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Abstract. Given a set of polynomials p1, . . . , pm ∈ C[ξ] we introduce the group Π = Π[p1, . . . ,

pm] = 〈A(p1), . . . , A(pm), B 〉 where A(z) is the parabolic matrix ( 1 z

0 1
) and B is the elliptic matrix

(

0 −1

1 0

)

. This group unifies the definitions of several groups that often appear in the literature.

For instance, Π[1] is the modular group and Π[ξ] is the parametrized modular group introduced

in [MPT15]. For m = 2, p1 = 1, p2 = i we have the Picard group Π[1, i] = SL(2,Z[i]). An

important feature is the existence of a simple algorithm to obtain the elements of Π. We discuss

several concrete examples, namely the euclidean Bianchi groups and a group from discrete relativity

theory, furthermore the subgroup Π1 of index 4 and its applications to knot theory.

1. Introduction

We will introduce groups built from the parabolic matrix A(z) = ( 1 z
0 1 ) and the

elliptic matrix B = ( 0 −1
1 0

) which appear very often in the literature. This is similar
to the approach of Cohn [Coh68]. We define

Π = Π[p1, . . . , pm] := 〈A(p1), . . . , A(pm), B〉(1.1)

where the pµ are polynomials in C[ξ]. For m = 1 and p1 = ξ we obtain the
parametrized modular group introduced in [MPT15]. In most of our examples the
pµ will be complex numbers, and therefore, we will obtain subgroups of SL(2,C);
and PSL(2,C) is isomorphic to the group of orientation preserving isometries of the
hiporbolic space H3. Our applications to knot theory use the fact that many knots
K have representations in PSL(2,C) and therefore S3−K admits the structura of a
hiperbolic 3-manifold, [Ril82]. The use of the indeterminate ξ however allows us to
arrange matrix elements according to the degree of polynomials.

All matrices W of Π can be written as

W = BκUnB
λ, Un = A(qn)B · · · A(q1)B(1.2)

with κ = 0, 1, 2, 3 and λ = 0, 1 and with

Un =

(

αn βn

αn−1 βn−1

)

, αn = qnαn−1 − αn−2, βn = qnβn−1 − βn−2(1.3)

where the qn are integral linear combinations of the pµ.
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In Section 3 we introduce the subgroup Π1 of index 4 which is generated by
the parabolic matrices A(z) and C(z) = BA(z)B−1. For m = 1 and p1 = ξ this
generalizes the group studied in [PT11a]. As an example, we consider two-bridge
and three-bridge knots [BZ85, HMTT12]. Using an idea of Riley [Ril72] we show
that at least some of these knots lead to subgroups of Π1 generated by four or less
parabolic matrices.

In Section 4 we adjoin two elliptic matrices as further generators, namely
(

z 0
0 1/z

)

with z = i and z = eπi/4. This extension can be applied to the euclidean Bianchi
groups [Swa71] and allows us to study the Schild group of discrete relativity theory,
see [Sch49, JP17].

2. The new group Π

2.1. Definition of the group. Let m ∈ N and let

pµ ∈ C[ξ], pµ 6= 0 (µ = 1, . . . , m),(2.1)

that is, the pµ are nonzero polynomials with complex coefficients and a indeterminate
ξ which is the same for all µ. Our basic matrices are

A(z) :=

(

1 z
0 1

)

, B :=

(

0 −1
1 0

)

(2.2)

where A is parabolic and B is elliptic of order 4. We will study the group

Π = Π[p1, . . . , pm] := 〈A(p1), . . . , A(pm), B〉 ⊂ SL(2,C[ξ]);(2.3)

we only consider generators and not relations. Since A(a)A(b) = A(a + b) it follows
from (2.2) that

A(p1)
k1 · · · A(pm)km =

(

1 k1p1 + . . .+ kmpm
0 1

)

for kµ ∈ Z.(2.4)

If m = 1 and p1 = ξ then Π = Π[ξ] is the parametrized modular group [MPT15].
Another simple example is the group Π[1, ξ] generated by A(1), A(ξ), B.

For ζ ∈ C, the notation

Π(ζ) := Π[p1, . . . , pm](ζ) ∈ SL(2,C) (ζ ∈ C),(2.5)

means that the polynomials pµ are evaluated at ζ . If W = ( a b
c d ) then, for instance,

a = a(ξ) is a polynomial whereas a(ζ) is a complex number.

2.2. The recursive evaluation.

Theorem 2.1. Let W ∈ Π = Π[p1, . . . , pm]. Then there is n ∈ N0 such that

W = BκUnB
λ, Un := A(qn)B · · · A(q2)B ·A(q1)B,(2.6)

where κ = 0, 1, 2, 3 and λ = 0, 1 and where

qν := k1,νp1 + . . .+ km,νpm (kµ,ν ∈ Z).(2.7)

Conversely, every W of the form (2.6) belongs to Π.

The matrices Un in (2.6) depend on the choice of the polynomials q1, . . . , qn de-
fined in (2.7). In general these polynomials are not uniquely determined by Un.
However, we have uniqueness under some special conditions on the pµ, see Proposi-
tion 2.5.

Proof. By the definition of generators, W is the product of all powers of the
A(p1), . . . , A(pm), B in any order. We have Bk = ±B,±I for k ∈ Z. Since B2 = ±I
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commutes with every matrix we can rewrite W such that only the B inside, Bκ at
the beginning and Bλ at the end of the word remain. The remaining inside symbols
B separate blocks of powers of A(pµ). Using (2.4) we obtain (2.6) with (2.7). As an
example, W = BA(p1)

2B2A(p1)BA(p2)B
2 becomes B3 ·A(3p1)BA(p2)B ·B. Finally,

by the definition (2.3) and by (2.7) it is clear that (2.6) represents an element of
Π. �

Let the qν be as in (2.7). We define αn and βn recursively by

α0 = 1, α1 = q1, αn+1 = qn+1αn − αn−1,

β0 = 0, β1 = −1, βn+1 = qn+1βn − βn−1.
(2.8)

Proposition 2.2. The Un defined in (2.6) satisfy

Un =

(

αn βn

αn−1 βn−1

)

.(2.9)

Proof. By (2.2) we have

A(z)B =

(

1 z
0 1

)(

0 −1
1 0

)

=

(

z −1
1 0

)

.(2.10)

We prove (2.9) by induction. The case n = 1 is trivial by (2.8). Let (2.9) be true for
n. Then, by (2.6),

Un+1 =

(

qn+1 −1
1 0

)(

αn βn

αn−1 βn−1

)

=

(

qn+1αn − αn−1 qn+1βn − βn−1

αn βn

)

,

and (2.9) follows from (2.8) for n+ 1. �

By (2.8) the first expressions αn and βn are

α2 = q1q2 − 1, α3 = q1q2q3 − (q1 + q3),

α4 = q1q2q3q4 − (q1q2 + q1q4 + q3q4) + 1,

β2 = −q2, β3 = −q2q3 + 1, β4 = −q2q3q4 + (q2 + q4).

(2.11)

We need the following identities where we write W = ( a b
c d ).

WB =

(

b −a
d −c

)

, BWB =

(

−d c
b −a

)

, BW =

(

−c −d
a b

)

.(2.12)

Corollary 2.3. Let the αn, βn be as in (2.8) and let W ∈ Π[p1, . . . , pm]. Then

there is n ∈ N such that W has one of the eight forms

±
(

αn βn

αn−1 βn−1

)

, ±
(

βn −αn

βn−1 −αn−1

)

,

±
(

−βn−1 αn−1

βn −αn

)

, ±
(

−αn−1 −βn−1

αn βn

)

,

(2.13)

and conversely these matrices belong to Π.

Proof. Every W ∈ Π has the form (2.6). Therefore (2.13) follows from Proposi-
tion 2.2 and from (2.12) in the same order. Conversely, let W be one of the matrices
(2.13). Since B is a generator of Π and B2 = −I we can apply (2.12) to show that
W ∈ Π. �



512 Christian Pommerenke and Margarita Toro

In the following two results we need the additional assumption

pµ = tµξ + sµ with tµ, sµ ∈ C (µ = 1, . . . , m),

k1t1 + . . .+ kmtm = 0 =⇒ k1 = . . . = km = 0.
(2.14)

Proposition 2.4. Let (2.14) be satisfied. If the qν are given by (2.7) then

deg(αn) = n, deg(βn) = n− 1 and

αn = r1 · · · rnξn + . . . , βn = r2 · · · rnξn−1 + . . .(2.15)

where r1, . . . , rn are nonzero complex numbers.

Proof. We obtain from (2.7) and (2.14) that, for ν ∈ N,

qν = kν,1(t1ξ + s1) + . . .+ kν,m(tmξ + sm) = rνξ + hν

with rν 6= 0. Hence (2.15) follows from (2.8) by induction. �

The following uniqueness result extends [MPT15, Lem.2.2].

Proposition 2.5. Let (2.14) be satisfied with sµ = 0 and let W ∈ Π[r1ξ, . . . , rmξ]
with W 6= ±I,±B. Then κ, λ, n in (2.6) and rν := k1,νt1 + . . .+ km,νtm are uniquely

determined.

Proof. Since W 6= ±I,±B we have n ≥ 1 in (2.6). It follows from Proposition 2.4
that the polynomials αn has the highest degree among the elements of Un. By (2.12)
and (2.13), W is obtained from Un by the rotations effected by Bκ and Bλ. It follows
that κ and λ are uniquely determined and therefore also n and Un.

By (2.9) this implies that αn and αn−1 are uniquely determined. By (2.15) we
have αn = rnrn−1 · · · r1ξn + . . . and αn−1 = rn−1 · · · r1ξn−1+ . . . with nonzero highest
coefficients. We conclude that rn = (rn · · · r1)/(rn−1 · · · r1) is uniquely determined.
Since pµ = rµξ it follows from (2.6) that Un = A(rnξ)Un−1 so that now Un−1 is
uniquely determined. Continuing the descent we obtain that rn, . . . , r2, r1 are all
uniquely determined. �

2.3. An example. We choose m = 2, p1 = 1 + i, p2 = 1 − i and therefore
consider the group

Π[(1 + i)ξ, (1− i)ξ] = 〈A((1 + i)ξ), A((1− i)ξ), B〉.
Let Un be as in (2.6). First we are going to show that

U2ν =

(

1 + 2f2ν (1 + i)g2ν−1

(1 + i)f2ν−1 1 + 2g2ν−2

)

, U2ν+1 =

(

(1 + i)f2ν+1 1 + 2g2ν
1 + 2f2ν (1 + i)g2ν−1

)

(2.16)

where the fn and gn are polynomials in ξ of degree n with coefficients in the ring
Z[i] = {x + iy : x, y ∈ Z} . In our induction proof we use the αn and βn given by
(2.8), and from these we obtain the Un using (2.9). We only derive the αn. The
derivation of the βn is similar. By (2.7) the factors in (2.8) are

q = k1(1 + i)ξ + k2(1− i)ξ = (1 + i)rξ with r := k1 − ik2 ∈ Z[i].

From (2.8) we obtain α0 = 1, α1 = (1 + i)rξ and therefore

α2 = (1 + i)r2ξα1 − α0 = (1 + i)r2ξ · (1 + i)r1ξ − 1 = 1 + 2f2

where f2 := −ir1r2ξ
2 + 1. Now let (2.16) be true for n ≤ 2ν, ν ≥ 1. Then we obtain

from (2.8) that

α2ν+1 = (1 + i)r2ν+1ξ(1 + 2f2ν)− (1 + i)f2ν−1 = (1 + i)f2ν+1
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where f2ν+1 := r2ν+1ξ(1 + 2f2ν) − f2ν−1 has degree 2ν + 1 and coefficients in Z[i]
because r2ν+1 ∈ Z[i]. It follows that

α2ν+2 = (1 + i)r2υ+2ξf2ν+1 − 1− f2ν = 1 + 2f2ν+2

where f2ν+2 := −r2ν+2ξf2ν+1−f2ν −1 has degree 2ν+2 and coefficients in Z[i]. This
proves that Un is given by (2.16).

By (2.6) all group matrices have the form BκUnB
λ. It follows from (2.12) that

the factors B only rotate Un possibly changing signs. A change from 1 to −1 is
handled by writing −1 = 1− 2. Therefore we have proved:

Proposition 2.6. Every matrix in Π[(1 + i)ξ, (1− i)ξ] has one of the two forms

(2.16) where fn and gn are polynomials in ξ of degree n with coefficientes in Z[i].

2.4. The bilateral multiplication and palindromes. If the word W has
some kind of symmetry then a symmetric form of multiplication is often more suit-
able. Let n ∈ N and Un be as in (2.6). We write n = 2j if n is even and n = 2j + 1
if n is odd. We are now going to define

Vµ :=

(

aµ bµ
cµ dµ

)

(µ = 0, 1, . . . , j)(2.17)

by induction. We put

V0 := I, σ = 1 if n = 2j; V0 := A(qj+1)B, σ = 2 if n = 2j + 1.(2.18)

For µ = 0, . . . , j − 1 let

Vµ+1 := A(qj+µ+σ)BVµA(qj−µ)B.(2.19)

Then we have Un = Vj . If follows from (2.18) and (2.19) that

Vµ+1 =

(

qj+µ+σ −1
1 0

)(

aµ bµ
cµ dµ

)(

qj−µ −1
1 0

)

=

(

qj−µqj+µ+σaµ + qj+µ+σbµ − qj−µcµ − dµ −qj+µ+σaµ + cµ
qj−µaµ + bµ −aµ

)

.

(2.20)

Proposition 2.7. Let Un be as in (2.6) and suppose that

qν = qn+1−ν 6= 0 for ν = 1, . . . , n.(2.21)

Using the notation (2.8) we then have

αn−1 + βn = 0.(2.22)

By definition Xn · · ·X2X1 is called a palindrome if Xν = Xn−ν+1 for ν = 1, . . . , n.
It follows from (2.21) that Un is a palindrome with Xν := A(qν)B.

Proof. We use the bilateral multiplication defined above. We have Un = Vj and
obtain from (2.20) that, for µ < j,

bµ+1 + cµ+1 = (qν−µ − qj+µ+σ)aµ + bµ + cµ.(2.23)

By (2.21) it follows that bµ+1 + cµ+1 = bµ + cµ. Furthermore we see from (2.18) that
b0 + c0 = 0 in both cases. Therefore we obtain by induction that

βn + αn−1 = bj + cj = 0. �
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3. The parabolic subgroup Π1

3.1. The basic properties. We are going to introduce a subgroup that is
entirely generated by parabolic matrices, namely by A(z) and

C(z) :=

(

1 0
−z 1

)

= BA(z)B−1 = B−1A(z)B.(3.1)

Let W ∈ Π = Π[p1, . . . , pm] and let

τ(W ) := (the number modulo 4 of the symbols B in the word W )(3.2)

where −I = BB and B−1 = BBB. For example we have τ(−A(z1)BA(z2)B
−1) =

2 + 1 + 3 ≡ 2 mod 4. Now we define

Π1 = Π1[p1, . . . , pm] := {W ∈ Π: τ(W ) ≡ 0 mod 4}.(3.3)

Proposition 3.1. The set Π1 is a normal subgroup of Π with index 4.

Proof. Since Π is a group we see that (3.2) induces a group homorphism τ : Π →
Z4 with kernel Π1. Hence Π1 is normal subgroup of Π. Let Γk = {W ∈ Π: τ(W ) ≡
k mod 4}, k = 0, 1, 2, 3. Then we have

Π = Γ0

·∪ Γ1

·∪ Γ2

·∪ Γ3 =
3
⋃

k=0

BkΠ1 =
3
⋃

k=0

Π1B
k

so that Π1 has index 4 in Π. �

Theorem 3.2. Let W ∈ Π = Π[p1, . . . , pm]. Then W belongs to Π1 if and only

if it has one of the four forms

A(q2ν)C(q2ν−1) · · · A(q2)C(q1) = (−1)νU2ν ,

C(q2ν)A(q2ν−1) · · · C(q2)A(q1) = (−1)νBU2νB
−1,

A(q2ν+1)C(q2ν) · · · C(q2)A(q1) = (−1)ν+1U2ν+1B,

C(q2ν+1)A(q2ν) · · · A(q2)C(q1) = (−1)ν+1BU2ν+1

(3.4)

with ν ∈ N0 where qk is defined in (2.7) and Un in (2.6).

We write the elements of the matrices W ∈ Π1 in the same order as in (3.4). It
follows from Theorem 3.2 and Corollary 2.3 that

A . . .C = (−1)ν
(

α2ν β2ν

α2ν−1 β2ν−1

)

, C . . . A = (−1)ν
(

β2ν−1 −α2ν−1

−β2ν α2ν

)

,

A . . .A = (−1)ν
(

−β2ν+1 α2ν+1

−β2ν α2ν

)

, C . . . C = (−1)ν
(

α2ν β2ν

−α2ν+1 −β2ν+1

)

.

(3.5)

Proof. (a) First we verify the four equations (3.4) using (2.6). As an abbreviation
we write Ak := A(qk), Ck := C(qk). In this representation of W the symbol B occurs
κ+ n+ λ times. Therefore we obtain from the definition (3.2) that κ ≡ −n− λ mod
4. It follows from (3.1) that

AkB = BCk, AkBAk+1B = AkBBCk+1 = −AkCk+1 = B2AkCk+1.(3.6)

First let n = 2ν, λ = 0 and therefore κ ≡ −2ν mod 4. Then we obtain from
(3.1), (2.6) and (3.6) that

W = (−1)νU2ν = B−2ν · (A2νBA2ν−1B) · · · (A2BA1B)

= B−2ν(B2A2νC2ν−1) · · · (B2A2C1) = (A2νC2ν−1) · · · (A2C1).
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Now let n = 2ν, λ = 1 and therefore κ ≡ −2ν − 1. It follows that

W = (−1)ν+1BU2νB = B−2ν−1A2νB · (A2ν−1BA2ν−2B) · · · (A3BA2B) · A1

= B−2ν−1BC2ν · (B2A2ν−1C2ν−2) · · · (B2A3C2) · A1.

Let n = 2ν + 1, λ = 1 and therefore κ ≡ −2ν − 2. Then we have

W = (−1)ν+1U2ν+1B = B−2ν−2(A2ν+1BA2νB) · · · (A3BA2B) · A1B
2

= B−2ν(B2A2ν+1C2ν) · · · (B2A3C2) · A1.

Finally let n = 2ν + 1, λ = 0 and therefore κ ≡ −2ν − 1. It follows that

W = (−1)ν+1BU2ν+1 = B−2ν−1A2ν+1B · (A2νBA2ν−1B) · · · (A2BA1B)

= B−2νC2ν+1 · (B2A2νC2ν−1) · · · (B2A2C1).

(b) We have seen in (a) that the four words at the left side of (3.4) are all the
possibilities for Π1. Conversely, the words on the right side of (3.4) belong to Π1 by
definition (3.3) and because τ(A(qk)) = τ(C(qk)) = 0 by (3.1). �

3.2. Two-bridge knots. The groups of the knots [BZ85, HTT02] have the
abstract presentation 〈x1, x2 : x1w = wx2〉 where w has a certain symmetry, see for
instance [HTT02], [PT11b, Th.4.3]. An example is the “figure-eight knot” [MR03,
p. 60]. The relation is w = x1x

−1

2 x−1

1 x2 and the matrix group is generated by
A(1), C(ω), ω = e2πi/3 which is a subgroup of Π1[1, ω].

The following proposition generalizes a well-known method to deal with the single
relation w, see e.g. [MR03, p. 140]. To apply it to two-bridge knots, we assign x1 7→
C(ζ1), x2 7→ A(ζ2).

Proposition 3.3. We assume that (2.14) holds and that qν = qn−ν+1 6= 0 for

ν = 1, . . . , n, n even. Let

W := A(qn)C(qn−1) · · · A(q2)C(q1).(3.7)

Then there exists ζ ∈ C such that, for all z ∈ C,

c = −b, deg(a) = n, W (ζ)A(z) = C(z)W (ζ).(3.8)

Proof. We write W = ( a b
c d ). By (3.7) and (3.1) we have

W = Un = A(qn)B · A(qn−1)B · · ·A(q2)B · A(q1)B
where Un is defined in (2.6). Since qν = qn−ν+1 6= 0 for ν = 1, . . . , n, this is a
palindrome in Xν := A(qν)B, see Section 2.3. It follows from Proposition 2.7 that
b + c = 0 and from Proposition 2.4 that deg(a) = n > 0. Hence there exists ζ such
that a(ζ) = 0. Then we have

W (ζ)A(z) =

(

0 b(ζ)
−b(ζ) d(ζ)

)(

1 z
0 1

)

=

(

0 b(ζ)
−b(ζ) −zb(ζ) + d(ζ)

)

=

(

1 0
−z 1

)(

0 b(ζ)
−b(ζ) d(ζ)

)

= C(z)W (ζ). �

3.3. Three-bridge knots. The theory of three-bridge knots is much more
difficult [Ril82, HMTT12]. The knot group has the abstract presentation

〈 x1, x2, x3 : x1w1 = w1x2, x2w2 = w2x3, x3w3 = w3x1 〉.(3.9)

We will not use the fact [BZ85] that any relation is a consequence of the other two.
The following proposition is, in part, an adaptation of Riley [Ril82, p. 119].
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Proposition 3.4. Let D(z) := A(1)C(z)A(−1) =
(

1+z −z
z 1−z

)

. We assume that

ζ1ζ2ζ3 6= 0 and assign

x1 7→ A(ζ1), x2 7→ C(ζ2), x3 7→ D(ζ3), wν 7→ Wν =
(

aν bν
cν dν

)

where the Wν are products of the matrices A,C,D that depend on the specific knot.

Then the relations in (3.9) hold if and only if

d1 = 0, ζ1c1 + ζ2b1 = 0,

a2 + b2 = 0, ζ2a2 + ζ3(c2 + d2) = 0,

a3 − c3 = 0, ζ1c3 + ζ3(d3 − b3) = 0.

(3.10)

All these matrices V belong to the group generated by A (ζ1) , A (ζ2) , A (ζ3) , A (1)
and B. Since the sum of the exponents of B is σ (B) = 0 it follows from (3.3) that
V ∈ Π1[ζ1, ζ2, ζ3, 1]. The algebraic integers ζ1, ζ2, ζ3 depend on the knot.

Proof. We restrict ourselves to show that x1w1 = w1x2 holds if and only if the
first line in (3.10) holds. We must have

A(ζ1)W1 =

(

a1 + ζ1c1 b1 + ζ1d1
c1 d1

)

=

(

a1 − b1ζ2 b1
c1 − d1ζ2 d1

)

= W1C(ζ2).

The first elements of the matrices are equal if and only if ζ1c1 = −b1ζ2. The second
elements are equal if and only if d1 = 0. The same is true for the third elements, and
the last elements are the same. �

Note that aν , bν , cν , dν depend on ζ1, ζ2, ζ3. Thus we have six equations for the
three unknowns ζ1, ζ2, ζ3. We do not know whether these equations always have
non-trivial solutions. If they exist it may turn out that they are of no use for knot
theory. Moreover, following Riley, we choose three parabolic generators but it might
perhaps be necessary to use non-parabolic generators. These are important questions
on which we are currently working.

4. Extensions of Π by other matrices

4.1. The matrices Q and R. Now we study the connection of the matrices

Q :=

(

i 0
0 −i

)

= R2, R :=

(

1+i√
2

0

0 1−i√
2

)

,(4.1)

with the group Π. They satisfy

Q

(

a b
c d

)

Q−1 =

(

a −b
−c d

)

, R

(

a b
c d

)

R−1 =

(

a ib
−ic d

)

.(4.2)

Theorem 4.1. Let Π = Π[p1, . . . , pm] and let

Γ = 〈A(p1), . . . , A(pm), B,Q〉 .(4.3)

If Q ∈ Π then Γ = Π, if Q /∈ Π then Γ = Π
·∪ (QΠ).

The assumption that Q /∈ Π is for instance satisfied if pµ = rµξ with rµ ∈ C, rµ 6=
0, (µ = 1, . . . , m) because then all words W of Π except ±I,±B are non-constant
polynomials.

The situation is different for the groups Π(ζ), see (2.5). It is possible that Q ∈
Π(ζ) so that QΠ = Π. An example is given by Q ∈ Π[1, i] as we will see in part (a) of
the proof of Corollary 4.3. On the other hand, we will later see that Q /∈ Π[1+i, 1−i].
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Proof. From the definition (2.3) of Π and from (4.3) we obtain that Q ∈ Π
implies Γ = Π. Now let Q /∈ Π. The words of Γ consist of blocks of powers of A(pµ)
as in (2.4), divided by blocks of powers of B and Q. We have Bk = ±I,±B and
Qk = ±Q,±I. Since −I commutes with every matrix we may therefore assume that
W consists of blocks of powers of A(pµ) that are divided by single symbols B and Q.

It follows from (4.2) that BQ = −QB and A(pµ)Q = QA(−pµ). Therefore we
can move all Q to the left. Finally we obtain W = QkV with k = 0, 1 and V ∈ Π. If
k = 0 then W ∈ Π, if k = 1 then W ∈ QΠ. �

Theorem 4.2. Let m be even and let Π = Π[p1, . . . , pm] where the parameters

come in pairs pµ, ipµ for µ = 1, . . . , m/2. If R /∈ Π then Γ := 〈A(p1), . . . , A(pm), R 〉
satisfies

Γ = Π
·∪ (RΠ)

·∪ R2Π
·∪ (R3Π) if Q /∈ Π,

Γ = Π
·∪ (RΠ) if Q ∈ Π.

(4.4)

Proof. By (2.7) the assumption about the parameters implies that iqν = q′ν =
k′
1p1 + . . .+ k′

mpm with k′
µ ∈ Z. Hence we obtain from (4.2) that A(qν)R = RA(q′ν).

Using this identity repeatedly we can move all R to the left as in the proof of Theo-
rem 4.1. Finally we obtain the union (4.4) but possibly without the disjunctions.

Suppose that RkΠ ∩ RlΠ 6= ∅ where 0 ≤ k < l ≤ 3. First let Q /∈ Π. Then we
have Rj = Rl−k = Π with 1 ≤ j ≤ 3. But R ∈ Π implies R2 = Q ∈ Π and R3 ∈ Π
implies R6 = Q ∈ Π, which is false by assumption. Hence the four sets in (4.4) are
disjoint. Now let Q ∈ Π. As R /∈ Π we see that the second line of (4.4) is true. �

4.2. The euclidean Bianchi groups. Let d ∈ N and let Od be the ring of
the integers of the quadratic field Q(

√
−d). We only consider the euclidean Bianchi

groups, that is, the five d for which Od allows a euclidian algorithm. The following
theorem is based on the work of Swan [Swa71] and is not new.

Corollary 4.3. If d = 1, 2, 3, 7, 11, then

SL(2,Od) = Π[1, ω](4.5)

where, in the same order, ω = i, i
√
2, 1

2
(−1 + i

√
3), 1

2
(1 + i

√
7), 1

2
(1 + i

√
11).

Swan has proved (4.5) for d = 2, 7, 11 using the method of fundamental domains.
For d = 1, 3, this method gives also Q as a generator. Almost all articles that we know
quote this additional generator [FN87, YC00], [MR03, p. 59]. But Cohn [Coh68] has
shown that Q is superfluous as a generator.

Proof. (a) Let d = 1, the case of the Picard group SL(2,Z[i]). According to
[Swa71, p. 39] the generators are A(1), A(i), B and furthermore Q. Using (2.11) with
α3 = i, α2 = β3 = 0, β2 = −i we construct the following matrix

Q =

(

i 0
0 −i

)

=

(

−i −1
1 0

)(

i −1
1 0

)(

−i −1
1 0

)

∈ Π[1, i].

Hence Q is superfluous as a generator.
(b) Let d = 3 and ω = 1

2
(−1 + i

√
3). According to [Swa71, p. 41] the generators

are A(1), A(ω), B and furthermore G := ( ω 0
0 ω̄ ) . Using again (2.11) we obtain

G =

(

ω 0
0 ω̄

)

=

(

ω −1
1 0

)(

−ω̄ 1
−1 0

)(

ω −1
1 0

)

∈ Π[1, ω].

Hence G is superfluous as a generator. �
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4.3. The Schild group. In the standard form of discrete relativity theory the
space-time vector (t, x, y, z) lies in the grid Z4. By definition, the Schild group S ⊂
SL(2,C) leaves the 2x2-matrix form of Z4 invariant. See e.g. [Sch49, LK99, JP16].

The Schild group S is the disjoint union of the four rather different sets G, H,
V and W, see e.g. [JP16]. The basic group [JP17, Th. 2.1] is

G = ( a b
c d ) ∈ {SL(2,Z[i]) : |a|2 + |b|2 + |c|2 + |d|2 ∈ 2Z}

= 〈A(1 + i), A(1− i), B,Q〉 .
The only subgroups of S between G and S are the two groups [JP17, Th. 3.2, Sect. 4.2]
given by

G ∪V = 〈A(1 + i), A(1− i), B, R〉 ,(4.6)

G ∪H = 〈A(1 + i), A(1− i), B, P 〉 , P :=

(

(1− i)/2 (1− i)/2
−(1 + i)/2 (1 + i)/2

)

.(4.7)

Furthermore it is shown [JP17, Th. 6.2] that G is a subgroup of index 3 of the Picard
group Π[1, i] considered in Corollary 4.3.

Now we derive a result proved by [JP17] in a different form and by a different
method. Let Π = Π[1 + i, 1− i], the group considered in Section 2.3. It follows from
Proposition 2.6 that Q /∈ Π, furthermore we have R /∈ Π because R2 = Q by (4.1).
Therefore we obtain from Theorems 4.1 and 4.2 that

G = Π
·∪ (QΠ), G ∪V = Π

·∪ (RΠ)
·∪ R2Π

·∪ (R3Π).(4.8)

The situation is different for the group (4.7). We do not know any analogue of
Theorem 4.1 with Q replaced by the technically more difficult P . The cosets of G in
G ∪H are described in [JP17, Th. 3.2].

References

[BZ85] Burde, G.H., and H. Zieschang: Knots. - Walter de Gruyter, 1985.

[Coh68] Cohn, P.M.: A presentation of SL2 for euclidean imaginary quadratic number fields.
- Mathematika 15, 1968, 156–163.

[FN87] Fine, B., and M. Newman: The normal subgroup structure of the Picard group. -
Trans. Amer. Math. Soc. 302, 1987, 769–786.

[HTT02] Hilden, H., D. Tejado, and M. Toro: Tunnel number one knots have palindrome
presentaciones. - J. Knot Theoary Ramifications 11, 2002, 851–831.

[HMTT12] Hilden, H., J. Montesinos, D. Tejada, and M. Toro: On the classification of
3-bridge links. - Rev. Colombiana Mat. 46:2, 2012, 113–144.

[JP16] Jensen, G., and Ch. Pommerenke: Discrete space-time and Lorentz transformations.
- Canad. Math. Bull. 59, 2016, 123–135.

[JP17] Jensen, G., and Ch. Pommerenke: On the structure of the Schild group in relativity
theory. - Canad. Math. Bull. 60, 2017, 774–790.

[LK99] Lorente, M., and P. Kramer: Representations of the discrete inhomogeneous
Lorentz group and Dirac wave equation on the lattice. - J. Phys. A 32, 1999, 2481–
2497.

[LU69] Lyndon, R., and J. Ullman: Groups generated by two parabolic fractional linear
transformations. - Canad. J. Math. 21, 1969, 1388–1403.

[MR03] MacLachlan, C., and A.W. Reid: The arithmetic of hyperbolic 3-manifolds. -
Springer, New York, 2003.

[MPT15] Mejia, D., Ch. Pommerenke, and M. Toro: On the parametrized modular group.
- J. Anal. Math. 127, 2015, 109–128.



A generalization of the parametrized modular group 519

[PT11a] Pommerenke, Ch., and M. Toro: On the two-parabolic subgroups of SL2,C. - Rev.
Colombiana Mat. 45, 2011, 37–50.

[PT11b] Pommerenke, Ch., and M. Toro: Grupos de nudos con dos generadores. - Rev.
Integr. Temas Mat. 29, 2011, 1–14.

[Ril72] Riley, R.: Parabolic representations of knot groups I. - Proc. London Math. Soc. 3,
1972, 217–242.

[Ril82] Riley, R.: Seven excellent knots. London Math. Soc. Lecture Note Ser. 48, 1982,
81–151.

[Sch49] Schild, A.: Discrete space-time and integral Lorentz transformations. - Canad. J.
Math. 1, 1949, 29–47.

[Swa71] Swan, R. G.: Generators and relations for certain special linear groups. - Adv. Math.
6, 1971, 1–77.

[TR16] Toro, M., and M. Rivera: The Schubert normal form of a 3-bridge link and the
3-bridge link group. - J. Knot Theory Ramifications (to appear).

[YC00] Yılmaz, N., and N. Cangül: Conjugacy classes of elliptic elements in the Picard
group. - Turkish J. Math. 24, 2000, 209–220.

Received 24 January 2017 • Accepted 29 September 2017


