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Abstract. We study positive weight functions ω(z) on the unit disk D such that
ˆ

D

|f(z)|pω(z) dA(z) < ∞

if and only if
ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z) < ∞,

where f is analytic on D and dA is area measure on D. We obtain some conditions on ω that

imply the equivalence above, and we apply our conditions to several important classes of weights

that have appeared in the literature before.

1. Introduction

Let D be the open unit disk in the complex plane C and let H(D) denote the
space of all analytic functions on D. For p > 0 and α > −1 we consider the Bergman
spaces

Ap
α = Lp(D, dAα) ∩H(D),

where

dAα(z) = (α + 1)(1− |z|2)α dA(z).

Here dA is area measure on C normalized so that A(D) = 1.
It is well known that a function f ∈ H(D) belongs to Ap

α if and only if the
function (1− |z|2)f ′(z) belongs to Lp(D, dAα). Moreover, we have

ˆ

D

|f(z)− f(0)|p dAα(z) ∼

ˆ

D

(1− |z|2)p|f ′(z)|p dAα(z)

for f ∈ H(D). See [6, 14]. It is then natural to ask for conditions on finite positive
Borel measures µ on D such that

ˆ

D

|f(z)− f(0)|p dµ(z) ∼

ˆ

D

(1− |z|2)p|f ′(z)|p dµ(z)
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for all f ∈ H(D). Such estimates are usually called Hardy–Littlewood theorems; see
[4, 5]. The problem above was studied in [1, 10] when dµ(z) = ω(z) dA(z) and ω(z)
is a positive radial function.

It is easy to see that the Hardy–Littlewood theorem above is false if no restriction
is placed on µ. For example, if f(z) = log(1− z) and

µ =

∞
∑

k=1

ckδak ,

where δa means the unit point-mass at the point a, ak = k/(k + 1), and {ck} is any
sequence of positive numbers satisfying

∞
∑

k=1

ck < ∞,
∞
∑

k=1

ck(log(k + 1))p = ∞,

then we have
ˆ

D

|f(z)− f(0)|p dµ(z) =
∞
∑

k=1

ck|f(ak)|
p =

∞
∑

k=1

ck(log(k + 1))p = ∞.

On the other hand, we always have

(1− |z|2)|f ′(z)| = (1− |z|2)/|1− z| ≤ 2, z ∈ D.

Thus
ˆ

D

(1− |z|2)p|f ′(z)|p dµ(z) ≤ 2pµ(D) = 2p
∞
∑

k=1

ck < ∞.

Therefore, for this particular choice of µ, there is no positive constant C such that
ˆ

D

|f(z)− f(0)|p dµ(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|p dµ(z)

for all f ∈ H(D).
We will focus on finite positive Borel measures on D that are absolutely contin-

uous with respect to area measure. More specifically, we consider the case when

dµ(z) = ω(z) dA(z),

where ω is a Lebesgue integrable, nonnegative weight function on D. Once again, as
opposed to the results in [1, 10], our weight functions here are not necessarily radial.

Let ρ(z, w) = |z − w|/|1− zw| denote the pseudo-hyperbolic distance between z
and w in D. Our main results are the following.

Theorem A. If there exist constants r ∈ (0, 1) and C > 0 such that

C−1 ≤
ω(z1)

ω(z2)
≤ C

for all z1 and z2 in D with ρ(z1, z2) < r, then there exists another constant C > 0
(independent of f and p) such that

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z) ≤ C

ˆ

D

|f(z)− f(0)|pω(z) dA(z)

for all f ∈ H(D) and p > 0.
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Theorem B. Suppose that there are constants s0 ∈ [−1, 0) and t0 ≥ 0 with the
following property: for any s > s0 and t > t0 there exists a positive constant C such
that

ˆ

D

ω(u)(1− |u|2)s dA(u)

|1− zu|2+s+t
≤

Cω(z)

(1− |z|2)t

for all z ∈ D. Then for any p > 0 there exists another positive constant C such that
ˆ

D

|f(z)− f(0)|pω(z) dA(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z)

for all f ∈ H(D).

Theorem C. Suppose σ > 0 and µ is a positive Borel measure such that
ˆ

D

(1− |z|2)σ dµ(z) < ∞.

Let

ωσ(z) =

ˆ

D

(1− |ϕz(w)|
2)σ dµ(w),

where ϕz(w) = (z − w)/(1− zw). Then

(a) ωσ satisfies the condition in Theorem A.
(b) ωσ satisfies the condition in Theorem B if and only if σ < 2.
(c) For σ ≥ 2 and p > 0 we can find a measure µ such that the induced weight

function ωσ has the following property: there is NO positive constant C
satisfying
ˆ

D

|f(z)− f(0)|pωσ(z) dA(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|pωσ(z) dA(z)

for all f ∈ H(D).

Thus our condition in Theorem B is fine enough to detect the cut-off point σ = 2
for the weights ωσ. Note that the weight functions ωσ(z) were used in [3, 2] to study
Dirichlet type spaces and their corresponding Möbius invariant counterparts.

We will also apply the conditions in Theorems A and B to several other classes
of weight functions, including a class of positive harmonic weights and a class of
positive subharmonic weights.

2. Raising the order of derivative

Recall that, for z and w in D,

ρ(z, w) =

∣

∣

∣

∣

z − w

1− zw

∣

∣

∣

∣

is the pseudo-hyperbolic metric between z and w. Thus

D(a, r) = {z ∈ D : ρ(z, a) < r}

is the pseudo-hyperbolic disk centered at a with radius r. It is well known that
D(a, r) is actually a Euclidean disk whose Euclidean center and radius are given by

1− r2

1− r2|a|2
a,

1− |a|2

1− r2|a|2
r.

See any of the books [5, 6, 14].
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Lemma 1. For any r ∈ (0, 1) there exists a positive constant C = C(r) such
that

C−1 ≤
|1− zu|

|1− wu|
≤ C

for all z and w in D with ρ(z, w) < r and all u ∈ D.

Proof. Fix two points z and w with ρ(z, w) < r and let a = ϕz(w). Then |a| < r.
For any u ∈ D we have

1− zu

1− wu
=

1− zu

1− ϕz(a)u
= (1− zu)/

[

1−
z − a

1− za
u

]

=
(1− zu)(1− za)

1− zu − a(z − u)
=

1− za

1− aϕz(u)
.

Since |a| < r, the numerator and the denominator here are both bounded above and
bounded below, which proves the desired estimates. �

Theorem 2. Suppose p > 0 and ω is a non-negative function in L1(D, dA). If
there exist two constants r ∈ (0, 1) and C > 0 such that

(1) C−1ω(z2) ≤ ω(z1) ≤ Cω(z2)

for all z1 and z2 satisfying ρ(z1, z2) < r, then there exists another positive constant
C such that

(2)

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z) ≤ C

ˆ

D

|f(z)− f(0)|pω(z) dA(z)

for all f ∈ H(D).

Proof. Let f ∈ H(D). It follows from the subharmonicity of |f |p that there exists
a positive constant C1 such that

|f(ζ)|p ≤ C1

ˆ

|z|<r

|f(z)|p dA(z)

for all ζ with |ζ | ≤ r/2. By Cauchy’s formula,

f ′(0) =
1

2πi

ˆ

|ζ|=r/2

f(ζ) dζ

ζ2
.

It follows that

|f ′(0)| ≤
2

r
max
|ζ|=r/2

|f(ζ)|.

Combining this with our earlier estimate for |f(ζ)|, we obtain another positive con-
stant C2 such that

|f ′(0)|p ≤ C2

ˆ

|u|<r

|f(u)|p dA(u).

Replace f by f ◦ ϕz, where

ϕz(u) =
z − u

1− zu
,

and make an obvious change of variables. We obtain

(1− |z|2)p|f ′(z)|p ≤ C2

ˆ

|u|<r

|f ◦ ϕz(u)|
p dA(u)

= C2(1− |z|2)2
ˆ

D(z,r)

|f(u)|p
dA(u)

|1− zu|4
.
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By (1), there exists another positive constant C3 such that

(1− |z|2)p|f ′(z)|pω(z) ≤ C3(1− |z|2)2
ˆ

D(z,r)

|f(u)|pω(u) dA(u)

|1− zu|4

for all z ∈ D. It follows from this and Fubini’s theorem that

I =:

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z)

≤ C3

ˆ

D

(1− |z|2)2 dA(z)

ˆ

D(z,r)

|f(u)|pω(u) dA(u)

|1− zu|4

= C3

ˆ

D

(1− |z|2)2 dA(z)

ˆ

D

|f(u)|pχD(z,r)(u)ω(u) dA(u)

|1− zu|4

= C3

ˆ

D

|f(u)|pω(u) dA(u)

ˆ

D

(1− |z|2)2χD(z,r)(u) dA(z)

|1− zu|4
.

It is clear that, for characteristic functions, we have

χD(z,r)(u) = χD(u,r)(z).

Thus

I ≤ C3

ˆ

D

|f(u)|pω(u) dA(u)

ˆ

D(u,r)

(1− |z|2)2 dA(z)

|1− zu|4
.

Since the area of D(u, r) is comparable to (1− |u|2)2 (for any fixed r ∈ (0, 1)) and

(1− |z|2)2 ∼ |1− zu|2 ∼ (1− |u|2)2

for z ∈ D(u, r) (see Lemma 1), we can find another positive constant C4 such that

I ≤ C4

ˆ

D

|f(u)|pω(u) dA(u).

Replacing f by f − f(0), we obtain (2). �

Corollary 3. Suppose p > 0, ω is a non-negative function in L1(D, dA), f ∈
H(D), and n is any positive integer. If ω satisfies condition (1), then there exists a
positive constant C such that

ˆ

D

(1− |z|2)pn|f (n)(z)|pω(z) dA(z) ≤ C

ˆ

D

|f(z)|pω(z) dA(z)

for all f ∈ H(D).

Proof. It follows from Lemma 1 again that, for any t ≥ 0, the function (1 −
|z|2)tω(z) satisfies condition (1) whenever ω does. The desired result then follows
from repeatedly applying Theorem 2 above. �

3. Lowering the order of derivative

In this section we consider the problem of lowering the order of derivative. The
problem is much more complex than the corresponding problem for raising the order
of derivative.

Lemma 4. Suppose s > −1, t is real, and

I(z) =

ˆ

D

(1− |w|2)s dA(w)

|1− zw|2+s+t
, z ∈ D.

(a) If t < 0, then I(z) ∼ 1 for z ∈ D.
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(b) If t = 0, then I(z) ∼ log[2/(1− |z|2)] for z ∈ D.
(c) If t > 0, then I(z) ∼ 1/(1− |z|2)t for z ∈ D.

Proof. This is well known. See [6, 14] for example. �

The following embedding theorem will be critical for us when we deal with Lp

integrals in the case 0 < p ≤ 1.

Lemma 5. If 0 < p ≤ 1 and α > −1, then Ap
α ⊂ A1

β, where

β =
2 + α

p
− 2,

and the inclusion mapping from Ap
α to A1

β is a bounded linear operator.

Proof. See [6, 14] for example. �

Our next result uses a condition that has appeared in the literature several times
before. See Chapter 3 of [12] for example.

Theorem 6. Suppose p > 0, ω ∈ L1(D, dA) is non-negative, and there exist
t0 ≥ 0 and s0 ∈ [−1, 0) with the following property: for any t > t0 and s > s0 there
is a positive constant C = C(t, s) such that

(3)

ˆ

D

ω(u)(1− |u|2)s dA(u)

|1− zu|2+s+t
≤

Cω(z)

(1− |z|2)t

for all z ∈ D. Then there exists another positive constant C such that

(4)

ˆ

D

|f(z)− f(0)|pω(z) dA(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z)

for all f ∈ H(D).

Proof. It follows from condition (3) that, for any t > t0, we can find a positive
constant c such that ω(z) ≥ c(1 − |z|2)t for all z ∈ D. This implies that if the
right-hand side of (4) is finite (otherwise there is nothing to prove) then f(z) and
f ′(z) have polynomial growth near the unit circle, that is, their growth rate does not
exceed (1− |z|2)−k for some positive integer k.

Fix some sufficiently large t (whose exact range will be specified later). Since
f ′(z) has polynomial growth near the boundary (see previous paragraph), we have

f(z)− f(0) =

ˆ

D

f ′(u)(1− |u|2)t dA(u)

u(1− zu)1+t
, z ∈ D.

This is a well-known reproducing formula and can be found in [6, 14] for example.
By [14, Lemma 4.26], there exists a positive constant C1 such that

|f(z)− f(0)| ≤ C1

ˆ

D

|f ′(u)|(1− |u|2)t dA(u)

|1− zu|1+t

for all z ∈ D.
We first consider the case p = 1 and assume that t is large enough so that

t − 1 > t0. Then by Fubini’s theorem and condition (3) with s = 0, there exists
another positive constant C2 > 0 such that

I1 =:

ˆ

D

|f(z)− f(0)|ω(z) dA(z)

≤ C1

ˆ

D

ω(z) dA(z)

ˆ

D

|f ′(u)|(1− |u|2)t dA(u)

|1− zu|1+t
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= C1

ˆ

D

|f ′(u)|(1− |u|2)t dA(u)

ˆ

D

ω(z) dA(z)

|1− zu|2+(t−1)

≤ C2

ˆ

D

(1− |u|2)|f ′(u)|ω(u) dA(u).

This proves the desired result for p = 1.
Next we assume that p > 1 with 1/p + 1/q = 1. We also assume that t is large

enough so that p(t− 1) > t0. Write 1 + t = σ1 + σ2, where

(5)
2

q
< σ2 <

2

q
−

s0
p
.

We have

|f(z)− f(0)| ≤ C1

ˆ

D

(1− |u|2)t|f ′(u)| dA(u)

|1− zu|σ1 |1− zu|σ2

≤ C1

[
ˆ

D

(1− |u|2)pt|f ′(u)|p dA(u)

|1− zu|pσ1

]
1

p
[
ˆ

D

dA(u)

|1− zu|qσ2

]
1

q

.

By (5), we have qσ2 > 2. It follows from Lemma 4 that there exists another positive
constant C2 such that

|f(z)− f(0)| ≤
C2

(1− |z|2)(qσ2−2)/q

[
ˆ

D

(1− |u|2)pt|f ′(u)|p dA(u)

|1− zu|pσ1

]
1

p

=
C2

(1− |z|2)σ2−2+(2/p)

[
ˆ

D

(1− |u|2)pt|f ′(u)|p dA(u)

|1− zu|pσ1

]
1

p

.

Therefore,

|f(z)− f(0)|p ≤ Cp
2 (1− |z|2)2p−pσ2−2

ˆ

D

(1− |u|2)pt|f ′(u)|p dA(u)

|1− zu|pσ1
.

It follows from this and Fubini’s theorem that the integral
ˆ

D

|f(z)− f(0)|pω(z) dA(z)

does not exceed

Cp
2

ˆ

D

(1− |u|2)pt|f ′(u)|p dA(u)

ˆ

D

ω(z)(1− |z|2)2p−pσ2−2 dA(z)

|1− zu|pσ1
.

By (5), we have s0 < 2p− pσ2 − 2 < 0. Since

pσ1 = 2 + (2p− pσ2 − 2) + p(t− 1)

and p(t − 1) > t0, it follows from (3) that there exists another positive constant C3

such that
ˆ

D

|f(z)− f(0)|pω(z) dA(z) ≤ C3

ˆ

D

(1− |u|2)pt|f ′(u)|pω(u) dA(u)

(1− |u|2)p(t−1)

= C3

ˆ

D

(1− |u|2)p|f ′(u)|pω(u) dA(u).

This proves the case 1 < p < ∞.
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Finally, we assume that 0 < p < 1. In this case, we also assume that t is large
enough so that p(t+ 1) > 2 > 1− p. We can then write

t =
2 + σ

p
− 2, σ > −1.

By Lemma 5, there exists another positive constant C4 such that

|f(z)− f(0)| ≤ C1

ˆ

D

(1− |u|2)t|f ′(u)| dA(u)

|1− zu|1+t

= C1

ˆ

D

∣

∣

∣

∣

f ′(u)

(1− zu)1+t

∣

∣

∣

∣

(1− |u|2)
2+σ
p

−2 dA(u)

≤ C4

[
ˆ

D

∣

∣

∣

∣

f ′(u)

(1− zu)1+t

∣

∣

∣

∣

p

(1− |u|2)σ dA(u)

]
1

p

.

Therefore,

|f(z)− f(0)|p ≤ Cp
4

ˆ

D

(1− |u|2)σ|f ′(u)|p dA(u)

|1− zu|p(1+t)
.

By Fubini’s theorem and (3) with s = 0, we obtain another positive constant C5 such
that

Ip =:

ˆ

D

|f(z)− f(0)|pω(z) dA(z)

≤ Cp
4

ˆ

D

(1− |u|2)σ|f ′(u)|p dA(u)

ˆ

D

ω(z) dA(z)

|1− zu|p(1+t)

≤ C5

ˆ

D

(1− |u|2)σ|f ′(u)|pω(u) dA(u)

(1− |u|2)p(1+t)−2

= C5

ˆ

D

(1− |u|2)p|f ′(u)|pω(u) dA(u).

This completes the proof of the theorem. �

Corollary 7. Suppose p > 0, ω ∈ L1(D, dA) is non-negative, f ∈ H(D), and n
is a positive integer. If ω satisfies condition (3), then

ˆ

D

(1− |z|2)np|f (n)(z)|pω(z) dA(z) < ∞

implies that
ˆ

D

|f(z)|pω(z) dA(z) < ∞.

Proof. If ω satisfies condition (3), then for any positive integer k the weight
function

ωk(z) = (1− |z|2)kω(z)

also satisfies condition (3). In fact, if t0 is the number in (3) for the weight ω and if
t > t0 + k, then for any s > −1 we have

ˆ

D

ωk(u)(1− |u|2)s dA(u)

|1− zu|2+s+t
=

ˆ

D

ω(u)(1− |u|2)s+k dA(u)

|1− zu|2+(s+k)+(t−k)

≤
Cω(z)

(1− |z|2)t−k
=

Cωk(z)

(1− |z|2)t
.
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This shows that ωk satisfies condition (3) as well. The desired result then follows
from repeatedly applying Theorem 6. �

Combining Corollaries 3 and 7, we obtain the following Hardy–Littlewood theo-
rem as the first main result of the paper.

Theorem 8. Suppose p > 0, ω is a non-negative function in L1(D, dA), f ∈
H(D), and n is a positive integer. If ω satisfies both (1) and (3), then

ˆ

D

|f(z)|pω(z) dA(z) < ∞

if and only if
ˆ

D

(1− |z|2)pn|f (n)(z)|pω(z) dA(z) < ∞.

Moreover, the quantity

ˆ

D

∣

∣

∣

∣

∣

f(z)−
n−1
∑

k=0

f (k)(0)

k!
zk

∣

∣

∣

∣

∣

p

ω(z) dA(z)

is comparable to the quantity
ˆ

D

(1− |z|2)pn|f (n)(z)|p ω(z) dA(z).

Alternatively, the quantities
ˆ

D

|f(z)|pω(z) dA(z)

and
n−1
∑

k=0

|f (k)(0)|+

ˆ

D

(1− |z|2)pn|f (n)(z)|pω(z) dA(z)

are comparable.

In view of Theorem 8, it is now natural to ask which weight functions ω satisfy
conditions (1) and (3). We will consider several classes of weight functions and
determine exactly when they satisfy conditions (1) and (3). But first, for any α > −1,
the weight function

ω(z) = (1− |z|2)α

clearly satisfies both (1) and (3). This follows from Lemmas 1 and 4.

4. Examples of weights

For any σ > 0 and any positive Borel measure µ on D satisfying
ˆ

D

(1− |w|2)σ dµ(w) < ∞,

we consider the weight function

ωσ(z) =

ˆ

D

(1− |ϕz(w)|
2)σ dµ(w).

These weights were considered in [3, 2] and were used there to study certain weighted
Dirichlet spaces and the associated Möbius invariant function spaces.
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We will see that the properties of these weights depend on whether σ < 2 or
σ ≥ 2. Note that ωσ is superharmonic when σ ≤ 1. When σ > 1, the function ωσ is
usually neither superharmonic nor subharmonic. This can be seen from the formula

∂2ωσ

∂z∂z
= σ

ˆ

D

(1− |ϕw(z)|
2)σ−2(σ|ϕw(z)|

2 − 1)|ϕ′
w(z)|

2 dµ(w).

Our analysis depends on the following estimate which has become more and more
useful in recent years.

Lemma 9. Suppose s > −1, t > 0, r > 0, and t− s > 2 > r − s. Then
ˆ

D

(1− |z|2)s dA(z)

|1− zw|t|1− za|r
∼

1

(1− |w|2)t−s−2|1− wa|r

for w and a in D.

Proof. See [7, 9, 12]. �

Proposition 10. The weight function ωσ satisfies condition (1) for all σ > 0,
and it satisfies condition (3) when 0 < σ < 2.

Proof. Condition (1) follows from Lemma 1.
To verify condition (3), we fix some σ ∈ (0, 2). We take t0 = σ and fix some

s0 ∈ (−1, 0) such that σ < 2 + s0. For t > t0 and s > s0, we use Fubini’s theorem to
obtain

Iσ =:

ˆ

D

ωσ(z)(1 − |z|2)s dA(z)

|1− az|2+s+t

=

ˆ

D

(1− |z|2)s+σ dA(z)

|1− az|2+s+t

ˆ

D

(1− |w|2)σ dµ(w)

|1− zw|2σ

=

ˆ

D

(1− |w|2)σ dµ(w)

ˆ

D

(1− |z|2)s+σ dA(z)

|1− az|2+s+t|1− zw|2σ
.

It follows from Lemma 9 and the assumptions t > σ and s > s0 that there exists a
positive constant C such that

Iσ ≤ C

ˆ

D

(1− |w|2)σ dµ(w)

(1− |a|2)t−σ|1− aw|2σ

=
C

(1− |a|2)t

ˆ

D

(1− |w|2)σ(1− |a|2)σ

|1− aw|2σ
dµ(w)

=
Cωσ(a)

(1− |a|2)t
.

This completes the proof of the proposition. �

We are going to show that the assumption σ < 2 in the proposition above is
best possible. In other words, when σ ≥ 2, we can construct a counterexample of
µ such that the induced weight function ωσ does not satisfy condition (3). Thus
our condition (3) is sensitive enough to detect the changing behaviour of ωσ at the
critical point σ = 2.

Lemma 11. Suppose p > 0 and r ∈ (0, 1). There exists a positive constant C
such that

|f(z)|p ≤
C

(1− |z|2)2

ˆ

D(z,r)

|f(w)|p dA(w)

for all f ∈ H(D) and z ∈ D.
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Proof. This is well known. See [6, 14] for example. �

Proposition 12. If p > 0 and σ ≥ 2, then there exists a positive Borel measure
µ on D such that its induced weight function ωσ belongs to L1(D, dA) but there is
no positive constant C with

(6)

ˆ

D

|f(z)− f(0)|pωσ(z) dA(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|pωσ(z) dA(z)

for all f ∈ H(D). Consequently, ωσ does not satisfy condition (3).

Proof. The definition of ωσ(z) only requires
ˆ

D

(1− |z|2)σ dµ(z) < ∞.

When this condition is satisfied and σ > 2, we deduce from Lemma 4 that
ˆ

D

ωσ(z) dA(z) =

ˆ

D

(1− |z|2)σ dA(z)

ˆ

D

(1− |w|2)σ dµ(w)

|1− zw|2σ

=

ˆ

D

(1− |w|2)σ dµ(w)

ˆ

D

(1− |z|2)σ dA(z)

|1− zw|2σ

∼

ˆ

D

(1− |w|2)σ dµ(w)

(1− |w|2)2σ−σ−2

=

ˆ

D

(1− |w|2)2 dµ(w).

Therefore, for σ > 2 and for any positive Borel measure µ with
ˆ

D

(1− |w|2)2 dµ(w) < ∞,

the weight function ωσ is not only well defined but also belongs to L1(D, dA).
For f ∈ H(D) let us write

I(f) =

ˆ

D

|f(z)|pωσ(z) dA(z)

and

J(f) =

ˆ

D

(1− |z|2)p|f ′(z)|pωσ(z) dA(z).

Fix some r ∈ (0, 1) and use Fubini’s theorem. We obtain

I(f) =

ˆ

D

|f(z)|p dA(z)

ˆ

D

(1− |ϕz(w)|
2)σ dµ(w)

=

ˆ

D

dµ(w)

ˆ

D

|f(z)|p(1− |ϕz(w)|
2)σ dA(z)

≥

ˆ

D

dµ(w)

ˆ

D(w,r)

|f(z)|p(1− |ϕz(w)|
2)σ dA(z)

≥ (1− r2)σ
ˆ

D

dµ(w)

ˆ

D(w,r)

|f(z)|p dA(z).

It follows from Lemma 11 that there exists a positive constant c = c(r) > 0 such that

I(f) ≥ c

ˆ

D

(1− |w|2)2|f(w)|p dµ(w).
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Thus I(f − f(0)) ≤ CJ(f) would imply that there is another positive constant C
such that

(7)

ˆ

D

|f(z)− f(0)|p(1− |z|2)2 dµ(z) ≤ C

ˆ

D

(1− |z|2)p|f ′(z)|pωσ(z) dA(z)

for all f ∈ H(D).
Now consider the measure

µ =

∞
∑

k=1

ckδak , ak = k/(k + 1),

where the positive sequence {ck} is chosen to satisfy

(8)
∞
∑

k=1

ck
(k + 1)2

< ∞,
∞
∑

k=1

ck
(k + 1)2

(log(k + 1))p = ∞.

For this choice of µ and the function f(z) = log(1 − z), the left-hand side of (7)
dominates the sum

∞
∑

k=1

ck
(k + 1)2

(log(k + 1))p ,

while the right-hand side of (7) is dominated by
∞
∑

k=1

ck
(k + 1)2

.

Thus the conditions in (8) show that (7) is not possible, which proves the desired
result when σ > 2.

When σ = 2, the definition of ωσ requires that
ˆ

D

(1− |z|2)2 dµ(z) < ∞,

and an examination of an earlier argument shows that the condition ωσ ∈ L1(D, dA)
is equivalent to

(9)

ˆ

D

(1− |z|2)2 log
2

1− |z|2
dµ(z) < ∞.

Therefore, in this case, if µ satisfies condition (9), then the induced weight function
ωσ is well defined and belongs to L1(D, dA). In particular, if we define

µ =

∞
∑

k=1

ckδak , ak = k/(k + 1),

where the positive sequence {ck} is chosen to satisfy
∞
∑

k=1

ck
(k + 1)2

log(k + 1) < ∞,
∞
∑

k=1

ck
(k + 1)2

(log(k + 1))p = ∞, p > 1,

then the induced weight function ωσ is well defined and belongs to L1(D, dA), but
condition (9) shows that the inequality in (7) is not possible for p > 1. Thus we have
shown that condition (6) is not possible for p > 1.

Finally, we observe that if condition (6) holds for some p, then replacing f by f 2

gives
ˆ

D

|f(z)|2pωσ(z) dA(z) ≤ C

ˆ

D

|f(z)|p|f ′(z)|p(1− |z|2)pωσ(z) dA(z)
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for all f ∈ H(D) with f(0) = 0, where C is 2p times the original constant. It follows
from the Cauchy-Schwarz inequality that

[
ˆ

D

|f(z)|2pωσ(z) dA(z)

]2

is less than or equal to C2 times
ˆ

D

|f(z)|2pωσ(z) dA(z)

ˆ

D

|f ′(z)|2p(1− |z|2)2pωσ(z) dA(z).

Cancel the common factor from both sides. We obtain
ˆ

D

|f(z)|2pωσ(z) dA(z) ≤ C2

ˆ

D

|f ′(z)|2p(1− |z|2)2pωσ(z) dA(z)

for all f ∈ H(D) with f(0) = 0. For general f , we replace f in the inequality above
by f − f(0). Then

ˆ

D

|f(z)− f(0)|2pωσ(z) dA(z) ≤ C2

ˆ

D

|f ′(z)|2p(1− |z|2)2pωσ(z) dA(z)

for all f ∈ H(D). Repeating this argument k times, we obtain
ˆ

D

|f(z)− f(0)|2
kpωσ(z) dA(z) ≤ Ck

ˆ

D

|f ′(z)|2
kp(1− |z|2)2

kpωσ(z) dA(z)

for all f ∈ H(D). When k is large enough, we will have 2kp > 1. This together with
what was already proved in the previous paragraph shows that, for any p > 0, there
is a positive Borel measure µ such that the inequality in (6) does not hold for all
f ∈ H(D). This completes the proof of the proposition. �

Next we consider a class of positive harmonic weight functions. Thus for a finite
positive Borel measure ν on the unit circle T we define

ων(z) =

ˆ

T

1− |z|2

|ζ − z|2
dν(ζ).

Motivated by his study of cyclic analytic two-isometries, Richer [11] introduced a
Dirichlet type space Dν induced by the weight function ων . More specifically, a func-
tion f ∈ H(D) belongs to Dν if f ′ ∈ L2(D, ων dA). The Dν spaces have attracted
a lot of attention in recent years. In particular, the higher order derivative charac-
terization of Dν was proved in [8] using Schur’s theorem. As a consequence of our
Theorem 8 and the following proposition, we will obtain an alternative proof of the
higher order derivative characterization of Dν without using Schur’s theorem. Note
that the method based on Schur’s theorem is valid for Lp(D, ων dA) ∩ H(D) only
when p > 1, while our approach is valid for all p > 0.

Proposition 13. Let ν be a finite positive Borel measure on the unit circle T.
Then ων satisfies both conditions (1) and (3).

Proof. By [8, Lemma 2.2], if s > −1 and t > s + 3, then there exists a positive
constant C such that

ˆ

D

(1− |z|2)s

|1− uz|t
ων(z) dA(z) ≤

C ων(u)

(1− |u|2)t−s−2

for all u ∈ D. Thus ων satisfies condition (3). It follows from Lemma 1 that ων also
satisfies condition (1).
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Recall that the pseudo-hyperbolic disk is actually a Euclidean disk and ων is a
positive harmonic function on D. Thus the classical Harnack inequality also yields
condition (1) for ων . �

We can also consider the following weights which are generalizations of positive
harmonic functions,

ωσ(z) =

ˆ

T

(

1− |z|2

|1− ze−it|2

)σ

dν(t),

where ν is a finite positive Borel measure on the unit circle T and σ > 0. If σ ≥ 1,
then ωσ is a subharmonic function. It follows easily from Fubini’s theorem and
Lemma 4 that the weight function ωσ belongs to L1(D, dA) if and only if σ < 2.

Proposition 14. Suppose 0 < σ < 2. Then ωσ satisfies both conditions (1) and
(3).

Proof. Once again, it follows from Lemma 1 that each ωσ satisfies condition (1).
To verify condition (3) for ωσ, let

t0 = σ, s0 = max(−1, σ − 2).

If s > s0 and t > t0, then we use Fubini’s theorem and Lemma 9 to find a positive
constant C such that

ˆ

D

ωσ(u)(1− |u|2)s dA(u)

|1− zu|2+s+t
=

ˆ

D

(1− |u|2)s+σ dA(u)

|1− zu|2+s+t

ˆ

T

dν(t)

|1− ueit|2σ

=

ˆ

T

dν(t)

ˆ

D

(1− |u|2)s+σ dA(u)

|1− zu|2+s+t|1− ue−it|2σ

≤ C

ˆ

T

dν(t)

(1− |z|2)t−σ|1− ze−it|2σ

=
C ωσ(z)

(1− |z|2)t

for all z ∈ D. This proves the desired result. �

5. Further remarks

The results of the previous section show that the general problem of character-
izing weight functions ω(z) such that

ˆ

D

|f(z)− f(0)|pω(z) dA(z) ∼

ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z)

is highly non-trivial. It is still an open problem.
In the introduction we illustrated with an example that there are finite positive

Borel measures µ on D such that
ˆ

D

|f(z)− f(0)|p dµ(z) ∼

ˆ

D

(1− |z|2)p|f ′(z)|p dµ(z)

is false. It is also easy to produce counterexamples in the form of absolutely contin-
uous measures. In fact, recall that the multiplier algebra of the Bergman space Ap

is H∞, and H∞ is strictly contained in the Bloch space. Thus there exist a function
f in the Bloch space and a function g ∈ Ap such that fg 6∈ Ap. Let ω(z) = |g(z)|p.
Then we have

ˆ

D

|f(z)|pω(z) dA(z) = ∞,
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while
ˆ

D

(1− |z|2)p|f ′(z)|pω(z) dA(z) < ∞.

Thus the Hardy–Littlewood theorem we are seeking is not valid for ω(z) = |g(z)|p.
The weights we considered in the previous section have all appeared in the liter-

ature before. The interested reader can also look at weight functions of the following
form,

ω(z) = (1− |z|2)a
ˆ

D

(1− |w|2)b dµ(w)

|1− zw|c
,

where a, b, and c are real parameters. Similarly, we can also consider weight functions
of the form

ω(z) =

ˆ

T

(1− |z|2)a dν(t)

|1− ze−it|b
,

where a and b are real parameters.
Finally, we mention that all results obtained in the paper can easily be generalized

to the open unit ball. The preliminary estimates necessary for the high dimensional
results can be found in [13, 7]. We leave the routine details to the interested reader.
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