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Abstract. The sharp results for the self-improving and the transition properties of Gehring
RHq and Muckenhoupt Ap weights are unified and improved into corresponding sharp results for
weights satisfying a general reverse Hölder inequality. We show that the optimal exponents of
integrability as well as the best constants in the integral inequalities can be obtained by mean of
the unique algebraic equation
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holding for the so called Bq

p
class (see 1.10) which contains the Gehring and Muckenhoupt classes

as particular cases.

1. Introduction

A weight is a locally integrable function defined on a bounded interval I ⊂ R to
[0,+∞[. For a given exponent p > 1 a weight w is said to verify the Ap-condition if
there exists a real constant A > 1 such that, for every interval J ⊆ I, it holds

(1.1)

ˆ

J

w

(
ˆ

J

w
1

1−p

)p−1

≤ A.

In the limit case p = 1 the condition (1.1) becomes

(1.2)

ˆ

J

w ≤ A ess inf
J

w

and in this case we say that the weight w verifies the A1-condition.
The smallest constant A verifying (1.1) or (1.2) is called the Ap-norm of the

weight w and is denoted by Ap(w). On the other side, for a given fixed constant
A > 1, the Muckenhoupt class Ap(A) is defined as the set of all weights w verifying
conditions (1.1) or (1.2), i.e. Ap(w) ≤ A. These definitions have been introduced in
1972 by Muckenhoupt [16] to characterize those weights w which make the maximal
operator M bounded on the weighted Lp(w) space.

For a given exponent q > 1 a weight v is said to verify the RHq-condition if there
exists a real constant G > 1 such that, for every interval J ⊆ I, it holds

(1.3)

(
ˆ

J

vq
)

1

q

≤ G

ˆ

J

v

In the limit case q = +∞ the condition (1.3) becomes

(1.4) ess sup
J

v ≤ G

ˆ

J

v
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and we say that the weight v verifies the RH∞-condition.
The smallest constant G verifying (1.3) or (1.4) is called the RHq-norm of the

weight v and is denoted by RHq(v). For a given fixed constant G > 1, the Gehring
class RHq(G) is defined as the set of all weights v verifying conditions (1.3) or (1.4),
i.e. RHq(v) ≤ G. Such weights have been introduced in 1973 by Gehring [8] to prove
a result of Lq-integrability of the gradient for quasi-conformal mappings.

As proved independently by Muckenhoupt and Gehring in their celebrated pa-
pers, these two classes both enjoy the remarkable self-improving property: for given
couples of constants p, A and q, G defined as above, there exist limit exponents
p∗ = p∗(p, A) < p and q∗ = q∗(q, G) > q, and corresponding constants Dr = Dr(p, A)
and Cs = Cs(q, A), such that the following inclusions hold true:

w ∈ Ap(A) =⇒ w ∈ Ar(Dr) ∀r ∈ ]p∗, p],(1.5)

v ∈ RHq(G) =⇒ v ∈ RHs(Cs) ∀s ∈ [q, q∗[.(1.6)

The self-improving property has applications in the study of the optimal regular-
ity of solutions to some elliptic PDE’s (see for example Kenig [9] and Sbordone–Zecca
[22]) where the Lp solvability of the Dirichlet problem, divA(x)∇u = 0 on the unit
disc D, with u|∂D = ϕ, can be expressed in terms of RHq conditions on the boundary
∂D for the harmonic measures associated to A(x), with 1/p+ 1/q = 1. Another re-
cent application of the sharp results for the reverse Hölder inequalities can be found
in Martio–Sbordone [15] in the study of K-quasiminimisers and their inverse.

In 1974 Coifman and Fefferman [5] proved the connection between the two classes:
any Muckenhoupt weight belongs to some Gehring class and conversely. Namely,
there exist exponents s∗ = s∗(p, A) and r∗ = r∗(q, G) and corresponding constants
Cs = Cs(p, A), and Dr = Dr(q, G), such that the following transition properties hold
true:

w ∈ Ap(A) =⇒ w ∈ RHs(Cs) ∀s < s∗,(1.7)

v ∈ RHq(G) =⇒ v ∈ Ar(Dr) ∀r > r∗.(1.8)

These properties have been deeply investigated, particularly with respect to three
problems:

(A) to find the value of the limit exponents p∗ and q∗ for which the self-improving
property holds;

(B) to find the value of the limit exponents r∗ and s∗ for which the transition
property holds;

(C) to find the best constants Cs and Dr for which the improved Ar-condition
and the RHs-condition are satisfied.

There is an extensive literature on the matter and in dimension one most of the
aspects have been addressed.

The first result goes back to 1990 and is due to D’Apuzzo and Sbordone [6] who
found the optimal integrability exponent for monotonic RHq weights as solution of
an algebraic equation. In 1992 Korenovskii [10] completely solved problem (A) by
proving the corresponding results for Ap weights with the significant improvement of
removing the monotonicity assumptions.

For the limit class A1 problems (B) and (C) have been resolved by Bojarski,
Sbordone and Wik in [4] where both the sharp integrability exponent and the sharp
constant have been found in explicit form. Their method has been applied to the
class RH∞ by Basile, D’Apuzzo, Squillante in [1].
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The complete solution to problem (B) has been provided by Malaksiano ([13],
[14]) who found the sharp exponents for the transition from Ap in RHq and viceversa,
respectively in 2001 and 2002. The solution to problem (C) is due to Vasyunin [24]
and Dindoš–Wall [7] who found the sharp constants for the self-improving and the
transition properties respectively for Ap and RHq weights.

With respect to these results there are some aspects we can point out:

i) definitions and notations are not yet uniformly consolidated, with some non
trivial differences across the various papers;

ii) methods in the proofs are significantly different. For example the solution
to problems (A) and (B) relies on some classical Hardy type inequalities and
integral estimates while problem (C) has required the use of the Bellman
functions, which are a powerful tool to deal with optimization problems but
require more technical complexity than the traditional methods;

iii) there are limited visible connections among the solutions, which have been
provided in different forms and apparently require an ad hoc equation for
every single result. As example, the best self-improving exponents for the Ap
weights appear in [24] and [10] as implicit solutions of two different equations.

Aim of this paper is to provide a unified solution to problems (A), (B) and (C)
in a single and more general RHI Theorem which foresees the known results cited
above as particular cases. More precisely, we show that the sharp exponents and the
sharp constants can both be expressed as values of the ω-function defined by

(1.9) ω(p, q, x) =

(

x

x− p

)− 1

p
(

x

x− q

)
1

q

provided the appropriate setting of variables.
The approach we follow is to consider the Ap and RHq classes as special cases of

the so called reverse Hölder’s inequality (RHI) Bq
p class: for given exponents p and

q such that p < q, we say that the weight u satisfies a reverse Hölder’s inequality if
there exists a constant B such that, for any interval J ⊆ I, we have

(1.10)

(
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uq
)

1

q

≤ B

(
ˆ

J

up
)

1

p

By recalling the classical Hölder’s inequality it is clear that the definition is well
posed only for B ≥ 1, where the equality prevails in case of constant functions. The
smallest constant, independent on the interval J , satisfying the inequality (1.10) is
called the Bq

p-norm of the weight u and will be denoted by Bq
p(u); we refer to the

inequality (1.10) as the Bq
p-condition for the weight u.

For a given fixed constant B > 1 we denote with Bq
p(B) the class of all weights u

on I verifying the condition (1.10) with constant B, i.e. Bq
p(u) ≤ B. The Bq

p classes
have been investigated by several authors (see for example Bojarski [3], Sbordone [23],
Wik [26], Korenovskii [11], Popoli [18], Vasyunin [25] and others) as they provide
a natural generalization for the Ap and the RHq classes and let us leverage some
symmetries and properties of the Bq

p-characteristic equation

(1.11)
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which can be written in terms of ω function in the equivalent form

ω(p, q, x) = B.
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As far as we know, the equation (1.11) has been found for the first time in [18]
(1997) to unify and extend the known sharp solutions to problem (A). In this paper
we show that the characteristic equation (1.11) also solves problems (B) and (C) for
one dimensional weights.

Actually, by observing that the ω function is strictly increasing for x in ]−∞, 0[
and strictly decreasing in ]0,+∞[, we have that the equation ω(p, q, x) = B admits
only one negative solution ν− = ν−(p, q, B) and one positive solution ν+ = ν+(p, q, B).

Our main result is the following RHI Theorem: exponents and best constants in
problems (A) and (B) and (C) can all be expressed in terms of the two solutions ν−
and ν+ of the equation (1.11).

Theorem 1.1. (RHI Theorem) Let B > 1 and p, q ∈ R − {0} real numbers
such that p < q. If ν− ≤ p and ν+ ≥ q are the two solutions of the equation

(1.12) ω(p, q, x) = B,

then we have the following improvements of regularity:

(1) u ∈ Bq
p(B) =⇒ u ∈ Bs

p(Cs) for any s ∈ R
+ such that q ≤ s < q∗ where

q∗ = ν+(p, q, B) and

(1.13) Cs = ω(p, s, q∗)

(2) u ∈ Bq
p(B) =⇒ u ∈ Bq

r(Dr) for any r ∈ R
− such that p∗ < r ≤ p where

p∗ = ν−(p, q, B) and

(1.14) Dr = ω(r, q, p∗)

The limit exponents ν+ and ν− as well as the constants Cs and Dr are sharp. More-
over, statement (1) also holds true in the limit cases p = −∞ and p = 0 while
statement (2) holds true also in the limit cases q = 0 and q = +∞.

Remark 1.2. The statement of the RHI Theorem clarifies the role of the ω
function, which let us obtain the optimal ranges of integrability but also provides
the sharp constants in the self-improved estimates, showing a precise link between
exponents and constants.

This paper will proceed as follows. In Section 2 we provide notations and defi-
nitions, paying attention to the fact that in literature there is not yet a consolidated
convention. In Section 3 we state the explicit version of the main RHI Theorem
for the Ap and RHq classes, to show how it works in the most interesting cases. In
Section 4 we provide new simple proofs of the main known solutions to problems
(A), (B) and (C) and show how all these theorems can be unified and derived by
the main theorem. Moreover we derive a new property on the optimal integrability
ranges from the link between exponents and constants. Finally Section 5 contains
the proof of the main theorem.

2. Definitions and notations

Let w be a weight. For a given exponent p > 1 we define the Ap-norm of w the
following quantity

(2.1) Ap(w) := sup
J⊂I

ˆ

J

w

(
ˆ

J

w
1

1−p

)p−1

where the supremum is taken over all intervals J ⊂ I.
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In the limit case p = 1 the A1-norm is defined by

(2.2) A1(w) := sup
J⊂I

ˆ

J

w
(

ess inf
J

w
)−1

and for the limit case p = ∞ the A∞-norm is defined by

(2.3) A∞(w) := sup
J⊂I

ˆ

J

w exp

(
ˆ

J

log
1

w

)

For 1 ≤ p ≤ ∞ we say that w is a Muckenhoupt Ap weight if its Ap norm is finite,
i.e.

(2.4) w ∈ Ap
def
⇐⇒ Ap(w) <∞.

In other words the Ap-norm of a weight w ∈ Ap represents the smallest constant for
which the Ap-condition holds true independently on the interval J ⊆ I.

When we also fix a constant A > 1 the couple of real numbers (p, A) defines the
Ap Muckenhoupt class Ap(A):

w ∈ Ap(A)
def
⇐⇒ Ap(w) ≤ A

and we will refer to A as the Ap-constant of the class. Similarly, for a given exponent
q > 1 we define the RHq-norm of v as

(2.5) RHq(v) := sup
J⊂I

(
ˆ

J

v

)−1(ˆ

J

vq
)

1

q

where the supremum, taken over all intervals J ⊂ I, represents the best constant for
which the RHq-condition holds true independently on the interval interval J ⊆ I. In
the limit case q = +∞ the RHq-norm is defined as

(2.6) RH∞(v) := sup
J⊂I

(
ˆ

J

v

)−1

ess sup
J

v.

We say that v is a Gehring RHq weight if its RHq norm is finite, i.e.

(2.7) v ∈ RHq
def
⇐⇒ RHq(v) <∞.

Again, if besides the exponent q we also fix a constant G > 1 it is well defined the
Gehring class RHq(G) by

v ∈ RHq(G)
def
⇐⇒ RHq(v) ≤ G

and we will refer to G as the RHq-constant of the class. From the Hölder’s inequality
it is easy to observe that the Ap and the RHq norms are respectively decreasing with
respect to p and increasing with respect to q:

r < p =⇒ 1 ≤ Ap(w) ≤ Ar(w),

q < s =⇒ 1 ≤ RHq(v) ≤ RHs(v).

Hence Ar ⊂ Ap and RHs ⊂ RHq and it is natural to define A∞ =
⋃

p>1Ap.
Consistently, for given non zero exponents p and q such that p < q we can

introduce the quantity

(2.8) Bq
p(u) := sup

J⊂I

(
ˆ

J

up
)− 1

p
(
ˆ

J

uq
)

1

q
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as the Bq
p-norm of u and say that u is a Bq

p weight if his Bq
p norm is finite, i.e.

u ∈ Bp
q

def
⇐⇒ Bp

q (u) < +∞.

Finally, if besides the exponents p, q we also fix a constant B > 1 we can define the
RHI class Bq

p(B) by

u ∈ Bp
q (B)

def
⇐⇒ Bp

q (u) ≤ B.

It is immediate to observe how all the classes defined above can be seen as special
cases of the Bq

p reverse Hölder’s inequality class:

(1) Ap = B1
1

1−p

,

(2) A1 = B1
−∞

(3) A∞ = B1
0 ,

(4) RHq = Bq
1,

(5) RH∞ = B+∞
1 .

with the special case B+∞
−∞ corresponding to the Harnack inequality ess supJ u ≤

B ess infJ u. In this paper we will see how the main theorem covers and unifies the
known properties holding in the classes listed above.

Let us now recall the statement of the self-improving property for Ap and RHq

weights:

w ∈ Ap(A) =⇒ there exist an exponent r < p

and a constant D > 1: Ap(A) ⊆ Ar(D),

v ∈ RHq(G) =⇒ there exist an exponent s < q

and a constant C > 1: RHq(G) ⊆ RHs(C).

Consequently, for the Ap(A) and RHq(G) classes we can define

(1) the sharp self-improving exponents:

p∗ = p∗(p, A) = Inf {r ∈]1, p] : w ∈ Ap(A) =⇒ w ∈ Ar} ,

q∗ = q∗(q, G) = Sup {s ∈ [q,+∞[ : v ∈ RHq(G) =⇒ v ∈ RHs} ,

(2) the sharp self-improving constants:

Dr = Dr(p, A) = Inf {D > 1: Ap(A) ⊆ Ar(D)} ∀r ∈]p∗, p],

Cs = Cs(q, G) = Inf {C > 1: RHq(G) ⊆ RHs(C)} ∀s ∈ [q, q∗[.

By fixing the Ap and RHq constants (respectively set equal to A and G), we can
state the transition property which embeds an Ap(A) class into a RHq(G) class and
conversely:

w ∈ Ap(A) =⇒ there exist an exponent s > 1

and a constant C > 1: Ap(A) ⊆ RHs(C),

v ∈ RHq(G) =⇒ there exist an exponent r > 1

and a constant D > 1: RHq(G) ⊆ Ar(D).

As for the self-improving property we introduce

(1) the sharp transition exponents:

s∗ = s∗(p, A) = Sup {s > 1: w ∈ Ap(A) =⇒ w ∈ RHs} ,

r∗ = r∗(q, G) = Inf {r > 1: v ∈ RHq(G) =⇒ v ∈ Ar} ,
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(2) the sharp transition constants:

Cs = Cs(p, A) = Inf {C > 1: Ap(A) ⊆ RHs(C)} ∀s < s∗,

Dr = Dr(q, G) = Inf {C > 1: RHq(G) ⊆ Ar(D)} ∀r > r∗.

3. The Ap and RHq theorems

In this section we specialize the main RHI Theorem in two corollaries respectively
for the Ap and RHq classes, to show how the sharp results work in the most interesting
cases.

Theorem 3.1. (Theorem Ap) Let A > 1 and p ≥ 1 be real fixed numbers.
Then if ν− and ν+ are the two solutions to the equation

(3.1)

(

x

x− 1

)[

(p− 1)x

1 + (p− 1)x

]p−1

= A

we have the following sharp properties:

(1) w ∈ Ap(A) =⇒ w ∈ RHs(Cs) for any s such that 1 < s < s∗ = ν+ and

(3.2) Cs =

(

ν+
ν+ − 1

)−1(
ν+

ν+ − s

)
1

s

(2) w ∈ Ap(A) =⇒ w ∈ Ar(Dr) for any r such that (1− 1
ν−
) = p∗ < r and

(3.3) Dr =

(

ν−
ν− − 1

)[

(r − 1)ν−
1 + (r − 1)ν−

]r−1

where the bounds r∗ and q∗ and the constants Cs and Dr cannot be improved.
Moreover, statement (1) also holds true in the limit cases p = 1 for w ∈ A1 and
p = +∞ for w ∈ A∞.

Proof. It is sufficient to apply the RHI Theorem 1.1 to the class Ap = B1
1

1−p

where the Ap characteristic equation is ω( 1
1−p

, 1, x) = A, which gives (3.1). In the

limit case p = 1 the characteristic equation for the class A1 is ω(−∞, 1, x) = A and
the equation (3.1) becomes

(3.4)
x

x− 1
= A

which has a single (positive) solution ν+ = A
A−1

. In this case we can obtain the explicit
value of the optimal constant in (3.2), that is

Cs =

[

1

As−1(A+ s− As)

]
1

s

.

In the limit case p = +∞ the characteristic equation for the class A∞ is ω(0, 1, x) = A
and the equation (3.1) becomes

�(3.5)
x

x− 1
e−

1

x = A.

Theorem 3.2. (Theorem RHq) Let G and q > 1 real fixed numbers. Then if
ν− and ν+ are the two solutions to the equation

(3.6)

(

x

x− q

)
1

q

= G
x

x− 1

we have the following sharp properties:
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(1) v ∈ RHq(G) =⇒ v ∈ RHs(Cs) for any s such that 1 < q ≤ s < q∗ = ν+ and

(3.7) Cs =

(

ν+
ν+ − 1

)−1(
ν+

ν+ − s

)
1

s

(2) v ∈ RHq(G) =⇒ v ∈ Ar(Dr) for any r such that r > r∗ = (1− 1
ν−
) and

(3.8) Dr =

(

ν−
ν− − 1

)[

(r − 1)ν−
1 + (r − 1)ν−

]r−1

where the bounds s∗ and r∗ and the constants Cs and Dr cannot be improved.
Moreover, statement (2) holds also in the limit case q = +∞ with v ∈ RH∞.

Proof. It is sufficient to apply the RHI Theorem 1.1 to the class RHq = Bq
1 and

note the RHq characteristic equation is given by ω (1, q, x) = G that gives (3.6). In
the limit case RH∞ the left hand side of (3.6) tends to 1 as q goes to +∞ and the
characteristic equation becomes

(3.9) G
x

x− 1
= 1

which has the unique negative solution ν− = 1
1−G

. So statement (2) in the limit case
says that v ∈ RHq(G) ⇒ v ∈ Ar(Dr) for any r > G with the optimal constant given
by

Dr =
1

G

(

r − 1

r −G

)r−1

. �

Remark 3.3. Let us point out the symmetry in the two theorems where the
values of the optimal constants have now exactly the same expression thanks to the
use of the ω function. This outcome is actually another aspect of the known duality
properties and interactions holding between the two classes (see for example [20]).

4. New proofs of sharp results in dimension one: a first consequence

In this section we provide a simple proof of the main known sharp results in
one-dimensional Ap and RHq classes as corollaries of the Ap and RHq Theorems.
Furthermore we show a new aspect of the self-improving integrability property (The-
orem 4.15).

Theorem 4.1. (D’Apuzzo, Sbordone, Korenovskii [6, 10]) Let us fix q > 1 and
G > 1. Then for every v ∈ RHq(G), v ∈ RHs for any s ∈ [q, q∗[ where the sharp
exponent q∗ = q∗(q, G) is given by the unique positive solution of the equation

(4.1)
x− 1

x

(

x

x− q

)1/q

= G.

Moreover, the value q∗ is sharp.

Proof. Part of statement (1) of the RHq Theorem. �

Remark 4.2. Theorem 4.1 has been extended in [17] to the weighted RHq class.
In particular it has been proved that the equation (4.1) does not change if we re-
place the Lebesgue measure with an absolutely continuos measure dµ. Korenovskii
extended this result to Bq

p in [11].
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Theorem 4.3. (Korenovskii [10]) Let us fix p > 1 and A > 1. Then for every
w ∈ Ap(A), w ∈ Ar for any r ∈]p∗, p] where the exponent p∗ = p∗(p, A) is the unique
positive solution of the equation

(4.2)
1

y

(

p− 1

p− y

)p−1

= A.

Moreover, the value p∗ is sharp.

Proof. Immediate application of statement (2) of the Ap Theorem where, by
adopting the change of variable x = 1

1−y
, the equation (3.1) becomes (4.2). �

Theorem 4.4. (Malaksiano [13]) Let us fix q > 1 and G > 1. Then, for every
r ∈]r∗,+∞[ there exists a constant Dr = Dr(q, G) such that the inclusion RHq(G) ⊂
Ar(Dr) holds true and r∗ = r∗(q, G) is given by the positive root of the equation

(4.3) y

(

1

1 + q(y − 1)

)
1

q

= G

and the value r∗ is optimal.

Proof. It is sufficient to apply statement (2) of the RHq Theorem where, by
adopting the change of variable x = 1

1−y
, the equation (3.6) becomes (4.3). �

Theorem 4.5. (Malaksiano [14]) Let us fix p > 1 and A > 1. Then, for every
s ∈]1, s∗[ there exists a constant Cs = Cs(p, A) such that the inclusion Ap(A) ⊂
RHs(Cs) holds true and s∗ = s∗(p, A) is given by the root of the equation

(4.4)

(

x(p− 1)

1 + x(p− 1)

)p−1
x

x− 1
= A

and the value s∗ is optimal.

Proof. It is included in statement (1) of the Ap Theorem where the equation
(3.1) coincides with equation (4.4). �

Theorem 4.6. (Bojarski, Sbordone, Wik [4]) Let w be a function in A1(A).
Then, for every s < s∗ = A

A−1
and every interval J ⊆ I, it holds

(4.5)

ˆ

J

ws ≤
1

As−1(A+ s− As)

(
ˆ

J

w

)s

where the limit exponent s∗ and the right hand side constant in (4.5) are sharp.

Proof. By the Ap Theorem 3.1 in the limit case p = 1 we have w ∈ A1(A) ⇒
w ∈ RHs(Cs), i.e.

(4.6)

(
ˆ

J

ws
)

1

s

≤ Cs

ˆ

J

w

for all intervals J ⊆ I and for all s < s∗, where s∗ is the unique (positive) solution of
the characteristic equation

x

x− 1
= A
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which clearly gives s∗ = A
A−1

. By replacing the value of s∗ in the expression of the
optimal constant (3.2) we obtain the optimal RHs constant

Cs =

[

1

As−1(A+ s− As)

]
1

s

which easily leads to (4.5) by replacing Cs in (4.6) and raising both members to
s. �

Theorem 4.7. (Basile, D’Apuzzo, Squillante [1]) Let w be a function inRH∞(G).
Then, for every r > r∗ = G there exists a constant Dr = Dr(A) such that the inclu-
sion RH∞(G) ⊂ Ar(Dr) where

(4.7) Dr =
1

G

(

r − 1

r −G

)r−1

and the values r∗ and Dr are optimal.

Proof. By the RHq Theorem 3.2, in the limit case RH∞ the left hand side of
(3.6) tends to 1 as q goes to +∞ and the characteristic equation becomes G x

x−1
= 1

which has the unique negative solution

ν− =
1

1−G

So, in the limit case, statement (2) of Theorem 3.2 says that v ∈ RHq(G) implies
v ∈ Ar(Dr) for any r > G with the sharp constant (4.7) obtained by replacing the
value of ν− in the expression (3.8). �

Let us now state the main results to problem (C). The first one is part of The-
orem 1 in [24] and provides the best range and the sharp constant of the transition
property for Ap weights:

Theorem 4.8. (Vasyunin [24]) Let w ∈ Ap(A) with A > 1 and p > 1 real
constants. If s+ is the positive solutions of the equation

(4.8) (1− t)

(

1−
t

p

)−p

=
1

A
,

then we have

(4.9)

ˆ

J

ws ≤ Cmax(p, s, A)

(
ˆ

J

w

)s

for any s ∈
[

1, p−s+

s+(p−1)

[

and

(4.10) Cmax(p, s, A) = A
1−s
p
(1− s+)

γ

1− γs+

where γ = sp−s+1
p

. Moreover, the limit exponent and the constant Cmax are optimal.

Proof. Statement (1) in Theorem Ap gives w ∈ Ap(A) ⇒ w ∈ RHs(Cs) for any s

such that 1 < s < s∗ = ν+, that is equivalent to (4.9) with Cs = [Cmax]
1

s and

s∗ = ν+ =
p− s+

s+(p− 1)
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which gives the relationship between the positive solutions of equations (4.8) and
(3.1). Actually it can be verified that with the change of variables

(4.11) x =
p− t

t(p− 1)

the characteristic equation (3.1) in Theorem Ap becomes the equation (4.8). The
optimal constant Cmax(s

+) can be obtained by replacing the expression of ν+ in the
constant Cs(ν+) in (3.2). As

Cs(ν+) =

(

ν+
ν+ − 1

)−1(
ν+

ν+ − s

)
1

s

=
1

A

[

(p− 1)ν+
1 + (p− 1)ν+

]p−1(
ν+

ν+ − s

)
1

s

we have that

Cmax(s
+)=[Cs(ν+)]

s=

[

Cs

(

p− s+

s+(p− 1)

)]s

=
1

As

[

1−
s+

p

]pγ
1

1− γs+
=
Aγ

As
[1− s+]

γ

1− γs+

that leads to (4.10), where the last equality is obtained by recalling that s+ solves
(4.8) �

Theorem 4.9. (Vasyunin [24]) Let w ∈ Ap(A) with A > 1 and p > 1 real
constants. If s− is the negative solution to the equation

(4.12) (1− t)

(

1−
t

p

)−p

=
1

A
,

then we have w ∈ Ap(A) =⇒ w ∈ Ar for any r such that p(1−s−)
p−s−

< r ≤ p with

(4.13) Ar(w) =

(

1− s−

p

)r

(1− s−)
(

1− r−p
p(r−1)

s−
)r−1 .

Moreover, the limit exponents and the constants are optimal.

Proof. It can be achieved with the same approach of the previous theorem, by
adopting the change of variables x = p−t

t(p−1)
to transform the characteristic equation

(3.1) in Theorem Ap into the equation (4.12). The relationship between the two
negative solutions in this case is given by

1

1− p∗
= ν− =

p− s−

s−(p− 1)

and to obtain the expressions of the optimal constant (4.13) it is sufficient to replace
the values of the solutions according to the relationships above into (3.3). By setting
c = s−/p the right hand expression in (4.13) can be simplified as

Ar(w) =
1− c

1− pc

[

1− c

1− r−p
r−1

c

]r−1

and can be obtained by replacing ν− = 1−c
c(p−1)

into the expression of Dr in Theo-

rem 3.1. �
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Theorem 4.10. (Dindoš, Wall [7]) For any weight v ∈ RHq(G) with G > 1 we
have v ∈ Ar(Dr(q, G)) for any r such that r > r∗ where r∗ = r∗(q, δ) is the unique
positive solution to the equation

(4.14)
(y/G)q − 1

y − 1
= q

and

(4.15) Dr(q, G) =
1

r∗

(

r − 1

r − r∗

)r−1

and the values r∗ and Dr are optimal.

Proof. It is sufficient to apply statement (2) of the RHq Theorem where, by
adopting the change of variable x = 1

1−y
, the equation (3.6) becomes (4.14). �

Theorem 4.11. (Dindoš, Wall [7]) For any weight v ∈ RHq(G) with G > 1
we have v ∈ RHs(Cs(q, G)) for any s such that q ≤ s < q∗ where q∗ is the unique
positive solution to the equation

(4.16)
x− q

x

(

Gx

x− 1

)q

= 1

and

(4.17) Cs(q, G) =
q∗ − 1

q∗

(

q∗

q∗ − s

)
1

s

and the values q∗ and Cs(q, G) are optimal.

Proof. The theorem coincides with statement (1) of the RHq. �

Remark 4.12. Note that in Theorems 4.8 and 4.9 the sharp results for the
self-improving and the transition properties of for Ap weights are found by mean of
the two solutions (one negative and one positive) of the same equation, while the
corresponding results for RHq weights in Theorems 4.10 and 4.11 are found by using
the positive solutions of two different equations.

It remains to cover the important case of A∞. By using Theorem Ap in the
limiting case p = +∞ we can state the following result.

Theorem 4.13. (Theorem A∞) Let A > 1. If ν+ is the unique positive
solution to the equation

(4.18)
x

x− 1
e−

1

x = A,

then w ∈ A∞(A) =⇒ w ∈ RHs(Cs) for any s such that 1 < s < s∗ = ν+ and

(4.19) Cs =

(

ν+
ν+ − 1

)−1(
ν+

ν+ − s

)
1

s

.

Moreover, the limit exponent s∗ and the constant Cs are sharp.

Proof. The theorem coincides with statement (1) of Theorem Ap when p =
+∞. �

Remark 4.14. The sharp exponent as solution to the equation (4.18) can be
found in Korenovskii and Fomichev [12]. A more complete result was proved by
Vasyunin in [24] by mean of another equation which naturally provided a different
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expression for the best constant. Nevertheless, with appropriate change of variables,
it can be seen that the constant in (4.19) and the corresponding one in [24] actually
represent the same value.

Let us now state an interesting property that can be seen by using the link
between exponents and constants via the function ω. In essence, for a given class
RHq(G), the limit exponent q∗ (depending on q and G) defines an interval [q, q∗[
where the Gehring condition works. This means that we can apply the self-improving
property starting from any s ∈ [q, q∗[ and wonder whether the limit exponent s∗ for
the class RHs(Cs) (depending on s and Cs) has some relationship with q∗. Actually
it can be proved that s∗ = q∗. In other words, if we apply the self-improving property
“moving forward” in the interval [q, q∗[ we do not obtain a further improvement of
integrability.

In the proof of the main RHI Theorem we will show independently that this is a
general fact for Bq

p weights. For now we think it is worth to highlight this property
for Ap and RHq weights as a consequence of Theorems 4.9 and 4.11. More precisely,
the following theorem holds.

Theorem 4.15. Let us consider the classes Ap(A) and RHq(G) and their corre-
sponding sharp self-improving exponents p∗(p, A) and q∗(q, G). Then we have:

∀s ∈ [q, q∗[ s∗(s, Cs(q, G)) = q∗(q, G),(4.20)

∀r ∈]p∗, p] r∗(r,Dr(p, A)) = p∗(p, A).(4.21)

Proof. Let us prove the first identity. By Theorem 4.11 we have

v ∈ RHq(G) =⇒ v ∈ RHs(Cs) ∀s ∈ [q, q∗[

where q∗ solves the equation (4.16). By recalling the definition of ω we can re-write
(4.16) and (4.17) as follows:

q∗ − q

q∗

(

Gq∗

q∗ − 1

)q

= 1 ⇐⇒ ω(1, q, q∗) = G

and

(4.22) Cs =
q∗ − 1

q∗

(

q∗

q∗ − s

)
1

s

= ω(1, s, q∗)

where the values q∗ and Cs(q, G) are optimal. Now, for any s in the admissible range
of integrability [q, q∗[, we can apply again the self-improving property and obtain

v ∈ RHs(Cs) =⇒ v ∈ RHt(Ct) ∀t ∈ [s, s∗[

where s∗ as usual has to solve the equation

(4.23) ω(1, s, s∗) = Cs.

As ω(p, q, x) is strictly decreasing for positive values of x, the equation ω(1, s, x) = Cs
admits just one positive solution in x. So, by comparing (4.22) and (4.23), we get

q∗ = s∗

which is (4.20).
The proof of (4.21) can be achieved exactly the same way by using Theorem 4.9.

�

Let us conclude this section with another important step on the way of unifying
the theory of A∞ weights. It has been obtained by Korenovskii in [11] in the general
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case of weighted inequalities. We report here the version with the standard Lebesgue
measure for sake of consistency.

Theorem 4.16. (Korenovskii [11]) Let p, q ∈ R − {0} with p < q and assume
that the non negative weight u satisfies the Bq

p(B) condition. For every γ < min{0, p}
or γ > max{0, q} such that

(4.24)

(

1−
p

γ

)
1

p

> B

(

1−
q

γ

)
1

q

there exist positive real constants B′ and B′′ depending on p, q, B and γ, such that

(4.25)
1

B′

(
ˆ

J

uq
)

1

q

≤

(
ˆ

J

uγ
)

1

γ

≤ B′′

(
ˆ

J

up
)

1

p

for every interval J ⊆ I, where if γ does not satisfy the inequality 4.24 one of the
two inequalities in 4.25 fails. More precisely the left inequality fails if γ < p while
the right one fails if γ > q.

5. Proof of Theorem 1.1.

Let us first recall some classic results that will be used to prove our main theorem.

Lemma 5.1. (Hardy’s inequality) Let u be a weight on an interval [a, b] and α
and β real numbers such that either 1 ≤ α ≤ β, β > 1, or α < 0, β < 0. Then

(5.1)

ˆ b

a

(x− a)
α
β
−1Uα(x) dx ≤

(

β

β − 1

)α ˆ b

a

(x− a)
α
β
−1uα(x) dx

where U(x) =

ˆ x

a

u(t) dt.

Lemma 5.2. (Hardy, Littlewood, Polya) Let u be a nonincreasing weight on an
interval [a, b] and λ ≥ 1 a real number. Then the following inequality holds:

(5.2)

(
ˆ b

a

uλ(x) dx

)

1

λ

≤
1

λ

ˆ b

a

(x− a)
1

λ
−1u(x) dx.

Another key tool in the study of reverse Hölder inequalities are the equimeasur-
able properties of monotonic rearrangements, as far as we know applied for the first
time by Sbordone in [21] and refined by Korenovskii in [10] and [11]. We need some
preliminary definitions.

Let Φ be the class of positive convex functions and let us denote with u∗ and u∗

respectively the nonincreasing and nondecreasing rearrangements for the function u.
The functions u∗ and u∗ are equimeasurble with u in a set E in the sense that for
any real exponent λ it holds

(5.3)

ˆ

E

uλ dx =

ˆ |E|

0

(u∗)λ =

ˆ |E|

0

(u∗)
λ

It is well known that a convex function ϕ ∈ Φ verifies the so called Jensen
inequality

(5.4) ϕ

(
ˆ

E

u(x) dx

)

≤

ˆ

E

ϕ(u(x)) dx.
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This makes natural to define that a weight u is said to verify the reverse Jensen
inequality, that will be denoted by u ∈ RJϕ(K), if there exists a real constant K > 1
such that, for every interval J ⊆ I, it holds

(5.5)

ˆ

J

ϕ(u(x)) dx ≤ Kϕ

(
ˆ

J

u(x) dx

)

.

The following theorem, proved by Korenovskii in 1992, provides the exact esti-
mate for the equimeasurable rearrangements of weights verifying the Reverse Jensen
Inequality:

Theorem 5.3. (Korenovskii [11]) Let ϕ ∈ Φ and u ∈ RJϕ(K). Then
ˆ

E

ϕ(u∗(x)) dx ≤ Kϕ

(
ˆ

E

u∗(x) dx

)

,(5.6)

ˆ

E

ϕ(u∗(x)) dx ≤ Kϕ

(
ˆ

E

u∗(x) dx

)

(5.7)

with the same constant K as in condition (5.5).

It is easy to observe that for ϕ(t) = tq or ϕ(t) = t
1

1−p the reverse Jensen inequality

corresponds respectively to the RHq and the Ap conditions. Similarly for ϕ(t) = t
p
q

it becomes the Bq
p condition. This means that theorem 5.3 will allow us to limit our

proofs to the monotonic onedimensional weights to obtain the same results in the
general case. For more details we refer to the book [11] where Theorem 5.3 is proved
not only for the Lebesgue measure but in the general case of absolutely continuous
measures.

The following lemma describes the known fact that the power type functions
belong to Bq

p and their sharp integrability exponents coincide with the sharp inte-
grability exponents of the entire Bq

p class they belong to.

Lemma 5.4. If ν− and ν+ are the two roots of the equation ω(p, q, x) = B, then
the functions

u± = x
− 1

ν± , x ∈ [0, 1],

belong to Bq
p(B) with constant B = ω(p, q, ν±) and we have:

(1) u+ ∈ Bs
p iff s < ν+ and Bν+

p (u+) = +∞,
(2) u− ∈ Bq

r iff r > ν− and Bq
ν−
(u−) = +∞.

Proof of this property can be found in most of the cited papers for the correspond-
ing special case. For the Bq

p class we refer to the book [11] (proof of Theorem C.8,
pp. 181, 182).

Proof of RHI Theorem 1.1. Step 1. The first step is to prove the theorem for
monotonic functions. Let us start proving Statement (1). Let u ∈ Bq

p(B) be a non
increasing weight on [a, b], so that, for every x ∈ [a, b]

(
ˆ x

a

uq
)

1

q

≤ B

(
ˆ x

a

up
)

1

p

.

From the Bq
p condition we immediately have

(5.8)

ˆ b

a

(x− a)
q
s
−1

(
ˆ x

a

uq
)

dx ≤ Bq

ˆ b

a

(x− a)
q
s
−1

(
ˆ x

a

up
)

q
p

dx.
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If we set α = q
p
, β = s

p
, we have 1 < α < β if p > 0 and α < 0, β < 0 if p < 0. So

Lemma 5.1 works and we can apply the Hardy’s inequality to get

(5.9)

ˆ b

a

(x− a)
q
s
−1

(
ˆ x

a

up
)

q
p

dx ≤

(

s

s− p

)
q
p
ˆ b

a

(x− a)
q
s
−1uq dx

By combining (5.8) and (5.9) we easily get

(5.10)

ˆ b

a

(x− a)
q
s
−1

(
ˆ x

a

uq
)

dx ≤ Bq

(

s

s− p

)
q
p
ˆ b

a

(x− a)
q
s
−1uq dx

Thanks to Fubini’s Theorem we can rewrite the integral on the left in (5.10) as follows
ˆ b

a

(x− a)
q
s
−1

(
ˆ x

a

uq
)

dx =
s

s− q

[
ˆ b

a

(x− a)
q
s
−1uq dx− (b− a)

q
s

ˆ b

a

uq dx

]

which yields

(5.11)

[

1− Bq

(

s− q

s

)(

s

s− p

)
q
p

]

ˆ b

a

(x− a)
q
s
−1uq dx ≤ (b− a)

q
s

ˆ b

a

uq dx.

Let us now introduce the auxiliary function

χq(s) =

[

1−Bq

(

s− q

s

)(

s

s− p

)
q
p

]

which can be written in terms of ω as

χq(s) = 1−

[

B

(

s− q

s

)
1

q
(

s

s− p

)
1

p

]q

= 1−

[

B

ω(p, q, s)

]q

.

Clearly χq(q) = 1 and, as ω(p, q, s) strictly decreases for positive values of s, the
same does χq(s), which will be zero for a certain value q∗ > q given by the unique
positive solution ν+ to the equation B

ω(p,q,x)
= 1. So χq(q

∗) = 0 and

χq(s) > 0 ⇐⇒
B

ω(p, q, s)
< 1 ⇐⇒

(

s− p

s

)
1

p

> B

(

s− q

s

)
1

q

.

So we have that χq(s) > 0 in [q, q∗[ and from (5.11) we can obtain
ˆ b

a

(x− a)
q
s
−1uq dx ≤

(b− a)
q
s

χq(s)

ˆ b

a

uq dx.

Let us now apply lemma 5.2 to the non increasing function uq for λ = s/q > 1 which
gives

(
ˆ b

a

us dx

)

q
s

≤
q

s

ˆ b

a

(x− a)
q
s
−1uq dx.

From the last two inequalities we can derive
(
ˆ b

a

us dx

)

q
s

≤
q

s

(b− a)
q
s

χq(s)

ˆ b

a

uq dx

and, considering that q > 0, we get to

(
ˆ b

a

us dx

)

1

s

≤

[

q

s

1

χq(s)

]
1

q
(
ˆ b

a

uq dx

)

1

q

.
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Finally, setting Hs =
[

q
s

1
χq(s)

]
1

q

, by applying the Bq
p(B) condition we conclude that

(5.12)

(
ˆ b

a

us dx

)

1

s

≤ B Hs

(
ˆ b

a

up dx

)

1

p

.

This means that u belongs to Bs
p(BHs) for all values of s such that χ(s) > 0 or,

equivalently, for all s ∈ [q, q∗[ with q∗ = ν+(p, q, B) unique positive solution to the
equation χ(x) = 0, i.e.

(5.13) ω(p, q, q∗) = B

where the value q∗ = ν+ cannot be improved (see Lemma 5.4). This proves the
equation (1.12) and the first part of statement (1) in Theorem 1.1.

Nevertheless BHs is not yet the sharp constant. To find the best constant Cs ≤
B Hs such that

u ∈ Bq
p(B) =⇒ u ∈ Bs

p(Cs) ∀s ∈ [q, q∗[,

let us first observe that Hs = 1 for s = q and in (5.12) we obtain again the initial Bq
p

condition with constant B. So we have

(5.14) B ≤ Cs ≤ B Hs ∀s ∈ [q, q∗[ =⇒ lim
s→q

Cs = B.

If now we pick an s ∈ [q, q∗[ and apply again the self-improving property to the class
Bs
p(Cs) we obtain

u ∈ Bs
p(Cs) =⇒ u ∈ Bt

p(Ct) ∀t ∈ [s, s∗[

where again s∗ is given by the unique positive solution of the characteristic equation,
i.e.

(5.15) ω(p, s, s∗) = Cs.

Now (5.14) works and we have

(5.16) B = lim
s→q

Cs = lim
s→q

ω(p, s, s∗) = ω(p, q, s∗).

By recalling that the equation ω(p, q, x) = B admits a unique positive solution in x,
from (5.13) and (5.16) we get

s∗ = q∗

(as independently proved in Theorem 4.15). By replacing in (5.15) we have Cs =
ω(p, s, q∗) which completes the proof of Statement (1) for finite values of p.

To study the limit caseBq
−∞ when we ask p to tend to −∞, as limp→−∞

(

x
x−p

)− 1

p

=

1 we can define

(5.17) ω(−∞, q, x)
def
= lim

p→−∞
ω(p, q, x) = lim

p→−∞

(

x

x− p

)− 1

p
(

x

x− q

)
1

q

=

(

x

x− q

)
1

q

so the characteristic equation for Bq
−∞ becomes

ω(−∞, q, x) =

(

x

x− q

)
1

q

= B

which has the unique positive solution

(5.18) ν+ =
qBq

Bq − 1
.
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Note that in the case q = 1, where A1 = B1
−∞, the characteristic equation is

ω(−∞, 1, x) =
x

x− q
= B

and the solution (5.18) coincides with the known solution ν+ = B
B−1

.
Finally in the limit case p = 0 we can define

(5.19) ω(0, q, x)
def
= lim

p→0
ω(p, q, x) = lim

p→0

(

x

x− p

)− 1

p
(

x

x− q

)
1

q

= e−
1

x

(

x

x− q

)
1

q

so that the characteristic equation for the class Bq
0 is given by

ω(0, q, x) = e−
1

x

(

x

x− q

)
1

q

= B

which in the special case of A∞ = B1
0 becomes

ω(0, 1, x) = e−
1

x
x

x− 1
= B.

Statement (2) can be proved the same way and assuming u to be nondecreasing.
Following similar steps as in statement 1 we can obtain

(5.20)

[

1−B−p

(

r − p

r

)(

r

r − q

)
p
q

]

ˆ b

a

(x− a)
p
r
−1up dx ≤ (b− a)

p
r

ˆ b

a

up dx.

As in previous case we introduce an auxiliary function by setting

ψp(r) =

[

1− B−p

(

r − p

r

)(

r

r − q

)
p
q

]

that we write as

ψp(r) = 1−

[

1

B

(

r − p

r

)
1

p
(

r

r − q

)
1

q

]p

= 1−

[

ω(p, q, r)

B

]p

.

Clearly it is ψp(r) = 1 for r = p and, as ω(p, q, r) strictly increases for negative values
of r, the same does ψp(r), which will be zero for a certain value p∗ < p given by the

unique negative solution ν− to the equation ω(p,q,x)
B

= 1. So ψq(p
∗) = 0 and

ψp(r) > 0 ⇐⇒
ω(p, q, r)

B
< 1 ⇐⇒

(

r − p

r

)
1

p

> B

(

r − q

r

)
1

q

.

Hence, as ψp(r) > 0 in ]p∗, p], from (5.20) we can obtain
ˆ b

a

(x− a)
p
r
−1up dx ≤

(b− a)
p
r

ψp(r)

ˆ b

a

up dx.

Now, being in this case p < 0, lemma 5.2 works for the non increasing function up

and for λ = r/p > 1 we have
(
ˆ b

a

ur dx

)

p
r

≤
p

r

ˆ b

a

(x− a)
p
r
−1up dx

which again, from the last two inequalities, yields
(
ˆ b

a

ur dx

)

p
r

≤
p

r

(b− a)
p
r

ψp(r)

ˆ b

a

up dx.
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Taking into account that p < 0 we obtain
[

p

r

1

ψp(r)

]
1

p
(
ˆ b

a

up dx

)

1

p

≤

(
ˆ b

a

ur dx

)

1

r

.

With the position Kr =
[

p
r

1
ψp(r)

]
1

p

, by applying the Bq
p(B) condition we conclude

(5.21)

(
ˆ b

a

uq dx

)

1

q

≤
B

Kr

(
ˆ b

a

ur dx

)

1

r

.

This means that u belongs to Bq
r(

B
Kr

) for all values of r such that ψp(r) > 0, or

equivalently, for all r ∈]p∗, p] where p∗ = ν−(p, q, B) is the unique negative solution
of the equation ψp(x) = 0, i.e.

(5.22) ω(p, q, p∗) = B

where the value p∗ = ν− cannot be improved. This proves the first part of state-
ment (2).

The best constant Dr ≤ B
Kr

in (5.21) can be obtain exactly the same way of

statement (1): by applying the self-improving property in Bq
r(Dr), with r in the

admissible interval ]p∗, p], we can derive the equality r∗ = p∗ and, thanks to the
monotonicity of ω, we can get to Dr = ω(r, q, p∗), which completes the proof of
Statement (2) for finite values of q.

When we ask q to tend to +∞ in the limit case B+∞
p , as limq→+∞

(

x
x−q

)
1

q

= 1

we can define

ω(p,+∞, x)
def
= lim

q→+∞
ω(p, q, x) = lim

q→+∞

(

x

x− p

)− 1

p
(

x

x− q

)
1

q

=

(

x

x− p

)− 1

p

so the characteristic equation for the class B+∞
p becomes

ω(p,+∞, x) =

(

x

x− p

)− 1

p

= B

which has the unique negative solution

ν− =
p

1− Bp
.

When p = 1 this case corresponds to the class RH∞ with the characteristic equation
given by

ω(1,+∞, x) =
x− 1

x
= B

and the known solution

ν− =
1

1− B
.

Finally, for the limit case q = 0, we can define

ω(p, 0, x)
def
= lim

q→0
ω(p, q, x) = lim

q→+∞

(

x

x− p

)− 1

p
(

x

x− q

)
1

q

=

(

x

x− p

)− 1

p

e
1

x

so that the characteristic equation for the class B0
p is given by

ω(p, 0, x) =

(

x

x− p

)− 1

p

e
1

x = B
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which completes the proof of Statement (2) also for the limit cases.

Step 2. Removing the monotonicity assumptions. Finally, to remove the mono-
tonicity assumptions we recall the properties of equimeasurable rearrangements as
stated in Theorem 5.3. For sake of simplicity we do not indicate the steps to apply
this standard argument that has been used the first time by Korenovskii in [10] and
can be found in details in many papers (Korenovskii [11], Popoli [18], Malaksiano
[13] and [14], and others).

The proof is now completed. �
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