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Abstract. We construct a (non-removable) Jordan curve Γ and a non-Möbius homeomorphism

of the Riemann sphere which is conformal on the complement of Γ and maps the curve Γ onto itself.

The curve is flexible in the sense of Bishop and may be taken to have zero area. The existence of

such curves and conformal homeomorphisms is closely related to the non-injectivity of conformal

welding.

1. Introduction

Let D be the open unit disk, let D
∗ := Ĉ \D be the complement of the closed

unit disk in the Riemann sphere Ĉ, and let T := ∂D be the unit circle. Given
a Jordan curve Γ, let f : D → Ω and g : D∗ → Ω∗ be conformal maps onto the
bounded and unbounded complementary components of Γ respectively. Then f and
g extend to homeomorphisms on the closure of their respective domains, so that
hΓ := g−1 ◦ f : T → T defines an orientation-preserving homeomorphism of the unit
circle onto itself, called the conformal welding homeomorphism of Γ.

Note that hΓ is uniquely determined by Γ up to pre- and post-composition by
automorphisms of the unit disk. Moreover, if T is a Möbius transformation, then Γ
and T (Γ) have the same conformal welding homeomorphism, so that the conformal

welding correspondence

W : [Γ] 7→ [hΓ]

is well-defined, from the family of Jordan curves, modulo Möbius equivalence, to
the family of orientation-preserving homeomorphisms of the circle, modulo pre- and
post-composition by automorphisms of the disk.

This correspondence between Jordan curves and circle homeomorphisms has ap-
peared over the years to be of central importance in a wide variety of areas of mathe-
matics and applications, such as Teichmüller theory, Kleinian groups, computer vision
and numerical pattern recognition [6, 30], and so forth. For more information on the
applications of conformal welding, the interested reader may consult the survey arti-
cle [9]. We also mention that recent years have witnessed a strong renewal of interest
in conformal welding as other variants and generalizations have been introduced and
developed, such as generalized conformal welding [4, 8], random conformal welding
[1], conformal welding for finitely connected regions [20], conformal welding of ran-
dom surfaces [29] and conformal laminations of trees [21, 27], including applications
to Shabat polynomials and Grothendieck’s dessins d’enfants. Conformal laminations
are also related to the recent groundbreaking work of Miller and Sheffield on the
relationship between the Brownian map and Liouville Quantum Gravity [22, 23, 24].
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It is well-known that the conformal welding correspondence W is not surjective;
in other words, there are orientation-preserving homeomorphisms of the circle (even
analytic everywhere except at one point) which are not conformal welding homeo-
morphisms. On the other hand, every quasisymmetric homeomorphism h : T → T

is the conformal welding of some Jordan curve (in this case, a quasicircle). Here
quasisymmetric means that adjacent arcs I, J ⊂ T of equal length are mapped by h
onto arcs of comparable length:

M−1 ≤
|h(I)|

|h(J)|
≤ M.

The fact that every such h is a conformal welding homeomorphism is usually referred
to as the fundamental theorem of conformal welding and was first proved by Pfluger
[26] in 1960. Another proof based on quasiconformal mappings was published shortly
after by Lehto and Virtanen [17]. See also the papers of Bishop [4] and Schippers
and Staubach [28]. We also mention that other sufficient conditions for a given circle
homeomorphism h to be a welding were obtained by Lehto [16] and Vainio [31], in
terms of h being sufficiently “nice”. In Section 2, we recall a deep theorem of Bishop [4]
saying that on the other hand, any “wild” enough h is also the welding of some Jordan
curve. Finding a complete characterization of conformal welding homeomorphisms
is most likely a very difficult problem.

This paper, however, deals with the (non) injectivity of the welding correspon-
dence W. Recall that if Γ is a Jordan curve, then T (Γ) has the same welding
homeomorphism hΓ, for any Möbius transformation T . Are these the only curves
with this property?

If Γ and Γ̃ are two Jordan curves such that hΓ = hΓ̃, then there are conformal

maps f : D → Ω, g : D∗ → Ω∗, f̃ : D → Ω̃, g̃ : D∗ → Ω̃∗ such that

g−1 ◦ f = g̃−1 ◦ f̃

on T, i.e.

g̃ ◦ g−1 = f̃ ◦ f−1

on Γ, where Ω̃, Ω̃∗ are the bounded and unbounded complementary components of

the curve Γ̃. It follows that the map F : Ĉ → Ĉ defined by

F (z) =

{
(f̃ ◦ f−1)(z) if z ∈ Ω ∪ Γ,

(g̃ ◦ g−1)(z) if z ∈ Ω∗

is a homeomorphism conformal on Ĉ \ Γ which maps the curve Γ onto the curve Γ̃.
This shows that if Γ is conformally removable, then Γ uniquely corresponds to its
conformal welding homeomorphism hΓ, up to Möbius equivalence.

Definition 1.1. We say that a compact set E ⊂ C is conformally removable

if every F ∈ CH(E) is Möbius, where CH(E) is the collection of homeomorphisms

F : Ĉ → Ĉ which are conformal on Ĉ \ E.

Single points, smooth curves and more generally, sets of σ-finite length, are all
conformally removable. On the other hand, the theory of quasiconformal mappings
can be used to prove that sets of positive area are never conformally removable. The
converse is well-known to be false, and there exist nonremovable sets (even Jordan
curves) of Hausdorff dimension one [3, 15] and removable sets of Hausdorff dimension
two [18, Chapter V, Section 3.7]. In fact, no geometric characterization of conformally
removable sets is known. We also mention that this notion of removability appears
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naturally in the study of various important problems in Complex Analysis and related
areas, such as Koebe’s uniformization conjecture [10, 33] and the MLC conjecture on
the local connectivity of the Mandelbrot set [11, 12, 13]. See also the survey article
[32] for more information.

Now, recall that if a Jordan curve Γ is conformally removable, then Γ uniquely
corresponds to its conformal welding homeomorphism, modulo Möbius equivalence.
The starting point of this paper is the following question.

Question 1.2. Does the converse hold? Namely, if Γ is a non-removable Jordan
curve, does there necessarily exist another curve having the same welding homeo-
morphism, but which is not a Möbius image of Γ?

Several papers in the literature seem to imply that the answer is trivially yes,
either without proof or with the following argument:

If Γ is not removable, then there exists a non-Möbius F ∈ CH(Γ). But then the

curve F (Γ) has the same welding homeomorphism as Γ, and is not Möbius equivalent

to it, since F is not a Möbius transformation.

See e.g. [25, Lemma 2], [14, Corollary II.2], [8, Section 4], [2, Corollary 1], [3,
p. 324–325], [9, Section 3], [4, Remark 2], [1, Section 2.3], [19, Corollary 1.4].

Although it is true and easy to see that Γ and F (Γ) have the same welding
homeomorphism, it is not clear at all that these two curves are not Möbius equivalent,
since there could a priori exist a Möbius transformation T such that F (Γ) = T (Γ),
even though F itself is not Möbius. As far as we know, this remark first appeared in
Fortier Bourque’s Master’s Thesis [7]. The question of whether such Γ, F and T as
above actually exist was, however, left open. In this paper, we answer that question
in the affirmative.

Theorem 1.3. There exists a Jordan curve Γ and a non-Möbius homeomorphism

F : Ĉ → Ĉ conformal on Ĉ \ Γ such that F (Γ) = Γ. Moreover, the curve Γ may be

taken to have zero area.

The construction is based on a result of Bishop [4] characterizing the conformal
welding homeomorphisms of so-called flexible curves.

Theorem 1.3 shows that the above argument claiming to answer Question 1.2 is in
fact incorrect, and whether removability really characterizes injectivity of conformal
welding remains unknown.

The remainder of the paper is organized as follows. In Section 2, we recall
Bishop’s characterization of the conformal welding homeomorphisms of flexible curves.
Then, in Section 3, we use this result to prove Theorem 1.3. In Section 4, we discuss
the non-injectivity of conformal welding for curves of positive area. Finally, Section 5
contains some open problems related to Question 1.2.

2. Flexible curves and log-singular homeomorphisms

We first need the definition of logarithmic capacity, following [4]. For E ⊂ T

Borel, let P(E) denote the collection of all Borel probability measures on E.

Definition 2.1. Let µ ∈ P(E).

(i) The energy of µ, noted I(µ), is given by

I(µ) :=

¨

log
2

|z − w|
dµ(z) dµ(w).
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(ii) The logarithmic capacity of E, noted cap(E), is defined as

cap(E) :=
1

inf{I(µ) : µ ∈ P(E)}
.

It is well-known that logarithmic capacity is nonnegative, monotone and count-
ably subadditive (see e.g. [5]). We will also need the simple fact that bi-Hölder
homeomorphisms of the circle preserve sets of zero capacity.

We can now define log-singular homeomorphisms.

Definition 2.2. Let I, J be two subarcs of the unit circle. An orientation-
preserving homeomorphism h : I → J is log-singular if there exists a Borel set E ⊂ I
such that both E and h(I \ E) have zero logarithmic capacity.

The following inductive construction of log-singular homeomorphisms was out-
lined in [4, Remark 9]. We reproduce it here for the reader’s convenience.

Proposition 2.3. Let I, J be two subarcs of T. Then there exists a log-singular

homeomorphism h : I → J .

Proof. Start with any orientation-preserving linear homeomorphism h1 : I → J .
At the first step, divide I into two subarcs, denoted by red and blue respectively,
in such a way that the red subarc has small logarithmic capacity, say less than 2−1.
Now, define a homeomorphism h2 on I which is linear on the red subarc and the
blue subarc, and which satisfies h2(I) = h1(I) = J . We also construct h2 such that
it maps the blue subarc onto an arc of logarithmic capacity also less than 2−1.

Now, at the n-th step, suppose that I has been divided into a finite number of
arcs {Ik,n}, and that we have a homeomorphism hn : I → J which is linear on each of

those arcs. First, divide each Ik,n into n arcs of equal length Ik,n1 , Ik,n2 , . . . , Ik,nn . Then,

divide each Ik,nj into a red and a blue subarc, in such a way that the union of all the
red subarcs has logarithmic capacity less than 2−n. Now, define a homeomorphism
hn+1 : I → J which is linear on each of the red and blue subarcs, and which satisfies
hn+1(I

k,n
j ) = hn(I

k,n
j ) for each j, k. We also construct hn+1 so that the union of all

the images of the blue subarcs under the map has logarithmic capacity less than 2−n.
It is not difficult to see that these maps hn converge to an orientation-preserving

homeomorphism h : I → J . Indeed, if ǫ > 0, then we can choose N sufficiently large
so that for n ≥ N , the arcs hn(I

k,n
j ) all have length less than ǫ. If m ≥ n and x ∈ I,

then x belongs to one of the arcs Ik,nj and hm(x) belongs to hn(I
k,n
j ) by construction,

thus

|hn(x)− hm(x)| < ǫ.

This shows that the sequence (hn) is uniformly Cauchy and therefore has a continu-
ous limit h : I → J , which has to be an orientation-preserving homeomorphism, by
construction.

Finally, the map h : I → J is log-singular. Indeed, if E is the set of points in I
which belong to infinitely many of the red subarcs, then

cap(E) ≤
∑

n≥m

2−n (m ∈ N)

by the subadditivity of logarithmic capacity, so that cap(E) = 0. On the other hand,
we have

h(T \ E) ⊂
∞⋃

m=1

⋂

n≥m

hn+1(Bn),



Removability and non-injectivity of conformal welding 467

where Bn is the union of all the blue subarcs constructed at the n-th step. It follows
that h(T \ E) is contained in a countable union of sets of zero logarithmic capacity,
so that cap(h(T \ E)) = 0, again by the subadditivity of logarithmic capacity. �

We will also need the following definition.

Definition 2.4. A Jordan curve Γ ⊂ C is a flexible curve if the following two
conditions hold:

(i) Given any Jordan curve Γ̃ and ǫ > 0, there exists F ∈ CH(Γ) such that

d(F (Γ), Γ̃) < ǫ,

where d is the Hausdorff distance.
(ii) Given points z1, z2 in each complementary component of Γ and points w1, w2

in each complementary component of Γ̃, we can choose F above so that
F (z1) = w1 and F (z2) = w2.

One can think of a flexible curve Γ as being “highly” non-removable, in the sense
that CH(Γ) is very large. Examples of flexible curves with any Hausdorff dimension
between 1 and 2 were constructed in [3].

There is a close relationship between flexible curves and log-singular homeomor-
phisms. Indeed, Bishop proved in [4] that an orientation-preserving homeomorphism
h : T → T is log-singular if and only if it is the conformal welding of a flexible curve
Γ. In particular, this implies that every such h is the conformal welding of a dense
family of curves, since if F ∈ CH(Γ) is as in Definition 2.4, then h is also the confor-
mal welding homeomorphism of F (Γ). We shall actually need the following stronger
result, see [4, Theorem 25].

Theorem 2.5. (Bishop) Let h : T → T be an orientation-preserving log-singular

homeomorphism with h(1) = 1, and let f0, g0 be two conformal maps of D and D
∗

respectively onto disjoint domains. Then for any 0 < r < 1 and any ǫ > 0, there are

conformal maps f and g of D and D
∗ onto the two complementary components of a

Jordan curve Γ satisfying the following conditions:

(i) h = g−1 ◦ f on T;

(ii) |f(z)− f0(z)| < ǫ for all z ∈ D with |z| ≤ r;
(iii) |g(z)− g0(z)| < ǫ for all z ∈ D

∗ with |z| ≥ 1/r;

Moreover, the maps f, g may be constructed such that f(1) = g(1) = ∞ and such

that the curve Γ has zero area.

Remark. Since the last part of Theorem 2.5 was not stated explicitly in [4], let
us briefly explain how it follows from the construction. First, since h(1) = 1, condi-
tion (i) implies that f(1) = g(1). Composing f and g by a Möbius transformation T
if necessary, we can assume that f(1) = g(1) = ∞. Note that if f and g approximate
T−1 ◦ f0 and T−1 ◦ g0 on compact subsets of D and D

∗ respectively, then T ◦ f and
T ◦ g approximate f0 and g0.

Now, to see that the curve Γ can be taken to have zero area, note that the
main part of the proof in [4] is to construct quasiconformal mappings f : D → Ω
and g : D → Ω∗ onto the complementary components of a Jordan curve Γ satisfying
conditions (i), (ii) and (iii), and having quasiconstants close to 1. These maps f and
g are obtained as limits of quasiconformal mappings fn : D → Ωn and gn : D

∗ → Ω∗
n

onto smooth Jordan domains with disjoint closures, with ∞ ∈ Ω∗
n. By construction,

the curve Γ is contained in the topological annulus An := Ĉ \ (Ωn ∪Ω∗
n), for each n.

Moreover, the domains Ωn and Ω∗
n are of the form Ωn := Fn(tD) and Ω∗

n := Gn(D
∗/t),
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where t < 1 is sufficiently close to 1 and Fn, Gn are quasiconformal mappings of D,D∗

onto the complementary components of a smooth Jordan curve Γn. Clearly, by taking
t closer to 1 if necessary, we can assume that the topological annulus An has area as
small as we want, say less than 2−n. Then the curve Γ will have zero area.

Finally, the last part of the proof is to apply the measurable Riemann mapping
theorem to replace f and g by conformal maps Φ ◦ f and Φ ◦ g, where Φ is a
quasiconformal mapping of the sphere. Since Φ preserves sets of area zero and since
it can be assumed to fix ∞ by composing with a Möbius transformation, the new
conformal maps can also be taken so that they send 1 to ∞ and map T onto a curve
of zero area.

3. Conformal homeomorphisms fixing a curve

We can now prove Theorem 1.3. Recall that we want to construct a Jordan

curve Γ and a non-Möbius homeomorphism F : Ĉ → Ĉ conformal on Ĉ\Γ such that
F (Γ) = Γ.

The idea of the construction is the following. Suppose that such a curve Γ and
such a non-Möbius homeomorphism F ∈ CH(Γ) exist, and suppose that F preserves
the orientation of Γ. Let f : D → Ω and g : D∗ → Ω∗ be conformal maps onto the
two complementary components of the curve. Then F ◦f and F ◦g are also conformal
maps of D and D

∗ onto Ω and Ω∗ respectively, so that

F ◦ f = f ◦ σ

and
F ◦ g = g ◦ τ

for some σ, τ ∈ Aut(D). Note that neither σ nor τ is the identity, since otherwise F
would also be the identity, contradicting the fact that it is not Möbius. Now, since
F is continuous on Γ, we must have

f ◦ σ ◦ f−1 = g ◦ τ ◦ g−1

there, which can be rewritten as

(1) W ◦ σ = τ ◦W

on T, where W := hΓ is the conformal welding of Γ. We thus obtain a functional
equation for the welding of the curve.

The strategy now is to proceed backward. Start with an orientation-preserving
homeomorphism W : T → T satisfying the functional equation (1) for some σ, τ ∈
Aut(D). Suppose in addition that we can construct W so that it is the conformal
welding homeomorphism of some Jordan curve Γ, i.e. W = g−1 ◦f where f and g are
conformal maps of D and D

∗ respectively onto the two complementary components
Ω, Ω∗ of γ. Then we can define a map F conformal on both sides of γ by

F (z) =

{
(f ◦ σ ◦ f−1)(z) if z ∈ Ω,

(g ◦ τ ◦ g−1)(z) if z ∈ Ω∗,

and the fact that W = g−1 ◦ f satisfies Equation (1) implies that F extends to a
homeomorphism of the whole sphere. Clearly, the map F ∈ CH(Γ) fixes the curve Γ,
and all that remains to prove is that we can choose σ, τ and W such that F is not a
Möbius transformation.

The main difficulty here is that if we choose W to be sufficiently nice, e.g. qua-
sisymmetric, so that it is a conformal welding homeomorphism, then the curve Γ
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will be removable and F will necessarily be Möbius. In order to circumvent this
difficulty, a promising approach is to construct log-singular homeomorphic solutions
of the functional equation (1).

Lemma 3.1. Let a, b > 0, and let φ be a Möbius transformation mapping the

upper half-plane H onto the open unit disk D with φ(∞) = 1, say

φ(z) :=
z − i

z + i
.

Define σ̃, τ̃ ∈ Aut(H) by σ̃(z) := z + a and τ̃(z) := z + b, and set

σ := φ ◦ σ̃ ◦ φ−1

and

τ := φ ◦ τ̃ ◦ φ−1,

so that σ, τ ∈ Aut(D). Then there exists a log-singular orientation-preserving home-

omorphism W : T → T which satisfies

W ◦ σ = τ ◦W

Proof. Let I0 := φ([0, a)) and J0 := φ([0, b)), and let W : I0 → J0 be a log-
singular orientation-preserving homeomorphism, as in Proposition 2.3. For n ∈ Z,
set In := σn(I0) and Jn := τn(J0). Note that the subarcs In are pairwise disjoint and
that ⋃

n∈Z

In = T \ {1},

and similarly for the Jn’s. Now, extend W to all of T by setting

W (z) := (τn ◦W ◦ σ−n)(z) (z ∈ In)

and W (1) := 1. Clearly, the map W : T → T thereby obtained is an orientation-
preserving homeomorphism. Moreover, if z ∈ In for some n, then σ(z) ∈ In+1, so
that

W (σ(z)) = (τn+1 ◦W ◦ σ−(n+1))(σ(z))

= (τ ◦ (τn ◦W ◦ σ−n))(z) = (τ ◦W )(z),

which shows that W satisfies Equation (1).
It remains to prove that W : T → T satisfies the log-singular condition. Let

E0 ⊂ I0 such that cap(E0) = 0 and cap(W (I0 \ E0)) = 0. For n ∈ Z, let En :=
σn(E0) ⊂ In. Note that cap(En) = 0 for all n, since bi-Hölder homeomorphisms
preserve sets zero logarithmic capacity. It follows that E :=

⋃
nEn also has capacity

zero, by subadditivity. Finally, we have

W (T \ E) =
⋃

n∈Z

W (In \ En) ∪ {1} =
⋃

n∈Z

W (σn(I0 \ E0)) ∪ {1}

=
⋃

n∈Z

τn(W (I0 \ E0)) ∪ {1},

which shows that cap(W (T \ E)) = 0, again by subadditivity and the fact that
bi-Hölder homeomorphisms preserve sets of zero logarithmic capacity.

This completes the proof of the lemma. �

We can now proceed with the proof of Theorem 1.3.
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Proof. Let a, b > 0 with a 6= b, and let W : T → T, σ and τ be as in Lemma 3.1,
so that

W ◦ σ = τ ◦W.

Also, let 0 < ǫ < |a− b|/4, let z1, z2 be points in the upper half-plane H and lower
half-plane H

∗ respectively, and let K1 ⊂ H and K2 ⊂ H
∗ be compact sets such

that z1, z1 + a ∈ K1 and z2, z2 + b ∈ K2. Lastly, take 0 < r < 1 sufficiently close
to 1 so that φ(K1) ⊂ D(0, r) and φ(K2) ⊂ C \ D(0, 1/r), where φ is the Möbius
transformation of Lemma 3.1.

By Theorem 2.5, we can write W := g−1 ◦ f , where f and g are conformal maps
of D and D

∗ onto the two complementary components Ω and Ω∗ of a Jordan curve
Γ, such that f(1) = g(1) = ∞,

(2) |f(z)− φ−1(z)| < ǫ (|z| ≤ r)

and

(3) |g(z)− φ−1(z)| < ǫ (|z| ≥ 1/r).

In particular, the above inequalities hold for z ∈ φ(K1) and z ∈ φ(K2) respectively.
Now, define a map F by

F (z) =

{
(f ◦ σ ◦ f−1)(z) if z ∈ Ω,

(g ◦ τ ◦ g−1)(z) if z ∈ Ω∗,

so that F is conformal on Ĉ\Γ. Also, the equation W ◦σ = τ ◦W on T is equivalent
to

f ◦ σ ◦ f−1 = g ◦ τ ◦ g−1

on Γ, so that F extends to a homeomorphism of Ĉ. Clearly, this map satisfies
F (Γ) = Γ.

It remains to prove that F is not a Möbius transformation. Suppose, in order to
obtain a contradiction, that F is Möbius. First, note that F (∞) = ∞, so that F has
to be linear, say F (z) = cz + d. Now, the map F can be rewritten as

F (z) =

{
(f̃ ◦ σ̃ ◦ f̃−1)(z) if z ∈ Ω,

(g̃ ◦ τ̃ ◦ g̃−1)(z) if z ∈ Ω∗,

where f̃ := f ◦ φ : H → Ω, g̃ := g ◦ φ : H∗ → Ω∗, and σ̃(z) := z + a, τ̃(z) := z + b
are as in Lemma 3.1. It is easy to see from this that F has only one fixed point, at
infinity, so that c = 1.

Now, note that for z ∈ H, we have

f(φ(z)) + d = f̃(z) + d = F (f̃(z)) = (f̃ ◦ σ̃)(z) = f̃(z + a) = f(φ(z + a)),

so that in particular,

d− a = f(φ(z1 + a))− f(φ(z1))− a = f(φ(z1 + a))− (z1 + a)− f(φ(z1)) + z1.

By Inequality (2) with z replaced by φ(z1), φ(z1 + a) ∈ φ(K1), we get

|d− a| ≤ ǫ+ ǫ = 2ǫ.

Similarly, using the formula for F on Ω∗ and Inequality (3), we get

|d− b| ≤ 2ǫ,

and combining the two inequalities yields

|a− b| ≤ |a− d|+ |d− b| ≤ 4ǫ,
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which contradicts the choice of ǫ. It follows that F is not a Möbius transformation.
Finally, we can take Γ to have zero area, by Theorem 2.5. This completes the

proof of Theorem 1.3. �

4. Non-injectivity of conformal welding for curves of positive area

In this section, we mention that the argument described in the introduction,
although incorrect in general, can nonetheless be made to work in the case of curves
with positive area.

Theorem 4.1. If Γ is a Jordan curve with positive area, then there is another

curve having the same welding homeomorphism, but which is not a Möbius image of

Γ.

The idea of the proof is quite simple. Since Γ has positive area, it is in particular

not removable, so there is a non-Möbius homeomorphism F : Ĉ → Ĉ which is con-
formal off Γ. As already mentioned, the curve F (Γ) has the same welding as Γ, thus
is a good candidate for the curve we want to construct. Unfortunately, as we saw in
Section 3, it may happen that this curve is a Möbius image of the original one, even
though F itself is not Möbius.

However, in the positive-area case, it is easy to see using the measurable Riemann
mapping theorem that the collection of non-Möbius elements of CH(Γ) is infinite-
dimensional, in some sense. A dimension argument relying on Ahlfors–Bers and
Brouwer’s Invariance of Domain can then be applied to conclude that there must
be at least one non-Möbius F ∈ CH(Γ) such that F (Γ) 6= T (Γ) for every Möbius
transformation T .

As far as we know, Theorem 4.1 was first stated by Katznelson, Nag and Sullivan
in [14]. See [7, Theorem 4.22] for a complete and detailed proof. It would be very
interesting to find a more constructive proof though.

5. Concluding remarks

In view of Theorem 4.1, Question 1.2 can be reduced to the following.

Question 5.1. If Γ is a non-removable Jordan curve with zero area, does there
necessarily exist another curve having the same conformal welding homeomorphism,
but which is not a Möbius image of Γ?

As observed in Section 4, the size of CH(Γ) may be relevant here.

Question 5.2. If Γ is a non-removable Jordan curve with zero area, is the col-
lection of non-Möbius elements of CH(Γ) necessarily large, or infinite-dimensional,
in some sense?

If Γ is non-removable, then there exists at least one non-Möbius homeomorphism

F : Ĉ → Ĉ conformal off Γ, but as far as we know, it is still open in general whether
there must exist another non-Möbius element of CH(Γ) which is not of the form
T ◦ F , for T Möbius.

Finally, we conclude by mentioning that a positive answer to Question 5.1 would
follow if one could prove that there always exists a non-Möbius homeomorphism of

Ĉ conformal off Γ which maps Γ onto a curve of positive area.
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