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Abstract. Kaufman and Tsujii proved that the Fourier transform of self-similar measures

has a power decay outside of a sparse set of frequencies. We present a version of this result for

homogeneous self-similar measures, with quantitative estimates, and derive several applications:

(1) non-linear smooth images of homogeneous self-similar measures have a power Fourier decay,

(2) convolving with a homogeneous self-similar measure increases correlation dimension by a quan-

titative amount, (3) the dimension and Frostman exponent of (biased) Bernoulli convolutions tend

to 1 as the contraction ratio tends to 1, at an explicit quantitative rate.

1. Introduction and statement of results

Given a finite Borel measure µ on R, let

µ̂(ξ) =

ˆ

e−2πiξx dµ(x)

be its Fourier transform. The decay properties of µ̂(ξ) as |ξ| → ∞ give crucial
“arithmetic” information about µ. Indeed, define the Fourier dimension of µ as

(1.1) dimF(µ) = 2 sup{σ ≥ 0: |µ̂(ξ)| ≤ Cσ|ξ|
−σ for some Cσ > 0 and all ξ 6= 0}.

If dimF(µ) > 0, then µ-almost all points are normal to all integer bases (in fact,
for this some appropriate logarithmic decay is enough; this follows from [2]). As
another example, if dimF(µ) > 0 and additionally µ satisfies a Frostman condition
µ(B(x, r)) ≤ C rt, then µ satisfies a restriction theorem analog to the Stein–Tomas
theorem for the sphere, see [11].

Despite its importance, it is notoriously difficult to calculate, and often even to
estimate, the Fourier dimension of natural measures, such as measures arising from
some dynamical system (it is often easier for random measures). See [8, 1] for some
deep recent results in this direction. Moreover, it may well happen that there is no
decay at all. For example, it is well known that if µ is any measure supported on the
middle-thirds Cantor set C, then µ̂(ξ) 6→ 0 as ξ → ∞; in particular, dimF(µ) = 0.
This applies, in particular, to the Cantor–Lebesgue measure ν on C. Despite this,
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in [10], Kaufman proved that if F is any C2 diffeomorphism of R such that F ′′ > 0,
then dimF(Fν) > 0 where, here and below, we define

Fµ(A) = µ(F−1A) for all Borel sets A ⊂ R.

Let νa be the distribution of the random sum

(1.2)
∞∑

n=1

±an,

where the signs are IID with equal probabilities. This is the well-known family of
Bernoulli convolutions, and the special case a = 1/3 yields the Cantor–Lebesgue
measure ν. In fact, Kaufman proved his result for all νa with a ∈ (0, 1/2). Kauf-
man’s paper appears to be little known, and is tersely written. One of the goals of
this paper is to clarify, extend and quantify Kaufman’s argument. We prove that if
µ is any non-atomic self-similar measure on R arising from a homogeneous iterated
function system, then dimF(Fµ) > c(µ) > 0 for any C2 diffeomorphism of R with
F ′′ > 0 (see Theorem 3.1). This holds even if the construction of µ involves overlaps
and, in particular, extends to all Bernoulli convolutions νa with a ∈ (0, 1). More-
over, the value of c(µ) is effective (although certainly far from optimal) and depends
continuously on the parameters defining µ. For example, for the Cantor–Lebesgue
measure ν we calculate that

dimF(Fν) ≥ 0.016.

See Corollary 3.3.
Even if dimF(µ) = 0, it may happen that µ̂(ξ) has fast decay outside of a very

sparse set of frequencies. Indeed, Kaufman’s result mentioned above depends on
proving this for the measures νa, a ∈ (0, 1/2). He did this by using a variant of what
has become known as the Erdős–Kahane argument (the original application of this
method, by Erdős [3] and Kahane [9], was to show that dimF(νa) > 0 for all a outside
of zero Hausdorff-dimensional set of exceptions). Recently, Tsujii [14] (using different
arguments) proved a similar result for arbitrary self-similar measures on R:

Theorem 1.1. (Kaufman, Tsujii) Let µ be a self-similar measure on the real
line which is not a single atom. Then, given ε > 0, there exists δ > 0 such that for
all sufficiently large T , the set

{ξ ∈ [−T, T ] : |µ̂(ξ)| ≥ T−δ}

can be covered by T ε intervals of length 1.

We note that Tsujii does not give any explicit estimates. In this work, we make
the dependence of δ on ε explicit for self-similar systems arising from homogeneous

iterated function systems.
Recall that νa denotes the Bernoulli convolution with parameter a. We consider

also biased Bernoulli convolutions νp
a , defined as the distribution of the random sum

(1.2), with the signs still IID, but now with P(+) = p, P(−) = 1− p. It is generally
believed that νa, and indeed νp

a when p is bounded away from 0 and 1, should become
increasingly smooth as a ↑ 1. In particular, one of the main conjectures in the field
is that νa is absolutely continuous for all a sufficiently close to 1. Although this
remains wide open, very recently new evidence has been established in this direction.
Varjú [15] proved that νp

a is absolutely continuous provided a is algebraic and close
enough to 1 in terms of p and its Mahler measure (in particular, Varjú provided the
first explicit examples of absolutely continuous biased Bernoulli convolutions). On
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the other hand, Shmerkin [12] (building on work of Hochman [7]) proved that νp
a is

absolutely continuous for all a ∈ (e−h(p), 1), outside of a set of possible exceptions of
Hausdorff dimension 0, which is independent of p. Here, and later,

h(p) = −p log p− (1− p) log(1− p)

is the entropy of the vector (p, 1 − p). This was improved in [13] by showing that,
again outside of a zero-dimensional set of exceptions, νp

a has a density in Lq for an
optimal range of finite values of q. In this paper, we prove a weaker result which
is nevertheless valid for all a close to 1. To state the theorem, define the Frostman
exponent or L∞-dimension of a measure µ on R as

dim∞(µ) = lim inf
r↓0

log supx∈supp(µ) µ(B(x, r))

log r
.

In other words, dim∞(µ) is the supremum of all s such that µ(B(x, r)) ≤ rs for all x
and all sufficiently small r (depending on s).

Theorem 1.2. For every p0 ∈ (0, 1/2) there is C = C(p0) > 0 such that

inf
p∈[p0,1−p0]

dim∞(νp
a) ≥ 1− C(1− a) log(1/(1− a)).

We make some remarks on this statement:

(1) It follows from Frostman’s Lemma that the same lower bounds hold for other
popular notions of dimension of a measure, including Hausdorff and correla-
tion dimensions.

(2) The value of C(p0) is effective in principle, so the result gives concrete lower
bounds for Bernoulli convolutions for parameters close to 1.

(3) It is easy to obtain this bound for unbiased Bernoulli convolutions, by consid-
ering the smallest value of n such that (νan) satisfies the open set condition,
and using that νa = νan ∗ η for a suitable measure η, the Frostman expo-
nent does not decrease under convolution, and the value for dim∞(νan) is well
known (this argument appears to be folklore). This elementary argument
does not extend to the biased case. In the unbiased case, we are able to
improve on the folklore argument, see Corollary 5.3.

(4) The fact that dim∞(νp
a) tends to 1 as a ↑ 1 (uniformly for p ∈ [p0, 1 − p0])

can also be deduced from the results of [13], but the resulting bounds (which
would take some effort to make explicit) are in any case substantially worse.

We deduce Theorem 1.2 from another result asserting that convolving with a
Bernoulli convolution increases correlation dimension by a quantitative amount; see
Theorem 4.1 for details. (A non-quantitative version could also be deduced from
[13].)

2. Fourier decay outside of a small set of frequencies

Let µp
a,t be the self-similar measure for the IFS {ax + ti}

m
i=1 with weights p =

(p1, . . . , pm), where t = (t1, . . . , tm), a ∈ (0, 1). In other words, µp
a,t is the distribution

of the random sum
∑∞

n=1Xna
n, where Xn are IID random variables with P(Xn =

ti) = pi. We refer to such measures as homogeneous self-similar measures. After
an affine change of coordinates (which does not affect any of the properties we will
consider), we can always assume that t1 = 0 and t2 = 1.
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Recall that the convolution of two Borel probability measures µ, ν on R is defined
by the formula

µ ∗ ν(A) = (µ× ν){(x, y) : x+ y ∈ A},

and that the Fourier convolution formula µ̂ ∗ ν = µ̂ν̂ holds in this context. This ex-
tends to convolutions of countably many measures µn if

∑
nXn converges absolutely

for Xn ∈ supp(µn).
Recall that µp

a,t is an infinite convolution of discrete measures
∑m

i=1 pi δtian , so
that its Fourier transform is given by

µ̂p
a,t(u) =

∞∏

n=1

Φ(anu),

where Φ(u) = Φp,t(u) =
∑m

j=1 pj exp(2πitju).

We denote the distance of y ∈ R to the closest integer by ‖y‖.

Lemma 2.1. The following holds for all y ∈ R and c ∈ (0, 1): if ‖y‖ > c
2
, then

|Φ(y)| < 1− η(c, p), where

η(c, p) = p1 + p2 −
√
p21 + 2p1p2 cos(πc) + p22.

Proof. We have that

|Φ(y)| = |p1 + p2e
2πiy +

m∑

j=3

pje
2πitjy|

≤ |p1 + p2 cos(2πy) + i p2 sin(2πy)|+
m∑

j=3

pj

= 1− p1 − p2 +
√

p21 + 2p1p2 cos(2πy) + p22.

Using that ‖y‖ > c
2
, we obtain that cos(2πy) < cos(πc), so we get the claim. �

Remark 2.2. In the special case of Bernoulli convolutions, Φ(u) = cos(2πu) and
η(c, p) = 1− cos(πc).

Following Kaufman [10], we use the Erdős–Kahane argument to establish quan-
titative power decay outside of a sparse set of frequencies:

Proposition 2.3. Given a ∈ (0, 1) and a probability vector p = (p1, . . . , pm)
there is a constant C = Ca > 0 such that the following holds: for each ε > 0 small
enough (depending continuously on a) the following holds for all T large enough:
the set of frequencies u ∈ [−T, T ] such that |µ̂p

a,t(u)| ≥ T−ε can be covered by CaT
δ

intervals of length 1, where Ca > 0 depends only on a,

δ =
log (⌈1 + 1/a⌉) ε̃+ h(ε̃)

log(1/a)
,(2.1)

ε̃ =
log(a)

log(1− η( a
a+1

, p))
ε,

and h(ε̃) = −ε̃ log(ε̃)− (1− ε̃) log(1− ε̃) is the entropy function.

Proof. Choosing N ∈ N such that a1−N ≤ T < a−N we may assume that
T = a−N . First we consider u such that 0 ≤ u ≤ a−N . Then we can write u = ta−N
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with t ∈ [0, 1]. We have that

|µ̂p
a,t(u)| ≤

∣∣∣∣∣
∞∏

j=1

Φ(aju)

∣∣∣∣∣ =
∣∣∣∣∣
∞∏

j=1

Φ(aja−N t)

∣∣∣∣∣ ≤
N∏

j=1

|Φ(aj−N t)| =

N−1∏

j=0

|Φ(a−jt)|.

Given ε > 0, we let ε̃ be as in the statement. Let

S(N, ε̃) :=
{
t ∈ [0, 1] : ‖a−jt‖ < ξ for at least (1− ε̃)N integers j ∈ [N ]

}
,

where we denote [N ] = {0, 1, . . . , N − 1}, and ξ = ξ(a) = a
2(a+1)

.

We observe that if t /∈ S(N, ε̃) then, by Lemma 2.1,

|µ̂p
a,t(u)| ≤ (1− η(2ξ, p))ε̃N = aNε = T−ε,

using the definition of ε̃. We deduce that

(2.2) {t ∈ [0, 1] : |µ̂p
a,t(ta

−N )| ≥ T−ε} ⊆ S(N, ε̃).

Hence, in order to prove that {u ∈ [0, T ] : |µ̂p
a,t(u)| ≥ T−ε} can be covered by a small

number of intervals of length 1, we will estimate the amount and length of intervals
needed to cover S(N, ε̃).

For each t ∈ [0, 1], we define integers rj(t) and εj(t) ∈ [−1/2, 1/2) such that

a−jt = rj(t) + εj(t)

so that t ∈ S(N, ε̃) precisely when |εj(t)| < ξ at least (1 − ε̃)N times among indices
j ∈ [N ]. We will simply write rj and εj when no confusion arises.

Let N1 = ⌈(1 − ε̃)N⌉. For each t ∈ S(N, ε̃), there is a subset I ⊂ [N ] with at
least N1 elements such that |εj| < ξ for all j ∈ I. We will estimate the size of S(N, ε̃)
by considering each index set I separately, and for this we define

S(I, ε̃) = {t ∈ [0, 1] : ‖a−jt‖ < ξ for all j ∈ I}.

We have that t = r0 + ε0, so for t ∈ [0, 1] there are at most 2 choices for r0. On
the other hand, since rj+1 + εj+1 = a−1(rj + εj) for j ≥ 0, we have that

|rj+1 − a−1rj| ≤ |εj+1|+ a−1|εj|.

Using that −1/2 ≤ εj, εj+1 < 1/2, we obtain that each value of rj can be followed by
at most ⌈1 + 1/a⌉ choices of rj+1.

If j, j + 1 ∈ I, then |εj+1|, |εj| <
a

2(a+1)
so that |εj+1|+

1
a
|εj| < 1/2, and at most

one value of rj+1 is possible. Note that

|{j ∈ [N ] : j, j + 1 ∈ I}| ≥ N − 2|N \N1| − 1 ≥ (1− 2ε̃)N − 1.

Thus, the total number of sequences r1, . . . , rN can be bounded by

MN := (⌈1 + 1/a⌉)2ε̃N+1 .

In particular, rN can take at most MN values. Since

t ∈ (aNrN − aN/2, aNrn + aN/2),

we obtain that S(I, ε̃) can be covered by MN intervals of length aN .
Now, estimating

(
N
N1

)
by Stirling’s formula, we see that the number of index sets I

is at most exp(h(ε̃)N) for large enough N . We conclude that S(N, ε̃) can be covered
by

(⌈1 + 1/a⌉)2ε̃N+1 eh(ε̃)N
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intervals of length aN . Recalling (2.2) and rescaling, we see that {u ∈ [0, T ] : |µ̂p
a,t(u)| >

T−ε} can be covered by the claimed number of intervals of length 1. The situation
for u ∈ [−T, 0] is completely analogous, so this finishes the proof. �

3. A generalization of a theorem of Kaufman

We now apply Proposition 2.3 to obtain a variant of a result of Kaufman [10]:

Theorem 3.1. Let F ∈ C2(R) such that F ′′ > 0 and let µ = µp
a,t be a (ho-

mogeneous) self-similar measure on R which is not a single atom. Then there exist
σ = σ(µ) > 0 (independent of F ) and C = C(F, µ) > 0 such that

|F̂ µ(u)| ≤ C|u|−σ for all u 6= 0.

We underline that the value of σ is effective. For the proof we need the following
well known result, see [5, Proposition 2.2].

Proposition 3.2. Let µ be a self-similar measure on the real line which is not
a single atom. Then there exist C = C(µ) > 0 and s = s(µ) > 0 such that
µ(B(x, r)) ≤ C rs ∀x, ∀r > 0.

We also recall that, if the underlying iterated function system satisfies the open
set condition, then one can take

s =
m

min
i=1

log pi
log a

.

In particular, if pi = 1/m for all i, then s = logm/ log(1/a).

Proof of Theorem 3.1. For simplicity we only consider the case u > 0, with the
case u < 0 being exactly analogous. Throughout the course of the proof, C denotes
a positive constant that is allowed to depend only on a, p, t and F , and may change
from line to line. By x ≈ y we mean that C−1x ≤ y ≤ Cx.

Fix u ≫ 1. Then there exists N = N(u) ∈ N such that

(3.1) 1 < aNu2/3 ≤ a−1.

In other words, N = ⌊ log(u−2/3)
log(a)

⌋. We can write

µ = µN ∗ λN ,

where µN = ∗Nn=1(
∑m

i=1 piδanti) is the step n discrete approximation to µ, and λN is
a copy of µ scaled down by a factor aN . Then

(3.2) µ̂(u) = µ̂N(u)λ̂N(u) =
N∏

n=1

Φ(anu)
∞∏

n=N+1

Φ(anu).

Since F is C2, we have that F (x+ y) = F (x) + F ′(x)y +O(y2) (where as usual,
O(X) denotes a quantity bounded by CX in modulus). Then

uF (x+ y) = uF (x) + uF ′(x)y +O(uy2).

Write e(x) = e−2πix for simplicity. Using that |e(δ)− 1| = O(δ), we estimate

F̂ µ(u) =

ˆ

e−2πiuF dµ

=

¨

e(uF (x+ y)) dµN(x)dλN (y)
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=

¨

e(uF (x) + uF ′(x)y)(1 +O(uy2)) dµN(x) dλN(y)

=

ˆ

e(uF (x))

(
ˆ

e(uF ′(x)y) dλN(y)

)
dµN(x) +O(u(aN)2).

Since that aN ≈ u−2/3, we see that u(aN)2 = O(u−1/3). Using that |λ̂N(ξ)| = |µ̂(aNξ)|
for all ξ, we obtain

|F̂ µ(u)| ≤

∣∣∣∣
ˆ

e(uF (x))

(
ˆ

e(uF ′(x)y) dλN(y)

)
dµN(x)

∣∣∣∣+O(u−1/3)

≤

ˆ

|λ̂N(uF
′(x))| dµN(x) +O(u−1/3)

=

ˆ

|µ̂(uaNF ′(x))| dµN(x) +O(u−1/3).

Let A := supx∈supp(µ) |F
′(x)| and T = AaNu > 0, and note that T ≈ u1/3. Fix

ε > 0 to be determined later. Then, by Proposition 2.3, there is C = C(µ) > 0
such that for large enough u, the set of frequencies |ξ| ∈ [0, T ] such that |µ̂(ξ)| ≥

T−ε can be covered by CT δ intervals of length 1, where δ = log(⌈1+1/a⌉)ε̃+h(ε̃)
log(1/a)

, and

ε̃ = log(a)

log(1−η(
a

a+1
,p))

ε. Let I1, . . . , ICT δ be these intervals. Then |µ̂(ξ)| ≤ T−ε for all

ξ /∈
⋃CT δ

j=1 Ij.
We consider

Γ :=



x : aNuF ′(x) ∈

CT δ⋃

j=1

Ij



 .

Thus
ˆ

|µ̂(uaNF ′(x))| dµN(x) =

ˆ

Γ

+

ˆ

Γc

≤ µN(Γ) + T−ε ≤ µN(Γ) +O(u−ε/3).

To conclude we will prove that there exists γ > 0 such that µN(Γ) ≤ u−γ. Since
µ = µN ∗ λN , and the support of λN is contained in an interval [−CaN , CaN ] for
some C = C(a, t) > 0, we see that for any interval I = (b1, b2),

(3.3) µN(I) ≤ µ(b1 − CaN , b2 + CaN).

On the other hand, Γ = ∪CT δ

j=1 (F
′)−1Jj, where Jj are intervals of length |Jj| =

(aNu)−1 ≈ aN/2. By our assumption that F ′′ > 0, we see that Γ is covered by
CT δ intervals J ′

j of length CaN/2. We observe that the only constant C which de-
pends on F is the last one, that is, the one which modifies the lengths of the intervals.

Using (3.3) and Proposition 3.2 we get µN(J
′
j) ≤ Ca

Ns
2 , and then

µN(Γ) ≤ CT δa
Ns
2 ≤ Cu

(δ−s)
3 .

At this point we assume that ε was taken small enough that δ < s(µ), and conclude
that

|F̂ µ(u)| ≤ Cu
(δ−s)

3 + Cu−ε/3 + Cu−1/3 ≤ Cu−min{ (s−δ)
3

, ε
3}. �

As an example, we obtain that if µ is the Cantor–Lebesgue measure on the

middle-thirds Cantor set, then even though µ̂(u) does not decay as u → ∞, for F̂ µ
we have a uniform explicit decay:
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Corollary 3.3. Let µ be the Cantor–Lebesgue measure. Then for every C2

function F : R → R such that F ′′ > 0 there exists a constant CF > 0 such that

|F̂ µ(u)| ≤ CF |u|
−σ

Moroever, one can take σ = 0.016.

Proof. The non-quantitative statement is immediate from Theorem 3.1. We
indicate the calculations required to obtained the value σ = 0.016. Going through

the proof of Theorem 3.1, notice that σ = min
{

(s−δ)
3

, ε
3

}
. We want to find ε such that

s(µ)−δ(ε) = ε. In this case we have that a = 1/3, p = (1/2, 1/2), η(c, p) = 1−cos(πc)

and s(µ) = log(2)
log(3)

. So, using (2.1), we obtain

δ(ε̃) =
2 log(2)ε̃+ h(ε̃)

log(3)
, and ε̃ =

2 log(3)ε

log(2)
.

If we let

G(ε) := s(µ)− δ(ε)− ε =
log(2)

log(3)
− 5ε+

2

log 2
ε log

(
2 log(3)ε

log(2)

)

+

(
log(2)− 2 log(3)ε

log(2) log(3)

)
log

(
log(2)− 2 log(3)ε

log(2)

)
,

then G(ε) has domain (0, log 2
log 9

), and G(ε) = 0 if and only if ε = 0.048279 . . ., giving
the claimed value of σ. �

4. L
2 dimension of convolutions

We begin by recalling the definition of Lq dimensions. Let q ∈ (1,+∞), and
set sn(µ, q) =

∑
Q∈Dn

µ(Q)q, with (Dn) the partition of Rd into dyadic intervals of

length 2−n. Define

dimq(µ) := lim inf
n→+∞

log(sn(µ, q))

(q − 1) log(2−n)
.

The L2 dimension of a measure is also known as correlation dimension. Note that
the Frostman exponent dim∞ can also be defined as

dim∞(µ) := lim inf
n→+∞

logmax{µ(Q) : Q ∈ Dn}

log(2−n)
.

It is well known that the function q 7→ dimq(µ) is continuous and non-increasing on
(1,+∞] and that dimq(µ) ≤ dimH(µ) for any q ∈ (1,+∞], where dimH is the lower
Hausdorff dimension of a measure, defined as

dimH(µ) := inf{dimH(A) : µ(A) > 0}.

We refer the reader to [4] for the proofs of these facts and further background on
dimensions of measures.

We prove next that homogeneous self-similar measures strictly increase L2 dimen-
sion of measures upon convolution, in a quantitative sense. A version of this result
with far worse quantitative estimates could also be inferred from [13, Theorem 2.1].

Theorem 4.1. Let µ = µt
a,p be as above. Given any κ > 0, there is σ =

σ(a, p, κ) > 0 such that the following holds: let ν be any Borel probability measure
with dim2(ν) ≤ 1− κ. Then

dim2(µ ∗ ν) > dim2(ν) + σ.
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More precisely, one can take σ = 2ε, where ε = ε(a, p, κ) is such that the value of
δ = δ(ε, a, p) given in (2.1) of Proposition 2.3 satisfies

(4.1) κ− 2ε = δ.

Remark 4.2. We need to assume that dim2(ν) ≤ 1 − κ because if dim2(ν) is
already 1 or very close, it cannot grow when we convolve with µ.

Proof. To begin, we note that there is a value of ε ∈ (0, 1/2) satisfying (4.1) by
standard continuity arguments (similar to the calculation in Corollary 3.3) that we
omit. From [6, Lemma 2.5], we know that dim2(η) = 1− α2(η), where

α2(η) = lim sup
T→∞

log
´

|ξ|≤T
|η̂|2dξ

log T
.

So we have to show that if α2(ν) ≥ κ, then α2(µ ∗ ν) < α2(ν)− σ. We may assume
T = 2N , for some N ∈ N.

Let κ0 = α2(ν) ≥ κ. By definition of α2, for any ε0 > 0,
ˆ

|ξ|≤2N
|ν̂(ξ)|2dξ ≤ Oε0(1)2

N(κ0+ε0).

Let

EN = {ξ : |ξ| ≤ 2N , |µ̂(ξ)| ≤ 2−εN},

FN = {ξ : |ξ| ≤ 2N , |µ̂(ξ)| > 2−εN}.

We know from Proposition 2.3 that FN can be covered by Ca2
δN intervals of length

1 so it has measure at most Ca2
δN . Here δ = δ(µ, ε) > 0 is the value given in

Proposition 2.3.
Using all this, we have

ˆ

|ξ|≤2N
|µ̂ ∗ ν(ξ)|2 dξ =

ˆ

EN∪FN

|µ̂(ξ)|2|ν̂(ξ)|2 dξ

≤

ˆ

EN

2−2εN |ν̂(ξ)|2 dξ +

ˆ

FN

1 dξ

≤ Oε0(1)2
−2εN2(κ0+ε0)N + Ca2

δN

≤ Oε0,a(1)2
(κ0−2ε+ε0)N ,

using that κ0 ≥ κ and the definition of ε in the last line. Since this holds for all
ε0 > 0, it follows from the definition of α2 that

α2(µ ∗ ν) ≤ κ0 − 2ε,

which gives the claim since σ = 2ε. �

5. Dimension of Bernoulli convolutions

Recall that νp
a denotes the (biased) Bernoulli convolution with contraction ratio

a and weight p. We next prove Theorem 1.2, which we state again:

Theorem 5.1. For every p0 ∈ (0, 1/2) there is C = C(p0) > 0 such that

inf
p∈[p0,1−p0]

dim∞(νp
a) ≥ 1− C(1− a) log(1/(1− a)).
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For the proof we need the following relation between L2 and L∞ dimensions.
Although it is a simple consequence of Young’s inequality, we have not been able to
find it in the literature.

Lemma 5.2. Let µ, ν be probability measures on R. Then

dim∞(µ ∗ ν) ≥
dim2(µ) + dim2(ν)

2
.

Proof. Let µn, νn denote the absolutely continuous measures with locally constant
density equal to 2nµ(Q), 2nν(Q) on each interval Q ∈ Dn, respectively. We also
denote by µn, νn the respective densities. Note that µn(Q) = µ(Q), and

‖µn‖
2
2 = 2nsn(µ, 2)

and likewise for νn. By Young’s inequality,

(5.1) ‖µn ∗ νn‖∞ ≤ 2nsn(µ, 2)
1/2sn(ν, 2)

1/2.

On the other hand, for any Q ∈ Dn, we have

µ ∗ ν(Q) ≤
∑

J,J ′∈Dn:Q∩J+J ′ 6=∅

µ(J)ν(J ′)

=
∑

J,J ′∈Dn:Q∩J+J ′ 6=∅

µn(J)νn(J
′) ≤ µn ∗ νn(5Q).

where 5Q is the interval with the same center as Q and 5 times the length (this
follows since J + J ′ ⊂ 5Q whenever Q∩ J + J ′ 6= ∅). Combining this with (5.1), we
conclude that

sup{µ ∗ ν(Q) : Q ∈ Dn} ≤ 5sn(µ, 2)
1/2sn(ν, 2)

1/2.

Taking logarithms, dividing by log(2−n), and taking lim inf on both sides, we get the
claim. �

Proof of Theorem 5.1. Fix a ∈ (0, 1) close to 1. We define

N = Na := min{n ∈ N : an < 1/2}.

Then,
a

2
≤ aN <

1

2
.

In particular, assuming as we may that a > 1/2, we see that aN ∈ (1/4, 1/2).
Fix κ ∈ (0, 1), and suppose that dim2(ν

p
a) ≤ 1 − κ. Let us write Sa(x) = ax for

the map that scales by a, and recall that

(5.2) νp
a = νp

aN
∗ Saν

p
aN

∗ · · · ∗ SaN−1νp
aN

.

We know that dim2(ν
p
aN

) ≥ 0. In fact, since the associated IFS satisfies the open set
condition,

(5.3) dim2(ν
p
aN
) =

log(p2 + (1− p)2)

log(aN)
.

Now, using that dim2(ν
p
a) ≤ 1 − κ and (5.2), we get dim2(ν

p
aN

) ≤ 1 − κ. By Theo-
rem 4.1, there is σ = σa,p(κ) > 0 such that

dim2(ν
p
aN

∗ Saν
p
aN

) ≥ σ.

Proceeding inductively according to (5.2), after N−1 steps we obtain that if dim2(ν
p
a) ≤

1− κ, then
dim2(ν

p
a) ≥ (N − 1)σ.
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It follows that if κ is such that σ = σa,p(κ) = 1/(N − 1), then

dim2(ν
p
a) ≥ 1− κ.

Thus, it remains to estimate such κ. We denote by Ci positive constants that only
depend on p0. By (4.1), we have that κ = δ + σ, where δ = δ(σ/2) is given by (2.1).
Note that ε̃ = C(aN , p)σ, where C > 0 depends continuously on aN and p. Since
aN ∈ [1/4, 1/2] and p ∈ [p0, 1 − p0], a calculation using (2.1) shows that there is a
constant C1 such that δ ≤ C1σ log(1/σ) provided σ is small enough (which we may
assume). We deduce that

(5.4) dim2(ν
p
a) ≥ 1− κ ≥ 1− σ − C1σ log(1/σ) ≥ 1− C2σ log(1/σ)

if σ is small enough. On the other hand, since a1/σ = aN−1 < a−1/2 < 2/3 (say), we
have that σ ≤ log(1/a)/ log(3/2). Finally, using that log(1/a) ≤ 2(1 − a) for 1 − a
small, we deduce that

σ ≤ C4(1− a).

Together with (5.4), this yields

dim2(ν
p
a) ≥ 1− C5(1− a) log(1/(1− a)).

Since we have the decomposition

νp
a = νp

a2 ∗ Saν
p
a2 ,

and scalings do not change L2 dimension, we can appeal to Lemma 5.2 to conclude
that

dim∞(νp
a) ≥ 1− C5(1− a2) log(1/(1− a2)) ≥ 1− C6(1− a) log(1/(1− a)). �

When p0 < 1/2, the estimate (5.3) is away from 1 so it does not help in improving
the estimate given by the theorem. However, for unbiased Bernoulli convolutions,
already (5.3) is very close to 1 so that we are able to obtain an improved lower bound
in this case:

Corollary 5.3. There is an absolute constant C > 0 such that

dim∞(νa) ≥ 1− C(1− a)2 log(1/(1− a)).

Proof. Again, fix a ∈ (0, 1) close to 1 and let N = inf{n ∈ N : an ≤ 1/2}, so that
aN > a/2. As usual, Ci denote absolute positive constants. According to (5.3),

dim2(νaN ) =
log(1/2)

log aN
≥

log(1/2)

log(a/2)
= 1−

log(1/a)

log(2/a)
.

Proceeding as in the proof of the theorem 5.1, we obtain that if dim2(νa) ≤ 1−κ
then there exists σ = σ(κ, a) > 0 such that

dim2(νa) ≥ dim2(νaN ) + (N − 1)σ ≥ 1−
log(1/a)

log(2/a)
+ (N − 1)σ.

Now if κ is such that σ = log(1/a)
log(2/a)

1
N−1

, then

dim2(νa) ≥ 1− κ.

Then we want to estimate such κ. Proceeding as in the proof of the above theorem,
we get

dim2(νa) ≥ 1− κ ≥ 1− C1σ log(1/σ).
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On the other hand, using that 1/4 < aN < 1/2 and that log(1/a) ≤ 2(1−a) for 1−a
small, we obtain 1

N−1
≤ C2(1− a) and then

σ ≤ C3(1− a)2.

Thus
dim2(νa) ≥ 1− C4(1− a)2 log(1/(1− a)).

Invoking Lemma 5.2 as in the proof of Theorem 5.1 finishes the proof. �
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