂F (rz) =
z

2
(A[ḟ ](z) + zf ′(z)),

lim
r→1−

∂̄F (rz) =
z

2
(A[ḟ ](z)− zf ′(z)).

(4.7)
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Hence and by (1.4) we obtain for a.e. z ∈ T,

lim
r→1−

(

|∂F (rz)|2 + |∂̄F (rz)|2
)

=
1

4
|A[ḟ ](z)− iḟ(z)|2 + 1

4
|A[ḟ ](z) + iḟ(z)|2(4.8)

=
1

2

(

|A[ḟ ](z)|2 + |ḟ(z)|2
)

as well as

lim
r→1−

(

|∂F (rz)|2 − |∂̄F (rz)|2
)

=
1

4
|A[ḟ ](z)− iḟ(z)|2 − 1

4
|A[ḟ ](z) + iḟ(z)|2(4.9)

= Im
(

ḟ(z)A[ḟ ](z)
)

.

Combining (4.6) with (4.8) and (4.9) we obtain the condition (4.3), which implies
the inequality (4.4).

Assume finally that F is co-Lipschitz, i.e., L−(F ) > 0. Since

|∂F (z)| − |∂̄F (z)| ≥ L−(F ), z ∈ D,

we see that for every z ∈ D,

|∂F (z)|2 − |∂̄F (z)|2 = (|∂F (z)| − |∂̄F (z)|)(|∂F (z)|+ |∂̄F (z)|) ≥ L−(F )2.

Combining this with (4.9) and (4.1) yields d∗f ≥ L−(F )2 > 0. Since for a.e. z ∈ T,

Im
(

ḟ(z)A[ḟ ](z)
)

≤ |ḟ(z)| · |A[ḟ ](z)| ≤ ‖ḟ‖∞|A[ḟ ](z)|,

we conclude from (4.1) that for a.e. z ∈ T,

L−(F )2 ≤ d∗f ≤ ‖ḟ‖∞|A[ḟ ](z)|,
which implies

ess inf
z∈T

|A[ḟ ](z)| ≥
d∗f

‖ḟ‖∞
≥ L−(F )2

L+(F )
.

Likewise, we get

df ≥
d∗f

‖A[ḟ ]‖∞
≥ L−(F )2√

2L+(F )
.

Thus the inequalities (4.5) hold, which completes the proof. �

Theorem 4.2. Let F = H+G be a sense-preserving injective harmonic mapping

in D such that the holomorphic part H of F is convex. Then the following five

conditions are equivalent to each other:

(i) F is a quasiconformal and Lipschitz mapping;

(ii) F is a quasiconformal mapping and identical with the Poisson integral P[f ]
of a Lipschitz function f : T → C;

(iii) F is a quasiconformal mapping and H is a bi-Lipschitz mapping;

(iv) F is a bi-Lipschitz mapping;

(v) F has a continuous extension F̃ to the closure cl(D) of D and the restriction f

of F̃ to T is absolutely continuous on T and satisfies the following conditions

0 < d∗f , ‖ḟ‖∞ < +∞ and ‖A[ḟ ]‖∞ < +∞.

Proof. We will prove the following cycle of five implications.
(i) ⇒ (ii): Suppose that the condition (i) holds. Then by [12, Theorem 3.2] F

has the continuous extension F̃ to the closure cl(D) and the restriction f of F̃ to T

is a Lipschitz mapping. Since F = P[f ], we see that (i) implies (ii).
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(ii) ⇒ (iii): Suppose that the condition (ii) holds. Since the Lipschitz function
f : T → C is continuous in T, F = P[f ] has a continuous extension F̃ to the

closure cl(D) and the restriction of F̃ to T is identical with f . Moreover, F is a K-
quasiconformal mapping for some K ≥ 1. By Theorem 3.3, F ◦H−1 is a bi-Lipschitz
mapping. By the conformality of H , D(H(0), R) ⊂ H(D) for some positive number
R. Then by Corollary 2.7 we see that H is a co-Lipschitz mapping. Therefore F is a
co-Lipschitz mapping as a composition of co-Lipschitz ones. Hence F̃ is continuous
and co-Lipschitz in cl(D), and consequently F (D) is a bounded Jordan domain.
Applying now [9, Lemma 2.3] we have

sup
z∈D

|H ′(z)| = sup
z∈D

|∂F (z)| ≤ K + 1

2
L+(f) < +∞,

and thus, by Lemma 2.4, H is a Lipschitz mapping. Therefore H is a bi-Lipschitz
mapping, and so (ii) implies (iii).

(iii) ⇒ (iv): Suppose that the condition (iii) holds. Then Theorem 3.3 shows
that F ◦ H−1 is a bi-Lipschitz mapping, and so is F . This shows that (iii) implies
(iv).

(iv) ⇒ (v): Suppose that the condition (iv) holds. Then L+(F ) < +∞ and
L−(F ) > 0. Lemma 4.1 now shows that the condition (v) holds, and so (iv) implies
(v).

(v) ⇒ (i): Suppose that the condition (v) holds. Since F is a sense-preserving
injective harmonic mapping, we conclude from Lewy’s theorem that the Jacobian
J[F ] is positive in D; cf. [7]. Therefore

(4.10) |∂F (z)|2 − |∂̄F (z)|2 = J[F ](z) > 0, z ∈ D,

and so the second dilatation

(4.11) D ∋ z 7→ ω(z) :=
∂̄F (z)

∂F (z)
=

G′(z)

H ′(z)

of F is well defined as well as

(4.12) |ω(z)| < 1, z ∈ D.

Applying now [2, Theorem 1.3] we see that there exists a function ω∗ : T → C such
that

(4.13) ω∗(z) = lim
r→1−

ω(rz) for a.e. z ∈ T.

From (4.7) and (1.4) it follows that for a.e. z ∈ T,

4| lim
r→1−

∂F (rz)|2 =
∣

∣A[ḟ ](z)− iḟ(z)
∣

∣

2 ≤ 2
∣

∣A[ḟ ](z)
∣

∣

2
+ 2

∣

∣ḟ(z)
∣

∣

2
.

Therefore

(4.14) | lim
r→1−

∂F (rz)|2 ≤ Mf :=
1

2

∥

∥A[ḟ ]
∥

∥

2

∞
+

1

2

∥

∥ḟ
∥

∥

2

∞
< +∞ for a.e. z ∈ T.

Using now (4.9) we have

lim
r→1−

J[F ](rz) = Im
(

ḟ(z)A[ḟ ](z)
)

≥ d∗f > 0 for a.e. z ∈ T.

Combining this with (4.10), (4.11), (4.13) and (4.14) we see that for a.e. z ∈ T,

Mf (1− |ω∗(z)|2) ≥ lim
r→1−

|∂F (rz)|2(1− |ω(rz)|2) = lim
r→1−

J[F ](rz) ≥ d∗f > 0.
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Hence Mf > 0 and

‖ω∗‖2
∞

≤ 1−
d∗f
Mf

< 1.

This implies, by (4.12) and (4.13), that

(4.15)
∣

∣

∣

∂̄F (z)

∂F (z)

∣

∣

∣
= |ω(z)| = |P[ω∗](z)| ≤ ‖ω∗‖∞ ≤

√

1−
d∗f
Mf

< 1, z ∈ D.

Therefore F is a quasiconformal mapping. By [12, Theorem 3.2] F is also a Lipschitz
mapping. Thus the condition (i) holds. This leads to the implication (v) ⇒ (i), and
the proof is complete. �

Remark 4.3. Note that the implications (iv) ⇒ (v) and (v) ⇒ (i) in Theorem 4.2
hold without the assumption that H is convex.

Corollary 4.4. Let F = H+G be a sense-preserving injective harmonic mapping

in D such that the holomorphic part H of F is convex. If F is a quasiconformal and

Lipschitz mapping, then F has a continuous extension F̃ to the closure cl(D) of D

and the restriction f of F̃ to T is absolutely continuous on T and satisfies

(4.16) 0 < df , ‖ḟ‖∞ < +∞, ‖A[ḟ ]‖∞ < +∞ and 0 < ess inf
z∈T

|A[ḟ ](z)|.

Proof. By Theorem 4.2 we see that F is a bi-Lipschitz mapping. This means, that
L+(F ) < +∞ and L−(F ) > 0. Then the condition (4.16) follows from Lemma 4.1.

�

5. Examples

In this section we collect a few examples which complete our considerations.

Example 5.1. Given a constant k satisfying 0 ≤ k < 1, consider the mapping
C ∋ z 7→ φ(z) := kz. Then F := I[φ]◦H is a K-quasiconformal harmonic mapping in
D with K := 1+k

1−k
for every conformal mapping H in D. Evidently, F (D) is a convex

domain if and only if H(D) is so. Suppose that H is convex. From Corollary 2.9
it follows that F (ε := 1) and H (ε := 0) are co-Lipschitz mappings. Moreover,
from Theorem 4.2 we see that F is a bi-Lipschitz mapping if and only if H is so. In
particular, the mapping

D ∋ z 7→ F (z) :=
1

2
log

(

1 + z

1− z

)

+
k

2
log

(

1 + z

1− z

)

is co-Lipschitz but not Lipschitz, because the mapping

D ∋ z 7→ H(z) :=
1

2
log

(

1 + z

1− z

)

maps the unit disk D onto the strip {z ∈ C : | Im z| < π/4}, which is an unbounded
convex domain. Since

d−

z F =

∣

∣

∣

∣

∣

∣

∣

1

1− z2

∣

∣

∣
−
∣

∣

∣

k

1− z2

∣

∣

∣

∣

∣

∣

∣

=
1− k

|1− z2| >
1− k

2
, z ∈ D,

we conclude from Lemma 2.5 that

1− k

2
|z1 − z2| ≤ |F (z1)− F (z2)|, z1, z2 ∈ D.
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Example 5.2. Similarly as in Example 5.1 we see that for any constants α and
k satisfying 0 < α ≤ 1 and 0 ≤ k < 1 the mapping

D ∋ z 7→ F (z) := (1− z)α + k(1− z̄)α

is harmonic co-Lipschitz and K-quasiconformal with K := 1+k
1−k

, because the mapping

D ∋ z 7→ H(z) := (1− z)α

maps the unit disk D onto a convex domain. However, this time the image H(D) is
bounded. Since

d+
z F =

∣

∣

∣

−α

(1− z)1−α

∣

∣

∣
+
∣

∣

∣

−kα

(1− z̄)1−α

∣

∣

∣
=

(1 + k)α

|1− z|1−α
, z ∈ D,

we see that D+(F ) = +∞ provided 0 < α < 1. Lemma 2.3 now shows that L+(F ) =
+∞, and so F is not a Lipschitz mapping for α ∈ (0; 1). Therefore F is bi-Lipschitz
if and only if α = 1. Moreover, if α = 1, then

|F (z1)− F (z2)| ≤ (1 + k)|z1 − z2|, z1, z2 ∈ D.

Since

d−

z F =

∣

∣

∣

∣

∣

∣

∣

−α

(1− z)1−α

∣

∣

∣
−

∣

∣

∣

−kα

(1− z̄)1−α

∣

∣

∣

∣

∣

∣

∣

=
(1− k)α

|1− z|1−α
>

(1− k)α

21−α
, z ∈ D,

we conclude from Lemma 2.5 that
(1− k)α

21−α
|z1 − z2| ≤ |F (z1)− F (z2)|, z1, z2 ∈ D.

Example 5.3. Given α ∈ (0; 1] we define the functions

D ∋ z 7→ H(z) :=
1− (1− z)α

α
and D ∋ z 7→ G(z) :=

ˆ z

0

ζH ′(ζ) dζ.

The holomorphic part H of the harmonic mapping F := H + G in D is convex and
H(0) = 0 and H ′(0) = 1. Integrating by substitution we can determine explicitly the
anti-holomorphic part G of F as follows

G(z) = −
ˆ 1−z

1

(1− η)ηα−1 dη =
1− (1− z)α(1 + αz)

α(α+ 1)
, z ∈ D.

In particular F (z) = z + z2/2 for z ∈ D provided α = 1. Since G′(z) = zH ′(z)
for z ∈ D we see that ‖µFε

‖∞ = |ε| for a fixed ε ∈ C, where Fε is the mapping
given by the formula (2.20). From Theorem 3.3 it follows that Fε is an injective
harmonic mapping if and only if |ε| ≤ 1. Therefore, Fε is quasiconformal if and only
if |ε| < 1. Moreover, by [1, Theorem 5.17] we know that Fε is a close-to-convex
mapping provided |ε| ≤ 1. Suppose that 0 < α < 1. Since H ′(z) = (1 − z)α−1 for
z ∈ D, we deduce from Lemma 2.3 that L+(H) ≥ D+(H) = +∞, and so H is not
a Lipschitz mapping. Hence and by Theorem 4.2, Fε is not a Lipschitz mapping for
ε ∈ D.

Example 5.4. Given ε ∈ C, |ε| ≤ 1, we determine the holomorphic mappings
H and G in D satisfying the following conditions

(5.1) H(z)−G(z) = z and
G′(z)

H ′(z)
= ε2z2, z ∈ D,

as well as H(0) = 0 = G(0). Hence

(5.2) H ′(z) =
1

1− ε2z2
, z ∈ D,



416 Dariusz Partyka, Ken-ichi Sakan and Jian-Feng Zhu

and so

H(z) =
1

2ε
log

1 + εz

1− εz
and G(z) = −z +

1

2ε
log

1 + εz

1− εz
, z ∈ D,

provided ε 6= 0, and otherwise H(z) = z and G(z) = 0 for z ∈ D. Then the
holomorphic part H of the harmonic mapping F := H +G is convex. By (5.1), the
Jacobian J[F ] is positive in D and ‖µF‖∞ = |ε|2. Then Theorem 3.3 shows that F is
an injective harmonic mapping. Therefore, F is quasiconformal if and only if |ε| < 1.
By Lemmas 2.4 and 2.5 we have

(5.3) L+(H) ≤ D+(H) ≤ 1

1− |ε|2 and L−(H) ≥ D−(H) ≥ 1

1 + |ε|2 , ε ∈ D,

and so H is a bi-Lipschitz mapping for ε ∈ D. Hence and by Theorem 4.2, F is
a bi-Lipschitz mapping for ε ∈ D. Moreover, from Lemma 3.1 we deduce that for
every ε ∈ D,

(1− |ε|2)|H(z2)−H(z1)| ≤ |F (z2)−F (z1)| ≤ (1+ |ε|2)|H(z2)−H(z1)|, z1, z2 ∈ D,

which combined with (5.3) leads to

1− |ε|2
1 + |ε|2 |z2 − z1| ≤ |F (z2)− F (z1)| ≤

1 + |ε|2
1− |ε|2 |z2 − z1|, z1, z2 ∈ D.

Example 5.5. Fix k ∈ D and define C ∋ z 7→ φ(z) := kz. Since the mapping
D ∋ z 7→ H(z) := (1+ z)2 is injective, as in Example 5.1 we see that F := I[φ] ◦H is
a quasiconformal harmonic mapping in D. It is clear that F is a Lipschitz mapping,
but H(D) is not a convex domain. Since

L−(F ) ≤ |∂F (z)| − |∂̄F (z)| = 2(1− |k|)|1 + z|, z ∈ D,

we see that L−(F ) = 0, and so F is not co-Lipschitz. Moreover,

d∗f = ess inf
z∈T

lim
r→1−

J[F ](rz) = 4(1− |k|2) ess inf
z∈T

|1 + z|2 = 0,

where f is the boundary limiting valued function of F . Thus the mapping F satisfies
the property (i), but does not satisfy the properties (iv) and (v) in Theorem 4.2.

Example 5.6. Let D ∋ z 7→ F (z) := I[φ](z) and T ∋ z 7→ f(z) := I[φ](z),
where

(5.4) C ∋ z 7→ φ(z) := −ez−1 + e−1.

Since φ is a holomorphic function in C, f is absolutely continuous in T and F = P[f ].
By the formula (5.4),

J[F ](z) = |∂F (z)|2 − |∂̄F (z)|2 = 1−
∣

∣ez−1
∣

∣

2
= 1− e2Re(z−1) > 0, z ∈ D.

Thus F is a sense-preserving harmonic mapping in D and its holomorphic part is
convex as the identity mapping. From Theorem 3.3 it follows that F is injective. By
Lemma 2.4 we see that F is a Lipschitz mapping. However, F is not quasiconformal,
because

‖µF‖∞ = sup
z∈D

∣

∣ez−1
∣

∣ = sup
z∈D

eRe(z−1) = 1.

By the formula (1.4) we have

(5.5) ḟ(z) = i(z + zez−1), z ∈ T,

and therefore ḟ is continuous in T. Hence

(5.6) df = ess inf
z∈T

|ḟ(z)| = min
z∈T

|z + zez−1| = |z0 + z0ez0−1|
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for some z0 ∈ T. If z0+z0ez0−1 = 0, then 1 = |z0| = |z0ez0−1| = eRe(z0−1), and thereby
z0 = 1, which is impossible. Thus df > 0. From (5.8) we deduce that the function

A[ḟ ] is continuous in T, and so ‖ḟ‖∞ < +∞ and ‖A[ḟ ]‖∞ < +∞. Therefore the
inequality d∗f > 0 in condition (v) of Theorem 4.2 can not be replaced by df > 0.

In order to determine the function A[ḟ ] assume that ϕ : T → C is a function
which has a holomorphic extension Φ to a domain containing cl(D). From the formula
(1.5) it follows that for every z ∈ T,

A[Reϕ](z) = ImΦ(z)− ImΦ(0) and A[Imϕ](z) = −ReΦ(z) + ReΦ(0),

which leads to

A[ϕ](z) = A[Reϕ+ i Imϕ](z) = A[Reϕ](z) + iA[Imϕ](z)

= ImΦ(z)− i ReΦ(z)− [ImΦ(0)− i ReΦ(0)].

Therefore,

(5.7) A[ϕ](z) =
1

i
[Φ(z) − Φ(0)], z ∈ T.

Applying now (5.7) we deduce from (5.5) that

(5.8) A[ḟ ](z) =
iz

i
+

(−izez−1

i

)

= z − zez−1, z ∈ T,

which gives A[ḟ ](1) = 0. Hence ess infz∈T |A[ḟ ](z)| = 0 which means that Corol-
lary 4.4 does not hold without the quasiconformality assumption on F . Moreover,
by (4.1), (4.9) and (5.5) we have d∗f = 0. Therefore, the inequality d∗f > 0 is not
valid in general provided P[f ] is a sense-preserving harmonic mapping in D and its
holomorphic part is convex.
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