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Abstract. A simple extension is given of the well-known conformal invariance of harmonic

measure in the plane. This equivalence depends on the interpretation of harmonic measure as an

exit distribution of planar Brownian motion, and extends conformal invariance to analytic functions

which are not injective, as well as allowing for stopping times more general than exit times. This

generalization allow considerations of homotopy and reflection to be applied in order to compute

new expressions for exit distributions of various domains, as well as the distribution of Brownian

motion at certain other stopping times. An application of these methods is the derivation of a

number of infinite sum identities, including the Leibniz formula for π and the values of the Riemann

ζ function at even integers.

1. Introduction and primary methods

It is well known that harmonic measure on domains in C can be interpreted in
terms of exit distributions of planar Brownian motion. The conformal invariance of
harmonic measure therefore implies a conformal invariance principle for exit distri-
butions as well, and this principle can also be deduced directly from Lévy’s theorem
on the conformal invariance of Brownian motion. This invariance allows in many
instances for exit distributions to be calculated on simply connected domains for
which a conformal equivalence with the disk is known. However, Lévy’s theorem in
fact does not require maps to be injective, permitting general nonconstant analytic
functions as well. We will show how the conformal invariance of the exit distribution
of Brownian motion can be extended to nonconstant analytic functions, as well as
to more general stopping times. This allows us to derive new expressions for many
exit times and to calculate the distributions of Brownian motion at the exit time of
certain non-simply connected domain, as well as at certain stopping times which are
not exit times. We will give a number of illustrative examples, and show how certain
identities can result from the appropriate choice of stopping times. Perhaps most
notably, we will see a number of different ways in which the values for

∑∞
n=1

1
n2m and

∑∞
n=1

(−1)n−1

n2m+1 can be deduced.
Lévy’s theorem is as follows (see [1] or [6] for a proof).

Theorem 1. Let f be analytic and nonconstant on a domain U , and let a ∈ U .

Let Bt be a Brownian motion starting at a, and τ a stopping time such that the set

of Brownian paths {Bt : 0 ≤ t ≤ τ} lie within U a.s. Then the process f(Bt) stopped

at τ is a time-changed Brownian motion.

It should be noted that the time change referenced in the theorem can be ex-
pressed explicitly, but is not important for our purposes. Let γ be a smooth curve
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parameterized by arclength, Bt a Brownian motion starting at a, and τ a stopping
time such that Bτ ∈ γ a.s. ρaτ (w)ds will denote the density of Bτ on γ, when it exists,
with ds denoting the arclength element. We then have the following identity, valid
for any measurable subset A of γ:

(1.1) Pa(Bτ ∈ A) =

ˆ

A

ρaτ (γs) ds.

Now, Levy’s Theorem provides us with a Brownian motion B̂t which is a time-change
of f(Bt) and a stopping time τ̂ , which is the image under the time change of τ , so

that B̂τ̂ ∈ f(γ) a.s. We will also use the notation ρaτ̂ (w)ds to denote the density of

B̂τ̂ = f(Bτ ). Our method of projection is contained in the following theorem.

Theorem 2. Let U be a domain, and suppose f is a function analytic on U . Let

Bt be a Brownian motion starting at a, and τ a stopping time such that the set of

Brownian paths {Bt : 0 ≤ t ≤ τ} lie within U a.s. Suppose that γ is a smooth curve

in U such that Bτ ∈ γ a.s. Then for any a ∈ U and w ∈ f(γ) we have

(1.2) ρ
f(a)
τ̂ (w) ds =

∑

z∈f−1(w)∩γ

ρaτ (z)

|f ′(z)| ds.

The proof is essentially immediate, since any Brownian path which finishes at
f−1(w)∩ γ at time τ will be mapped under f to a path finishing at w. The |f ′(z)| in
the denominator on the right side of (1.2) is the scaling factor required for the change
in the arclength element mapped under the analytic function f . We also remark that
in the case that f is conformal, it is often easier to use g = f−1, and (1.2) becomes

(1.3) ρaτ̂ (w) ds = ρg(a)τ (g(w))|g′(w)| ds.
In the next section we will proceed through a series of examples which illustrate the
use of the theorem. In each case, the stopping time τ will be the exit time of a
domain although τ̂ may not be; note that this does not conflict with the requirement
that γ ⊆ U , since the analytic function f in our examples will always be a function
which is analytic on a domain strictly containing the closure of U , and the theorem
can be applied in this larger domain.

2. Examples

The first two examples, concerning the disk and half-plane, are certainly known
but are included for completeness and for their use in the later examples. In what
follows, we will use the notation TU to denote the exit time of any domain U ; that
is, TU = inf{t ≥ 0|Bt ∈ U c}.

Example 1. (disk) There is only one exit distribution in C which is obvious:
that of a disk in which the Brownian motion starts at the center. With D = {|z| < 1},
rotational invariance shows immediately that ρ0TD

(eiθ)ds = ds
2π

. For a ∈ D consider
the Möbius transformation

(2.1) ψa(z) =
z − a

1− āz
.

It is well-known that ψa is a conformal self-map of D sending a to 0. Using ψ′
a =

1−|a|2
(1−āz)2

and (1.3) we obtain the following identity:

(2.2) ρaTD
(eiθ) ds =

1

2π

1− |a|2
|1− āeiθ|2 ds.
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We can also calculate the exit density from disks with radius other than one,
as well as the hitting density of the circle when the Brownian motion begins at a
point outside the circle. Let mD = {|z| < m} and mD

c = {|z| > m}; Note that
TmD and TmDc both signify the first hitting time of {|z| = m}, but the former is of
interest when the initial point of the Brownian motion has modulus less than m, and
the latter when it is greater. If |a| < m, then we can project (2.2) using the map
z −→ mz to obtain

(2.3) ρaTmD
(meiθ) ds =

1

m
ρ
a/m
TD

(eiθ) ds =
1

2πm

1− | a
m
|2

|1− āeiθ

m
|2
ds =

1

2πm

m2 − |a|2
|m− āeiθ|2 ds,

while if |a| > m then we use the map z −→ m
z

to get

(2.4) ρaTmD
(meiθ)ds =

1

m
ρ
m/a
TD

(e−iθ)ds =
1

2πm

1− |m
a
|2

|1− m
ā
e−iθ|2 ds =

1

2πm

|a|2 −m2

|a−meiθ|2 ds.

As a side note, the Poisson Integral Formula for harmonic functions in the disk D

can be derived from (2.2), as we have by Dynkin’s formula for harmonic h (see [3])

(2.5) h(a) = Ea[h(BTD
)] =

1

2π

ˆ 2π

0

h(eiθ)
1− |a|2

|1− āeiθ|2 dθ.

The reader may check that setting a = reit and performing a few simple manipula-
tions yield a more standard form of the formula.

Example 2. (half-plane) We can also easily calculate the exit distribution of
a half-plane, as follows. Let TH be this exit time. The conformal map taking H =
{y > 0} to D is given by f(z) = z−i

z+i
, with f ′(z) = 2i

(z+i)2
. We obtain

(2.6) ρiTH
(x) ds =

1

π

1

1 + x2
ds.

To find the distribution from a more general point a = u + vi use the map f(z) =
u+ vz, which fixes H and maps i to a, to obtain

(2.7) ρaTH
(x) ds =

1

π

v

v2 + (x− u)2
ds.

As in the case of the unit disk, this distribution leads via Dynkin’s formula to the
Poisson Integral Formula for the upper half-plane.

Example 3. (punctured disk) Now let V = {0 < |z| < 1} be the punctured disk.
We can calculate the exit distribution of V by projecting from H via the covering
map f(z) = eiz (note that |f ′(z)| = 1 on ∂H). For any a ∈ V we obtain

(2.8) ρaTV
(eiθ) ds =

∞
∑

k=−∞

− ln |a|
π((ln |a|)2 + (arg(a)− (θ + 2πk))2)

ds.

Planar Brownian motion does not see points, i.e. Pa(Bt = 0 for some t ≥ 0) = 0.
Thus, the exit distribution for the disk and the punctured disk agree. The difference
then between the expressions (2.2) and (2.8) is that each term in the sum in (2.8)
corresponds to a different homotopy class of paths in the punctured disk terminating
at eiθ, while (2.2) does not differentiate between the homotopy classes. Furthermore,
equating (2.2) and (2.8), assuming a ∈ (0, 1) for simplicity, gives the identity

(2.9)

∞
∑

k=−∞

− ln a

π((ln a)2 + (θ + 2πk)2)
=

1

2π

1− a2

|1− aeiθ|2 =
1− a2

2π(1 + a2 − 2a cos θ)
.
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This identity can be manipulated into a more easily recognized identity, as follows.
Divide both sides by − ln a and simplify. This gives

(2.10)

∞
∑

k=−∞

1

((ln a)2 + (θ + 2πk)2)
=

1− a2

2(− ln a)(1 + a2 − 2a cos θ)
.

Assuming θ 6= 0, we can now let aր 1 using lima−→1
1−a2

ln a
= −2, and obtain

(2.11)

∞
∑

k=−∞

1

(θ + 2πk)2
=

1

2(1− cos θ)
.

Subtract 1
θ2

from both sides (the term k = 0), take the limit as θ −→ 0 using
limθ−→0

1
2(1−cos θ)

− 1
θ2

= 1
12

, and simplify. We obtain

(2.12)

∞
∑

k=1

1

k2
=
π2

6
.

This is Euler’s celebrated Basel sum, which has many other existing proofs, including
a different probabilistic proof making use of planar Brownian motion (see [4]). Note
also that if we differentiate (2.11) 2m − 2 times and let θ −→ 0 we will be able to
obtain the well-known values of

∑∞
k=1

1
k2m

. Furthermore, if we take a = e−1, then
θ = 0, π successively, we obtain two identities, which may be added to obtain a third
as follows:

∞
∑

k=−∞

1

π(1 + (2πk)2)
=

1

2
coth

(

1

2

)

,

∞
∑

k=−∞

1

π(1 + (π + 2πk)2)
=

1

2
tanh

(

1

2

)

,

∞
∑

k=−∞

1

π(1 + (πk)2)
= coth(1).

(2.13)

The final identity in (2.13) is a standard identity which arises as an example of
several different techniques for summing series, for instance using the residue theorem
[7, Ch. 7].

Example 4. (infinite strip) We now calculate the exit distribution on an infinite
strip. We let W = {−1 < Re(z) < 1} and take the starting point of the Brownian
motion a to lie on the real interval (−1, 1); it is clear that the distribution with any
other starting point can be obtained from this merely by translation. Apply our
theorem to the function tan(π

4
z), which maps W conformally to D, to get

(2.14) ρaTW
(±1 + yi) ds =

∣

∣

∣

π

4
sec2

(π

4
(±1 + yi)

)∣

∣

∣
ρ
tan(π

4
a)

TD

(

tan
(

±π
4
+
π

4
yi
))

ds.

We can simplify
∣

∣

∣

π

4
sec2

(π

4
(±1 + yi)

)∣

∣

∣
= π

∣

∣e−
π
4
y+π

4
i + e

π
4
y−π

4
i
∣

∣

−2

= π

∣

∣

∣

∣

1√
2

(

e−
π
4
y + e

π
4
y
)

+
i√
2

(

e−
π
4
y − e

π
4
y
)

∣

∣

∣

∣

−2

=
π

2

(

cosh2 π

4
y + sinh2 π

4
y
)−1

=
π

2

(

cosh
π

2
y
)−1

.

(2.15)
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Furthermore, using the distribution calculated in Example 1, we have

(2.16) ρ
tan(π

4
a)

TD

(

tan
(

±π
4
+
π

4
yi
))

ds =
1− tan2(π

4
a)

2π|1− tan(π
4
a) tan(±π

4
+ π

4
yi)|2 ds.

Using tan(α+ β) = tanα+tan β
1−tanα tan β

and the identity tan(π
4
yi) = i tanh(π

4
y) gives

tan
(

±π
4
+
π

4
yi
)

=
±1 + i tanh(π

4
y)

1∓ i tanh(π
4
y)

=
±(1± i tanh(π

4
y))2

1 + tanh2(π
4
y)

=
±(1− tanh2(π

4
y)) + 2i tanh(π

4
y)

1 + tanh2(π
4
y)

,

(2.17)

which yields

ρ
tan(π

4
a)

TD

(

tan
(

±π
4
+
π

4
yi
))

ds

=
1− tan2(π

4
a)

2π

(

(

1∓ tan(π
4
a)

1−tanh2(π
4
y)

1+tanh2(π
4
y)

)2

+
(

tan(π
4
a)

2 tanh(π
4
y)

1+tanh2(π
4
y)

)2
) ds.

(2.18)

Combining (2.14)–(2.18) gives
(2.19)

ρaTW
(±1 + yi) ds =

sech(π
2
y)(1− tan2(π

4
a))

4

(

(

1∓ tan(π
4
a)

1−tanh2(π
4
y)

1+tanh2(π
4
y)

)2

+
(

tan(π
4
a)

2 tanh(π
4
y)

1+tanh2(π
4
y)

)2
) ds.

There is another method for calculating ρaTW
(±1+yi) ds which uses a form of the

reflection principle. This method will be applied in other examples below, namely
Examples 5 and 7, and we prove its validity carefully for this example, while in the
later ones merely referencing this one. Let us define τ(b) = inf{t ≥ 0 : Re(Bt) = b}.
It is clear with comparison with the half-plane example above that ρaτ(b)(b+ yi)ds =
1
π

|a−b|
|a−b|2+y2

ds. It will turn out that

ρaTW
(1 + yi) ds = ρaτ(1)(1 + yi) ds− ρaτ(−3)(−3 + yi) ds+ ρaτ(5)(5 + yi) ds

− ρaτ(−7)(−7 + yi) ds+ . . . ,

ρaTW
(−1 + yi) ds = ρaτ(−1)(1 + yi) ds− ρaτ(3)(3 + yi) ds+ ρaτ(−5)(−5 + yi) ds

− ρaτ(7)(7 + yi) ds+ . . . .

(2.20)

We will prove the first equation in (2.20), and for the proof of this it will help
to isolate several lemmas. Let us extend the definition of τ by recursively defining
τ(b1, b2, . . . , bn+1) = inf{t ≥ τ(b1, . . . , bn) : Re(Bt) = bn+1}; that is, τ(b1, b2, . . . , bn)
is the first time at which Re(Bt) has visited the sequence b1, b2, . . . , bn in order. The
first lemma should be clear upon consideration, and we therefore omit the proof.

Lemma 1. On the event {τ(b1) < τ(b2)}, we have τ(b1, b2, . . . , bn) = τ(b2, . . . , bn).

That is, on the set of all Brownian paths which hit b1 before b2, we can drop b1
from the start of the sequence without changing the value of the stopping time. The
following is an immediate consequence.
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Lemma 2. For A ⊆ R, we have
(

1{Im(Bτ(1))∈A} − 1{Im(Bτ(−1,1))∈A}

)

+
(

1{Im(Bτ(1,−1,1))∈A} − 1{Im(Bτ(−1,1,−1,1))∈A}

)

+ . . .+
(

1{Im(Bτ(1,−1,...,−1,1))∈A} − 1{Im(Bτ(−1,1,−1,...,1,1))∈A}

)

≤ 1{Re(BTW
)=1,Im(BTW

)∈A}

≤ 1{Im(Bτ(1))∈A} −
(

1{Im(Bτ(−1,1))∈A} − 1{Im(Bτ(1,−1,1))∈A}

)

− . . .−
(

1{Im(Bτ(−1,1,...,−1,1))∈A} − 1{Im(Bτ(1,−1,1,...,−1,1))∈A}

)

.

(2.21)

Remark. In the sums in (2.21), it should be understood that the sequences
defining the τ ’s alternate and increase in length by one with each successive term.

Proof. We begin by noting that

min(1{Im(Bτ(1))∈A}, 1{τ(1)<τ(−1)}) = 1{Re(BTW
)=1,Im(BTW

)∈A}.

By Lemma 1, on the set {τ(−1) < τ(1)} we have τ(−1, 1,−1, . . . ,−1, 1) = τ(1,−1,
. . . ,−1, 1), and thus each positive term in the leftmost sum in (2.21) is canceled by
the subsequent negative term and therefore the sum is 0. On the other hand, on the
set {τ(1) < τ(−1)} each negative term in the leftmost sum except the last is canceled
by the subsequent positive one, again by Lemma 1. Thus, on {τ(1) < τ(−1)}, the
leftmost side of (2.21) is equal to

1{Im(Bτ(1))∈A} − 1{Im(Bτ(−1,1,−1,...,1,1))∈A} ≤ 1{Im(Bτ(1))∈A} = 1{Re(BTW
)=1,Im(Bτ(1))∈A}.

It follows that the leftmost side is less than or equal to

min(1{Im(Bτ(1))∈A}, 1{τ(1)<τ(−1)}) = 1{Re(BTW
)=1,Im(BTW

)∈A}.

The second inequality follows similarly from Lemma 1, for on the set {τ(1) < τ(−1)}
the difference inside each set of parentheses on the rightmost side is zero yielding a
value of

1{Im(Bτ(1))∈A} ≥ 1{Re(BTW
)=1,Im(BTW

)∈A},

while on {τ(−1) < τ(1)} we have 1{Re(BTW
)=1,Im(BTW

)∈A} = 0, while the right side is
equal to 1{Im(Bτ(1,−1,1,...,−1,1))∈A} ≥ 0. �

If we let A be a small interval on the line {Re(z) = 1} centered at 1 + yi, divide
by the length of the interval, and then let this length go to 0 we obtain

ρaTW
(1 + yi) ds = ρaτ(1)(1 + yi) ds− ρaτ(−1,1)(1 + yi) ds+ ρaτ(1,−1,1)(1 + yi) ds

− ρaτ(−1,1,−1,1)(1 + yi) ds+ . . . .
(2.22)

We should mention that, intuitively, (2.22) is very simple: in order to calculate
ρaTW

(1+yi) ds we want to count paths which leave {Re(z) < 1} at 1+yi, however we
want to remove the contribution from paths which strike {Re(z) = −1} first, so we
consider ρaτ(1)(1+yi) ds−ρaτ(−1,1)(1+yi) ds; however, by subtracting ρaτ(−1,1)(1+yi) ds
we have subtracted too much, as we have incorrectly subtracted the contribution from
paths which hit {Re(z) = 1} before {Re(z) = −1}, so we must add ρaτ(1,−1,1)(1 +

yi)ds to compensate; however, by an analogous argument we have overcompensated,
and must therefore subtract ρaτ(−1,1,−1,1)(1 + yi) ds, and so forth. It remains only to

understand how to calculate the density ρaτ(b1,...,bn)(bn + yi) ds.
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Lemma 3. For any sequence of real numbers a = b0, b1, . . . , bn we have

ρaτ(b1,...,bn)(bn + yi) ds = ρaτ(a+
∑n

j=1 |bj−bj−1|)

(

a +
n
∑

j=1

|bj − bj−1|+ yi

)

ds

= ρaτ(a−
∑n

j=1 |bj−bj−1|)

(

a−
n
∑

j=1

|bj − bj−1|+ yi

)

ds.

(2.23)

Proof. By induction on n. The case n = 1 follows from the symmetry of
Brownian motion over the line {Re(z) = a}. Suppose that the result holds for
n, and consider a sequence b1, . . . , bn, bn+1. If bn lies between bn−1 and bn+1, then
τ(b1, . . . , bn−1, bn, bn+1) = τ(b1, . . . , bn−1, bn+1), since the real part of the Brownian
motion must hit bn in passing from bn−1 to bn+1, so the result follows from the in-
duction hypothesis (since then also |bn+1 − bn| + |bn − bn−1| = |bn+1 − bn−1|). If,
on the other hand, bn does not lie between bn−1 and bn+1, then it must lie between
bn−1 and bn − (bn+1 − bn). However, we must have ρaτ(b1,...,bn,bn+1)

(bn+1 + yi)ds =

ρaτ(b1,...,bn,bn−(bn+1−bn))
(bn − (bn+1 − bn) + yi)ds, since the reflection principle implies

that the process

(2.24) B̃t =

{

Bt if t ≤ τ(b1, . . . , bn),

bn − (Re(Bt)− bn) + i Im(Bt) if t > τ(b1, . . . , bn),

is also a Brownian motion; this is the reflection of Bt over the line {Re(z) = bn} for t >
τ(b1, . . . , bn). By the same argument as before, τ(b1, . . . , bn−1, bn, bn − (bn+1 − bn)) =
τ(b1, . . . , bn−1, bn − (bn+1− bn)), and furthermore |bn− (bn+1 − bn)− bn| = |bn+1− bn|,
so the result again follows from the induction hypothesis. �

Using this lemma, we see that (2.22) reduces to the first equation in (2.20),
with the other equation in (2.20) following by the symmetric argument. Using the
expression immediately preceding (2.20), we see

ρaTW
(1 + yi) ds =

ds

π

(

1− a

(1− a)2 + y2
− 3 + a

(3 + a)2 + y2
+

5− a

(5− a)2 + y2

− 7 + a

(7 + a)2 + y2
+ . . .

)

,

ρaTW
(−1 + yi) ds =

ds

π

(

1 + a

(1 + a)2 + y2
− 3− a

(3− a)2 + y2
+

5 + a

(5 + a)2 + y2

− 7− a

(7− a)2 + y2
+ . . .

)

.

(2.25)

Equating the expression for ρaTW
(1 + yi)ds in (2.25) with that in (2.19) gives the

identity

1

π

∞
∑

j=1

(−1)j+1((2j − 1) + (−1)ja)

((2j − 1) + (−1)ja)2 + y2

=
sech(π

2
y)(1− tan2(π

4
a))

4

(

(

1− tan(π
4
a)

1−tanh2(π
4
y)

1+tanh2(π
4
y)

)2

+
(

tan(π
4
a)

2 tanh(π
4
y)

1+tanh2(π
4
y)

)2
) .

(2.26)
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Needless to say, our lives are considerably simplified by setting y = 0 or a = 0.
For a = 0, we obtain

(2.27)

∞
∑

j=1

(−1)j+1(2j − 1)

(2j − 1)2 + y2
=
π

4
sech

(π

2
y
)

,

which can be obtained by other methods, for instance the residue theorem [7]. Taking
y = 0 gives us Leibniz’s representation for π:

(2.28)
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . .

Returning to (2.25), set now y = 0 to obtain

∞
∑

j=1

(−1)j+1

(2j − 1) + (−1)ja
=

1

1− a
− 1

3 + a
+

1

5− a
− 1

7− a
+ . . .

=
π

4

(

1 + tan(π
4
a)

1− tan(π
4
a)

)

.

(2.29)

This identity is somewhat unusual, and may be new. It can be manipulated to obtain

a number of other identities, as follows. Let g(a) = π
4

(

1+tan(π
4
a)

1−tan(π
4
a)

)

. Then, if r is a

positive integer, differentiating (2.29) r − 1 times yields the identity

(2.30)

∞
∑

j=1

(r − 1)!(−1)r(j+1)

((2j − 1) + (−1)ja)r
= g(r−1)(a).

Note that if r is even then all terms in the sum will be positive, while if r
is odd then the sum will be alternating. Setting a = 0 in this identity gives the

values of all sums of the form
∑∞

j=1
1

(2j−1)2m
or
∑∞

j=1
(−1)j

(2j−1)2m+1 , which are well-known

with the first few equal to
∑∞

j=1
(−1)j+1

(2j−1)
= π

4
,
∑∞

j=1
1

(2j−1)2
= π2

8
,
∑∞

j=1
(−1)j+1

(2j−1)3
= π3

32
,

∑∞
j=1

1
(2j−1)4

= π4

96
, . . .. These values have been known since the time of Euler, and it

should be noted that the values of the even-powered identities easily give the values
of ζ(2k), the Riemann ζ function evaluated at the even integers.

(2.30) can also be manipulated into a different identity, as follows. Let r be
odd and let us refer to the identity (2.30) as I(a). Let q be a positive integer, and
consider the sum I( q−1

q
)+ I( q−3

q
)+ . . .+ I(−q+3

q
)+ I(−q+1

q
). The left side of this new

identity is a sum, and we will group the terms in this new sum according to their
place in the original sums; that is, the first term will be the sum of the first terms
in I( q−1

q
), . . . , I(−q+1

q
), the second term will be the sum of the corresponding second

terms (each of which is negative), and so forth. Using

1

((2j − 1) + (−1)j(p
q
))r

=
qr

((2j − 1)q + (−1)jp)r
,

it may be verified that the first term in the new sum is qr times the sum of the
reciprocals of the r-th power of the odd integers from 1 to 2q − 1, the second term
(which is negative) is qr times the sum of the reciprocals of the r-th power of the odd



On the distribution of planar Brownian motion at stopping times 605

integers from 2q + 1 to 4q − 1, and so forth. We obtain the identity
(

1

1
+

1

3r
+ . . .+

1

(2q − 1)r

)

−
(

1

(2q + 1)r
+ . . .+

1

(4q − 1)r

)

+

(

1

(4q + 1)r
+ . . .+

1

(6q − 1)r

)

−
(

1

(6q + 1)r
+ . . .+

1

(8q − 1)r

)

+ . . .

=
1

(r − 1)!qr

q−1
∑

k=0

g(r−1)

(

q − 1− 2k

q

)

.

(2.31)

As a representative sample of the sums that are obtained for various choices of q and
r, we have:

1

1
+

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− 1

13
− 1

15
+ . . . =

π
√
2

4
,

1

1
+

1

3
+

1

5
− 1

7
− 1

9
− 1

11
+

1

13
+

1

15
+

1

17
− . . . =

5π

12
,

1

1
+

1

3
+

1

5
+

1

7
− 1

9
− 1

11
− 1

13
− 1

15
+ . . . = π

√

2 +
√
2,

1

13
+

1

33
− 1

53
− 1

73
+

1

93
+

1

113
− 1

133
− 1

153
+ . . . =

3π3
√
2

128
,

1

13
+

1

33
+

1

53
− 1

73
− 1

93
− 1

113
+

1

133
+

1

153
+

1

173
− . . . =

29π3

864
,

1

15
+

1

35
− 1

55
− 1

75
+

1

95
+

1

115
− 1

135
− 1

155
+ . . . =

π557
√
2

24576
,

1

15
+

1

35
+

1

55
− 1

75
− 1

95
− 1

115
+

1

135
+

1

155
+

1

175
− . . . =

1225π5

373248
.

(2.32)

If we desire the analogous sums which include the even integers, we may argue as
follows. Let q ≥ 2 be a positive integer, and consider I( q−2

q
)+I( q−4

q
)+ . . .+I(−q+4

q
)+

I(−q+2
q

). Ordering the terms as before, it may be checked that the left side will be

qr times the sum of the r-th powers of the reciprocals of the even integers other than
the multiples of 2q. We therefore obtain

(

1

2r
+

1

4r
+ . . .+

1

(2q − 2)r

)

−
(

1

(2q + 2)r
+ . . .+

1

(4q − 2)r

)

+

(

1

(4q + 2)r
+ . . .+

1

(6q − 2)r

)

−
(

1

(6q + 2)r
+ . . .+

1

(8q − 2)r

)

+ . . .

=
1

(r − 1)!qr

q−1
∑

k=1

g(r−1)

(

q − 2k

q

)

.

(2.33)

In order to include the multiples of 2q, add 1
(2q)r

times the series ∆r :=
1
1r
− 1

2r
+ 1

3r
−

1
4r

+ . . .. Multiplying both sides by 2r, we obtain
(

1

1r
+

1

2r
+ . . .+

1

qr

)

−
(

1

(q + 1)r
+ . . .+

1

(2q)r

)

+

(

1

(2q + 1)r
+ . . .+

1

(3q)r

)

−
(

1

(3q + 1)r
+ . . .+

1

(4q)r

)

+ . . .(2.34)
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=
∆r

qr
+

2r

(r − 1)!qr

q−1
∑

k=1

g(r−1)

(

q − 2k

q

)

.

The formula holds for q = 1 as well, provided that the final sum on the right side is
taken to be empty and therefore 0. Note that ∆1 = ln 2, but that no other closed-
form values of ∆r for r odd are known (nor are any likely to be known soon, as
they can be expressed in terms of the Riemann zeta function evaluated at r). For
r = 1, q = 2, 3, 4 we obtain

1

1
+

1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ . . . =

π

4
+

ln 2

2
,

1

1
+

1

2
+

1

3
− 1

4
− 1

5
− 1

6
+

1

7
+

1

8
+

1

9
− . . . =

2π

3
√
3
+

ln 2

3
,

1

1
+

1

2
+

1

3
+

1

4
− 1

5
− 1

6
− 1

7
− 1

8
+ . . . =

π(1 + 2
√
2)

8
+

ln 2

4
.

(2.35)

Example 5. (half strip) Let W now be the semi-infinite strip {−1 < Re(z) <

1, Im(z) > 0}. If x ∈ (−1, 1) and a = α + βi ∈ W , we can calculate ρα+βi
TW

(x) ds by
using the map f(z) = sin(π

2
z), which maps W conformally onto H = {Im(z) > 0},

fixing −1 and 1. A simple calculation shows sin(π
2
(α + βi) = cosh(πβ

2
) sin(πα

2
) +

i sinh(πβ
2
) cos(πα

2
), and Theorem 2 and the calculation in Example 2 combine to give

ρ
α+βi
TW

(x)ds =
1

2

(

sinh(πβ
2
) cos(πα

2
) cos(πx

2
)

sinh2(πβ
2
) cos2(πα

2
) + (cosh(πβ

2
) sin(πα

2
)− sin(πx

2
))2

)

ds

=
1

2

(

sinh(πβ
2
) cos(πα

2
) cos(πx

2
)

sinh2(πβ
2
) + sin2(πα

2
) + sin2(πx

2
)− 2 cosh(πβ

2
) sin(πα

2
) sin(πx

2
)

)

ds,

(2.36)

where the identity sinh2(πβ
2
) cos2(πα

2
)+cosh2(πβ

2
) sin2(πα

2
) = sinh2(πβ

2
)+sin2(πα

2
) was

used to simplify the denominator. On the other hand, we can calculate this density
using reflection as well. We claim that

ρ
α+βi
TW

(x) ds = ρ
α+βi
TH

(x) ds−
(

ρ
α+βi
TH

(2− x) ds+ ρ
α+βi
TH

(−2− x) ds
)

+
(

ρ
α+βi
TH

(4 + x)ds + ρ
α+βi
TH

(−4 + x) ds
)

− . . .

=
ds

π

(

β

β2 + (α− x)2
−
(

β

β2 + (α− (2− x))2
+

β

β2 + (α− (−2− x))2

)

+

(

β

β2 + (α− (4 + x))2
+

β

β2 + (α− (−4 + x))2

)

− . . .

)

(2.37)

In order to justify this, we note first that TW = min(TH, τ(−1), τ(1)), where τ
was defined in the previous example. If a Brownian path exits W at x, then it also
exits H at x, but must also not have hit {Re(z) = ±1} before leaving W . The
likelihood of exiting H at x after first striking {Re(z) = 1} is the same, by reflection,
as the likelihood of exiting H at the reflection of x over {Re(z) = 1}, which is

2 − x. Thus we must subtract ρα+βi
TH

(2 − x) ds, and by the symmetric argument
must also subtract the quantity obtained by reflection over {Re(z) = −1}, which is

ρ
α+βi
TH

(−2−x) ds. However, we have now twice subtracted the contribution from paths
which hit both of {Re(z) = ±1} before hitting {Im(z) = 0}, and we must therefore
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add ρα+βi
TH

(4+x) ds+ρα+βi
TH

(−4+x) ds; however, we have again overcompensated, and
therefore must reflect again and subtract, and so forth (this argument can be made
rigorous by adapting the methods given in Example 4). Equating the two values
obtained for the density, we obtain the identity

1

π

(

β

β2 + (α− x)2
−
(

β

β2 + ((α + x)− 2)2
+

β

β2 + ((α + x) + 2)2

)

+

(

β

β2 + ((α− x)− 4)2
+

β

β2 + ((α− x) + 4)2

)

− . . .

)

=
1

2

(

sinh(πβ
2
) cos(πα

2
) cos(πx

2
)

sinh2(πβ
2
) + sin2(πα

2
) + sin2(πx

2
)− 2 cosh(πβ

2
) sin(πα

2
) sin(πx

2
)

)

,

(2.38)

where x, α ∈ (−1, 1), and β > 0. This identity is symmetric in α and x, and if we
set for instance x = 0 we get

1

π

(

β

β2 + α2
−
(

β

β2 + (α− 2)2
+

β

β2 + (α + 2)2

)

+

(

β

β2 + (α− 4)2

+
β

β2 + (α + 4)2

)

− . . .

)

=
1

2

(

sinh(πβ
2
) cos(πα

2
)

sinh2(πβ
2
) + sin2(πα

2
)

)

.

(2.39)

Setting α = 0 as well gives

(2.40)
1

π

(

1

β
− 2β

β2 + 22
+

2β

β2 + 42
− 2β

β2 + 62
+

2β

β2 + 82
− . . .

)

=
1

2 sinh(πβ
2
)
.

If we subtract 1
πβ

from both sides, divide both sides by β, take the limit as β −→ 0,
and simplify, we obtain

(2.41) −1 +
1

22
− 1

32
+

1

42
− . . . =

−π2

12
,

which is easily seen to be equivalent to Euler’s Basel sum (2.12). Returning to (2.39),
if we assume α 6= 0, divide both sides by β, and take the limit as β −→ 0, we get

(2.42)
1

α2
−
(

1

(2− α)2
+

1

(2 + α)2

)

+

(

1

(4− α)2
+

1

(4 + α)2

)

− . . . =
π2 cos(πα

2
)

4 sin2(πα
2
)
.

As before, the identity (2.42) may be differentiated (and integrated) to obtain new
identities if desired, and furthermore similar sums to (2.31) can be deduced. For ex-
ample, taking an even number of derivatives and setting x = 0 gives a sum equivalent

to
∑∞

n=1
(−1)n

n2m−1 for integer m, while taking an odd number of derivatives and letting
x −→ 1 reduces to a sum equivalent to

∑∞
n=1

1
n2m for integer m.

Let us now calculate the exit distribution fromW on the rays {Re(z) = ±1, Im(z)
> 0}. The identity (2.36) holds upon replacing x with ±1 + yi, provided that we
recall that the cos(πx

2
) in the numerator came from the |f ′(z)| term in Theorem 2, and

therefore must be replaced by | cos(π
2
(±1+yi))|. We may also use | cos(π

2
(±1+yi))| =

sinh(π
2
y) for y > 0 and sin(π

2
(±1 + yi)) = ± cosh(π

2
y), and we obtain

ρ
α+βi
TW

(±1 + yi) ds

=
1

2

(

sinh(πβ
2
) cos(πα

2
) sinh(πy

2
)

sinh2(πβ
2
) + sin2(πα

2
) + cosh2(πy

2
)∓ 2 cosh(πβ

2
) sin(πα

2
) cosh(πy

2
)

)

ds.
(2.43)
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This density can also be obtained by reflection, in several different ways. For example,
if W ′ = {−1 < Re(z) < 1} is the infinite strip of Example 4, then ρα+βi

TW
(±1+yi) ds =

ρ
α+βi
TW ′

(±1 + yi) ds− ρ
α+βi
TW ′

(±1 − yi) ds. This is because a Brownian path that leaves

W ′ at ±1 + yi will also leave W at that point, provided it does not first strike the
real axis; however, the paths that strike the real axis and then proceed to ±1 + yi

will contribute the same probability, by reflection, as those that leave W ′ at ±1− yi.
On the other hand, if τ̃(b) = inf{t ≥ 0 : Re(Bt) = b or Im(Bt) = 0}, then arguing
similarly as in Example 4 we have

ρ
α+βi
TW

(1 + yi) ds = ρ
α+βi
τ̃(1) (1 + yi) ds− ρ

α+βi
τ̃(−3)(−3 + yi) ds

+ ρ
α+βi
τ̃ (5) (5 + yi) ds− ρ

α+βi
τ̃(−7)(−7 + yi) ds+ . . . ,

ρ
α+βi
TW

(−1 + yi) ds = ρ
α+βi
τ̃(−1)(1 + yi) ds− ρ

α+βi
τ̃(3) (3 + yi) ds

+ ρ
α+βi
τ̃ (−5)(−5 + yi) ds− ρ

α+βi
τ̃ (7) (7 + yi) ds+ . . . .

(2.44)

It might seem as though here we have fertile ground for other identities, however it is
easy to see, again by reflection, that ρα+βi

τ̃ (b) (b+yi) ds = ρ
α+βi
τ(b) (b+yi) ds−ρα+βi

τ(b) (b−yi) ds,
where τ is the stopping time defined in Example 4. Thus, any identities obtained
here could just be obtained directly from (2.26), evaluated at the proper values for
y.

Example 6. (C\[−1, 1]) Consider again the map f(z) = sin(π
2
z) from the

previous example, but this time let us examine the projection of the stopping time
TH under this map. As stated before, this function maps the domain {−1 < Re(z) <
1, Im(z) > 0} conformally onto H, and it does so by taking {Re(z) = −1, Im(z) > 0}
onto (−∞,−1), [−1, 1] onto itself, and {Re(z) = 1, Im(z) > 0} onto (1,∞); this can
be verified by noting that sin(π

2
(±1 + yi)) = ± cosh(π

2
y). Schwarz reflection tells us

then that f maps {−3 < Re(z) < −1, Im(z) > 0} and {1 < Re(z) < 3, Im(z) > 0}
conformally onto {Im(z) < 0}, and then {−5 < Re(z) < −3, Im(z) > 0} and {3 <
Re(z) < 5, Im(z) > 0} again conformally onto {Im(z) > 0}, with every point on R of
course being mapped to a point in [−1, 1]. It follows that the projection of TH under
this map will be the first hitting time of the set [−1, 1], and we will abuse notation
somewhat to refer to this stopping time as T[−1,1]. If x ∈ [−1, 1], then the point
sin(π

2
x) will have preimages at x,±2 − x,±4 + x,±6 − x, . . .. Applying Theorem 2,

it follows that, for α + βi ∈ H, we have
(π

2
cos
(π

2
x
))

ρ
sin(π

2
(α+βi))

T[−1,1]

(

sin
(π

2
x
))

ds

= ρ
α+βi
TH

(x) ds+ ρ
α+βi
TH

(2− x) ds+ ρ
α+βi
TH

(−2 − x) ds

+ ρ
α+βi
TH

(4 + x) ds+ ρ
α+βi
TH

(−4 + x) ds+ . . .

=
ds

π

(

β

β2 + (α− x)2
+

β

β2 + (α− (2− x))2
+

β

β2 + (α− (−2− x))2

+
β

β2 + (α− (4 + x))2
+

β

β2 + (α− (−4 + x))2
+ . . .

)

(2.45)

Note that the term (π
2
cos(π

2
x)) comes from the |f ′| in Theorem 2, which by

periodicity is equal at all preimages of sin(π
2
x). The identity (2.45) is similar in

spirit to the identity obtained in Example 3, as every term on the right side of (2.45)
corresponds to a different homotopy class of Brownian curves hitting [−1, 1], some
from above and some from below. In order to obtain the value for the right side we
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need to calculate ρT[−1,1]
in a different way, and we can argue as follows. The Möbius

transformation φ(z) = 1+z
1−z

maps [−1, 1] to [0,+∞], and therefore maps Ĉ\[−1, 1]

conformally onto Ĉ\[0,+∞], where Ĉ denotes the Riemann sphere. We can therefore
use Theorem 2 to project the density for the first hitting time of [−1, 1] to the hitting
time of [0,+∞). We obtain, for x̄ = sin(π

2
x) ∈ [−1, 1],

(2.46) ρωT[−1,1]
(x̄) ds =

2

(1− x̄)2
ρ
φ(ω)
T[0,+∞)

(φ(x̄)) ds.

We can calculate ρT[0,+∞)
by projecting ρTH

via the map z −→ z2, which maps H

conformally onto C\[0,+∞). The point φ(x̄) will have two preimages, at ±
√

φ(x̄),
and we obtain

ρ
φ(ω)
T[0,+∞)

(φ(x̄)) ds =
ds

2π
√

φ(x̄)

(

Im
√

φ(ω)

(Im
√

φ(ω))2 + (Re
√

φ(ω)−
√

φ(x̄))2

+
Im
√

φ(ω)

(Im
√

φ(ω))2 + (Re
√

φ(ω) +
√

φ(x̄))2

)

,

(2.47)

where the branch of the square root is chosen that takes values in H ∪ [0,+∞).
Combining (2.45)–(2.47) yields an identity, but this identity is fairly complex for
arbitrary choice of α + βi. We can simplify considerably by taking α to be an
integer, and by periodicity we need only really consider α = −1 and α = 0. Let us
begin with α = −1. As before we note that sin(π

2
(−1 + βi)) = − cosh(π

2
β), and thus

φ(sin(π
2
(−1 + βi))) = − cosh(π

2
β)−1

cosh(π
2
β)+1

, so that
√

φ(sin(π
2
(−1 + βi))) = i

√

cosh(π
2
β)−1

cosh(π
2
β)+1

, a

purely imaginary number. (2.45) therefore simplifies to become

cos(π
2
x)

(1− sin(π
2
x))2

√

1+sin(π
2
x)

1−sin(π
2
x)





√

cosh(π
2
β)−1

cosh(π
2
β)+1

cosh(π
2
β)−1

cosh(π
2
β)+1

+
1+sin(π

2
x)

1−sin(π
2
x)



 ds =
2

π

(

β

β2 + (1 + x)2
ds

+
β

β2 + (3− x)2
ds+

β

β2 + (5 + x)2
ds+

β

β2 + (7− x)2

)

ds.

(2.48)

Note that the set of preimages in the sum in (2.45) are symmetric around −1, thus the
multiplicative factor of 2 and the one-sided sum on the right side of (2.48). Dividing

both sides by β and letting β ց 0, using limβց0

√
cosh(π

2
β)−1

β
= π

2
√
2
, gives

1

(1 + x)2
+

1

(3− x)2
+

1

(5 + x)2
+

1

(7− x)2
+ . . .

=
π2 cos(π

2
x)

8(1− sin(π
2
x))2

(

1+sin(π
2
x)

1−sin(π
2
x)

)3/2
=

π2

8(1 + sin(π
2
x))

.
(2.49)

If we take for instance x = 0, we obtain

(2.50)
1

12
+

1

32
+

1

52
+

1

72
+ . . . =

π2

8
,

which is easily seen to be equivalent to Euler’s Basel sum (2.12). In fact, it is not hard
to see that (2.49) and (2.29) are equivalent, with (2.49) simply being the derivative
of (2.29) (with x = −a).
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Returning to (2.45), let us now see what happens when we take α = 0. We need

to calculate ρ
sin(π

2
(βi))

T[−1,1]
(sin(π

2
x)) ds, and we will use the same maps as before. We have

sin(π
2
βi) = i sinh(π

2
βi), and it may be checked that

√

φ
(

i sinh
(π

2
β
))

=

√

1 + i sinh(π
2
β)

1− i sinh(π
2
β)

=
1 + i sinh(π

2
β)

√

1 + sinh2(π
2
β)

= sech
(π

2
β
)

+ i tanh
(π

2
β
)

.

(2.51)

It may also be checked by simple manipulations that
√

φ(sin(π
2
x)) = sec(π

2
x) +

tan(π
2
x). These calculations, together with (2.45)–(2.47), give the identity

cos(π
2
x)

2(sec(π
2
x) + tan(π

2
x))(1− sin(π

2
x))2

·
(

tanh(π
2
β)

tanh2(π
2
β) + (sech(π

2
β)− (sec(π

2
x) + tan(π

2
x)))2

+
tanh(π

2
β)

tanh2(π
2
β) + (sech(π

2
β) + (sec(π

2
x) + tan(π

2
x)))2

)

=
1

π

(

β

β2 + x2
+

β

β2 + (2− x)2
+

β

β2 + (2 + x)2

+
β

β2 + (4− x)2
+

β

β2 + (4 + x)2
+ . . .

)

.

(2.52)

Divide both sides by β and let β −→ 0 to obtain

1

x2
+

1

(2− x)2
+

1

(2 + x)2
+

1

(4− x)2
+

1

(4 + x)2
+ . . .

=
π2 cos(π

2
x)

4(sec(π
2
x) + tan(π

2
x))(1− sin(π

2
x))2

(

1

(1− (sec(π
2
x) + tan(π

2
x)))2

+
1

(1 + (sec(π
2
x) + tan(π

2
x)))2

)

=
π2 cos(π

2
x)(1 + (sec(π

2
x) + tan(π

2
x))2)

8 tan2(π
2
x)(sec(π

2
x) + tan(π

2
x))3(1− sin(π

2
x))2

=
π2 cos(π

2
x)(1 + (sec(π

2
x) + tan(π

2
x))2)

8 sin2(π
2
x)(sec(π

2
x) + tan(π

2
x))

(2.53)

As with the earlier examples, a number of other identities can be deduced by
evaluating the sum at particular values of x and by differentiation. For example,
taking the limit as x −→ 1 reduces to

∑∞
n=1

1
(2n−1)2

= π2

8
, and subtracting 1

x2 from

both sides and letting x −→ 0 leads to
∑∞

n=1
1
n2 = π2

6
. Similarly, taking the suitable

number of derivatives and letting x tend to either 1 or 0 allow one to calculate the
values of

∑∞
n=1

1
n2m for integer m.

Example 7. (rectangle) Let W = {−1 < Re(z) < 1,−k < Im(z) < k} for some

k > 0. Let us calculate ρα+βi
TW

(1 + yi)ds in two different ways by reflection. Let us



On the distribution of planar Brownian motion at stopping times 611

first note that, arguing as in Example 5, if W ′ = {−1 < Re(z) < 1} then

ρ
α+βi
TW

(1 + yi) ds

= ρ
α+βi
TW ′

(1 + yi) ds−
(

ρ
α+βi
TW ′

(1 + (2k − y)i) ds+ ρ
α+βi
TW ′

(1 + (−2k − y)i) ds
)

+
(

ρ
α+βi
TW ′

(1 + (4k + y)i) ds+ ρ
α+βi
TW ′

(1 + (−4k + y)i) ds
)

− . . .

(2.54)

On the other hand, if τ̂ (b) = inf{t ≥ 0: Re(Bt) = b or Im(Bt) = ±k}, then arguing
similarly as in Example 4 we have

ρ
α+βi
TW

(1 + yi) ds = ρ
α+βi
τ̂ (1) (1 + yi) ds− ρ

α+βi
τ̂ (−3)(−3 + yi) ds+ ρ

α+βi
τ̂(5) (5 + yi) ds

− ρ
α+βi
τ̂ (−7)(−7 + yi) ds+ . . .

(2.55)

The two series given in (2.54) and (2.55) must therefore be equal, with the terms
in (2.54) given by (2.19) and the terms in (2.55) given by an appropriate scaling,
rotation, and translation of the corresponding density (2.36) for the domain W ′′ =
{−1 < Re(z) < 1, Im(z) > 0} considered in Example 5, since τ̂(b) is the exit time of
the domain bounded by {Re(z) = b} and {Im(z) = ±k} containing α + βi, and this
domain is clearly conformally equivalent to W ′′. Suffice it to say that the resulting
identity is quite complex and not particularly illuminating. Let us therefore simplify
things by setting α = β = 0; the identity which results is then

sech
(π

2
y
)

−
(

sech
(π

2
(2k − y)

)

+ sech
(π

2
(−2k − y)

))

+
(

sech
(π

2
(4k + y)

)

+ sech
(π

2
(−4k + y)

))

− . . .

=
2 cos(πy

2k
)

k

(

sinh( π
2k
)

sinh2( π
2k
) + sin2(πy

2k
)
− sinh(3π

2k
)

sinh2(3π
2k
) + sin2(πy

2k
)

+
sinh(5π

2k
)

sinh2(5π
2k
) + sin2(πy

2k
)
− . . .

)

(2.56)

Taking y = 0, using the fact that sech is an even function, gives the identity

1

2
− sech(πk) + sech(2πk)− sech(3πk) + sech(4πk)− . . .

=
1

k

(

csch
( π

2k

)

− csch

(

3π

2k

)

+ csch

(

5π

2k

)

− csch

(

7π

2k

)

+ . . .

)

Example 8. (annulus) Now let us consider the annulus Ar = {e−r < |z| < er},
where r > 0 is real. We map the strip W = {−1 < Re(z) < 1} in Example 4 to Ar via
the function f(z) = erz, noting that | d

dz
ez| = rer on {Re(z) = 1} and | d

dz
ez| = re−r

on {Re(z) = −1}. We’ll assume a ∈ (e−r, er) is real. Theorem 2, using (2.19), then
gives

(2.57) ρaTAr
(e±reiθ) ds =

1

re±r

∞
∑

k=−∞
ρ

ln a
r

TW

(

±1 + i

(

θ + 2πk

r

))

ds

=
1

re±r

∞
∑

k=−∞

sech(π
2
( θ+2πk

r
))(1− tan2(π lna

4r
))

4

(

(

1∓ tan(π lna
4r

)
1−tanh2(π

4
( θ+2πk

r
))

1+tanh2(π
4
( θ+2πk

r
))

)2

+
(

tan(π lna
4r

)
2 tanh(π

4
( θ+2πk

r
))

1+tanh2(π
4
( θ+2πk

r
))

)2
) ds.
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As with the punctured disk example, each term in the sum in (2.57) corresponds to
a homotopy class of curves leaving the annulus at that point. The formula is far
simpler if we take a = 1, in which case we have

(2.58) ρaTAr
(e±reiθ) ds =

ds

4re±r

∞
∑

k=−∞
sech

(

π

2

(

θ + 2πk

r

))

We now show how applying Dynkin’s formula with this expression yields an
identity. If h is harmonic on Ar, continuous on Ār, then we obtain

h(1) = E1[h(BTAr
)]

=

ˆ 2π

0

h(e−r+iθ)

(

1

4re−r

∞
∑

n=−∞
sech

(

π

2

(

θ + 2πk

r

))

)

(e−rdθ)

+

ˆ 2π

0

h(er+iθ)

(

1

4rer

∞
∑

n=−∞
sech

(

π

2

(

θ + 2πk

r

))

)

(erdθ)

=
1

4r

ˆ ∞

−∞

(

h(e−r+iθ) + h(er+iθ)
)

sech

(

πθ

2r

)

dθ

=
1

4

ˆ ∞

−∞

(

h(e−r+irθ) + h(er+irθ)
)

sech

(

πθ

2

)

dθ.

(2.59)

Note that the identity ds = (e±rdθ) was used on the curves {|z| = e±r}. If we put in
h(z) = z and rearrange we obtain the identity

(2.60)

ˆ ∞

−∞
eirθsech

(

πθ

2

)

dθ = 2sech(r).

It should be noted that the same identity with r < 0 is obtained by setting h(z) = z̄.
We have therefore derived the Fourier transform of the sech function.

Remark. It may be tempting to look for other harmonic functions on the annulus
in order to derive new identities from (2.59), in particular we might hope that the
argument given here provides a general method for evaluating Fourier transforms
involving the function sech. However, the reader should be aware that a search for
further identities using this exit distribution will lead to nothing else substantial.
This is because for any harmonic function h on Ar an analytic function g and real
constant C can be found such that h = Re(g(z)) + C log |z| (see for example [2,
Ex. III.3.4]). log |z| in (2.59) yields a triviality, and analytic functions on annuli are
Laurent series in z, so that if we write h − C log |z| = g+ḡ

2
we see that h − C log |z|

can be expressed as a Laurent series in z and z̄. Applying (2.59) to h would therefore
not yield anything more than would a term by term application with h(z) = zq or
h(z) = z̄q, each of which give simply (2.60).

It is also interesting to see what happens if we try to adapt the reflection technique
from Example 4 to this case. If the analogous argument to that in Example 4 applied,
we would have

ρaTAr
(ereiθ) ds = ρaτ̂(er)(e

reiθ) ds− ρaτ̂ (e−r,er)(e
reiθ) ds+ ρaτ̂(er ,e−r,er)(e

reiθ) ds

− ρaτ̂ (e−r,er,e−r,er)(e
reiθ) ds+ . . .

(2.61)

where τ̂ (m1, m2, . . . , mk) would be the first time the Brownian motion has hit all
of the curves {|z| = m1}, {|z| = m2}, . . . , {|z| = mk} in order. The quantities on
the right side of (2.61) are easy to find using reflection (note that reflection over
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{|z| = m} is given by the function z −→ m2

z̄
) and the calculations in Example 1, and

if we consider the simplest case, when θ = 0, a = 1, we would obtain the identity

1

4rer

∞
∑

k=−∞
sech

(

π2k

r

)

=
1

2πer

(

er + 1

er − 1
− 1 + e−3r

1− e−3r
+
e5r + 1

e5r − 1
− 1 + e−7r

1− e−7r
+ . . .

)

.

However, this sum cannot be valid, since the sum on the right does not converge
(the terms inside the parentheses approach 1). The reason that the argument fails in
this case is that the densities ρaτ̂(e−r ,er,...,er) and ρaτ̂(er ,e−r,...,er) do not approach 0 as the
length of the sequence goes to infinity, but rather approach the uniform density on
the circle. On the other hand, the analogous statement to Lemma 2 will still hold, so
it might be interesting to see whether any sense can be made of (2) or the reflection
argument.

Example 9. We now consider a stopping time which is not the exit time of a
domain. Start a Brownian motion at 1, and let τr = inf{t : arg(Bt) = ±rπ}, with
the branch of the argument chosen so that arg(B0) = 0 a.s. We can calculate the
distribution of Bτr , and arrive at

(2.62) ρ1τr(ye
±rπi) ds =

ds

2rπy(y
1
2r + y

−1
2r )

,

when r is not an integer. When r is an integer, then erπi = e−rπi, so doubling (2.62)
we have

(2.63) ρ1τr(ye
rπi) ds =

ds

rπy(y
1
2r + y

−1
2r )

.

To see this, we project the density found earlier of the half-plane via the map f(z) =
z2r with |f ′(yi)| = 2ry2r−1 to get

(2.64) ρ1τr(y
2re±πri) ds =

ds

π(1 + y2)2ry2r−1
.

Replace y with y
1
2r to arrive as claimed at

(2.65) ρ1τr(ye
±πri) ds =

ds

2πr(1 + y
2
2r )y

2r−1
2r

=
ds

2πry(y
1
2r + y

−1
2r )

.

This density admits the antiderivative 1
π
tan−1(y

1
2r ), and this allows us in particular

to note that

(2.66) P1(|Bτr | ∈ (0, ε)) =
2

π
tan−1(ε

1
2r ) = P1

(

|Bτr | ∈
(

1

ε
,∞
))

,

and this probability approaches 1
2

as r approaches ∞. Thus, as r −→ ∞, the

distribution of |Bτr | approaches 1
2
(δ0 + δ∞) in distribution. This fact may be a bit

surprising, especially the mass accumulating at 0, although it should be noted here
that any mass at infinity must correspond to an equal mass at 0 due to the fact that
1
Bt

is a (time-changed) Brownian motion. It may also be noted in this context that
the amount of time that Bt spends close to 0 before time τr is small, as follows for
instance by the calculation at the end of Section 2 in [5]. Evidently when Bt comes
close to 0 it quickly winds many times around the origin, analogously to how a one-
dimensional Brownian motion hits 0 infinitely often in any neighborhood of a visit to
0, and this results in a large change in argument and hence a high likelihood of being
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near 0 at the first time attaining a prescribed argument. It would be interesting if a
more precise understanding of this phenomenon could be developed.

We also remark briefly that the symmetry imposed upon τr can easily be dis-
pensed of. In other words, we may let τr1,r2 = inf{t : arg(Bt) = r1π or − r2π} for
r1, r2 > 0, and calculate

ρ1τr1,r2
(yer1πi) ds =

cos θ ds

π(r1 + r2)y
1− 1

r1+r2 (cos2 θ + (y
1

r1+r2 − sin θ)2)
,

ρ1τr1,r2
(ye−r2πi) ds =

cos θ ds

π(r1 + r2)y
1− 1

r1+r2 (cos2 θ + (−y
1

r1+r2 − sin θ)2)
,

(2.67)

where θ = π
2

(

r2−r1
r2+r1

)

. This is obtained by first noting by rotational invariance that we

may obtain the distribution by starting a Brownian motion at e
π
2
(r2−r1)i and stopping

it at the first time the argument reaches ±π
2
(r2+r1), and then projecting the density

from the right half-plane as before by the function f(z) = zr1+r2 . Note that if
er1i = e−r2i then these two quantities must be added in order to find the density of
Bτr1,r2

on the ray {arg(z) = r1} = {arg(z) = −r2}.
We may also stop the Brownian motion at a prescribed argument. Let τ̂r =

inf{t : arg(Bt) = r}, where we will assume r > 0. If we let W = {Im(z) < r}, then
the stopping time TW projects to τ̂r under the exponential map z −→ ez. Theorem
2 gives

(2.68) ρ1τ̂r(ye
ir)ds =

1

y
ρ0TW

(ln y + ri)ds =
1

yπ

r

r2 + (ln y)2
ds.

It is straightforward to find the corresponding distribution function if desired, and
to note that the accumulation of mass at 0 and ∞ holds for this example as well;
that is, P1(|Bτ̂r | ∈ (0, ε)) = P1(|Bτ̂r | ∈ (1

ε
,∞)) −→ 1

2
as r −→ ∞. It may also be

noted that reflection may be used in order to express ρτr or ρ1τr1,r2 as an alternating

infinite sum of terms of the form ρ1τ̂r , exactly in the same manner as in Exercise 4.
The identities obtained in this manner are precisely the same as in Example 4, since
the exponential function will map the properly chosen strip or half-plane into the
winding stopping times.

Example 10. Now let τ̂ = inft≥0(Bt ∈ (−1, 1), {Bs}0≤s≤t ∪ [0, Bt] is not
homotopic to a point in C\{−1, 1}); that is, t is the first time that Bt lies on (−1, 1)
simultaneously with the curve traced by Bs up to time t being wound around at least
one of −1 and 1. We will calculate the distribution ofBτ̂ . First we set τ = inf{t : Bt ∈
(−∞,−1]∪ [1,+∞)}. We will show that ρ0τ (w)ds =

1
π|w|

√
w2−1

, and then project this

density to τ̂ . Let τ1 = inf{t : Bt ∈ (−∞,+∞)} and τ0 = inf{t : Bt ∈ [0,+∞)}.
Using the map f(z) = z2 and Theorem 2, we project the density for τ1 of Example

2 via the conformal map f(z) = z2 to get ρ
(−1)
τ2 (v)ds = 1

π(1+v)
√
v

(the −1 is placed in

parentheses to prevent any confusion with an inverse map). We can now project this
density via the transformation w = φ(v) = 1+v

1−v
to obtain

ρ(0)τ (v) ds = ρ(−1)
τ1

(
w − 1

w + 1
)(φ−1)′(w) ds =

1

π
√

w−1
w+1

(1 + w−1
w+1

)
× 2

(w + 1)2
ds

=
1

π|w|
√
w2 − 1

ds,

(2.69)
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as claimed. We now will project the density of τ to τ̂ using the entire function
f(z) = sin(π

2
z). To see that this does the job, note that sin(π

2
(−1+yi)) = − cosh(π

2
y)

and sin(π
2
(1+yi)) = cosh(π

2
y). f therefore maps the boundary of the half-infinite strip

{Im(z) > 0,−1 < Re(z) < 1} injectively onto the boundary of {Im(z) > 0}. The
argument principle allows us to conclude that f maps {Im(z) > 0,−1 < Re(z) < 1}
conformally onto {Im(z) > 0}. The Schwarz reflection principle now informs us that
f maps {Im(z) > 0,−3 < Re(z) < −1} conformally onto {Im(z) < 0}, with (−3,−1)
being mapped to (−1, 1). Reflecting in this manner to the left and right, as well as
below to {Im(z) < 0,−1 < Re(z) < 1} and thence left and right to fill out the plane,
the structure of f can be understood; in particular we see that a closed curve C
beginning and ending at 0 (but otherwise not touching (−1, 1)) is not homotopic to a
point if and only if there is a curve γ traveling from 0 to some non-zero even integer
such that f(γ) = C. This tells us that τ is mapped to τ̂ under f . If w ∈ (−1, 1),
then the preimages under f of w on (−∞,−1] ∪ [1,+∞) are all points of the form
(4n− 2)− 2

π
sin−1w for integer n or 2

π
sin−1w + 4n for integer n 6= 0. Note that the

value of |f ′| at these points is π
2
cos(sin−1w) = π

2

√
1− w2. Applying our theorem

therefore gives

ρ0τ̂ (w) ds =
2ds

π2
√
1− w2

( ∞
∑

n=−∞
n 6=0

1

| 2
π
sin−1w + 4n|

√

( 2
π
sin−1w + 4n)2 − 1

+
∞
∑

n=−∞

1

| 2
π
sin−1w − (4n+ 2)|

√

( 2
π
sin−1w − (4n+ 2))2 − 1

)

=
2ds

π2
√
1− w2

∞
∑

n=−∞
n 6=0

1

| 2
π
sin−1w + 2n|

√

( 2
π
sin−1w + 2n)2 − 1

.

(2.70)

Somewhat similarly to earlier examples, each term in the sum here corresponds to
homotopy classes of Brownian curves, with each term corresponding to two different
classes: one in which Bt approaches Bτ ∈ (−∞,−1] ∪ [1,+∞) from above, and one
in which it approaches from below. Note that

d

dw

(

−1

π
cot−1

√

(
2

π
sin−1w + 2n)2 − 1

)

=
2ds

π2
√
1− w2( 2

π
sin−1w + 2n)

√

( 2
π
sin−1w + 2n)2 − 1

.

(2.71)

The distribution function is therefore explicitly calculable, if desired.
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