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Abstract. This paper studies the property of thickness for a class of self-similar sets that

satisfy a non overlapping condition introduced by Strichartz. We show that in a suitable sense

thickness is a generic property.

1. Introduction

Over the last thirty or more years, a subject of interest in the discrete geometry
of unbounded sets has been the solution of “point configuation problems”. By this we
mean the very general problem of determining when a given combinatorial geometric
invariant, defined in terms of simplices whose endpoints belong to F , must assume
infinitely many distinct values. The most studied example is, of course, the distance
of 1-simplices between pairs of distinct points. Less frequently studied invariants
are the angle between two vectors (see [AS, IMP]) or volume of an n-simplex (see
[BMP, GIM]).

A natural approach to address the problem is to introduce a large parameter x
that plays the role of the radius of a ball B(x) with center the origin in Rn. One then
restricts attention to the finite set of k-simplices whose endpoints belong to F∩B(x),
and tries to estimate from below the number of distinct invariant values formed by
such simplices as x → ∞. Typically the idea is to use the dimension of F to help
detect when the number of distinct invariant values grows without bound as x→∞.

Implicit here is a choice for what one means by dimension. To a large extent this
depends upon the method used to address the problem in the first place (also see [BT]
where several possible definitions are introduced and compared). Approaches that are
rooted in harmonic analysis and geometric measure theory work with the Hausdorff
dimension. Since this is most commonly defined for bounded and nondiscrete sets,
it is first necessary to find a suitable way of connecting the intersections F ∩B(x) to
such sets. This is done in [IRU] by normalizing and thickening F to obtain a family
of bounded sets that depend upon x.

Under suitable conditions, the Hausdorff dimension of such sets is shown not
to depend upon x. The challenge then becomes one of applying Fourier analytical
techniques to show that some lower bound on this common Hausdorff dimension
forces the number of distinct invariants of simplices, determined by the points in
F ∩ B(x), to grow as x→∞. So far, this has required that an additional condition
called “s-adaptability” be satisfied.
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A more recent, and rather different, approach to such problems is presented in
[EL-1, EL-2, EL-3]. This showed how zeta function methods (in one or more complex
variables) can be used to study point configuration problems. The foundation of this
work was given in [EL-1], whose principal goal was the proof of basic analytical
properties of “fractal” zeta functions, determined by a discrete self-similar subset
F ⊂ Rn that satisfied a discrete analogue of Moran’s “finite overlap property” [M].
We were inspired to do this by a careful study of the pioneering work in [LF] that
studied “fractal strings” where n = 1 (see also [LRZ] for an interesting generalization
that overlaps with [IRU]). In this setting, the appropriate notion of dimension would
seem to be the upper Minkowski dimension. This is due to the simple observation
that the boundary of analyticity of the associated zeta function equals the upper
Minkowski dimension of F (see Definition 2 in §2).

One of the metric invariants we studied in [EL-2, EL-3] was the volume of n-
simplices. Our approach required assuming a condition we called “thickness” (see
Definition 4 §2 below). This property is analytic in nature, and is the subject of the
article.

In [EL-2] a condition we needed to impose in order to use zeta function methods
was the algebraic condition of “compatibility” of the self-similar set. This requires
that the underlying similarities pairwise commute. In the more recent [EL-3], we were
able to eliminate compatibility as a hypothesis, thereby extending the zeta function
method to a much larger class of self-similar sets.

We will, however, impose the condition of compatibility in this article since the
proof of our main result, Theorem 1, seems to be significantly more difficult when F
is not compatible.

A feature that motivates studying thickness is that a point configuration problem
for volumes can be solved in a reasonably general (and translation invariant) way
when F ⊂ Zn (n ≥ 2) as follows.

Define for any vector mmm = (m1, . . . ,mn+1) ∈ Fn+1, the volume

|Σn(mmm)| = | det(m1 −mn+1, . . . ,mn −mn+1)| ,

of the n-simplex

Σn(m) = 〈m1 −mn+1, . . . ,mk −mn+1〉 :=
{
∑

ℓ

ηℓmℓ :
∑

ℓ

ηℓ = 1 and ηℓ ≥ 0 ∀ℓ
}
,

and set

(1) V olF(x) := #{|Σn(m)|; m ∈ (F ∩B(x))n+1}.

Then we have:

Theorem. [EL-2, Theorem 4] Assume F ⊂ Zn is thick, satisfies Moran’s finite
overlap property, and has an upper Minkowski dimension eF such that eF > n − 1.
Then for all sufficiently small ε > 0:

(2) VolF(x)≫ε

[
#
(
F ∩ B(x)

)]1−n−1
eF

−ε
as x→ +∞.

In other words, if eF is larger than the threshold value n − 1, then the number
of distinct volumes of n-simplices Σn(m) (m ∈ (F ∩ B(x))n+1) must grow without
bound as x→∞.
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One class of examples of thick sets to which this Theorem applies are the Pascal
triangles modulo any prime p

Pas(p) :=

{
(m1, m2) ∈ N2

0; m1 ≥ m2 and

(
m1

m2

)
6≡ 0 (mod p)

}
.

A basic result of [E] used zeta function methods to prove that the upper Minkowski
dimension of these self-similar sets is as follows:

ePas(p) = ln(p(p+ 1)/2)/ ln p > 1.

Two other examples of thick self-similar sets in Rn(n ≥ 2) were also presented in
[op.cit.]. These included the “Pascal pyramid mod p”, defined analogously to Pas(p),
where a multinomial coefficient replaces a binomial coefficient prior to reduction mod
p, and self-similar sets symmetric under the group of permutations of {1, . . . , n}.

These results suggest that thickness justifies further study. To this end we hope to
convince the reader of this by showing that thick sets are, in a suitably asymptotic
sense, generic. This is the content of our main result Theorem 1 (see §3.2). In
addition, we believe it useful to point out an intriguing analogy between thick self-
similar sets and Salem sets. This is explained in a Concluding remark.

Before beginning to read this article, the reader should appreciate that Theo-
rem 1 is a purely theoretic result. Its purpose is to show only that thickness occurs
reasonably frequently in a sense made precise by the statement of the theorem. The
reader should not expect to find anything herein that helps show that a particular
self-similar set is, or is not, thick. That is a question of a very different nature, for
which quite different, and often ad hoc, techniques would typically be needed. The
three examples mentioned above illustrate this point. What Theorem 1 does say is
that it is not unreasonable to try and show that a particular self-similar set is thick
since this property is “asymptotically generic”.

To state the defining property of thickness (see §2), we first introduce a “de-
terminant zeta function” ζdet(F , s) (see (7)). This is represented in some prod-
uct of half planes as a convergent Dirichlet series on Cn, summed over the points
(m1, . . . ,mn) ∈ Fn, and with coefficients equal to det2(m1, . . . ,mn). It is a non
trivial result that this series admits a meromorphic extension to all of Cn. Among
the set of possible poles, there is one evident candidate DF (see (5)) that sits both
on the diagonal in Rn and on the boundary of an a priori domain of absolute conver-
gence of the series. Of special interest about this point is that its coordinate depends
explicitly upon the upper Minkowski dimension of F .

We then say (see Definition 4) that F is “thick” if two properties hold. The first
is that this particular candidate pole is an actual pole of the meromorphic extension
of ζdet(F , s). The second, which does not follow from the first, is that the iterated
residue at this pole does not vanish. Proving thickness therefore requires showing
this non vanishing property.

In general this is not easy since the iterated residue equals an infinite series
(see (9), (10), (13)). To prove that the series is not zero, we have to control the
absolute values of its terms with good precision. This is what the discussion in §3, 4
accomplishes.

To this end, our first idea is to introduce a global “configuation space” (see (16))
Mµ of pairs (D,F), where D is a finite “data set” (see (14)) which specifies the
similarities that determine the points of a self-similar set F of upper Minkowski
dimension µ.
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Our second idea is to introduce both an appropriate space of bounded parameter
vectors (see Definition 5) and a pair of unbounded parameters (denoted (c, A) in
Definition 6) in terms of which we control the norms of the elements of any data set
D. This is done in §3.1.

Our third idea is essential. We can detect an explicit candidate for a single “main
term” of the iterated residue (see (26)) by allowing the pair (c, A) to grow without
bound. This is what we mean by “asymptotic”. The intuition here is that we can
always isolate a single candidate main term for the iterated residue of ζdet(F , s) at
DF whenever (D,F) belongs to a suitable neighborhood ofMµ at infinity.

For our purposes here, this candidate main term equals an algebraic function in
the elements of D. As a result, its non vanishing specifies a generic condition in the
space of data sets D (see Remark 1 in §3.2 for a complete description of the generic
condition we impose upon the elements of a data set D).

Combining these two ideas is what we mean when we say that thickness is an
“asymptotically generic” property.

As noted above, Theorem 1 should not be understood as giving an effective recipe
for finding thick self-similar sets. It does indicate, however, that if one does look for
thick sets, it should not be too difficult to find them. A useful problem for further
work, it seems to us, would be to find more intrinsic characterizations of thickness
for particular classes of self-similar sets, connecting it to underlying symmetries, as
in [EL-2]. This should also help identify additional examples of thick self-similar sets
that occur naturally in combinatorial geometry or number theory. We suspect such
examples will have interesting features.

2. Definition of thickness and other preliminaries

We first recall in Definition 3 the basic notion of what we mean by a non over-
lapping compatible self-similar subset of Rn (see [EL-2]).

We fix throughout a Euclidean space (E, q), where dimR E = n, and q the
standard Euclidean norm ‖ ·‖ = q1/2 whose bilinear form B(x, y) = 〈x, y〉 is the usual
scalar product.

Definition 1. Let Ti (i ∈ I) be a set of pairwise commuting orthogonal linear
transformations of (E, q), and fi = ciTi +bi (i ∈ I) a related set of similarities of E.
We then say that the fi are compatible. The constants ci are the “scale factors” of
the similarities.

Definition 2. Let F be an unbounded discrete subset of E. Define the upper
Minkowski dimension of F by

eF := lim
R→∞

ln
(
#(F ∩ B(0, R))

)

lnR
∈ [0,∞],

where B(0, R) := {m ∈ E : ‖m‖ < R}.
In this case the zeta function of F is a series summed over F ′ := F − {0}

(3) ζ(F , s) :=
∑

m∈F ′

‖m‖−s

that converges absolutely in the halfplane σ(:= ℜs) > eF , and eF is its abscissa of
convergence.

Definition 3. An unbounded discrete subset F ⊂ E is said to be a non over-
lapping compatible self-similar set if these two properties are satisfied:
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(1) 0 < eF <∞.
(2) There exists a finite set f = {fi}ri=1 of compatible affine similarities with each

scale factor ci > 1 such that1

(4) F ≡
⋃r

i=1
fi(F) and fi(F) ∩ fi′(F) = ∅ if i 6= i′.

Remark. We define

(5) DF := eF + 2; DF := (DF , . . . , DF) ∈ Rn.

Notations. We fix an orthonormal basis B = {g1, . . .gn} of EC, the complexifi-
cation of E, with respect to which each Tj is diagonalizable, and each element m ∈ F
is written as a linear combination m =

∑
j mjgj . It follows that

∃λj = (λ1,j, . . . , λn,j) ∈ (S1)n such that T ∗
j (gk) = λk,jgk ∀ k = 1, . . . , n

and ∀ j = 1, . . . , r.

We denote by e1, . . . , en the standard unit basis for E.
We set N0 = N ∪ {0}, and for any α = (α1, . . . , αn) ∈ Nn

0 , m = (m1, . . . , mn) ∈
Cn, we define the weight |α| =∑i αi, and set mα :=

∏
j m

αj

j . We also define the (a

priori formal) series (see Lemma 1)

(6) ζF(s,α) :=
∑

m∈F ′

mα

‖m‖s (s = σ + iτ).

We denote the sign of a permutation ω ∈ Sn by sgnω. We define (formally) the
determinant zeta function associated to F as a function of s = (s1, . . . , sn) as follows:

(7) ζdet(F , s) :=
∑

m1,...,mn∈F ′

det2(m1, . . . ,mn)

‖m1‖s1 . . . ‖mn‖sn
.

The basic analytical properties of ζdet we need are as follows.

Proposition 1. The determinant zeta function ζdet(F , s) of F converges abso-
lutely in the domain

⋂n
i=1{σi = ℜ(si) > DF} and has a meromorphic extension with

moderate growth2 to Cn.

Idea of Proof. It follows from Hadamard’s inequality (i.e. |det(m1, . . . ,mn)| ≤
‖m1‖ . . . ‖mn‖) that ζdet(F , s) converges absolutely on the set

⋃n
i=1 {σi > DF}. Ap-

plying the formula

(8) ζdet(F , s) =
∑

ω1,ω2∈Sn

sgn(ω1ω2)

n∏

i=1

ζF(si, eω1(i) + eω2(i)).

and using the method of analytic continuation from [EL-1] to construct the mero-
morphic extension of any ζF(s,α) finishes the proof. �

The only properties about the meromorphic extension of ζdet(F , s) that we will
need for this article are as follows. Their proofs can be found in [EL-2, Section 2].

Lemma 1. Assume F is non overlapping and compatible, and let α = (α1, . . . ,
αn) ∈ Nn

0 have weight |α| = 2.

(1) If eF+|α| is a pole of ζF(s,α), then it is simple and λλλα

j = 1 for all j = 1, . . . , r.

1The notation F ≡ G means that (F \G) ∪ (G \ F ) is a finite set.
2A meromorphic function F (s) with polar locus P has moderate growth on a domain D ⊂ C

n if
there exists a, b > 0 such that ∀δ > 0 and ∀s ∈ {d(s,P ∩ D) ≥ δ}, F (σ + iτ ) ≪σ,δ 1 + |τ |a|σ|+b

(see [EL-1]).
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(2) The residue B(F ,α) := lim
s→eF+|α|

(
s− (eF + |α|)

)
ζF(s,α) is given by

(9) B(F ,α) =

( r∑

j=1

c−eF
j ln cj

)−1 r∑

j=1

c−eF
j ∆(α,uj)

where ∀j = 1, . . . , r:

(10) uj := c−1
j T−1

j (bj) and ∆(α,uj) :=
∑

m∈F

(
(m+ uj)

α

‖m+ uj‖eF+|α|
− mα

‖m‖eF+|α|

)
.

(3) The following bound holds:

(11)
(m+ uj)

α

‖m+ uj‖eF+|α|
− mα

‖m‖eF+|α|
≪σ (1 + |τ |) ‖uj‖

‖m‖σ−1
.

Definition 4. The set F is thick if the point DF (see (5)) is a pole of ζdet(F , s),
and the iterated residue

Ress1=DF
· · ·Ressn=DF

(
ζdet

)
6= 0.

Defining

V (F ;DF) := lim
s1→DF

. . . lim
sn→DF

( n∏

i=1

(si −DF)ζdet(F , s1, . . . , sn)
)

it follows that

(12) F is thick iff V (F ;DF) 6= 0.

From Lemma 1 we also see that

(13) V (F ;DF) =
∑

(ω1,ω2)∈Sn(F)

sgn(ω1ω2)

n∏

i=1

B(F ; eω1(i) + eω2(i))

where

Sn(F) = {(ω1, ω2) ∈ S2
n : λ

eω1(i)
+eω2(i)

j = 1 ∀j ∀i}.

3. A procedure to construct thick F and
statements of Lemma 2 and Theorem 1

Let F be a compatible non overlapping self-similar subset of Rn and satisfying
the following (entirely for convenience) condition

0 6∈ F .
Using notations from §1, we should think of the set

D =
{
r, c1, . . . , cr,b1, . . . ,br, T1, . . . , Tr :

{fj := cjTj + bj}r1 is a compatible family of similarities
}(14)

as basic data for the set of all such F .
A fixed point of a similarity f = c T + b (when c > 1) is evidently equal to

P = (Id−cT )−1(b). Strichartz [St] has shown that the points of a non-overlapping
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F with similarities {fj}r1 are determined by a subset of the fixed points as follows:

∃K ⊂ {1, . . . , r} such that

F =
⊔

k∈K

⊔

t≥1

⊔

(j1,...,jt)∈{1,...,r}t

fjt
(Pk) 6=Pk

{fj1 ◦ · · · ◦ fjt(Pk)}
⊔
{Pk | k ∈ K}(15)

(where Pk = (Id−ckTk)
−1(bk) and

⊔
denotes that the union is disjoint).

Combining D with the parametrization (15), we now form a configuration space
for the set of non-overlapping compatible self similar sets with fixed upper Minkowski
dimension µ by setting:

Mµ =
{
D ×F :

F =
⊔

k∈K

⊔

t≥1

⊔

(j1,...,jt)∈{1,...,r}t

fjt
(Pk) 6=Pk

{fj1 ◦ · · · ◦ fjt(Pk)}
⊔
{Pk | k ∈ K} :(16)

fj = cjTj + bj when cj ,bj, Tj ∈ D,

and F has upper Minkowski dimension µ
}
.

We then say that any such D resp. F is a data set resp. self similar set component
of Mµ, and subsequently will always use the notation µ in place of eF , as in §1,2, in
the rest of the article.

Given a self-similar component F of Mµ, a basic observation is that Lemma 1
implies an expression for the iterated residue of the determinant zeta function at the
particular point Dµ = (µ+2, . . . , µ+2) (see Definition 4) as an infinite sum over the
points appearing in the Strichartz parametrization of F . To show that such a sum
is non zero does not seem to be an easy task in general. However, by thinking of the
problem in an asymptotic manner, we are able to identify an expected main term for
the iterated residue at Dµ.

As a result, we will look for thick self-similar sets (with a fixed upper Minkowski
dimension µ) near the ‘boundary of infinity” of Mµ, which we can approach by
allowing some of the defining data set elements to grow without bound. We can then
detect a thick set by showing that this expected main term is not zero.

3.1. Parameters (bounded and unbounded) for elements of Mµ. Intu-
itively, we can approach the boundary of Mµ at infinity in many different ways. We
do so by first identifying a few parameters, in terms of which elements of any com-
ponent data set D can be expressed, and then making the parameters grow without
bound and independently of one another. To make our work as simple as possible,
the number of such parameters should be as small as possible. In this subsection we
define the two unbounded parameters that we will need, as well as the remaining set
of bounded parameters.

One of the unbounded parameters can be easily specified without any additional
discussion. We define a common scale c and positive ratios βj, in terms of which the
different scale factors cj ∈ D are defined, by setting

(17) cj = βjc for each j = 1, . . . , r.

We will think of c as an unbounded parameter.
Recalling that K ⊂ {1, . . . , r} indexes the fixed points of those similarities that

determine the Strichartz parametrization (15) of a self similar component of Mµ, a
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helpful technical condition concerning the βk (k ∈ K), is the following

K-distinct property:

the vectors |b̂k| := β−1
k (|b1,k|, . . . , |bn,k|), k ∈ K, are distinct.

(18)

Note. We will always assume throughout the rest of the article that the K-
distinct property is satisfied for any self similar component of an element of Mµ.

Remark. (18) implies that the two quantities

ΩK := inf
k 6=k′∈K

{ n∑

i=1

∣∣∣∣
|bi,k|
βk
− |bi,k′

βk′

∣∣∣∣
}

and

ρK := inf{1,ΩK} are both positive.

(19)

The set of bounded parameters can be conveniently organized into vectors as
follows.

Definition 5. An “admissible vector” consists of five parameters:

(20) Q :=
(
(G1 ×G2), α1, α2, N, (ε, δ, θ)

)

where

• G1 ⊂ Rn − {0} and G2 ⊂ (0,∞) are compact sets;

• 0 < α1 ≤
1

2
√
n
· inf{‖u‖ : u ∈ G1}
sup{‖u‖ : u ∈ G1}

· inf G2 and

α2 ≥ 1 + 2
√
n · sup{‖u‖ : u ∈ G1}

inf{‖u‖ : u ∈ G1}
· supG2;

• N ∈ N;
• ε > 0, θ ∈ (0, 1

3
), and δ ∈ (0, 1− θ).

The second preliminary definition is that of a (c, A) permissible element (D,F) ∈
Mµ.

Definition 6. Let (D,F) ∈Mµ, where D = {r, c1, . . . , cr,b1, . . . ,br, T1, . . . , Tr},
and K indexes the fixed points in the Strichartz parametrization of F . We say that
(D,F) is “(c, A) permissible” for an admissible vector Q, as in (20), if the following
five conditions are satisfied:

1. Each bj ∈ G1;
2. A ≥ α2 and c ≥ C(A,ΩK ,Q) where

C(A,ΩK ,Q) := max
{
A

1
µ−v , ρ

−1/δ
K , rε, 2−

1
1−θ , (2ρK)

−1
}

and

v := max{µδ, µ+ 2θ − 1};
(21)

3. There is a partition {1, . . . , r} \K = S(Q) ⊔ L(Q) such that

k ∈ K iff βk ∈ G2; j ∈ L(Q) iff βj ≥ A; and

j ∈ S(Q) iff βj ∈ [c−θ, α1];
(22)

4. #K ≤ N ;
5. There exist η > 0 and θ′ > θ such that

(23) c ≥ C(A,ΩK ,Q) implies #S(Q) ≤ η c(1−θ′)µ.

Remark. Part 4 implies that #K is uniformly bounded in c. This is not obvious

since for any fixed µ, if c is allowed to grow without bound, then r must also. To see
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this, it suffices to recall from [EL-1] that

(24)
r∑

j=1

c−µ
j = 1.

So, in principle, this could also force #K to increase without bound. Thus, requiring
#K to be bounded uniformly in c ≥ C(A,ΩK ,Q) is an implicit constraint in Theo-
rem 1. This can also be thought of as a restriction upon how we choose to approach
the boundary of Mµ at infinity.

The reason for imposing this property is explained in Remark 1 (see §3.2). �

When given both an admissible Q and (c, A) permissible (D,F), it will also be
useful to specify the following shorthand notation OQ.

Notation. An expression f(c) = OQ(g(c)) means that there exist a constant
BQ, depending solely upon (some of) the components of Q, such that

(25) |f(c)| ≤ BQ · |g(c)| for all c > C(A,ΩK ,Q).
3.2. Statements of Lemma 2 and Theorem 1. As above, we start with a

pair (D,F) ∈Mµ, and define (see (13), (17)):

(26) ΨK :=
∑

(ω1,ω2)∈Sn(F)

sgn(ω1ω2) ·
n∏

i=1

(∑

k∈K

βµ
k

b
eω1(i)

+eω2(i)

k

‖bk‖µ+2

)
.

Our main result gives the following criteria for F to be thick.

Theorem 1. Let Q =
(
(G1 × G2), α1, α2, N, (ε, δ, θ)

)
be an admissible vector

(20). Then F is thick if:

1. ΨK 6= 0;
2. For some A ≥ α2 there exists (see (21))

C∗ = C∗(A,ΨK ,ΩK ,Q) ≥ C(A,ΩK ,Q)
such that (D,F) is (c, A)-permissible whenever c > C∗.

It is also interesting to note the following variant of Theorem 1 for planar self-
similar sets.

Corollary 1. If n = 2 and the similarities Tj (j = 1, . . . , r) are simultaneously
diagonalizable over R, then F is thick if, in addition to property 2 above, the following
replaces the hypothesis ΨK 6= 0:

The two vectors (b1,k)k∈K and (b2,k)k∈K are linearly independent.

The key lemma we need, and from which Theorem 1 is an easy consequence, is
the following.

Lemma 2. Let (D,F) ∈ Mµ be (c, A) permissible for an admissible vector Q.
Then, for any α ∈ Nn

0 satisfying |α| = 2 and λα

j = 1 (∀j = 1, . . . , r), it follows that
(see (25))

(27)

(
r∑

j=1

c−µ
j ln cj

)
B(F ,α) =

∑

k∈K

(
βµ
k

bα

k

‖bk‖µ+2

)
cµ +OQ

((
2

A
+

#S(Q)
c(1−θ)µ

)
cµ
)
.

Remark 1. Since ΨK equals a generalized algebraic expression in the bk, βk

(k ∈ K), the two conditions that depend solely upon K (see (19))

ΨK 6= 0 and ΩK > 0
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just mean that (bk, βk)k∈K should be a “generic” vector in the sense that it lies outside

a generalized hypersurface in the compact set G#K
1 ×G#K

2 of bounded dimension.
In this sense of generic, Theorem 1 tells us that thickness of F is an “asymptoti-

cally generic” property (in c, A). Precisely, this means:
If (D,F) ∈Mµ is (c, A) permissible for an admissible Q, and the bounded vector

(bk, βk)k is generic, then:

F is thick whenever A ≥ α2 and c > C∗(A,ΨK ,ΩK ,Q).
As noted in the Remark following Definition 6, the assumption that #K is

bounded is explicitly a property of the admissible vector Q. The reason for this
condition can now be seen. It simply means that ΨK is a generalized rational func-
tion in a bounded number of variables. Thus, the generic set is the complement of
the zero locus of such a function that is defined on a Euclidean space of bounded
dimension.

Were this hypothesis on #K not imposed it would require only that we delete
the component N from Q, and interpret the generic set as lying inside the inverse
limit

lim←−
K

{ΨK 6= 0}.

Although this set lies in an infinite dimensional space, we can think of it as being a
generic set in the sense that it lies outside a generalized proalgebraic subset whose
projection to any finite dimensional subspace is generic in the usual sense of the term.

The reader should therefore not interpret the boundedness hypothesis of #K as
a significant constraint upon the generality of our principal result. Its purpose is to
simplify our discussion by eliminating the need to specify what is meant by a generic
subset of a space of infinite dimension.

4. Proofs of Lemma 2 and Theorem 1

Proof of Lemma 2. For any J = (j1, . . . , jt) ∈ {1, . . . , r}t, and k ∈ K we set (see
(10))

m(k; J) := fj1 ◦ · · · ◦ fjt(Pk),

Ξj(m(k; J),α) =
(m(k; J) + uj)

α

‖m(k; J) + uj‖µ+2
− m(k; J)α

‖m(k; J)‖µ+2
,

(28)

and define, similarly,

Ξj(Pk,α) =
(Pk + uj)

α

‖Pk + uj‖µ+2
− Pα

k

‖Pk‖µ+2
.

Combining the right side of (9) with (15) and Part 3 of Definition 6, it follows that

(29) ∆(α,uj) = ∆(1)(α,uj) + ∆(2)(α,uj) + ∆(3)(α,uj) + ∆(4)(α,uj)

where

∆(1)(α,uj) :=
∑

k∈K

Ξj(Pk,α),

∆(2)(α,uj) :=
∑

k∈K

∑

t∈N

∑

J=(j1,...,jt)∈{1,...,r}t

fjt
(Pk) 6=Pk and jt∈L(Q)

Ξj(m(k; J),α),
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∆(3)(α,uj) :=
∑

k∈K

∑

t∈N

∑

J=(j1,...,jt)∈{1,...,r}t

fjt
(Pk) 6=Pk and jt∈S(Q)

Ξj(m(k; J),α),

∆(4)(α,uj) :=
∑

k∈K

∑

t∈N

∑

J=(j1,...,jt)∈{1,...,r}t

fjt
(Pk) 6=Pk and jt∈K

Ξj(m(k; J),α).

Remark 2. The first issue we must address is how to sharpen the estimate (11)
when the role of m is played by m(k; J). This depends upon whether jt belongs to
S(Q), L(Q) or K.

Step 1. We prove that

(30) ‖m(k; J)‖ ≍Q ct−1βj1 · · ·βjt uniformly in t ≥ 1, and J such that jt ∈ L(Q).

Remark. This statement means that there exist positive constants κ1 = κ1(Q),
κ2 = κ2(Q) and C1 = C1(Q) such that c ≥ C1 implies

κ1 < ‖m(k; J)‖/ct−1βj1 · · ·βjt < κ2 for all t ≥ 1

and

J = (j1, . . . , jt) such that jt ∈ L(Q).

It will be clear from Steps 4–7 why we need such uniformity.
To avoid having to repeat certain phrases, we use the convention that t refers to

any index at least 1. Whenever the exponent of c equals t−2, it is implicitly assumed
that the expression containing ct−2 is set equal to 0 if t = 1.

Proof of (30). First we note that

m(k; J) = cj1 · · · cjtTj1 ◦ · · · ◦ Tjt(Pk) + cj1 · · · cjt−1Tj1 ◦ · · · ◦ Tjt−1(bjt)

+
t−2∑

h=1

cj1 · · · cjhTj1 ◦ · · · ◦ Tjh(bjh+1
)

= cj1 · · · cjtTj1 ◦ · · · ◦ Tjt(Id− ckTk)
−1(bk) + cj1 · · · cjt−1Tj1 ◦ · · · ◦ Tjt−1(bjt)

+
t−2∑

h=1

cj1 · · · cjhTj1 ◦ · · · ◦ Tjh(bjh+1
),

with the convention that the sum over h reduces to bj1 if t = 2, and is empty if t = 1,
in which case, the middle term reduces to bj1 .

Denoting the coordinates of each bk in the basis {g1, . . . , gn} for EC by (b1,k, . . . , bn,k),
the fact that each I − ckTk is non singular evidently implies that the coordinates for
Pk = (I − ckTk)

−1(bk) in the same basis are

Pk =

(
b1,k

1− ckλ1,k
, . . . ,

bn,k
1− ckλn,k

)
.
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As a result, setting m(k; J) = (m1(k; J), . . . , mn(k; J)) to denote the coordinates
of each m(k; J) in this basis, it then follows that for each i = 1, . . . , n

mi(k; J) = cj1 · · · cjtλi,j1 · · ·λi,jt

bi,k
1− ckλi,k

+ cj1 · · · cjt−1λi,j1 · · ·λi,jt−1bi,jt

+
t−2∑

h=1

cj1 · · · cjhλi,j1 · · ·λi,jhbi,jh+1

= cj1 · · · cjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtcjt
− bi,k

λi,kck

)
+OQ

(
cj1 · · · cjt

c2k
+

t−2∑

h=1

cj1 · · · cjh
)

= ct−1βj1 · · ·βjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtβjt

− bi,k
λi,kβk

)

+OQ

(
ct−2βj1 · · ·βjt

β2
k

+

t−2∑

h=1

chβj1 · · ·βjh

)

= ct−1βj1 · · ·βjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtβjt

− bi,k
λi,kβk

)

+OQ

(
ct−2βj1 · · ·βjt

β2
k

+ βj1 · · ·βjt

t−2∑

h=1

ch

βjh+1
· · ·βjt−1

)

= ct−1βj1 · · ·βjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtβjt

− bi,k
λi,kβk

)

+OQ

(
ct−2βj1 · · ·βjt + βj1 · · ·βjt

t−2∑

h=1

chcθ(t−h−1)

)

(31)

where we have used the property that each βj ≥ c−θ in the last line. Thus, for each i

mi(k; J)

= ct−1βj1 · · ·βjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtβjt

− bi,k
λi,kβk

)
+OQ

(
ct−2+θβj1 · · ·βjt

)
.

(32)

Assume now that jt ∈ L(Q). Since (D,F) is (c, A)-permissible and A ≥ α2 it
follows from (22) and the fact that each |λi,j| = 1 that

(33) 1≫Q

n∑

i=1

∣∣∣∣
bi,jt

λi,jtβjt

− bi,k
λi,kβk

∣∣∣∣ ≥
n∑

i=1

|bi,k|
βk
− |bi,jt|

βjt

≥ ‖bk‖
βk
−
√
n‖bjt‖
βjt

,

where the notation “1≫Q �” (resp. “1≪Q �”—see below) means that the quantity
� is bounded above (resp. below) by a constant c1(Q).

Setting

(34) M ′ = inf{‖u‖ : u ∈ G1}, M = sup{‖u‖ : u ∈ G1}
the lower bounds A ≥ α2 ≥ 1 + 2

√
nβk ·M/M ′ imply

‖bk‖
βk
−
√
n‖bjt‖
βjt

≥ M ′

βk
−
√
nM

βjt

=
M

βk

(
M ′

M
−
√
nβk

βjt

)

≥ M

βk

(
M ′

M
−
√
nβk

A

)
≥ M ′

2βk

≫Q 1.

Combining this with (32) completes the proof of (30). �
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Step 2. We prove that ρK cδ ≥ 1 implies

ct−1(βj1 · · ·βjt−1)≫Q ‖m(k; J)‖
≥Q ct−1(βj1 · · ·βjt−1) ρK

(
1 +OQ

(
c−(1−θ−δ)

))
,

(35)

uniformly in t, J such that jt ∈ K \ {k}. If jt ∈ K \ {k}, it follows from (32), the
hypothesis ρK cδ ≥ 1, and the fact that each |λi,j| = 1 that

ct−1(βj1 · · ·βjt)≫Q ‖m(k; J)‖ ≥ 1√
n
ct−1(βj1 · · ·βjt) ρK +OQ

(
ct−2+θβj1 · · ·βjt

)

≥ 1√
n
ct−1(βj1 · · ·βjt) ρK

(
1 +OQ

(
c−(1−θ)ρ−1

K

))
.

(35) now follows, whenever t ≥ 2, by combining this with the facts that jt ∈ K and
δ + θ < 1. If, however, t = 1, then the OQ term is not present and the lower bound
is understood to equal ρK .

Step 3. We prove that

(36) ‖m(k; J)‖ ≍Q ct−1βj1 · · ·βjt−1 uniformly in t, J such that jt ∈ S(Q).

Proof of (36). The equation (31) implies that

(37) mi(k; J) = ct−1βj1 · · ·βjtλi,j1 · · ·λi,jt

(
bi,jt

λi,jtβjt

− bi,k
λi,kβk

)
+Ri(k; J)

where

Ri(k; J) = OQ

(
ct−2βj1 · · ·βjt

β2
k

+
t−2∑

h=1

chβj1 · · ·βjh

)
.

The condition jt ∈ S(Q) implies (by (22)) that βjt ∈ [c−θ, α1]. Combining this with
the inequality βj ≥ c−θ (for each j) then implies

Ri(k; J)≪Q ct−2βj1 · · ·βjt + βj1 · · ·βjt

t−2∑

h=1

ch

βjh+1
· · ·βjt

≪Q ct−2βj1 · · ·βjt + βj1 · · ·βjt

t−2∑

h=1

ch(cθ)t−h

≪Q ct−2βj1 · · ·βjt + ct−2+2θβj1 · · ·βjt

≪Q ct−2+3θβj1 · · ·βjt−1.

(38)

It now follows from (37) and (38) that there exists a constant ΓQ such that for each
i, k, J

|mi(k; J)| ≥ ct−1βj1 · · ·βjt−1

(
|bi,jt | − |bi,k|

βjt

βk

)
− ΓQ ct−2+3θβj1 · · ·βjt−1.
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Using, in addition, (34) and the (c, A)-permissibility of (D,F) (i.e., Definition 6,
Parts 1, 3), we conclude (after an elementary argument left to the reader)

‖m(k; J)‖1 :=
n∑

i=1

|mi(k; J)|

≥ ct−1βj1 · · ·βjt−1

(
‖bjt‖1 − ‖bk‖1 ·

βjt

βk

)
− ΓQ ct−2+3θβj1 · · ·βjt−1

≥ ct−1βj1 · · ·βjt−1

(
‖bjt‖ −

√
n ‖bk‖ ·

βjt

βk

)
− ΓQ ct−2+3θβj1 · · ·βjt−1

≥ ct−1βj1 · · ·βjt−1

(
M ′ − α1

√
n
‖bk‖
βk

)
− ΓQ ct−2+3θβj1 · · ·βjt−1

≥ M ′

2
ct−1βj1 · · ·βjt−1 − ΓQ ct−2+3θβj1 · · ·βjt−1 .

Thus, there exist constants κ′
1 > 0 and C ′ = C ′(Q) such that c > C ′ implies

(39) ‖m(k; J)‖ ≫ ‖m(k; J)‖1 > κ′
1c

t−1βj1 · · ·βjt−1 uniformly in t, J.

To prove the inequality in the other direction, we note

‖m(k; J)‖ ≤ √n ct−1βj1 · · ·βjt−1

(
‖bjt‖+ ‖bk‖

βjt

βk

)
+OQ

(
ct−2+3θβj1 · · ·βjt−1

)

≤ ct−1βj1 · · ·βjt−1

(
M ′ +R

‖bk‖
βk

)
+OQ

(
ct−2+3θβj1 · · ·βjt−1

)
.

Thus, there exist constants κ′
2 > 0 and C ′′ = C ′′(Q) such that c > C ′′ implies

(40) ‖m(k; J)‖ < κ′
2c

t−1βj1 · · ·βjt−1 uniformly in t, J (jt ∈ S(Q)).
Combining (39) and (40) finishes the proof of (36).

Remark. Putting Steps 1–3 together, and using the a priori bound (that follows
from (10)),

‖uj‖ = OQ

(
1

cβj

)
for all j ∈ {1, . . . , r} ,

we can then bound ‖uj‖/‖m(k; J)‖ as follows:

‖uj‖/‖m(k; J)‖ ≪Q

{
c−t(1−θ) if jt ∈ S(Q) ∪ L(Q),
c−(t−1)(1−θ)−1ρ−1

K if jt ∈ K − {k},
where the implied constant only depends upon the element θ of Q and is uniformly
bounded when θ ∈ (0, 1/3) (an easily verified property, left to the reader). Since the
exponent of c is strictly negative in either of the two cases (in particular, δ < 1 − θ
implies this if jt ∈ K) it follows that

(41) ‖uj‖/‖m(k; J)‖ < 1/2 in all cases whenever c ≥ max{2− 1
1−θ , (2ρK)

−1}.
Step 4. Estimate for ∆(2)(α,uj). We show

(42) ∆(2)(α, uj)≪Q cµ−1+2θ.

Proof. By (41), we are justified in using the Mean Value Theorem, applied to the
function ϕ(x) = xα/‖x‖µ+2 and point x = m(k, J) when restricted to any compact



Thick self similar sets are asymptotically generic 849

convex subregion not containing the origin. Thus, (30) implies that

(m(k; J) + uj)
α

‖m(k; J) + uj‖µ+2
− m(k; J)α

‖m(k; J)‖µ+2
≪Q

‖uj‖
‖m(k; J)‖µ+1

≪Q

1
cβj

(ct−1βj1 · · ·βjt)
µ+1

≪Q
1

βj(βj1 · · ·βjt)
µ+1c(t−1)(µ+1)+1

(43)

uniformly in t, J such that jt ∈ L(Q). It follows that

∆(2)(α, uj)≪Q

∑

t∈N

∑

{(j1,··· ,jt):jt∈L(Q)}

1

βj(βj1 · · ·βjt)
µ+1c(t−1)(µ+1)+1

≪Q

∞∑

t=1

1

βjc(t−1)(µ+1)+1

( r∑

h=1

1

βµ+1
h

)t

.

Since each βh ≥ c−θ, we see that (24) implies

( r∑

h=1

1

βµ+1
h

)t

≤
( r∑

h=1

cθ

βµ
h

)t

= c(θ+µ)t.

Thus, a simple check verifies

(44) ∆(2)(α,uj)≪Q
cµ

βj

∞∑

t=1

1

c(1−θ)t
≪Q

cµ

βj
· 1

c1−θ − 1
≪Q

cµ−1+θ

βj
≪Q cµ−1+2θ.

Step 5. Estimate for ∆(3)(α,uj). We show

(45) ∆(3)(α,uj)≪Q cµ−1+θ.

Proof. As in Step 4, the estimate of Step 3 implies

(46)
(m(k; J) + uj)

α

‖m(k; J) + uj‖µ+2
− m(k; J)α

‖m(k; J)‖µ+2
≪Q

1

βj(βj1 · · ·βjt−1)
µ+1 c(t−1)(µ+1)+1

.

uniformly in t, J = (j1, . . . , jt) such that jt ∈ S(Q). Proceeding as in Step 4, it
follows that

∆(3)(α,uj)≪Q

∑

t∈N

∑

{(j1,··· ,jt):jt∈S(Q)}

1

βj(βj1 · · ·βjt−1)
µ+1c(t−1)(µ+1)+1

≪Q

∞∑

t=1

#S(Q)
βjc(t−1)(µ+1)+1

·
( r∑

h=1

1

βµ+1
h

)t−1

≪Q

∞∑

t=1

(#S(Q)) cθ(t−1)

βjc(t−1)(µ+1)+1
·
( r∑

h=1

β−µ
h

)t−1

≪Q

∞∑

t=1

(#S(Q)) c(θ+µ)(t−1)

βjc(t−1)(µ+1)+1

≪Q
(#S(Q)) c−θ

βj

∞∑

t=1

1

c(1−θ)t
≪Q

#S(Q)
cβj

.

Since (22) also implies #S(Q) · α−µ
1 ≤

∑
ℓ∈S(Q) β

−µ
ℓ , it follows that

#S(Q) ≤ αµ
1 ·

∑

ℓ∈S(Q)

β−µ
ℓ ≤ αµ

1 ·
r∑

h=1

β−µ
h = αµ

1 · cµ .
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Thus, for each j = 1, . . . , r,

∆(3)(α,uj)≪Q
αµ
1 c

µ−1

βj
≪Q cµ−1+θ.

Remark. In particular, the estimate from Part 5 of Definition 6 is not needed

for this bound, unlike that for (64) below, since the exponent for c in (45) is already
strictly less than µ.

Step 6. Estimate of ∆(4)(α,uj). We prove

(47) δ < 1− θ implies for all j ∆(4)(α,uj)≪Q
1

c1−θ ρµ+1
K

uniformly in c satisfying c ≥ max
{
ρ
−1/δ
K , 2−

1
1−θ , (2ρK)

−1
}
.

As in steps 4–5, (35), (41), and the Mean Value Theorem imply that for c ≥
max{ρ−1/δ

K , 2−
1

1−θ , (2ρK)
−1}:

(m(k; J) + uj)
α

‖m(k; J) + uj‖µ+2
− m(k; J)α

‖m(k; J)‖µ+2
≪Q

‖uj‖
‖m(k; J)‖µ+1

≪Q

1
cβj

(ct−1(βj1 · · ·βjt−1)ρK)
µ+1

≪Q
1

βj(βj1 · · ·βjt)
µ+1 c(t−1)(µ+1)+1 ρµ+1

K

.

(48)

Proceeding as in Step 4, it follows that

∆(4)(α,uj)≪Q

∑

t∈N

∑

{(j1,...,jt):jt∈K\{k}}

1

βj(βj1 · · ·βjt−1)
µ+1 c(t−1)(µ+1)+1 ρµ+1

K

≪Q

∞∑

t=1

1

βj c(t−1)(µ+1)+1 ρµ+1
K

( r∑

h=1

1

βµ+1
h

)t−1

≪Q

∞∑

t=1

cθ(t−1)

βj c(t−1)(µ+1)+1 ρµ+1
K

( r∑

h=1

β−µ
h

)t−1

≪Q

∞∑

t=1

c(θ+µ) (t−1)

βj c(t−1)(µ+1)+1 ρµ+1
K

≪Q
c−θ

βj ρ
µ+1
K

∞∑

t=1

1

c(1−θ)t
≪Q

1

c βj ρ
µ+1
K

≪Q
1

c1−θ ρµ+1
K

.

This completes the proof of (47).

Step 7. Estimate for ∆(1)(α,uj). For given k ∈ K, the estimates we need for
each Ξj(Pk,α) depend upon whether j = k, j ∈ L(Q), j ∈ K \ {k}, or j ∈ S(Q). So
it is convenient to split the discussion into four cases.

For each such case it is useful to have an explicit expression for the coordinates
of Pk + uj (in the basis {gj}j) in powers of c−1 (at least to first order). Setting
uj = (u1,j, . . . , un,j) it follows that if j 6= k, then

(49) Pi,k + ui,j =
bi,k

1− cβkλi,k
+

bi,j
cβjλi,j

= δj,k(i) · c−1 +OQ(c
−2),

where

δj,k(i) =
bi,j

λi,jβj
− bi,k

λi,kβk
.
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Case 1. (j = k) Here the expression is simple. For each i = 1, . . . , n, it is clear
that

Pi,k + ui,k =
bi,k

1− cβkλi,k
+

bi,k
cβkλi,k

=

(
bi,k

β2
kλ

2
i,k

)
· c−2 +OQ(c

−3).

Using the relation λα

k = 1, we then verify (details left to the reader):

(Pk + uk)
α

‖Pk + uk‖µ+2
=

(
β2µ
k

bα

k

‖bk‖µ+2

)
c2µ +OQ(c

2µ−1).

Furthermore, since

Pi,k =
bi,k

1− cβkλi,k

=
−bi,k
βkλi,k

· c−1 +OQ(c
−2) ,

it is clear that
Pα

k

‖Pk‖µ+2
≍Q cµ.

Thus,

(50) Ξk(Pk,α) =

(
β2µ
k

bα

k

‖bk‖µ+2

)
c2µ +OQ(c

2µ−1 + cµ).

Case 2. (j ∈ L(Q)) Using (49) we have

Ξj(Pk,α) =

∏n
i=1

(
δj,k(i) · c−1 +OQ(c

−2)
)αi

∥∥(δj,k(1) · c−1 +OQ(c−2), . . . , δj,k(n) · c−1 +OQ(c−2)
)∥∥µ+2

−
∏n

i=1

(
[
−bi,k
βkλi,k

]c−1 +OQ(c
−2)
)αi

∥∥( −b1,k
βkλ1,k

· c−1 +OQ(c−2), . . . ,
−bn,k

βkλk,n
· c−1 +OQ(c−2)

)∥∥µ+2 .

(51)

Setting δ(j, k) =
(
δj,k(1), . . . , δj,k(n)

)
, we note that part 1 of Definition 6, (22), (34),

and the fact that j ∈ L(Q) then tell us

1≫Q ‖δ(j, k)‖ ≫
n∑

i=1

|bi,k|
βk

− |bi,j |
βj

≥ ‖bk‖
βk

−
√
n‖bj‖
βj

≥ M ′

βk
−
√
nM

βjt

=
M

βk

(
M ′

M
−
√
nβk

βjt

)
≥ M

βk

(
M ′

M
−
√
nβk

A

)
≥ M ′

2βk
≫Q 1.

A routine calculation, left to the reader, now implies

(52) Ξj(Pk,α) =

[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]
cµ +OQ(c

µ−1),

where

b∗
k(βk,λk) := β−1

k ·
(
b1,k/λ1,k, . . . , bn,k/λn,k

)
.

Case 3. (j ∈ S(Q)) An elementary check shows that for each i

|Pi,k + ui,j| ≥
( |bi,j|

βj
− |bi,k|

βk

)
· c−1 +OQ(c

−2).
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Thus, using again (22), (34), and the norm ‖ · ‖1 from Step 3, we find:

‖Pk + uj‖ ≥
1√
n
‖Pk + uj‖1 ≥

1√
n

(‖bj‖1
βj
− ‖bk‖1

βk

)
c−1 +OQ(c

−2)

≥ 1√
n

(‖bj‖
βj
−
√
n
‖bk‖
βk

)
c−1 +OQ(c

−2)

≥ 1√
n

(
M ′

α1
−
√
n
‖bk‖
βk

)
c−1 +OQ(c

−2) ≥ M

supG2
· c−1 +OQ(c

−2) .

It follows that

‖Pk + uj‖ ≫Q c−1.

We deduce that for j ∈ S(Q):

Ξj(Pk,α) =
(Pk + uj)

α

‖Pk + uj‖µ+2
− Pα

k

‖Pk‖µ+2
≪Q

1

‖Pk + uj‖µ
+

1

‖Pk‖µ

≪Q cµ +
1

‖Pk‖µ
≪Q cµ.

(53)

Case 4. (j ∈ K \ {k}) Using notation from Case 2, it follows from (19) that

(54) 1≫Q ‖δ(j, k)‖ ≫
n∑

i=1

∣∣ bi,j
λi,jβj

− bi,k
λi,kβk

∣∣ ≥
n∑

i=1

∣∣∣∣
|bi,k|
βk

− |bi,j|
βj

∣∣∣∣ ≥ ρK ,

uniformly in j ∈ K \ {k}. As with (52), the expression (51) for Ξj(Pk,α) gives

(55) Ξj(Pk,α) =

[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]
cµ +OQ

(
cµ−1ρ−µ−2

K

)
,

Thus, the hypothesis ρK cδ ≥ 1 then implies

(56) Ξj(Pk,α) =

[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]
cµ +OQ

(
cµ−1+δ(µ+2)

)
.

Step 8. Finishing the proof of Lemma 2. We assume that c ≥ C(A,ΨK ,Q), as
defined in (21). Combining (29) with Steps 4–6 (i.e., (42), (45), (47)), and the global
constraint (24), we have

( r∑

j=1

c−µ
j ln cj

)
B(F ,α) =

r∑

j=1

c−µ
j ∆(α,uj)

=

r∑

j=1

c−µ
j

(
∆(1)(α,uj) + ∆(2)(α,uj) + ∆(3)(α,uj) + ∆(4)(α,uj)

)

=
r∑

j=1

c−µ
j ∆(1)(α,uj) +OQ

( r∑

j=1

c−µ
j

[
cµ−1+2θ + cµ−1+θ + c−1+θρ−µ−1

K

])

=

r∑

j=1

c−µ
j ∆(1)(α,uj) +OQ

(
cµ−1+2θ + c−1+θ ρ−µ−1

K

)
.

(57)
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By definition,
r∑

j=1

c−µ
j ∆(1)(α,uj) =

∑

k∈K

c−µ
k Ξk(Pk,α) +

∑

k∈K

∑

j∈L(Q)

c−µ
j Ξj(Pk,α)

+
∑

k∈K

∑

j∈S(Q)

c−µ
j Ξj(Pk,α) +

∑

k∈K

∑

j∈K\{k}

c−µ
j Ξj(Pk,α).

(58)

Now, Case 1 of Step 7 implies (see (50))

∑

k∈K

c−µ
k Ξk(Pk,α) =

∑

k∈K

c−µ
k

[(
β2µ
k

bα

k

‖bk‖µ+2

)
c2µ +OQ

(
c2µ−1 + cµ

)]

=
∑

k∈K

(
βµ
k

bα

k

‖bk‖µ+2

)
cµ +OQ

(
cµ−1

)
.

(59)

Case 2 of Step 7 (see (52)) implies
∑

k∈K

∑

j∈L(Q)

c−µ
j Ξj(Pk,α)

=
∑

k∈K

∑

j∈L(Q)

c−µ
j

{[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]
cµ +OQ

(
cµ−1

)}
.

(60)

To bound the sum over j ∈ L(Q), we use the (c, A)-admissibility of (D,F) and
the Mean-Value Theorem, applied to the function ϕ(x) = xα/‖x‖µ+2, when restricted
to any compact convex subregion not containing the origin. For our purposes, since
δ(j, k) = yj − b∗

k(βk,λk) where

(61) yj := β−1
j ·

(
b1,j/λ1,j, . . . , bn,j/λn,j

)
,

we will need to choose x to equal −b∗
k(βk,λk) for some k ∈ K.

Since ‖b∗
k(βk,λk)‖ ≫ 1 (i.e. uniformly in k), it is clear that there exists 0 <

κ1 < κ so that ‖yj‖ ≤ κ1 implies the line segment connecting yj − b∗
k(βk,λk) to

−b∗
k(βk,λk) will not pass through the origin for all k. Indeed, it suffices to choose

κ1 :=
1
2
·mink{‖b∗

k(βk,λk)‖}. By construction, it follows that κ1 depends only upon

Q.
We now note that any yj defined in (61) satisfies this needed property since the

definition of (c, A)-permissibility implies A ≥ α2. This insures that AM ′/Mβk > 2.
Thus, for any yj , it follows that

‖yj‖≤
M

A
=

Mβk

AM ′
·M

′

βk

≤ Mβk

AM ′
·‖b∗

k(βk, λk)‖<
1

2
·‖b∗

k(βk, λk)‖ = κ1 (for each k ∈ K).

Since |α| = 2 implies that ϕ is an even function, we now conclude

(62) ϕ
(
− b∗

k(βk,λk) + yj

)
− ϕ

(
b∗
k(βk,λk)

)
≪κ1

‖yj‖
‖b∗

k(βk,λk)‖µ+1
≪Q ‖yj‖

uniformly in k and j ∈ L(Q). Thus,

∑

k∈K

∑

j∈L(Q)

c−µ
j

{[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]}
cµ ≪Q

cµ

A

∑

k∈K

∑

j∈L(Q)

c−µ
j

≪Q
cµ

A

( r∑

j=1

c−µ
j

)
=

cµ

A
.(63)
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Case 3 of Step 7 (see (53)), combined with Part 5 of Definition 6, implies

(64)
∑

j∈S(Q)

c−µ
j Ξj(Pk,α) = OQ

( ∑

j∈S(Q)

β−µ
j

)
= OQ

(
#S(Q)cθµ

)
= OQ

(
#S(Q)
c(1−θ)µ

· cµ
)
.

Case 4 of Step 7 (see (55)) implies that

∑

k∈K

∑

j∈K\{k}

c−µ
j Ξj(Pk,α) =

∑

k∈K

∑

j∈K\{k}

c−µ
j

{[
δ(j, k)α

‖δ(j, k)‖µ+2
− b∗

k(βk,λk)
α

‖b∗
k(βk,λk)‖µ+2

]
cµ

+OQ

(
cµ−1ρ−µ−2

K

)
}
.(65)

Applying (54) we conclude

∑

k∈K

∑

j∈K\{k}

c−µ
j Ξj(Pk,α) = OQ

(
1

‖δ(j, k)‖µ + 1 + c−1ρ−µ−2
K

)

= OQ

(
1 + ρ−µ

K + c−1ρ−µ−2
K

)
.

(66)

Combining together (57)–(64) and (66), we see that
(

r∑

j=1

c−µ
j ln cj

)
B(F ,α) =

∑

k∈K

(
βµ
k

bα

k

‖bk‖µ+2

)
cµ +OQ

(
1 + cµ−1+2 θ + c−1+θρ−µ−1

K

+ c−1ρ−µ−2
K + ρ−µ

K +

(
#S(Q)
c(1−θ)µ

+
1

A

)
cµ
)
.(67)

Moreover, the fact that ρK cδ ≥ 1 implies

(68)

(
r∑

j=1

c−µ
j ln cj

)
B(F ,α) =

∑

k∈K

(
βµ
k

bα

k

‖bk‖µ+2

)
cµ+OQ

(
cv+

(
#S(Q)
c(1−θ)µ

+
1

A

)
cµ
)
,

where v < µ is defined in (21). This implies the estimate asserted in (27) and finishes
the proof. �

Proof of Theorem 1. Given an admissible vector Q and (c, A)-permissible (D,F),
Lemma 2 gives the following explicit identity (see (13))

(
r∑

j=1

c−µ
j ln cj)

nV (F ,Dµ

)
(69)

=
∑

(ω1,ω2)∈Sn(F)

sgn(ω1ω2)

n∏

i=1

[(
∑

k∈K

βµ
k b

eω1(i)
+eω2(i)

k

‖bk‖µ+2

)
cµ(70)

+OQ

([
2

A
+

#S(Q)
c(1−θ)µ

]
· cµ

)]

= ΨK · cnµ +OQ

([
2

A
+

#S(Q)
c(1−θ)µ

]
· cnµ

)
,(71)

where the proof of Lemma 2 has shown that the implicit constant in the OQ bound
is bounded above by an expression of the form

φ0(Q) + φ1(Q)c−γ ,
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with γ = γ(δ, θ) > 0, and φ0, φ1 bounded uniformly over all possible (δ, θ) of any
admissible Q.

As explained at the end of §3.2 in Remark 1, it follows that F will be thick once
we know that ΨK 6= 0 and c and A are sufficiently large, which follows from the
second condition in the statement of Theorem 1. This completes the proof of the
theorem. �

Proof of Corollary 1. To conclude, by using Theorem 1, it suffices to prove that

R(F) :=
∑

(ω1,ω2)∈S2(F)

sgn(ω1ω2)

(
∑

k∈K

βµ
k

b
eω1(1)

+eω2(1)

k

‖bk‖µ+2

)(
∑

k∈K

βµ
k

b
eω1(2)

+eω2(2)

k

‖bk‖µ+2

)

6= 0.

(72)

where S2(F) = {(ω1, ω2) ∈ S2
2 | λ

eω1(i)
+eω2(i)

j for all j = 1, . . . , r and each i = 1, 2}.
Claim. For all j = 1, . . . , r (λ1,j)

2 = (λ2,j)
2 = 1 and λ1,jλ2,j = ±1.

Proof. We know that ζF(2e1; s) + ζF(2e2; s) = ζF(s− 2) has a pole at s = µ+2.
It follows that at least one of the two zeta function ζF(2e1; s) or ζF(2e2; s) also has
a pole at s = µ+ 2. As a result, Lemma 1 Part 1 implies

λ2
1,j = 1 or λ2

2,j = 1 (for each j).

Moreover, we also know that λj,1λj,2 = det(Tj) = ±1 for each j. Thus, λ2
1,j = λ2

2,j = 1
and λj,1λj,2 = ±1 (for each j). This ends the proof of the Claim. �

Now we distinguish two cases:

First case. We assume that λ1,jλ2,j = 1 for each j. It is then clear that in this
case we have S2(F) = {(id, id); (id, τ); (τ, id); (τ, τ)} where τ = (12) exchanges 1 and
2. It follows from (72) that

R(F) = 2

(
∑

k∈K

βµ
k

(b1,k)
2

‖bk‖µ+2

)(
∑

k∈K

βµ
k

(b2,k)
2

‖bk‖µ+2

)
− 2

(
∑

k∈K

βµ
k

b1,kb2,k
‖bk‖µ+2

)2

.

Cauchy–Schwarz Inequality and the linear independence of the two vectors (b1,k)k∈K
and (b2,k)k∈K of R#K imply then that R(F) > 0. This completes the proof of the
corollary in this case.

Second case. We assume that there exists j = 1, . . . , r such that λ1,jλ2,j 6= 1. It
is clear in this case that we have S2(F) = {(id, id); (τ, τ)} where τ = (12). It follows
from (72) that

R(F) = 2

(
∑

k∈K

βµ
k

(b1,k)
2

‖bk‖µ+2

)(
∑

k∈K

βµ
k

(b2,k)
2

‖bk‖µ+2

)
> 0.

This completes the proof of Corollary 1. �

Concluding remark. It seems to us quite intriguing that our solution to a
discrete Falconer type problem for volumes turns out to be a natural analogue to the
solution recently found for compact Salem sets in [GIM].

We think that this analogy between Salem sets and thick sets merits additional
study. Whereas the Salem property implies a maximal rate of decay for the Fourier
transform of a Frostman measure supported on the set, thickness implies that the
polar locus of a certain “determinant zeta function” is, along the diagonal, as far from
the origin as possible. Such extremal analytic behavior often leads to interesting
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geometric phenomena exhibited by the sets. More precisely, the Fourier dimension of
a compact set E ⊂ Rn, denoted by dimF E, is defined [M] as the supremum of β ≥ 0

such that for some probability measure dµ supported on E, |d̂µ(x)| ≪β |x|−β/2 as
|x| → ∞. We always have dimF E ≤ dimH E. However, several examples (see [M])
show that Hausdorff dimension and Fourier dimension do not agree in general. A set
E is said to be a Salem set if its Fourier dimension (which measures an arithmetic
property of E) agrees with its Hausdorff dimension (which measures a metric property
of E). In the discrete setting, we associate to any discrete self-similar set F a natural
measure ν defined for any subset A of Fn by

ν(A) :=
∑

(m1,...,mn)∈A

det(m1, . . . ,mn)
2

‖m1‖2 . . . ‖mn‖2
∈ [0,∞].

This measure is characterized by its characteristic function defined by

Vν(u1, . . . , un) := ν

(( n∏

j=1

B(euj )

)
∩ Fn

)
,

where B(r) denotes the ball of radius r. The multivariate Laplace3 transform of this
characteristic function is defined formally by

Lv(s1, . . . , sn) =
ˆ ∞

0

. . .

ˆ ∞

0

e−s1u1 . . . e−snun Vν(u1, . . . , un) du1 . . . dun.

This transform is related to our multivariate determinantal zeta function (see (7))
by the formula

Lv(s1, . . . , sn) =
1

s1 . . . sn
ζdet(F ; s1 + 2, . . . , sn + 2)

=
1

s1 . . . sn

∑

m1,...,mn∈F ′

det2(m1, . . . ,mn)

‖m1‖s1+2 . . . ‖mn‖sn+2
.

In the one variable setting, the abscissa of convergence, which is also the largest
real pole of the zeta function, is called the zeta-dimension or Laplace dimension. In
the multivariate setting, the vertices of maximal weight on the boundary of the real
part of the domain of convergence, may be considered as the Laplace dimensions if
they are indeed poles. The defining property of thickness (see Definition 4) means
that there is a Laplace dimension at the point (µ, . . . , µ), where µ is the the upper
Minkowski dimension of F .
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