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Abstract. We consider a nonlinear Robin problems driven by the p-Laplacian plus an indefi-

nite potential. The reaction is resonant with respect to a variational eigenvalue. For the principal

eigenvalue we assume strong resonance. Using variational tools and critical groups we prove exis-

tence and multiplicity theorems.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear Robin problem

(1)

{

−∆pu(z) + ξ(z)|u(z)|p−2u(z) = f(z, u(z)) in Ω,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω.

In this problem, ∆p denotes the p-Laplace differential operator defined by

∆pu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).

The potential function ξ(·) ∈ L∞(Ω) is indefinite (that is, sign changing) and the
reaction term f(z, x) is a Carathéodory function (that is, for all x ∈ R, z 7→ f(z, x)
is measurable and for almost all z ∈ Ω, x 7→ f(z, x) is continuous). In the boundary
condition, ∂u

∂np
denotes the generalized normal derivative corresponding to the p-

Laplace differential operator and is defined by extension of the map

u 7→
∂u

∂np
= |Du|p−2(Du, n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient term
is β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω. The case β ≡ 0
corresponds to the Neumann problem.

Our aim here is to investigate the existence and multiplicity of nontrivial smooth

solutions for problem (1) when resonance occurs, namely when the function f(z,x)
|x|p−2x

asymptotically, as x→ ±∞, hits a variational eigenvalue of −∆p+β(z)I with Robin
boundary condition (here, I denotes the identity operator). In the case of resonance
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with respect to the principal (first) eigenvalue, we consider problems with “strong”
resonance, namely we have

f(z, x) = λ̂1|x|
p−2x+ g(z, x),

with λ̂1 being the first eigenvalue and g(z, x) a Carathéodory perturbation satisfying

lim
x→±∞

g(z, x) = 0 and lim
x→±∞

ˆ x

0

g(z, s) ds ∈ R.

It is well-known that this class of resonant problems presents a special interest
since the energy functional of the problem exhibits a partial lack of compactness.

Recently, Neumann problems (that is, β ≡ 0) with an indefinite potential have
been investigated by Mugnai and Papageorgiou [16] and Papageorgiou and Rădulescu
[17, 19]. Resonant problems have been considered by Mugnai and Papageorgiou [16],
who have been dealt with problems resonant at the first eigenvalue but did not
cover the strongly resonant case. Strongly resonant semilinear Dirichlet problems
with zero potential have been studied by Landesman and Lazer [12] (they coined the
term “strong resonance”), Thews [22], Bartolo, Benci and Fortunato [2], Ward [24]
(existence of solutions) and Goncalves and Miyagaki [10] (multiplicity of solutions).

Our approach is based on variational tools coming from the critical point theory
and on Morse theory (critical groups). In the next section, for the convenience of the
reader, we recall some basic definitions and facts from both theories which we will
need in the sequel and we fix our notation.

2. Mathematical background—preliminary results

Let X be a Banach space. By X∗ we denote the topological dual of X and by
〈·, ·〉 we denote the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we
say that ϕ satisfies the “Cerami condition at the level c ∈ R” (the “Cc-condition”, for
short), if the following property holds:

“Every sequence {un}n>1 ⊂ X such that

ϕ(un) → c and (1 + ‖un‖)ϕ
′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence”.

Proposition 1. Assume that ϕ ∈ C1(X,R) is bounded below and let m =
infX ϕ. If ϕ satisfies the Cc-condition, then we can find u0 ∈ X such that ϕ(u0) =
infX ϕ.

The next result is known in the literature as the “second deformation theorem”
and is one of the main results in critical point theory. First, we introduce some
notation. Given ϕ ∈ C1(X,R) and c ∈ R, we define

Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c},

ϕc = {u ∈ X : ϕ(u) 6 c}.

Theorem 2. If ϕ ∈ C1(X,R), a ∈ R, a < b 6 +∞, ϕ satisfies the Cc-condition
for every c ∈ [a, b), ϕ has no critical values in (a, b) and ϕ−1(a) contains at most a
finitely many critical points, then we can find a deformation h : [0, 1]×(ϕb\Kb

ϕ) → ϕb

such that

(a) h(1, ϕb\Kb
ϕ) ⊂ ϕa;

(b) h(t, ·)|ϕa = id|ϕa for all t ∈ [0, 1];
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(c) ϕ(h(t, u)) 6 ϕ(h(s, u)) for all t, s ∈ [0, 1] with s 6 t, and for all u ∈ ϕb\Kb
ϕ

(that is, the deformation h is “ϕ-decreasing”).

Remark 1. Note that if b = +∞, then ϕb\Kb
ϕ = X. The conclusion of Theorem

2 says that ϕa is a strong deformation retract of ϕb\Kb
ϕ. A special case of this result,

is the so-called “Noncritical Interval Theorem”, which says:

“If ϕ ∈ C1(X,R) satisfies the Cc-condition for all c ∈ [a, b] and Kϕ ∩
ϕ−1[a, b] = ∅, then ϕa is a strong deformation retract of ϕb”.

In critical point theory the notion of linking sets plays a central role:

Definition 3. Let Y be a Hausdorff topological space and E0 ⊆ E and D
nonempty subsets of Y . We say that the pair {E0, E} is “linking” with D in Y , if
the following conditions hold:

(a) E0 ∩D = ∅;
(b) for any γ ∈ C(E, Y ) with γ|E0

= id |E0
we have γ(E) ∩D 6= ∅.

Using this notion, one can prove a general minimax principle from which follow
as special cases the classical results of critical point theory (mountain pass theorem,
saddle point theorem, generalized mountain pass theorem). For future use we state
the mountain pass theorem.

Theorem 4. Assume that ϕ ∈ C1(X,R), u0, u1 ∈ X, ‖u1 − u0‖ > r,

max{ϕ(u0), ϕ(u1)} 6 inf[ϕ(u) : ‖u− u0‖ = r] = mr,

c = inf
γ∈Γ

max
06t61

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}

and that ϕ satisfies the Cc-condition. Then c > mr, c is a critical value of ϕ (that is,
Kc
ϕ 6= ∅) and if c = mr, then

Kc
ϕ ∩ ∂Br(u0) 6= ∅

with ∂Br(u0) = {u ∈ X : ‖u− u0‖ = r}.

Remark 2. For Theorem 4 the linking sets are

E0 = {u0, u1}, E = {(1− t)u0 + tu1 : 0 6 t 6 1} and D = ∂Br(u0).

For details on these and related issues we refer to Gasinski and Papageorgiou [9].

In our analysis of problem (1), we will make use of the following spaces:

• the Sobolev space W 1,p(Ω), 1 < p <∞;
• the Banach space C1(Ω);
• the boundary Lebesgue spaces Lq(∂Ω), 1 6 q 6 ∞.

By ‖ · ‖ we denote the norm on W 1,p(Ω) defined by

‖u‖ = [‖u‖pp + ‖Du‖pp]
1/p for all u ∈ W 1,p(Ω).

By 〈·, ·〉 we denote the duality brackets for the pair (W 1,p(Ω)∗,W 1,p(Ω)). The Banach
space C1(Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.

This cone has a nonempty interior containing the open set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure, we can define in the usual way the Lebesgue spaces Lq(∂Ω), 1 6 q 6 ∞.
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We know that there exists a unique continuous linear map γ0 : W
1,p(Ω) → Lp(∂Ω),

known as the “trace map”, such that

γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of “boundary values” to all Sobolev func-
tions. The trace map γ0 is compact into Lq(∂Ω) with q ∈ [1, Np−p

N−p
) if p < N and

q ∈ [1,∞) if p > N . In what follows, for the sake of notational simplicity we drop
the use of the map γ0. All restrictions of the Sobolev function on ∂Ω are understood
in the sense of traces.

Our hypotheses on the potential function ξ(·) and the boundary coefficient β(·)
are the following:

H(ξ) : ξ ∈ L∞(Ω).

H(β) : β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω.

We consider the C1-functional ϑ : W 1,p(Ω) → R defined by

ϑ(u) = ‖Du‖pp +

ˆ

Ω

ξ(z)|u|p dz +

ˆ

∂Ω

β(z)|u|p dσ for all u ∈ W 1,p(Ω).

Let f0 : Ω×R → R be a Carathéodory function such that

|f0(z, x)| 6 a0(z)(1 + |x|r−1) for almost all z ∈ Ω, and for all x ∈ R,

with a0 ∈ L∞(Ω)+ and 1 < r 6 p∗ =

{

Np
N−p

if p < N

+∞ if p > N
(the critical Sobolev expo-

nent). We set F0(z, x) =
´ x

0
f0(z, s) ds and consider the C1-functional ϕ0 : W

1,p(Ω) →
R defined by

ϕ0(u) =
1

p
ϑ(u)−

ˆ

Ω

F0(z, u) dz for all u ∈ W 1,p(Ω).

From Papageorgiou and Rădulescu [18] (subcritical case) and [20] (critical case)
we have the following result.

Proposition 5. Assume that u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0,
that is, there exists ρ0 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) 6 ρ0.

Then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of
ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ‖h‖ 6 ρ1.

Let A : W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =

ˆ

Ω

|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,p(Ω).

The following well-known result summarizes the main properties of the map A(·)
(see, for example, Motreanu, Motreanu and Papageorgiou [15, p. 40]).

Proposition 6. The map A : W 1,p(Ω) → W 1,p(Ω)∗ is bounded (maps bounded
sets to bounded sets), continuous, monotone (thus maximal monotone, too) and of
type (S)+ that is,

“un
w
→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 6 0 ⇒ un → u in W 1,p(Ω).”
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We will also use some facts about the spectrum of the differential operator u 7→
−∆pu+ ξ(z)u with Robin boundary condition.

So, we consider the following nonlinear eigenvalue problem:

(2)

{

−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z),
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω.

By an eigenvalue, we mean any λ̂ ∈ R for which problem (2) has a nontrivial
solution û ∈ W 1,p(Ω), known as an eigenfunction corresponding to the eigenvalue

λ̂. From Papageorgiou and Rădulescu [20], we know that û ∈ L∞(Ω) and so we can
apply Theorem 2 of Lieberman [14] and infer that û ∈ C1(Ω).

From Mugnai and Papageorgiou [16] and Papageorgiou and Rădulescu [18], we

know that problem (2) admits a smallest eigenvalue λ̂1 ∈ R which has the following
properties:

• λ̂1 is isolated in the spectrum σ0(p) of (2) (that is, we can find ǫ > 0 such

that (λ̂1, λ̂1 + ǫ) ∩ σ0(p) = ∅).

• λ̂1 is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1, then û = ηv̂
with η ∈ R\{0}).

(3) • λ̂1 = inf

{

ϑ(u)

‖u‖pp
: u ∈ W 1,p(Ω), u 6= 0

}

.

The infimum in (3) is realized on the one-dimensional eigenspace corresponding

to λ̂1. The above properties of λ̂1 imply that the eigenfunctions corresponding to
λ̂1 do not change sign. Let û1 be the Lp-normalized (that is, ‖û1‖p = 1) positive

eigenfunction corresponding to λ̂1. As we already mentioned, the nonlinear regu-
larity theory implies that û1 ∈ C+. In fact, the nonlinear maximum principle (see,
for example, Gasinski and Papageorgiou [9, p. 738]), implies that û1 ∈ D+. An

eigenfunction û which corresponds to an eigenvalue λ̂ 6= λ̂1 is nodal (that is, sign

changing). Since the spectrum σ0(p) of (2) is closed and λ̂1 is isolated, the second

eigenvalue λ̂2 is well-defined by

(4) λ̂2 = min{λ̂ ∈ σ0(p) : λ̂ > λ̂1}.

To produce additional eigenvalues, we employ the Ljusternik–Schnirelmann mini-
max scheme, which generates a whole nondecreasing sequence {λ̂k}k∈N of eigenvalues

of (2) such that λ̂k → +∞. These eigenvalues are known as “variational eigenvalues”
and depending on the index used in the execution of the Ljusternik–Schirelmann
minimax scheme, we generate different sequences of variational eigenvalues. We do
not know if these sequences coincide and if they exhaust the spectrum σ0(p). This is
the case if p = 2 (linear eigenvalue problem) or if N = 1 (ordinary differential equa-
tion). Moreover, we know that all these sequences of variational eigenvalues coincide

in the first two elements λ̂1 and λ̂2, which are given by (3) and (4). In fact, for λ̂2
we have a useful minimax characterization. So, let

∂BLp

1 = {u ∈ Lp(Ω) : ‖u‖p = 1},

M = W 1,p(Ω) ∩ ∂BLp

1 ,

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1, γ̂(1) = û1}.

Using these items we can get the following minimax characterization of λ̂2 (see
[16, 18]).
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Proposition 7. λ̂2 = inf
γ̂∈Γ̂

max
−16t61

ϑ(γ̂(t)).

Here we use the sequence of variational eigenvalues generated by the Ljusternik–
Schnirelmann scheme when as the index we use the Fadell–Rabinowitz cohomological
index (see [8]).

Finally, let us recall some basic definitions and facts from critical groups which we
will use in the sequel. So, let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X.
By Hk(Y1, Y2), k ∈ N0, we denote the kth relative singular homology group with
integer coefficients for the pair (Y1, Y2). If ϕ ∈ C1(X,R) and u ∈ Kc

ϕ is isolated, then
the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U, ϕc ∩ U\{0}) for all k ∈ N0,

with U being a neighborhood of u such that Kϕ∩ϕ
c∩U = {u}. The excision property

of singular homology implies that this definition is independent of the choice of the
neighborhood U .

Suppose that ϕ satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ).
The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ∈ N0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ). Indeed,
if c0 < c < inf ϕ(Kϕ), then by the Noncritical Interval Theorem (see Remark 1), we
have that

ϕc0 is a strong deformation retract of ϕc,

⇒ Hk(X,ϕ
c) = Hk(X,ϕ

c0) for all k ∈ N0,

(see Motreanu, Motreanu and Papageorgiou [15, p. 145]).

We introduce the following quantities

M(t, u) =
∑

k>0

rankCk(ϕ, u)t
k for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑

k>0

rankCk(ϕ,∞)tk for all t ∈ R.

Then the “Morse relation” says that

(5)
∑

u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

with Q(t) =
∑

k>0 βkt
k being a formal series in t ∈ R with nonnegative integer

coefficients βk.
Now let

Vp =

{

u ∈ W 1,p(Ω) :

ˆ

Ω

ûp−1
1 u dz = 0

}

.

We have the following direct sum decomposition

W 1,p(Ω) = Rû1 ⊕ Vp.

We define

(6) λ̂(p) = inf

{

ϑ(u)

‖u‖pp
: u ∈ Vp, u 6= 0

}

.

Proposition 8. If hypotheses H(ξ), H(β) hold, then λ̂1 < λ̂(p) 6 λ̂2.
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Proof. Note that (3) and (6) imply that λ̂1 6 λ̂(p). Suppose that λ̂1 = λ̂(p).
Consider a sequence {un}n>1 ⊆ Vp such that

(7) ‖un‖p = 1 for all n ∈ N and ϑ(un) ↓ λ̂(p) = λ̂1 as n→ ∞.

So, the sequence {un}n>1 ⊆ W 1,p(Ω) is bounded and thus, by passing to a suitable
subsequence if necessary, we may assume that

(8) un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

Since the functional ϑ(·) is sequentially weakly lower semicontinuous, it follows
from (7) and (8) that

ϑ(u) 6 λ̂(p) = λ̂1, ‖u‖p = 1, u ∈ Vp,(9)

⇒ ϑ(u) = λ̂(p) = λ̂1 (see (6)),

⇒ u = ηû1 with η ∈ R\{0}.

If η 6= 0, then u 6∈ Vp, a contradiction (see (8)). If η = 0, then u = 0, a contradiction

since ‖u‖p = 1 (see (8)). So, we have proved that λ̂1 < λ̂(p).

Next, we show that λ̂(p) 6 λ̂2. Arguing by contradiction, suppose that λ̂2 < λ̂(p).

Then from Proposition 7 we see that we can find γ̂0 ∈ Γ̂ such that

(10) ϑ(γ̂0(t)) < λ̂(p) for all t ∈ [−1, 1].

Let τ : [−1, 1] → R be defined by

τ(t) =

ˆ

Ω

ûp−1
1 γ̂0(t) dz for all t ∈ [−1, 1].

Evidently, τ(·) is continuous and we have

τ(−1) = −1, τ(1) = 1 (recall that ‖û1‖p = 1).

So, by Bolzano’s theorem, we can find t0 ∈ (−1, 1) such that

τ(t0) =

ˆ

Ω

ûp−1
1 γ̂0(t0) dz = 0,

⇒ γ̂0(t0) ∈ Vp

⇒ λ̂(p) 6 ϑ(γ̂0(t0)) (see (6)).(11)

Comparing (10) and (11), we reach a contradiction. Therefore we obtain

λ̂1 < λ̂(p) 6 λ̂2.

The proof is now complete. �

Remark 3. If p = 2, then λ̂(2) = λ̂2.

Now, let λ > λ̂2, λ 6∈ σ0(p) and consider the C1-functional ψλ : W
1,p(Ω) → R

defined by

ψλ(u) =
1

p
ϑ(u)−

λ

p
‖u‖pp for all u ∈ W 1,p(Ω).

Proposition 9. If hypotheses H(ξ), H(β) hold, then C0(ψλ, 0) = C1(ψλ, 0) = 0.

Proof. Let D = {u ∈ W 1,p(Ω) : ϑ(u) < λ‖u‖pp}. Evidently, D ⊆ W 1,p(Ω) is open
and ±û1 ∈ D.

Claim 1. The set D is path-connected.
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Let u ∈ D and let Eu be the path-component of D containing u. We set

(12) mu = inf

{

ϑ(v)

‖v‖pp
: v ∈ Eu

}

< λ.

Let {vn}n>1 ⊆ Eu be such that

(13)
ϑ(vn)

‖vn‖
p
p
↓ mu as n→ ∞.

The p-homogeneity of ϑ(·), allows us to assume that

(14) ‖vn‖p = 1 for all n ∈ N.

Then it follows from (13) and (14) that {vn}n>1 ⊆ W 1,p(Ω) is bounded. Recall that

M = W 1,p(Ω) ∩ ∂BLp

1 = {u ∈ W 1,p(Ω) : ‖u‖p = 1}.

Employing the Ekeland variational principle (see, for example, Gasinski and Pa-
pageorgiou [9, p. 579]), we can find {yn}n>1 ⊂ Eu ∩M such that

(15)

{

ϑ(yn) 6 ϑ(vn) 6 mu +
1
n2 , ‖yn − vn‖ <

1
n
,

ϑ(yn) 6 ϑ(v) + 1
n2‖v − yn‖ for all v ∈ Eu ∩M, all n ∈ N.

Suppose that yn ∈ ∂(Eu ∩M) for infinitely many n ∈ N (to simplify things
we assume that this holds for every n ∈ N). Then Lemma 3.5(iii) of Cuesta, de
Figueiredo and Gossez [6] implies that

ϑ(yn) = λ 6 ϑ(vn) 6 mu +
1

n2
< λ for all large enough n ∈ N (see (15)),

a contradiction. This means that

yn ∈ Eu ∩M for all n ∈ N.

Then it follows from (15) that

(16) (ϑ|M)′ (yn) → 0 as n→ ∞.

As in the proof of Proposition 5 of Papageorgiou and Rădulescu [18] (see Claim 1
in that proof), we can see that

(17) ϑ|M satisfies the C-condition.

Then from (16), (17) and by passing to a suitable subsequence if necessary, we see
that we may assume that

yn → y in W 1,p(Ω) as n→ ∞(18)

⇒ y ∈ Eu ∩M and ϑ(y) = mu < λ,

⇒ y ∈ Eu ∩M (as before, using Lemma 3.5(iii) in Cuesta,

de Figueiredo and Gossez [6]).

Hence to prove the claim, it suffices to connect y and û1 with a path staying in
D (see Dugundji [7, p. 115]). First, suppose that y 6 0. Then y = −û1 (see (3)) and

the desired path is provided by Proposition 7 (recall λ > λ̂2). Now, suppose that
y > 0. Then y = û1. Therefore, we may assume that

y+, y− 6= 0.

We set

et =
y+ − (1− t)y−

‖y+ − (1− t)y−‖p
∈M for all t ∈ [0, 1].
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From (16) and (18), we have

(19) 〈A(y), h〉+

ˆ

Ω

ξ(z)|y|p−2yh dz +

ˆ

∂Ω

β(z)|y|p−2yh dσ = mu

ˆ

Ω

|y|p−2yh dz

for all h ∈ W 1,p(Ω).
In (19) we first choose h = y+ ∈ W 1,p(Ω) and then we choose h = −y− ∈ W 1,p(Ω).

We obtain

ϑ(y+) = mu‖y
+‖pp and ϑ(y−) = mu‖y

−‖pp.

Since y+ and y− have disjoint interior supports, it follows that

ϑ(et) = mu‖et‖
p
p = mu for all t ∈ [0, 1],

⇒ et ∈ D for all t ∈ [0, 1].

Note that

e0 =
y

‖y‖p
= y (recall y ∈ Eu ∩M) and e1 =

y+

‖y+‖p
= û1.

Therefore t 7→ et is the desired path in D. This proves Claim 1.
If e ∈ D, then from the claim we have

(20) H0(D, e) = 0 (see Motreanu, Motreanu and Papageorgiou [15, p. 152]).

Consider the 0-sublevel set of ψλ

ψ0
λ = {u ∈ W 1,p(Ω) : ψλ(u) 6 0}.

Since ψλ(·) is p-homogeneous, it follows that

ψ0
λ is contractible,

⇒ Hk(ψ
0
λ, e) = 0, ∀ k ∈ N0 (see Motreanu, Motreanu and(21)

Papageorgiou [15, p. 147]).

Let ǫ > 0 be small. Theorem 2 (the second deformation theorem) implies that

(22) ψ0
λ\{0} and ψ−ǫ

λ are homotopy equivalent.

Also, let

ψ̇0
λ = {u ∈ W 1,p(Ω) : ψλ(u) < 0} = D.

Since Kψλ
= {0} (recall that λ 6∈ σ0(p)), from Granas and Dugundji [11, p. 407], we

have

(23) ψ̇0
λ = D and ψ−ǫ

λ are homotopy equivalent.

From (22) and (23) we infer that

ψ0
λ\{0} and D are homotopy equivalent,

⇒ Hk(ψ
0
λ\{0}, e) = Hk(D, e) for all k ∈ N0,

⇒ H0(ψ
0
λ\{0}, e) = 0 (see (20)).(24)

We consider the following long exact reduced singular homology sequence

. . .→ Hk(ψ
0
λ\{0}, e) → Hk(ψ

0
λ, e) = 0

i∗−→ Hk(ψ
0
λ, ψ

0
λ\{0}) = Ck(ψλ, 0)

∂∗−→ Hk−1(ψ
0
λ\{0}, e) → · · ·(25)
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with i∗ being the group homomorphism corresponding to the inclusion map i and
∂∗ is the boundary homomorphism. By the exactness of (25) we have that ∂∗ is an
isomorphism between C1(ψλ, 0) and a subgroup of H0(ψ

0
λ\{0}, e) and so

(26) C1(ψλ, 0) = 0 (see (24)).

It follows from (25) and (26) that

C0(ψλ, 0) = 0.

The proof is now complete. �

3. Resonance at a nonprincipal eigenvalue

In this section we prove two existence theorems for the case when the equation
is resonant with respect to a nontrivial eigenvalue λ̂m.

For the first existence theorem, the hypotheses on the reaction term are the
following:

H1: f : Ω ×R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| 6 aρ(z) for almost all z ∈ Ω, and for all |x| 6 ρ;

(ii) there exists m ∈ N, m > 2 such that

lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m uniformly for almost all z ∈ Ω;

(iii) if F (z, x) =
´ x

0
f(z, s) ds, then limx→±∞[f(z, x)x − pF (z, x)] = +∞ uni-

formly for almost all z ∈ Ω;
(iv) there exist η ∈ L∞(Ω), λ̂1 6 η(z) for almost all z ∈ Ω, η 6≡ λ̂1, η̂ < λ̂(p)

and δ > 0 such that

1

p
η(z)|x|p 6 F (z, x) 6

1

p
η̂|x|p for almost all z ∈ Ω, and for all |x| 6 δ.

Let ϕ : W 1,p(Ω) → R be the energy (Euler) functional for problem (1) defined by

ϕ(u) =
1

p
ϑ(u)−

ˆ

Ω

F (z, u)dz for all u ∈ W 1,p(Ω).

Evidently, ϕ ∈ C1(W 1,p(Ω)).

Proposition 10. If hypotheses H(ξ), H(β), H1 hold, then the functional ϕ sat-
isfies the C-condition.

Proof. Let {un}n>1 ⊆W 1,p(Ω) be a sequence such that

|ϕ(un)| 6M1 for some M1 > 0, and for all n ∈ N,(27)

(1 + ‖un‖)ϕ
′(un) → 0 in W 1,p(Ω)∗ as n→ ∞.(28)

From (28) we have
∣

∣

∣

∣

〈A(un), h〉+

ˆ

Ω

ξ(z)|un|
p−2unh dz +

ˆ

∂Ω

β(z)|un|
p−2unh dσ −

ˆ

Ω

f(z, un)h dz

∣

∣

∣

∣

6
ǫn‖h‖

1 + ‖un‖
for all h ∈ W 1,p(Ω), with ǫn → 0+.(29)
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In (29) we choose h = un ∈ W 1,p(Ω). Then

(30) −ϑ(un) +

ˆ

Ω

f(z, un)un dz 6 ǫn for all n ∈ N.

From (27) we have

(31) ϑ(un)−

ˆ

Ω

pF (z, un) dz 6 pM1 for all n ∈ N.

Adding (30) and (31), we obtain

(32)

ˆ

Ω

[f(z, un)un − pF (z, un)] dz 6M2 for some M2 > 0, and for all n ∈ N.

Claim 2. {un}n>1 ⊆W 1,p(Ω) is bounded.

Arguing by contradiction, suppose that Claim 2 is not true. By passing to a
suitable subsequence if necessary, we can say that

(33) ‖un‖ → ∞.

Let yn = un
‖un‖

for all n ∈ N. Then ‖yn‖ = 1 and so we may assume that

(34) yn
w
→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω).

From (29) we have
∣

∣

∣

∣

〈A(yn), h〉+

ˆ

Ω

ξ(z)|yn|
p−2ynh dz +

ˆ

∂Ω

β(z)|yn|
p−2ynh dσ −

ˆ

Ω

f(z, un)

‖un‖p−1
h dz

∣

∣

∣

∣

(35)

6
ǫn‖h‖

(1 + ‖un‖)‖un‖p−1
for all n ∈ N.

From hypotheses H1(i),(ii) we see that

|f(z, x)| 6 c1(1 + |x|p−1) for almost all z ∈ Ω, and for all x ∈ R, with c1 > 0,

⇒

{

f(·, un(·))

‖un‖p−1

}

n>1

⊆ Lp
′

(Ω)

(

1

p
+

1

p′
= 1

)

is bounded.

(36)

In (35) we choose h = yn − y ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(33), (34), (36). We obtain

lim
n→∞

〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(Ω) (see Proposition 6) and so ‖y‖ = 1.(37)

From (37) we see that y 6= 0. Let E = {z ∈ Ω : y(z) 6= 0}. If by | · |N we denote the
Lebesgue measure on R

N , then |E|N > 0. We have

|un(z)| → +∞ for almost all z ∈ E,

⇒ f(z, un(z))un(z)− pF (z, un(z)) → +∞ for almost all z ∈ Ω(38)

(see hypothesis H1(iii)).

From (38), hypothesis H1(iii) and Fatou’s lemma, we have

(39)

ˆ

E

[f(z, un)un − pF (z, un)] dz → +∞ as n→ ∞.

On the other hand, hypotheses H1(i),(iii) imply that we can find c2 > 0 such that

(40) −c2 6 f(z, x)x− pF (z, x) for almost all z ∈ Ω, and for all x ∈ R.
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Then we have
ˆ

Ω

[f(z, un)un − pF (z, un)] dz

=

ˆ

E

[f(z, un)un − pF (z, un)] dz +

ˆ

Ω\E

[f(z, un)un − pF (z, un)] dz

>

ˆ

E

[f(z, un)un − pF (z, un)] dz − c2|Ω|N (see (40)),

⇒

ˆ

Ω

[f(z, un)un − pF (z, un)] dz → +∞ as n→ ∞ (see (39)).

This contradicts (32). So, we have proved Claim 2.
Because of Claim 2, at least for a subsequence, we may assume that

(41) un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω) and Lp(∂Ω).

Note that {f(·, un(·))}n>1 ⊆ Lp
′

(Ω) is bounded. So, if in (29) we choose h = un−u ∈
W 1,p(Ω), pass to the limit as n→ ∞ and use (41), then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 6),

⇒ ϕ satisfies the C-condition.

The proof is now complete. �

Proposition 11. If hypotheses H(ξ), H(β), H1 hold, then C1(ϕ, 0) 6= 0.

Proof. We consider the direct sum decomposition

W 1,p(Ω) = Rû1 ⊕ Vp.

For small |t| ∈ (0, 1) we have

(42) |t|û1(z) ∈ (0, δ] for all z ∈ Ω (recall û1 ∈ D+).

Here δ > 0 is as in hypothesis H1(iv). Then

ϕ(tû1) =
|t|p

p
ϑ(û1)−

ˆ

Ω

F (z, tû1) dz

6
|t|p

p

[

ϑ(û1)−

ˆ

Ω

η(z)ûp1 dz

]

(see hypothesis H1(iv) and recall that ‖û1‖p = 1)

=
|t|p

p

ˆ

Ω

[λ̂1 − η(z)]ûp1 dz

< 0 for all small |t| ∈ (0, 1) (recall that û1 ∈ D+).(43)

Hypotheses H1 imply that given r ∈ (p, p∗), we can find c3 = c3(r) > 0 such that

(44) F (z, x) 6
η̂

p
|x|p + c3|x|

r for almost all z ∈ Ω, all x ∈ R.



Resonant Robin problems driven by the p-Laplacian plus an indefinite potential 495

Then for all v ∈ Vp, we have

ϕ(v) =
1

p
ϑ(v)−

ˆ

Ω

F (z, v)dz

>
1

p
[ϑ(v)− η̂‖v‖pp]− c4‖v‖

r for some c4 > 0 (see (44))

> c5‖v‖
p − c4‖v‖

r for some c5 > 0 (recall that η̂ < λ̂(p)).

Since p < r, we can find small δ1 ∈ (0, 1) such that

(45) ϕ(v) > 0 = ϕ(0) for all 0 < ‖v‖ 6 δ1.

Relations (43) and (45) imply that ϕ has a local linking at the origin with respect
to the decomposition Rû1 ⊕ Vp. So, Corollary 6.88 of Motreanu, Motreanu and
Papageorgiou [15, p. 172] implies that C1(ϕ, 0) 6= 0. �

Proposition 12. If hypothesesH(ξ), H(β), H1 hold, then C0(ϕ,∞) = C1(ϕ,∞) =
0 and Cm(ϕ,∞) 6= 0.

Proof. Let λ ∈ (λ̂m, λ̂m+1)\σ0(p) and as before (see Section 2), let ψλ : W
1,p(Ω) →

R be the C1-functional defined by

ψλ(u) =
1

p
ϑ(u)−

λ

p
‖u‖pp for all u ∈ W 1,p(Ω).

We consider the homotopy h(t, u) defined by

h(t, u) = (1− t)ϕ(u) + tψλ(u) for all t ∈ [0, 1], and for all u ∈ W 1,p(Ω).

Claim 3. There exist k0 ∈ R and δ0 > 0 such that

h(t, u) 6 k0 ⇒ (1 + ‖u‖)‖h′u(t, u)‖∗ > δ0 for all t ∈ [0, 1].

We argue indirectly. So, suppose that Claim 3 is not true. Note that the homo-
topy h(t, u) maps bounded sets to bounded sets. So, we can find {tn}n>1 ⊆ [0, 1] and
{un}n>1 ⊆ W 1,p(Ω) such that

(46) tn → t, ‖un‖ → ∞, h(tn, un) → −∞ and (1+‖un‖)h
′
u(tn, un) → 0 in W 1,p(Ω)∗.

From the last convergence in (46), we have
∣

∣

∣

∣

〈A(un), h〉+

ˆ

Ω

ξ(z)|un|
p−2unh dz +

ˆ

∂Ω

β(z)|un|
p−2unh dσ

−(1− tn)

ˆ

Ω

f(z, un)h dz − tnλ

ˆ

Ω

|un|
p−2unh dz

∣

∣

∣

∣

6
ǫn‖h‖

1 + ‖un‖
(47)

for all h ∈ W 1,p(Ω), with ǫn → 0+.
Let yn = un

‖un‖
, n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may assume that

(48) yn
w
→ y in W 1,p(Ω) and yn → y in Lp(Ω) and Lp(∂Ω).

From (47) we have
∣

∣

∣

∣

〈A(yn), h〉+

ˆ

Ω

ξ(z)|yn|
p−2ynh dz +

ˆ

∂Ω

β(z)|yn|
p−2ynh dσ

−(1− tn)

ˆ

Ω

f(z, un)

‖un‖p−1
h dz − tnλ

ˆ

Ω

|yn|
p−2ynh dz

∣

∣

∣

∣

6
ǫn‖h‖

1 + ‖un‖
for all n ∈ N.(49)
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Recall that

(50)

{

f(·, un(·))

‖un‖p−1

}

n>1

⊆ Lp
′

(Ω) is bounded (see hypotheses H1(i),(ii)).

Hypothesis H1(ii) and (50) imply that at least for a subsequence, we have

(51)
f(·, un(·))

‖un‖p−1

w
→ λ̂m|y|

p−2y in Lp
′

(Ω)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 30).
In (49) we choose h = yn − y ∈ W 1,p(Ω), pass to the limit as n → ∞ and use

(48), (51). Then

lim
n→∞

〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(Ω) (see Proposition 6), hence ‖y‖ = 1.(52)

So, if in (49) we pass to the limit as n→ ∞ and use (51) and (52), then

〈A(y), h〉+

ˆ

Ω

ξ(z)|y|p−2yh dz +

ˆ

∂Ω

β(z)|y|p−2yh dσ = λt

ˆ

Ω

|y|p−2yh dz

for all h ∈ W 1,p(Ω) with λt = (1− t)λ̂m + tλ,

⇒ −∆py(z) + ξ(z)|y(z)|p−2y(z) = λt|y(z)|
p−2y(z) for almost all z ∈ Ω,

∂y

∂np
+ β(z)|y|p−2y = 0 on ∂Ω (see Papageorgiou and Rădulescu [18]).(53)

If λt 6∈ σ0(p), then it follows from (53) that

y = 0, a contradiction (see (52)).

So, suppose that λt ∈ σ0(p). If D = {z ∈ Ω: y(z) 6= 0}, then from (52) we see that

|D|N > 0 and |un(z)| → ∞ for almost all z ∈ D.

Reasoning as in the proof of Proposition 10, we show that

(54)

ˆ

Ω

[f(z, un)un − pF (z, un)] dz → +∞ as n→ ∞.

From the third convergence in (46), we have

(55) ϑ(un)− (1− tn)

ˆ

Ω

pF (z, un) dz − tnλ‖un‖
p
p 6 −1 for all n > n0.

In (47) we choose h = un ∈ W 1,p(Ω). Then

(56) −ϑ(un) + (1− tn)

ˆ

Ω

f(z, un)undz + tnλ‖un‖
p
p 6 ǫn for all n ∈ N

By choosing n0 ∈ N even bigger if necessary, we can have

ǫn ∈ (0, 1) for all n > n0.

Adding (55) and (56), we obtain

(57) (1− tn)

ˆ

Ω

[f(z, un)un − pF (z, un)] dz 6 0 for all n > n0.

We may assume that tn ∈ [0, 1) for all n > n0. Otherwise, there exists a sub-
sequence {tnk

}k>1 of {tn}n>1 with tnk
= 1 for all k ∈ N. Hence t = 1 and so
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λt = λ 6∈ σ0(p), a contradiction (recall that we have assumed that λt ∈ σ0(p)).
Therefore tn ∈ [0, 1) for all n > n0 and so from (57), we have

(58)

ˆ

Ω

[f(z, un)un − pF (z, un)] dz 6 0 for all n > n0.

Comparing (54) and (58), we have a contradiction. This proves Claim 3.
Note that the above argument also shows that for every t ∈ [0, 1], h(t, ·) satisfies

the C-condition. We apply Theorem 5.1.21 of Chang [5, p. 334] (see also Liang and
Su [13, Proposition 3.2]) and obtain

Ck(h(0, ·),∞) = Ck(h(1, ·),∞) for all k ∈ N0,

⇒ Ck(ϕ,∞) = Ck(ψλ,∞) for all k ∈ N0.(59)

Since λ 6∈ σ0(p), we have

Kψλ
= {0},

⇒ Ck(ψλ,∞) = Ck(ψλ, 0) for all k ∈ N0,(60)

⇒ C0(ψλ,∞) = C1(ψλ,∞) = 0 (see Proposition 8),

⇒ C0(ϕ,∞) = C1(ϕ,∞) = 0 (see (59)).

Next, we show that Cm(ϕ,∞) 6= 0. We introduce the following two sets

Gr = {u ∈ W 1,p(Ω) : ϑ(u) < λ‖u‖pp, ‖u‖ = r} (r > 0),

H = {u ∈ W 1,p(Ω) : ϑ(u) > λ‖u‖pp}.

They are symmetric sets and Gr ∩H = ∅. Also let

∂Br = {u ∈ W 1,p(Ω) : ‖u‖ = r}.

This is a Banach C1-manifold and hence locally contractible. The set Gr ⊆ ∂Br is
open and thus locally contractible, too. The set W 1,p(Ω)\H is open and of course,
locally contractible. By ind (·) we denote the Fadell and Rabinowitz [8] cohomological

index. Since λ ∈ (λ̂m, λ̂m+1)\σ0(p), we have

indGr = ind (W 1,p(Ω)\H) = m.

Theorem 3.6 of Cingolani and Degiovanni [4] implies that we can find K ⊆
W 1,p(Ω) compact such that (Gr ∪K,Gr) homologically links H in dimension m > 2
(see Motreanu, Motreanu and Papageorgiou [15, p. 167]). So, Theorem 3.2 of [4] says
that

Cm(ψλ, 0) 6= 0,

⇒ Cm(ψλ,∞) 6= 0 (see (60)),

⇒ Cm(ϕ,∞) 6= 0 (see (59)). �

Now, we are ready to prove our first existence theorem.

Theorem 13. If hypotheses H(ξ), H(β), H1 hold, then problem (1) admits a
nontrivial solution û ∈ C1(Ω).

Proof. From Propositions 10 and 11 we have

C1(ϕ, 0) 6= 0 and C1(ϕ,∞) = 0.
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So, Corollary 6.92 of Motreanu, Motreanu and Papageorgiou [15, p. 173], implies
that we can find u0 ∈ Kϕ such that

ϕ(u0) < ϕ(0) = 0 and C0(ϕ, u0) 6= 0

or ϕ(u0) > ϕ(0) = 0 and C2(ϕ, u0) 6= 0.

Evidently, in both cases u0 6= 0 and it solves problem (1). Moreover, from Papageor-
giou and Rădulescu [20] we have u0 ∈ L∞(Ω) and hence Theorem 2 of Lieberman
[14] implies that u0 ∈ C1(Ω). �

We can obtain another existence theorem if we change the geometry of the prob-
lem near the origin. In this case we allow resonance at +∞ with any variational
eigenvalue.

So, the new hypotheses on the reaction f(z, x) are the following:

H2: f : Ω ×R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω), such that

|f(z, x)| 6 aρ(z) for almost all z ∈ Ω, and for all |x| 6 ρ;

(ii) there exists m ∈ N such that

lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m uniformly for almost all z ∈ Ω;

(iii) if F (z, x) =
´ x

0
f(z, s) ds, then limx→±∞[f(z, x)x − pF (z, x)] = +∞ uni-

formly for almost all z ∈ Ω;
(iv) there exists η ∈ L∞(Ω), η(z) 6 λ̂1 for almost all z ∈ Ω, η 6≡ λ̂1 such that

lim sup
x→0

pF (z, x)

|x|p
6 η(z) uniformly for almost all z ∈ Ω.

Lemma 14. If η ∈ L∞(Ω), η(z) 6 λ̂1 for almost all z ∈ Ω, η 6≡ λ̂1, then there
exists c6 > 0 such that

ψ(u) = ϑ(u)−

ˆ

Ω

η(z)|u|p dz > c6‖u‖
p for all u ∈ W 1,p(Ω).

Proof. From (3) we see that ψ > 0. Arguing indirectly, suppose that the lemma
is not true. Exploiting the p-homogeneity of ψ(·) we can find {un}n>1 ⊆ W 1,p(Ω)
such that

(61) ‖un‖ = 1 for all n ∈ N and ψ(un) ↓ 0.

We may assume that

un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

Then in the limit as n→ ∞, we have

ψ(u) 6 0 (see (6)),

⇒ ϑ(u) 6

ˆ

Ω

η(z)|u|p dz 6 λ̂1‖u‖
p
p,(62)

⇒ ϑ(u) = λ̂1‖u‖
p
p (see (3)),

⇒ u = kû1 with k ∈ R.

If k = 0, then u = 0 and we have un → 0 in W 1,p(Ω), a contradiction (see (61)).
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If k 6= 0, then |u(z)| 6= 0 for all z ∈ Ω (recall that û1 ∈ D+). From (62) and the
hypothesis on η(·), we infer that

ϑ(u) < λ̂1‖u‖
p
p,

which contradicts (3). Therefore the lemma is true. �

We can now prove our second existence theorem.

Theorem 15. If hypotheses H(ξ), H(β), H2 hold, then problem (1) admits a
nontrivial solution u0 ∈ C1(Ω).

Proof. Hypothesis H2(iv) implies that given ǫ > 0, we can find δ = δ(ǫ) > 0 such
that

(63) F (z, x) 6
1

p
(η(z) + ǫ)|x|p for almost all z ∈ Ω, and for all |x| 6 δ.

Let u ∈ C1(Ω) with ‖u‖C1(Ω) 6 δ. We have

ϕ(u) =
1

p
ϑ(u)−

ˆ

Ω

F (z, u) dz

>
1

p

[

ϑ(u)−

ˆ

Ω

η(z)|u|p dz

]

− ǫ‖u‖p (see (63))

> (c7 − ǫ)‖u‖p for some c7 > 0 (see Lemma 14).

Choosing ǫ ∈ (0, c7) we infer that

ϕ(u) > 0 for all u ∈ C1(Ω), ‖u‖C1(Ω) 6 δ,

⇒ u = 0 is a local C1(Ω)-minimizer of ϕ,

⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕ (see Proposition 5),

⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0.(64)

On the other hand, from Proposition 12 we have Cm(ϕ,∞) 6= 0. So, from
Theorem 6.62 of Motreanu, Motreanu and Papageorgiou [15, p. 160], we know that
we can find u0 ∈ Kϕ such that

(65) Cm(ϕ, u0) 6= 0, m > 1.

Comparing (64) and (65), we infer that u0 6= 0. As before, the nonlinear regularity
theory implies that u0 ∈ C1(Ω). �

4. Resonance with respect to the principal eigenvalue

In this section, we examine problems which are resonant with respect to the
principal eigenvalue. The problem under consideration is the following:

(66)

{

−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂1|u(z)|
p−2u(z) + g(z, u(z)) in Ω,

∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω.

The hypotheses on the perturbation g(z, x) are the following:

H3: g : Ω ×R → R is a Carathéodory function such that g(z, 0) = 0 for almost
all z ∈ Ω and
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(i) if G(z, x) =
´ x

0
g(z, s)ds, then there exist functions G± ∈ L1(Ω) such

that
ˆ

Ω

G±(z)dz 6 0, g(z, x) → 0 and G(z, x) → G±(z)

uniformly for almost all z ∈ Ω, as x→ ±∞;

and for every ρ > 0 there exists aρ ∈ L∞(Ω)+ such that

|g(z, x)| 6 aρ(z) for almost all z ∈ Ω, and for all |x| 6 ρ.

(ii) G(z, x) 6 1
p
[λ̂(p)− λ̂1]|x|

p for almost all z ∈ Ω, and for all x ∈ R;

(iii) there exists a function η ∈ L∞(Ω) such that

η(z) > 0 for almost all z ∈ Ω, η 6= 0,

lim inf
x→0

pG(z, x)

|x|p
> η(z) uniformly for almost all z ∈ Ω.

Remark 4. Because of hypothesis H3(i), in the terminology introduced by Lan-
desman and Lazer [12], the problem is “strongly resonant” with respect to the prin-
cipal eigenvalue. Such problems exhibit a partial lack of compactness (that is, the
energy (Euler) functional of the problem does not satisfy the C-condition at all lev-
els). This is evident from Proposition 16 below.

The energy functional ϕ : W 1,p(Ω) → R is defined by

ϕ(u) =
1

p
ϑ(u)−

λ̂1
p
‖u‖pp −

ˆ

Ω

G(z, u) dz for all u ∈ W 1,p(Ω).

We have ϕ ∈ C1(W 1,p(Ω)).

Proposition 16. If hypotheses H(ξ), H(β), H3 hold, then the functional ϕ sat-
isfies the Cc-condition for every

c < min

{

−

ˆ

Ω

G+(z) dz,−

ˆ

Ω

G−(z) dz

}

.

Proof. Let m0 = min
{

−
´

Ω
G+(z) dz,−

´

Ω
G−(z) dz

}

and let c < m0. We con-
sider a sequence such that

ϕ(un) → c,(67)

(1 + ‖un‖)ϕ
′(un) → 0 in W 1,p(Ω)∗.(68)

Claim 4. {un}n>1 ⊆W 1,p(Ω) is bounded.

Arguing by contradiction, suppose that the claim is not true. By passing to a
subsequence if necessary, we may assume that

(69) ‖un‖ → ∞.

Let yn = un
‖un‖

, n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may assume that

(70) yn
w
→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω).
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From (67) we have

1

p
ϑ(un)−

λ̂1
p
‖un‖

p
p −

ˆ

Ω

G(z, un) dz 6M3 for some M3 > 0, and for all n ∈ N,

⇒
1

p
ϑ(yn)−

λ̂1
p
‖yn‖

p
p −

ˆ

Ω

G(z, un)

‖un‖p
dz 6

M3

‖un‖p
for all n ∈ N,

⇒ ϑ(y) 6 λ̂1‖y‖
p
p (see (69), (70) and hypothesis H3(i)),

⇒ ϑ(y) = λ̂1‖y‖
p
p (see (3)),

⇒ y = kû1 with k ∈ R.

If k = 0, then yn → 0 in W 1,p(Ω), a contradiction to the fact that ‖yn‖ = 1 for
all n ∈ N.

If k 6= 0, then to fix things we assume that k > 0 (the reasoning is similar if
k < 0). We have

(71) un(z) → +∞ for almost all z ∈ Ω, as n→ ∞.

From (67) we see that given ǫ > 0, we can find n0 = n0(ǫ) ∈ N such that

ϕ(un) 6 c + ǫ for all n > n0,

⇒
1

p
ϑ(un)−

λ̂1
p
‖un‖

p
p −

ˆ

Ω

G(z, un) dz 6 c + ǫ for all n > n0.(72)

From (3) we have

λ̂1‖un‖
p
p 6 ϑ(un) for all n ∈ N.

Using this in (72), we obtain

−

ˆ

Ω

G(z, un)dz 6 c+ ǫ for all n > n0,

⇒ −

ˆ

Ω

G+(z)dz 6 c+ ǫ (from (71), hypothesis H3(i) and Fatou’s lemma).

Since ǫ > 0 is arbitrary, we let ǫ→ 0+ and conclude that

−

ˆ

Ω

G+(z)dz 6 c,

which contradicts the choice of c < m0. This proves Claim 4.
Because of Claim 4 we may assume that

(73) un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

From (68) we have
∣

∣

∣

∣

〈A(un), h〉+

ˆ

Ω

ξ(z)|un|
p−2unh dz +

ˆ

∂Ω

β(z)|un|
p−2unh dσ

−λ̂1

ˆ

Ω

|un|
p−2unh dz −

ˆ

Ω

g(z, un)h dz

∣

∣

∣

∣

6
ǫn‖h‖

1 + ‖un‖
(74)

for all h ∈ W 1,p(Ω) with ǫn → 0+.
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In (74) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(73). Then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 6),

⇒ ϕ satisfies the Cc-condition for c < m0.

The proof is complete. �

Now we prove a multiplicity theorem for problem (66), producing two nontrivial
smooth solutions.

Theorem 17. If hypotheses H(ξ), H(β), H3 hold, then problem (66) admits at
least two nontrivial solutions

u0, û ∈ C1(Ω).

Proof. Hypothesis H3(iii) implies that given ǫ > 0, we can find δ = δ(ǫ) > 0 such
that

(75) G(z, x) >
1

p
(η(z)− ǫ)|x|p for almost all z ∈ Ω, and for all |x| 6 δ.

Recall that û1 ∈ D+. So, for small t ∈ (0, 1) we will have

(76) tû1(z) ∈ (0, δ] for all z ∈ Ω.

Then we have

ϕ(tû1) =
tp

p
[ϑ(û1)− λ̂1]−

ˆ

Ω

G(z, tû1) dz (recall that ‖û1‖p = 1)

= −

ˆ

Ω

G(z, tû1) dz

6
tp

p

[

ǫ−

ˆ

Ω

η(z)ûp1 dz

]

(see (75), (76) and recall that ‖û1‖p = 1).(77)

Since û1 ∈ D+ and η 6≡ 0 (see hypothesis H3(iii)), we have

0 < τ0 =

ˆ

Ω

η(z)ûp1 dz.

Then from (77) and by choosing ǫ ∈ (0, τ0), we obtain

(78) ϕ(tû1) < 0.

Because ϑ(u) > λ̂1‖u‖
p
p for all u ∈ W 1,p(Ω) (see (3)) and using hypothesis H3(i) we

infer that
ϕ is bounded below.

So, in conjunction with (78) we have

(79) −∞ < m = inf ϕ < 0 = ϕ(0).

From hypothesis H3(i) we see that m0 > 0. Therefore Proposition 16 implies
that

ϕ satisfies the Cm-condition.

Invoking Proposition 1, we can find u0 ∈ W 1,p(Ω) such that

m = ϕ(u0) < 0 = ϕ(0) (see (79)),

⇒ u0 6= 0.
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Since u0 ∈ Kϕ, it follows that u0 is a nontrivial solution of (66) and as before, the
nonlinear regularity theory implies that

u0 ∈ C1(Ω).

Next, we consider the following direct sum decomposition

W 1,p(Ω) = Rû1 ⊕ Vp.

If u ∈ Vp, then

ϕ(u) >
1

p
ϑ(u)−

λ̂1
p
‖u‖pp −

1

p
[λ̂(p)− λ̂1]‖u‖

p
p (see hypothesis H3(ii))

=
1

p
ϑ(u)−

λ̂(p)

p
‖u‖pp

> 0 (see (6))

⇒ inf
Vp
ϕ > 0.(80)

On the other hand, if r ∈ (0, 1) is small, then from (78) and (76) we see that

(81) µ = sup[ϕ(u) : u ∈ B̄r ∩Rû1] < 0

with B̄r = {u ∈ W 1,p(Ω) : ‖u‖ 6 r}. We consider the following family of maps

(82) Γ =
{

γ ∈ C(B̄r ∩Rû1,W
1,p(Ω)) : γ|∂B̄r∩Rû1 = id|∂B̄r∩Rû1

}

.

We assume that

(83) Kϕ = {0, u0}.

Otherwise we already have a second nontrivial solution û1, which by the nonlinear
regularity theory belongs to C1(Ω) and so we are done.

Let b = 0 and a = m = ϕ(u0) and let h(t, u) be the deformation postulated by
Theorem 2 (the second deformation theorem). From (83) we see that Kb

ϕ = {0} and
ϕa = {u0}. Hence

(84) h(1, u) = u0 for all u ∈ Vp.

Also, if ‖u‖ = r
2
, then

h

(

2(r − ‖u‖)

r
,
ru

‖u‖

)

= h(1, 2u) = u0 (since 2‖u‖ = r, see (81), (84)).

So, if we consider the map γ0 : B̄r ∩Rû1 →W 1,p(Ω) defined by

γ0(u) =

{

u0 if ‖u‖ < r
2
,

h
(

2(r−‖u‖)
r

, ru
‖u‖

)

if ‖u‖ > r
2
,

then from the previous remarks we see that γ0 is continuous. Also, if ‖u‖ = r then

h(0, u) = u,

⇒ γ0|∂B̄r∩Rû1 = id |∂B̄r∩Rû1 ,

⇒ γ0 ∈ Γ (see (82)).

From Theorem 2 (the second deformation theorem), we know that the homotopy
h(t, u) is ϕ-decreasing. Thus, it follows from (81) that

(85) ϕ(γ0(u)) < 0 for all u ∈ B̄r ∩Ru1.
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From Example 5.2.3(b) of Gasinski and Papageorgiou [9, p. 642], we know that the
sets ∂B̄r ∩Rû1 and Vp link in W 1,p(Ω) (see Definition 3). Therefore we have

γ(B̄r ∩Rû1) ∩ Vp 6= ∅ for all γ ∈ Γ,

⇒ sup[γ(u) : u ∈ B̄r ∩Rû1] > 0 for all γ ∈ Γ (see (80)),

⇒ sup[γ0(u) : u ∈ B̄r ∩Rû1] = γ0(ũ) > 0 for some ũ ∈ B̄r ∩Rû1.

This contradicts (85). So, we can find û ∈ Kϕ, û 6∈ {0, u0}. Then û is the second
nontrivial solution of (66). As before, the nonlinear regularity theory implies that
û ∈ C1(Ω). �

We can have a three solutions theorem, if we change the geometry. So, the new
conditions on the perturbation term g(z, x) are the following:

H4: g : Ω ×R → R is a Carathéodory function such that g(z, 0) = 0 for almost
all z ∈ Ω and
(i) if G(z, x) =

´ x

0
g(z, s)ds, then there exist functions G± ∈ L1(Ω) and

constants c− < 0 < c+ such that

0 <

ˆ

Ω

G±(z)dz 6

ˆ

Ω

G(z, c±û1) dz, pG(z, x)− g(z, x)x→ G±(z)

uniformly for almost all z ∈ Ω as x→ ±∞

and there exist a ∈ L∞(Ω)+ and 1 < r < p∗ =

{

Np
N−p

if p < N

+∞ if p > N
such

that

|g(z, x)| 6 a(z)(1 + |x|r−1) for almost all z ∈ Ω, and for all x ∈ R;

(ii) G(z, x) 6 1
p
[λ̂(p)− λ̂1]|x|

p for almost all z ∈ Ω, and for all x ∈ R;

(iii) there exists a function η ∈ L∞(Ω)+ such that

η(z) 6 0 for almost all z ∈ Ω, η 6= 0,

lim sup
x→0

pG(z, x)

|x|p
6 η(z) uniformly for almost all z ∈ Ω.

Remark 5. Again hypothesis H4(i) incorporates in our framework problems
which are strongly resonant with respect to the principal eigenvalue.

Proposition 18. If hypotheses H(ξ), H(β), H4 hold, then the functional ϕ sat-
isfies the Cc-condition for all c 6= −1

p

´

Ω
G±(z)dz.

Proof. Consider a Cerami sequence {un}n>1 ⊆ W 1,p(Ω) (that is, the sequence
satisfies (67) and (68)). We show that {un}n>1 ⊆ W 1,p(Ω) is bounded. Arguing by
contradiction, assume that ‖un‖ → ∞ and let yn = un

‖un‖
, n ∈ N. Since ‖yn‖ = 1 for

all n ∈ N, we may assume that

yn
w
→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω).

Reasoning as in the proof of Proposition 16, we show that y = kû1, with k 6= 0.
To fix things, we assume that k > 0 and so un(z) → +∞ for almost all z ∈ Ω.

From (67) and (68) we have

p(c− ǫ) 6 pϕ(un) 6 p(c+ ǫ) for all n > n0,(86)

| 〈ϕ′(un), h〉 | 6
ǫn‖h‖

1 + ‖un‖
for all h ∈ W 1,p(Ω) with ǫn → 0+.
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Choosing h = un ∈ W 1,p(Ω) we obtain

(87) −ǫn 6 −〈ϕ′(un), un〉 6 ǫn for all n ∈ N.

Adding (86) and (87), we obtain

p(c− ǫ)− ǫn 6

ˆ

Ω

[g(z, un)un − pG(z, un)] dz 6 p(c+ ǫ) + ǫn for all n > n0.

Recalling that un(z) → +∞ for almost all z ∈ Ω and that ǫ > 0 is arbitrary, if we
pass to the limit as n→ ∞ and use hypothesis H4(i), we obtain

c = −
1

p

ˆ

Ω

G+(z) dz,

a contradiction to our assumption on the level c. �

We consider the direct sum decomposition

W 1,p(Ω) = Rû1 ⊕ Vp

and we introduce the following two open subsets of W 1,p(Ω)

U+ = {tû1 + v : t > 0, v ∈ Vp} and U− = {tû1 + v : t < 0, v ∈ Vp}.

Note that

(88) inf
Ū±

ϕ 6 ϕ(c±û1) = −

ˆ

Ω

G(z, c±û1) dz 6 −

ˆ

Ω

G±(z) dz < 0.

Moreover, as in the proof of Theorem 17, using hypothesis H4(iii), we have that

(89) inf
Vp
ϕ = 0.

These observations will help us to prove the existence of three nontrivial smooth
solutions.

Theorem 19. If hypotheses H(ξ), H(β), H4 hold, then problem (66) has at least
three nontrivial solutions

û+, û−, ŷ ∈ C1(Ω).

Proof. Let ϕ+ : W
1,p(Ω) → R = R ∪ {+∞} be the lower semicontinuous and

bounded below functional defined by

ϕ+(u) =

{

ϕ(u) if u ∈ U+

+∞ otherwise
(see hypothesis H4(i)).

Invoking the extended Ekeland variational principle (see, for example, Gasinski
and Papageorgiou [9, p. 598]), we can find {un}n>1 ⊆ U+ such that

ϕ(un) = ϕ+(un) ↓ inf ϕ+ (recall that ϕ+ is bounded below),(90)

ϕ(un) = ϕ+(un) 6 ϕ+(y) +
1

n(1 + ‖un‖)
‖y − un‖ for all y ∈ W 1,p(Ω).(91)

Since un ∈ U+ for h ∈ W 1,p(Ω) and λ ∈ (0, 1) is small, we have

un + λh ∈ U+.
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Because ϕ+|U+
= ϕ|U+

, it follows from (91) with y = un + λh, that

−
‖h‖

n(1 + ‖un‖)
6
ϕ(un + λh)− ϕ(un)

λ
,

⇒ −
‖h‖

n(1 + ‖un‖)
6 〈ϕ′(un), h〉 .

From Lemma 5.1.38 of Gasinski and Papageorgiou [9, p. 639], we know that we
can find u∗n ∈ W 1,p(Ω)∗ with ‖u∗n‖∗ 6 1 such that

〈u∗n, h〉 6 n(1 + ‖un‖)〈ϕ
′(un), h〉 for all h ∈ W 1,p(Ω)

⇒ (1 + ‖un‖)ϕ
′(un) → 0 ∈ W 1,p(Ω)∗

⇒ un → û+ ∈ W 1,p(Ω) (see (86) and Theorem 17),

⇒ ϕ(û+) = inf
U+

ϕ = inf ϕ+ < 0 (see (88)).(92)

If û+ ∈ ∂U+, then û+ ∈ Vp and so

ϕ(û+) > 0 (see (89)).

This contradicts (92). Therefore û+ ∈ U+ and this means that û+ is a local minimizer
of ϕ. Moreover, the nonlinear regularity theory implies that û+ ∈ C1(Ω).

Similarly, using the lower semicontinuous and bounded below functional

ϕ−(u) =

{

ϕ(u) if u ∈ U−,

+∞ otherwise,

we produce û− ∈ C1(Ω) a second nontrivial smooth solution of (66), which is also a
local minimizer of ϕ.

Without any loss of generality we may assume that

ϕ(û−) 6 ϕ(û+)

(the reasoning is similar if the opposite inequality holds). We assume that Kϕ is
finite (otherwise we already have an infinity of nontrivial solutions of (66) all of them
in C1(Ω) by the nonlinear regularity theory). Since û+ is a local minimizer of ϕ, we
can find ρ ∈ (0, 1) small such that

ϕ(û−) 6 ϕ(û+) < inf [ϕ(u) : ‖u− û+‖ = ρ] = m+
ρ ‖û− − û+‖ > ρ(93)

(see [1], proof of Proposition 29).

Let Γ = {γ ∈ C([0, 1],W 1,p(Ω)) : γ(0) = û−, γ(1) = û+} and define

c = inf
γ∈Γ

max
06t61

ϕ(γ(t)).

Since û+ ∈ U+ and û− ∈ U−, we see from (89) that

c > 0

⇒ ϕ satisfies the Cc-condition(94)

(see Theorem 17 and hypothesis H1(i)).

Then (93) and (94) permit the use of Theorem 4 (the mountain pass theorem). So,
we can find ŷ ∈ W 1,p(Ω) such that

ŷ ∈ Kϕ and m+
ρ 6 ϕ(ŷ)

⇒ ŷ ∈ C1(Ω) is a solution of (66) and ŷ /∈ {û+, û−} (see (93)).
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Since ŷ is a critical point of ϕ of mountain pass type, we have

(95) C1(ϕ, ŷ) 6= 0

(see Motreanu, Motreanu and Papageorgiou [15, p. 168]).
On the other hand, from hypothesis H4(iii) we see that given ǫ > 0, we can find

δ = δ(ǫ) > 0 such that

(96) G(z, x) 6
1

p
(η(z) + ǫ)|x|p for almost all z ∈ Ω, and for all |x| 6 δ.

Then for u ∈ C1(Ω) with ‖u‖C1(Ω) 6 δ, we have

ϕ(u) =
1

p
ϑ(u)−

λ̂1
p
‖u‖pp −

ˆ

Ω

G(z, u) dz

>
1

p

[

ϑ(u)−

ˆ

Ω

[λ̂1 + η(z)]|u|p dz − ǫ‖u‖p
]

(see (96))

> (c8 − ǫ)‖u‖p for some c8 > 0 (see Lemma 14).(97)

Choosing ǫ ∈ (0, c8), we see from (97) that

u = 0 is a local C1(Ω)-minimizer of ϕ,

⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕ (see Proposition 5)

⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0.(98)

Comparing (95) and (98), we infer that

ŷ 6= 0,

⇒ ŷ ∈ C1(Ω) is the third nontrivial smooth solution of (66) �

Remark 6. It would be interesting to know if, at least in the semilinear case
p = 2, one can improve the above theorem and produce a fourth nontrivial solution.
The failure of the compactness condition at certain levels (see Proposition 18) does
not allow us to compute the critical groups at infinity (see Bartsch and Li [3]) and
therefore we cannot use the Morse relation (see (5)). So, a different approach is
needed.
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