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Abstract. In this paper, we study the convergence in variation for the generalized sampling
operators based upon averaged-type kernels and we obtain a characterization of absolutely contin-
uous functions. This result is proved exploiting a relation between the first derivative of the above
operator acting on f and the sampling Kantorovich series of f/. By such approach, also a variation
detracting-type property is established. Finally, examples of averaged kernels are provided, such as
the central B-splines of order n (duration limited functions) or other families of kernels generated
by the Fejér and the Bochner—Riesz kernels (bandlimited functions).

1. Introduction

The generalized sampling series are an important and well-known family of op-
erators in approximation theory and play a relevant role in Signal Processing. They
were introduced around 1980s, when the German mathematician Butzer established
an approximate sampling formula, with the aim to reconstruct not-necessarily ban-
dlimited signals (see e.g., [32, 15, 16]), and are defined as

k
(Suf)(t) = f(—> x(wt—k), teR, w>0.
2
Here, in place of the sinc-function, as in the classical sampling formula, the operators
Sy are based upon the generalized kernel functions x which satisfy the classical
assumptions of approximate identities ([17]). For such family of operators, several
approximation results were given by means of different kinds of convergence, such as
pointwise and uniform convergence, LP convergence, modular convergence and so on
(see [11]).

In this paper we face the problem of the convergence in variation, in the sense of
Jordan, for the family of the generalized sampling series and we obtain a complete
characterization of the absolutely continuous functions in terms of convergence in
variation by means of such family of discrete operators. Results about variation of
the generalized sampling series were previously studied in some particular cases: for
example, the variation detracting property was obtained for some kind of bandlimited
kernel functions (|26, 24, 25, 30]), but the topic was never faced in a general setting.
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In this paper we consider a general class of generalized sampling series

(ST F)(t) == Zf (g) xm(wt—k), teR, w>0,

keZ

based on a family of kernel functions of averaged type, i.e.,

1 m
Xm (1) ::—/2 x(t+v)dv, teR, meN,
m J_

2
where x satisfies the usual assumptions on kernels and f € BV(R) (the space of
bounded variation functions on R).
We first prove (see Section 3) that such operators satisfy a variation detracting-
type property, namely

VISEA < Ixh VI

for every w > 0, m € N. Then, in order to prove the convergence in variation, we first
establish a relation between the first derivative of S™ f and K, f’, where the operators
K, are the so-called sampling Kantorovich series (see (5) of Section 2) based on the
kernel x (see [11]). Here the averaged form of the considered kernels X,, plays an
important role and is not restrictive, as shown below. The sampling Kantorovich
operators represent an L'-version of S,,, and their approximation properties have
been widely studied in last years, both from the theoretical and the applications
point of view; see, e.g., [20, 30, 19].

By means of the relation between the generalized sampling series and the sam-
pling Kantorovich series, we are able to prove (see Section 3) that, for every fixed
m € N,

V[SZ‘f—f]—)O, w — +00,

if and only if f belongs to the space AC(R) of the absolutely continuous functions
on R. Note that, for the converse result we use the closedness of AC(R) in BV(R)
with respect to the variation functional ([10]), together with the absolute continuity
of the generalized sampling series (Proposition 1).

One of the main advantages that can be reached by the approach proposed in
this paper, is the possibility to obtain approximation results also for not-necessarily
bandlimited kernels, therefore enlarging the class of kernels (e.g., duration limited
kernels). Moreover, we obtain a complete characterization of the space AC(R) by
means of the convergence in variation for S, while previous results only established
convergence in variation in some proper subspaces of AC(R) (i.e., in Bernstein spaces,
[12]).

It is important to mark out that the use of averaged kernels for the operators
Sw 1s not restrictive: indeed there are many examples of kernels widely used in
approximation theory that are of averaged type. Among them, for instance, the
central B-splines of order n € N, which are typical examples of duration limited
kernels (and therefore not bandlimited), are averaged central B-splines of order n — 1
(see Section 4). Finally, in Section 4 we show that many other examples of averaged
kernels can be generated by using classical families of kernels, such as the Fejér and
the Bochner—Riesz kernels, and many others.
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2. Notations and preliminaries

We will work in the frame of the space of functions of bounded variation on R
(see [27, 4, 7, 28]), namely

BV(R):={f: R — R: V[f] < +o0}.

Here V[f] = supyjcr Viay[f] is the Jordan variation of f over R; Vioy[f] =
sup Y iy | f(z;) — f(z;_1)|, where the supremum is taken over all the possible parti-
tions @ = xgp < ¥y < ... < x, = b of the interval [a,b], is the Jordan variation of f
over |a, b].

By ACi(R) we denote the space of the functions that are locally absolutely
continuous, namely absolutely continuous on every interval [a,b] C R. Finally, we
put AC(R) := BV(R) N ACi,(R) ([8]). We recall that a function of bounded

variation is a.e. differentiable and

/R £ dt < V).

Moreover, if f € AC(R), then

1) /R (0] dt = V),

namely there holds an integral representation for the variation of f.
Let us consider the following family of discrete operators, known as generalized
sampling series (|32, 16]),

(Suf)t) =D f (g) x(wt —k), teR, w>0,

keZ

where f: R — R and x: R — R is a kernel that satisfies the following assumptions:

(x1) x € L'(R) is continuous on R and such that >, , x(u — k) =1, Vu € R;
(x2) Ay 1= SUPyer Y ez X (v — k)| < 400, where the convergence of the series is
uniform on the compact sets of R.

The above assumptions are quite standard when we deal with discrete families of
approximation operators: see e.g., [11, 13, 20, 30].

We point out that, with such assumptions, (S, f) are well-defined if, for example,
f € BV(R). Indeed in this case f is bounded and hence, if M > 0 is such that
|f(x)|] < M, for every x € R,

(Suf) ()] < M [x(wt — k)| < AM < 400, tER, w>0,

keZ

by (x2). Such operators are well known and widely studied in approximation theory
(see, e.g. |17, 32, 16, 24]).
In particular, we will study the problem of the convergence in variation for the
generalized sampling series in the case of an averaged kernel, namely of the form
Fl
2 Xm(t) (= — t dv,
8 tnlt) =[xty

m
2

for some m € N, where y: R — R is a kernel.
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It can be proved that, if y satisfies (x1) and (x2), the corresponding averaged
kernel Y, turns out to be differentiable and satisfies the same conditions. Indeed,

m/2
[Tl < m™ / (/ |xv+t>rdt) do = |[x]l; < +oc,

Z)Zm(u—k)— /2<qu—|—'u— )dv:l.

keZ

and

Similarly, (y2) can be proved.
The sampling series corresponding to Y,, are therefore of the form

Zf( )met—k), teR, w>0.

keZ

Let us point out that there are several examples of well-known kernels in the literature
of approximation theory that are of the form (2): in Section 4 we will present some
of them.

Since we can obviously write

g G L) (D) eer

for f € BV(R) the derivative of the generalized sampling series S™ f can be written
in the form

=25 (5 o ) (o 2]

notice that, for f € BV(R), such derivative exists for every ¢t € R since
syl < 2 ([sen (4 55) |+ |50 (1= 35)1)
Y@< 2 () (¢4 50 )| +]s0n) (1= 55)])
for every w > 0 and m € N.
In particular, in the case m = 1, we will write

X(t) = /_2 X(t 4+ v) dv,

-2 (3) (o0 ) (a2

for every t € R and w > 0.

One of the main goals of the present paper will be to establish a relation between
the derivative of the generalized sampling series (S™ f) and the sampling-Kantorovich
operators associated to the derivative of f. We recall that the sampling-Kantorovich
operators (|11, 19, 18, 9]) are defined as

(5) Zw(/ du) x(wt—k), teR.

kEZ
Notice that, assuming (x3), the operators K, f are well-defined for f € BV (R) since,
as before,

(Kuf) ()] < M [x(wt — k)| < MA, < 400, tE€R, w>0.

keZ
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Moreover, if f € AC(R),

\<Zw/

keZ

= ‘f (kH) _f(g)‘lx(wt—k)y

<wV[f]> [x(wt — k)| < wAV[f] < +oo, tER, w>0.

keZ

k+1

u) duf [x(wt — k)]

3. Main results

Proposition 1. Let f € BV(R). Then ST f € AC(R), for every w > 0, m € N
and

VISEA < —Inlh VI

Proof. Let w > 0 and m € N. By (4), since f € BV(R), the derivative of S™f
exists everywhere in R and

0 <5 (5] (- o - )

Now, since f € BV (R), there exists M € R such that |f(z)] < M, for every z € R
and so, by assumption (x2),

(SOl S (e s D) o ) < 20,

2 m

Thus, (S;f) is bounded, which implies that S™f € ACi..(R). We will now prove
that S7'f € BV(R).
Since SI'f € AC\(R), there holds

6)  VISIf= sup ViylSrf] = sup/rsmf )| dt = /ISmf ) dt.

[a,b]CR [a,b]CR

Moreover, we can write

(Supy e =231 (5) (c (wr =k 5) =x (w =k F))

OGN R ONCEES
(S1+ Ss)

Now, putting k =k +m in the series So,

5222f<%;—m>x<wt—%+%>,
keZ

and so

e =23 [ () - (B x (we -+ ).

keZ
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Therefore, by (6),

VIS ) = / (5 (1) di

L)) ere e
<o [l (5) - (55| et du < vinid

Therefore the proof is complete, taking into account that f € BV(R) and x €
L'(R). 0

The inequality proved in the above proposition is a wvariation detracting (or
diminishing)-type property (see e.g., [10, 3, 24, 25, 1]). In particular, in case of non-
negative kernels we have ||x|[1 = 1 and we obtain the usual variation diminishing
property. Indeed, since x is continuous, as a consequence of the Poisson’s summation
formula we know that the assumption

> x(u—k) =1,

keZ

keZ

for every u € R, is equivalent to
1, k=
X(2rk) =4 " 0
0, k#0,

for k € Z, where X(v fR x(u) e7 du, denotes the Fourier transform of x. Thus,
since x is non- negatlve we obtaln

1= 5(0) = /R x (1) d = | x|

Moreover, in the general case of kernels with variable sign it is sufficient to take
m € N large enough, to obtain again the usual variation diminishing property.

The next Proposition establishes a relation between the derivative of the gener-
alized sampling series (S™f) and the sampling-Kantorovich operators associated to
the derivative of f.

Proposition 2. Let f € AC(R), then for every t € R,

1 & m—2(i— 1)
m —_ » t—
SN0 = S ) (1= "),
w >0, meN.
Proof. By (4), we have that

SeO =250 () [ (w =k ) =x (wr = k=)

_w -/Oif’(u)du+f(0)_ x(wt—k+ ) = (wt—k— 3]
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X(wt—k—%).

—> [/ 7'(u) du + £(0)

keZ

Now let us put, in the first series, k =k —m: then

(ST FY(t) = % [/Okzm f'(u) du + f(O)_ X (wt — k- %)
keZ -
[ rwws o]y -t)
kez L/0 i
w /“w m
keZ g

2

+%k€z (/H;_Uf/(u)du> X(wt—(k-y(m_l))_W)

m—2(m—1))

2w

:% kw j”(u)du)x(wt—k‘—@)—l—

(Kwf') (t—%) +...+%(wa’) (t—

> (ur) (1= ).

for every t € R. ([l

Note that the above property is analogous to a well-known relation occurring
between the Bernstein polynomials and their Kantorovich-type version: see e.g.,
[2, 10].

We are now ready to prove the main result about a characterization of the abso-
lute continuity in terms of the convergence in variation for the generalized sampling
series (S f).

Theorem 1. Let f € BV(R). Then lim,_, ., V[S™f — f] =0, m € N, if and
only if f € AC(R).

Proof. We firstly consider f € AC(R). By Proposition 1, S™f € AC(R), for

every w > 0, m € N, and hence also (S™f — f) € AC(R). Therefore, by (1) and
Proposition 2,

VIS - f] = /R (ST F — FY ()] dt = /R (ST — f(8)) de

[ S (o f) (t_ w) ~ Lo

dt

m 4 2w m
=1
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() (o)

(t— <_1))—mf’(t) dt
(=) ez
PR (t—%ﬂi_l))—f’(ﬂ‘dt

:/| Ko '<t>|dt+%:1 (o= =2 o a

2w
=J + — {Il+ A+ 1}

SE;/R(

About J, since obv10usly
J=IKuf = flh
and f' € L*(R), by Corollary 5.2 of [11] ! we have that J — 0, as w — +oo0.

Moreover,
(== o
f( 2w f()1—> ’

as w — +o00, by the continuity in L! of the translation operator, and analogously

[1:’

m—2(j—1)
= L R C AR I -0
J f ( 2w ) f() . )
for every 7 = 2,...,m, as w — +o0o. Therefore the first part of the theorem is

proved. B
For the converse implication, notice that S}’ f € AC(R), by Proposition 1. There-
fore, if lir}rl VIS f — f] = 0, recalling that AC(R) is a closed subspace of BV (R)
w—r—+00

with respect to the topology induced by the semi-norm defined by the total variation
V[] (see e.g. [10]), we conclude that f € AC(R). O

4. Examples of kernel functions

In the literature, there are several examples of kernels (according to the definition
given in Section 2) which are of the averaged-type (2).

As first example, we present the case generated by the well-known central B-
spline of order n € N, defined as follows:

M, (z) = n_1,Z <)( —l—m—%)il, z €R,

where (z), := max {z,0} denotes “the positive part” of z € R (see e.g., |29, 17, 35,
34]). The functions M,,(z) (for some plots see Figure 1) are non-negative, continuous
with compact support contained in [—n/2,n/2], and satisfy conditions (;) and (x2).

INotice that all the assumptions on kernels for such result are satisfied (see Lemma 3.1 and
Remark 3.2 of [11]).
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Figure 1. The central B-spline of order 2 (left), and its corresponding averaged kernel, i.e., the
central B-spline of order 3 (right).

In particular, the singularity assumption ), , M, (u — k) = 1, for every u € R,
follows as a consequence of the Poisson’s summation formula, taking into account
that J/W\n, i.e., the Fourier transform of M,,, is such that J/\/[\n(27rk) =0,if k € Z\ {0},
and ]\//.TH(O) = 1; for more details see e.g., [17].

Now, let us denote by

B m/2
My (t) :=m™" M,(t+v)dv, teR,

—m/2

the averaged B-spline kernel of order n € N. Recalling the following well-known
property of the central B-spline, i.e.,

M;m(t) :Mn—l(t+1/2) - Mn—l(t_1/2)7 tERa (7122)
we have that, for m = 1,
My, (t) = Mu(t+1/2) — Mu(t = 1/2) = My,4(t), t€R, (n>1),

i.e., My1(t) = M,41(t) +k, k € R. Now, since M, ; belongs to L'(R), we must have
k = 0 and therefore we conclude that

Mn,l(t) - n+1(t)a teR,

for every n € N, namely, the averaged kernel with m = 1 generated by a central
B-spline of order n is a B-spline itself of order n + 1 (see Figure 1 again).

In view of what has been previously established, the following Corollary can be
stated.

Corollary 1. Let f € BV(R). Denoting by S the generalized sampling series
based upon the central B-spline M,, of order n > 2, we have that

lim V[SMrf—f]=0

w—>+00
if and only if f € AC(R).

In literature also examples of averaged kernels with unbounded support can be
found. For instance, we can mention the Lanczos’ kernel, defined by

m/2
Xo (1) == m_l/ sinc(t + 2v)dv, t € R,

—m/2
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where
sin 7t
sinc(t) = 7t t#0,
1, t=0.

Unfortunately, the sinc-function does not belong to L'(R), then in this case the
previous theory fails. However, this problem can be solved by considering a sinc?-

type kernel, such as the Fejér’s kernel (see Figure 2, left), defined by
1
F(z) = §sinc2 <§> , z€c€R.

The Fejér’s kernel satisfies assumptions (y1) and (x2) (see e.g., [21, 22, 19]), and the
corresponding averaged-kernel (see Figure 2, right) takes now the form

B m/2 m/2 ¢
Fo(t):=m~ / F(t+wv)d / sinc? ( +U) dv, teR.
m/2 2m m/2

0.5 05
/

0.45 ."‘l \ 0.45 £X
| \
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Figure 2. The Fejér’s kernel (left), and its corresponding averaged kernel with m = 1 (right).

In particular, we can observe that F),(t) turns out to be a bandlimited kernel,
since F'(x) is bandlimited itself. The latter property can be viewed as a general fact;
indeed, observing by (3) that x/, € L'(R), its Fourier transform can be computed
and there holds

@ [eim/2 . e—im/Z}
m

Vo) = : veR.

Now recalling that, in general, )?;(v) = iv Xm(v), v € R, it turns out that:

@(w —m! X.(U) [eim/2 . e*'im/Q] — 9oy} X( ) sin(m/2),
1 v
v € R\ {0}. By the above equality, we conclude that y,, is bandlimited if and only
if x is bandlimited.
Other examples of bandlimited kernels are provided, e.g., by the Bochner-Riesz
kernels ([33]), defined by:

v

bo(z) := —TD(y+1) |z|"V> J z|), zeR,

V() or (v +1) =] 1/244(]7])
for v > 0, where J, is the Bessel function of order A [14] (see Figure 3, left). The
corresponding averaged Bochner—Riesz kernels can be generated as follows:

~ m/2

- 2
bon(t) = m"! r<y+1)/ 1t 02 Ty ([ 4+ o) do
\/§7T —m/2
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t € R (see Figure 3, right).

A ~ 0.16 i
0.16 ® / >
\ 014 i N
0.14 \ / %
/ \\ B / \
/
0.12 \\ 01 / \\‘
/ A 0.08 4 \
ol . ; \
# \ 00 / \
0.08 i \ / \
/ ! '/ 3
0.06 / \ - / N\
Y \ [

Figure 3. The Bochner—Riesz kernel with v = 2 (left) and its corresponding averaged kernel
with m =1 (right).

Now, denoting by 7;”_the generalized series based upon the kernel y,,, with
Xm(t) = Fin(t) or Xm(t) = by (), we can write what follows.

Corollary 2. Let f € BV(R), and Xm(t) = Fu(t) or Xm(t) = b,..(t) be fixed,
for some m € N. Then

lim V[S™f—f] = 0

w—r~+00

if and only if f € AC(R).

By following the above procedure, several examples of kernels for which the pre-
vious theory holds can be given, see e.g., [31, 23, 26, 5, 6].

5. Final remarks and conclusions

In this paper we prove a characterization of the absolute continuity in terms of
the convergence in variation by means of the generalized sampling series S™. Such
sampling series are based upon averaged kernels that do not need to be necessarily
bandlimited. The crucial point of our approach is the possibility to establish a
relation between the generalized sampling series and their Kantorovich-type version
and the fact that the operators are based on averaged kernels. Actually, this is no
restrictive, since there are many examples of kernels of averaged type well-known
in approximation theory: among them, the central B-splines of order n. As shown
in Corollary 1, the generalized sampling series with averaged kernel generated by
the central B-splines of order n and m = 1 coincide with the usual sampling series
based upon the central B-splines of order n + 1. It is well-known that the central B-
splines are not bandlimited, therefore by the proposed approach we are able to treat
a situation that was not covered by the convergence results proved in [12|, where
the kernels are bandlimited and the function f belongs to the Bernstein space (in
general strictly contained in AC(R)). Moreover, here we obtain not only a result
of convergence of variation, but a complete characterization of AC(R) in terms of
convergence in variation by means of the generalized sampling series, similarly to
what happens, for example, working with the classical convolution integral operators.
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