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Abstract. In this paper, we study a class A(λ, n,m) of self-similar sets with m exact overlaps

generated by n similitudes of the same ratio λ. We obtain a necessary condition for a self-similar

set in A(λ, n,m) to be Lipschitz equivalent to a self-similar set satisfying the strong separation

condition, i.e., there exists an integer k ≥ 2 such that x2k −mxk + n is reducible, in particular, m

belongs to {ai : a ∈ N with i ≥ 2}.

1. Introduction

Recall that a compact subset K of Euclidean space is said to be a self-similar
set [6], if K =

⋃n
i=1 Si(K) is generated by contractive similitudes {Si}i with ratio set

{ri}i ⊂ (0, 1) satisfying |Si(x)−Si(y)| = ri|x−y| for all x, y. The classical dimension
result under the open set condition (OSC) is

(1.1) dimH K = s with
∑n

i=1
(ri)

s = 1.

In particular, K is said to be dust-like when the strong separation condition (SSC)
holds, i.e., Si(K) ∩ Sj(K) = ∅ for all i 6= j, then the open set condition holds and
thus (1.1) is valid.

The self-similar sets with overlaps have complicated structures, for example,
Hochman [5] studied the self-similar sets

Eθ = Eθ/3 ∪ (Eθ/3 + θ/3) ∪ (Eθ/3 + 2/3)

and obtained dimH Eθ = 1 for any θ irrational. If θ is rational, Kenyon [8] obtained
that the OSC is fulfilled for Eθ if and only if θ = p/q ∈ Q with p ≡ q 6≡ 0 (mod3).
Rao and Wen [11] also discussed the structure of Eθ with θ ∈ Q using the key idea
“graph-directed structure” introduced by Mauldin and Williams [9].

Recently, Jiang, Wang and Xi [7] investigated a class A(λ, n,m) of self-similar
sets with exact overlaps where λ ∈ (0, 1) and m,n ∈ N with 1 ≤ m ≤ n − 2. Let
fi(x) = λx+ bi with 0 = b1 < b2 < · · · < bn = 1− λ. Write I = [0, 1] and Ii = fi(I).
Assume that

|Ii ∩ Ii+1|

|Ii|
∈ {0, λ} if Ii ∩ Ii+1 6= ∅, and ♯

{

i :
|Ii ∩ Ii+1|

|Ii|
= λ

}

= m.
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We call E = ∪n
i=1fi(E) a self-similar set with exact overlap, denoted by E ∈

A(λ, n,m). It is proved in [7] that dimH E = log β
− log λ

where the P.V. number β > 1 is

a root of the irreducible polynomial x2−nx+m = (x−β)(x−β ′) with |β ′| < 1 < β.
In this paper, we will compare self-similar sets in A(λ, n,m) with dust-like self-

similar sets in terms of Lipschitz equivalence.
Two compact subsets X1, X2 of Euclidean spaces are said to be Lipschitz equiv-

alent, denoted by X1 ≃ X2, if there is a bijection f : X1 → X2 and a constant C > 0
such that for all x, y ∈ X1,

C−1|x− y| ≤ |f(x)− f(y)| ≤ C|x− y|.

Cooper and Pignataro [1], Falconer and Marsh [3], David and Semmes [2] and Wen
and Xi [12] showed that two self-similar sets need not be Lipschitz equivalent although
they have the same Hausdorff dimension.

We concern the Lipschitz equivalence between two self-similar sets with the SSC

and with overlaps respectively.
(1) David and Semmes [2] posed the {1, 3, 5}-{1, 4, 5} problem. Let H1 = (H1/5)

∪(H1 + 2/5) ∪ (H1 + 4/5) and H2 = (H2/5) ∪ (H2 + 3/5) ∪ (H2 + 4/5) be {1, 3, 5},
{1, 4, 5} self-similar sets respectively. The problem asks about the Lipschitz equiva-
lence between H1 (with the SSC) and H2 (with the touched structure). Rao, Ruan
and Xi [10] proved that H1 and H2 are Lipschitz equivalent.

(2) Guo et al. [4] studied the Lipschitz equivalence for Kn = (λKn) ∪ (λKn +
λn(1− λ))∪ (λKn +1− λ) with overlaps and proved that Kn ≃ Km for all n,m ≥ 1.
In particular, for n = 1, K1 ∈ A(λ, 3, 1) is Lipschitz equivalent to a dust-like set
F = (λF ) ∪ (λ1/2F + 1− λ1/2).

We will state our main result.

Theorem 1. Suppose E ∈ A(λ, n,m) and P (x) = x2 − nx + m. If there is a

dust-like self-similar set F such that E ≃ F , then there exists an integer k ≥ 2 such

that

P (xk) = x2k − nxk +m is reducible in Z[x].

In particular, we have

m ∈ {ai | a ∈ N and i ∈ N with i ≥ 2}.

By this theorem, if m ∈ {2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, · · ·}, then we cannot
find a dust-like self-similar set to be Lipschitz equivalent to E ∈ A(λ, n,m).

Example 1. For n = 3 and m = 1, we have P (x) = x2− 3x+1 and an example
K1 ≃ F = (λF )∪(λ1/2F+1−λ1/2) in [4] as above. Now, P (x2) = (x2−x−1)(x2+x−1)
is reducible and 1 ∈ {ai | a ∈ N and i ∈ N with i ≥ 2}.

The paper is organized as follows. In Section 2 we show any self-similar set in
A(λ, n,m) has graph-directed structure and obtain the logarithmic commensurability
of ratios for the dust-like self-similar set by the approach of Falconer and Marsh
[3]. Using the dimension polynomials and their irreducibility, we give the proof of
Theorem 1 in Section 3.

2. Logarithmic commensurability of ratios

At first, we show that any self-similar set with exact overlaps will generate a
graph-directed construction.

Lemma 1. There are graph-directed sets {Ei}
u
i=1 with ratio λ satisfying the SSC

and E1 = E.
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Proof. Consider the set G in the following form

G =
⋃k

i=1
(E + ai) with 0 = a1 < a2 < · · · < ak and k ≤ n− 1

such that (I + ai) ∩ (I + ai+1) 6= ∅ with I = [0, 1] for all i ≤ k − 1 satisfying

|(I + ai) ∩ (I + ai+1)| = 0 or λ.

Let G be the collection of all sets in the form as above. For every G ∈ G,
considering the natural decomposition at the touched point (|(I+ai)∩(I+ai+1)| = 0)
or on the exact overlapping ( |(I + ai)∩ (I + ai+1)| = λ), we have the decomposition

G =
⋃

G′∈G

⋃

i

(λG′ + bi,G,G′)

which is a disjoint union. That means we obtain a graph directed construction
satisfying the SSC. In fact, we only need to choose a subgraph generated by E with
k = 1. �

The main result of this section is the following Proposition 1. We will use the
approach by Falconer and Marsh [3]. In [3], the authors discussed the dust-like
self-similar sets, now we will deal with the graph-directed sets.

Proposition 1. Suppose E ∈ A(λ, n,m) and F =
⋃t

j=1 gj(F ) is a dust-like self-

similar set such that E ≃ F . Assume rj is the contractive ratio of gj for any j. Then

there is a ratio r ∈ (0, 1) and positive integers k and k1 ≤ k2 ≤ · · · ≤ kt such that

λ = rk, r1 = rk1, r2 = rk2, · · · , rt = rkt.

Without loss of generality, we only need to show that

log rj
log λ

∈ Q,

or
log(rj)s

log λs ∈ Q with s = dimH E = dimH F . Suppose f : F → E is a bi-Lipschitz
bijection and c ≥ 1 is a constant satisfying

c−1|x− y| ≤ |f(x)− f(y)| ≤ c|x− y| for all x, y ∈ F.

Denote Σ∗ =
⋃

k≥0{1, · · · , t}
k. For any j = j1 · · · jk ∈ Σ∗, we write Fj = gj1···jk(F ).

Suppose e is an admissible path of length |e| in the directed graph beginning at
vertex v = b(e), then

(2.1) |Ee| = λ|e||Ev| and Hs(Ee) = λs|e|Hs(Ev) = λs|e|Hs(Eb(e)).

Because of the SSC on F , we assume that there is a constant ξ > 0 such that

(2.2) d(Fj, F\Fj) ≥ ξ|Fj| for all j ∈ Σ∗,

and

(2.3) ξ|Eej| ≤ |Fj| ≤ ξ−1|Eej | for all j ∈ Σ∗,

where we denote by Eej(⊂ E) the smallest copy containing f(Fj).

Lemma 2. There is a positive integer N such that for any copy Fj of F and

smallest copy Eej(⊂ E) containing f(Fj), there is a set ∆j composed of pathes e′

with length N satisfying

f(Fj) =
⋃

e′∈∆j

Eej∗e′.
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Proof. Now let N = [ log c
−1ξ2(n−1)−1

log λ
]+1. It suffices to show that if z ∈ Eej∗e′ with

Eej∗e′ ∩ f(Fj) 6= ∅ then z ∈ f(Fj). In fact, if z ∈ f(F\Fj) and z′ ∈ Eej∗e′ ∩ f(Fj), by
(2.2 )–(2.3) we have

|z − z′| ≥ d(f(Fj), f(F\Fj)) ≥ c−1ξ|Fj| ≥ c−1ξ2|Eej |.

On the other hand, using (2.1) and the fact that 1 = |E| ≤ |Ev| ≤ n− 1, we have

|z − z′| ≤ |Eej∗e′ | ≤ λN(n− 1)|Eej | < c−1ξ2|Eej |,

this is a contradiction. �

For any Borel set B ⊂ F , we let

h(B) =
Hs(f(B))

Hs(B)
.

Since f : F → E is bi-Lipschitz, we have

d = sup
j∈Σ∗

h(Fj) < ∞.

Lemma 3. There is a finite set Λ such that

h(Fj∗j)

h(Fj)
∈ Λ

for all j ∈ Σ∗ and all j ∈ {1, · · · , t}.

Proof. We note that

h(Fj∗j)

h(Fj)
=

Hs(f(Fj∗j))/H
s(Fj∗j)

Hs(f(Fj))/Hs(Fj)
=

Hs(Fj)

Hs(Fj∗j)
·
λs|ej∗j |

λs|ej|
·
Hs(f(Fj∗j))/λ

s|ej∗j|

Hs(f(Fj))/λs|ej|
.

Now,
Hs(Fj)

Hs(Fj∗j)
∈ {(rj)

−s}tj=1. Suppose M is a upper bound for difference of lengths of

ej∗j and ej, we have

λs|ej∗j |

λs|ej|
∈ {λsk : k ≤ M}

which is a finite set. By Lemma 2, we also obtain that

Hs(f(Fj))

λs|ej|
=

∑

e′∈∆j
Hs(Eej∗e′)

λs|ej|
= λs(|ej|+N)

∑

e′∈∆j
Hs(Eb(e′))

λs|ej|

∈ λsN

{

∑

e′∈∆
Hs(Eb(e′)) : ∆ ⊂ {e′ : |e′| = N}

}

which is also a finite set. �

Lemma 4. There is a copy Fj1···jk∗ of F and a constant d̄ > 0 such that

(2.4)
Hs(f(B))

Hs(B)
= d̄

for Borel set B ⊂ Fj1···jk∗ .

Proof. Suppose α = maxx∈(−∞,1)∩Λ x < 1 or α = 1/2 if (−∞, 1) ∩ Λ = ∅. Take
ǫ > 0 such that

(2.5) max
i

(αrsi + (1 + ǫ)(1− rsi )) < 1.
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Let d = supj∈Σ∗ h(Fj) < ∞ and take a sequence j =j1 · · · jk∗ such that d
h(Fj)

<

1 + ǫ. We notice that

d̄ =̂ h(Fj) =
∑

j

Hs(Fj∗j)

Hs(Fj)
h(Fj∗j) with

∑

j

Hs(Fj∗j)

Hs(Fj)
=

∑

j

(rj)
s = 1,

i.e., we have

(2.6) 1 =
∑

j

(rj)
sh(Fj∗j)

h(Fj)
with

∑

j

(rj)
s = 1.

We will first show that h(Fj∗j) ≥ h(Fj) for all j. Otherwise, without loss of

generality, we assume that
h(Fj∗1)

h(Fj)
< 1. Then

h(Fj∗1)

h(Fj)
≤ α and

h(Fj∗j)

h(Fj)
≤

d

h(Fj)
< 1 + ǫ for j ≥ 2.

It follows from (2.5) that

1 =
∑

j

(rj)
sh(Fj∗j)

h(Fj)
≤ αrs1 + (1 + ǫ)(1− rs1) < 1,

this is a contradiction. Now h(Fj∗j) ≥ h(Fj) for all j, by (2.6) we obtain that

h(Fj∗j) = h(Fj) = d̄ for all j.

In the same way, we have

h(Fj∗j1∗j2) = h(Fj) = d̄ for all j1, j2.

Again and again, we obtain

h(Fj′) = d̄ for any j′ with prefix j.

Then (2.4) follows. �

Proof of Proposition 1. Take j =j1 · · · jk∗ in Lemma 4. For any j, we consider
the sequence j[j]k = j∗ [j]k where the sequence [j]k is composed of k successive digits
j. Then

h(Fj[j]k′ )

h(Fj[j]k)
= 1 with k > k′.

Hence we obtain that

(rsj)
k−k′ =

Hs(Fj[j]k)

Hs(Fj[j]k′)
=

h(Fj[j]k′)

h(Fj[j]k)
·

∑

e′∈∆
j[j]k

Hs(Eb(e′))
∑

e′∈∆
j[j]k

′

Hs(Eb(e′))
· λ

s(|e
j[j]k

|−|e
j[j]k

′ |)

=

∑

e′∈∆
j[j]k

Hs(Eb(e′))
∑

e′∈∆
j[j]k

′
Hs(Eb(e′))

· λ
s(|e

j[j]k
|−|e

j[j]k
′ |)
.

From the finiteness, we can find k 6= k′ such that ∆j[j]k = ∆j[j]k′ then

(rsj)
k−k′ = λ

s(|e
j[j]k

|−|e
j[j]k

′ |)
,

that means (rj)
k−k′ = λ

|e
j[j]k

|−|e
j[j]k

′ |
, i.e.,

log rj/ log λ ∈ Q

for all j. Then Proposition 1 is proved. �
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3. Proof of Theorem

3.1. Dimension polynomials. From [7] we have

P (x) = x2 − nx+m = (x− β)(x− β ′) with |β ′| < 1 < β.

Using notations in Proposition 1, we consider the following two polynomials

(3.1) P̄ (x) = P (xk) and Q̄(x) = xkt −
t

∑

i=1

xkt−ki.

Proposition 2. Let s = dimH E = dimH F and r the ratio in Proposition 1.

Then

P̄ (r−s) = Q̄(r−s) = 0.

Proof. It follows from [7] that for s = dimH E,

(λ−s)2 − n(λ−s) +m = 0.

On the other hand, for s = dimH F , by the SSC we have
∑t

i=1
(ri)

s = 1.

Then the proposition follows the relations in Proposition 1. �

3.2. Irreducibility of polynomial.

Proposition 3. For any Q ∈ {xp −
∑p−1

i=0 bix
i : p ≥ 1, bi ∈ Z and bi ≥ 0}, we

have

P (xq) ∤ Q(x).

Proof. Let Q(x) = (
∑

aix
i) (x2q − nxq +m). Suppose

∑

aix
i = P0 + P1 + · · ·+ Pq−1

where Pv =
∑

i≡v(mod q) aix
i for v = 0, 1, · · · , (q − 1). Then we have

Q(x) = P0P (xq)⊕ P1P (xq)⊕ · · · ⊕ Pq−1P (xq),

where ⊕ means the orthogonality of above polynomials in the basis {1, x, x2, · · · }.
Without loss of generality, we assume that

deg
(

∑

aix
i
)

≡ u (mod q) with 0 ≤ u ≤ q − 1.

Let ci = aqi+u, then

Pu = xu(c0 + c1x
q + c2x

2q + · · ·+ clx
lq) = xuU(xq).

Since p ≡ 2q + deg (
∑

aix
i) ≡ u (mod q), we have

xuU(xq)P (xq) = xp −
∑

j≡u(mod q)

bjx
j ,

which implies

U(x)P (x) = xp′ −

p′
∑

i=0

b′ix
i with b′i ∈ Z and b′i ≥ 0.

Therefore we obtain that

(x2 − nx+m)(c0 + c1x+ c2x
2 + · · ·+ clx

l) = xl+2 −
l+1
∑

i=0

b′ix
i,
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where

(3.2) cl = 1.

We recall that

x2 − nx+m = (x− β)(x− β ′) with β > 1 > |β ′|.

Now, we have the following

Claim 1. For any 0 ≤ i ≤ l − 1,

(3.3) ci+1 ≤ ciβ
−1 ≤ 0.

We will verify (3.3) by induction.
(1) For i = 0, we have c0m = −b′0 ≤ 0 and thus c0 ≤ 0.
(2) For i = 1, we have −c0n+mc1 = −b′1 ≤ 0 and thus

c1 ≤
n

m
c0 ≤ β−1c0 ≤ 0

here n
m

> 1 > β−1.
(3) Assume that (3.3) is true for i− 1, i.e., we have ci ≤ ci−1β

−1 ≤ 0. Hence

mci+1 − nci + βci ≤ mci+1 − nci + ci−1 = −b′i+1 ≤ 0,

which implies

mci+1 ≤
(n− β)

m
ci = β−1ci ≤ 0

due to (n−β)
m

= β−1. Then (3.3) is verified. In particular, we have

cl ≤ 0

which contradicts to (3.2). �

Proposition 4. Suppose m /∈ {ai | a ∈ N and i ∈ N with i ≥ 2}. Then

P (xq) is irreducible in Z[x] for any q ≥ 1.

Proof. Note that P (x) = P (x1) is irreducible (e.g. see [7]). Without loss of

generality, we assume that q ≥ 2. Let ω = e2π
√
−1/q. Then

P (xq) =
(

∏q−1

i=0
(x− ωiβ1/q)

)

·
(

∏q−1

i=0
(x− ωi(β ′)1/q)

)

.

Suppose on the contrary that P (xq) = Q1(x)Q2(x) and Q1(x), Q2(x) ∈ Z[x] with
degQ1, degQ2 ≥ 1. We note that

m = |P (0)| = |Q1(0)| · |Q2(0)|,

where

|Q1(0)| = |βu1(β ′)v1 |1/q ∈ N and |Q2(0)| = |βu2(β ′)v2 |1/q ∈ N

with u1, v1, u2, v2 ≥ 1.
We will show that u1 = v1. Otherwise by symmetry we may assume that u1 > v1,

then

(βu1−v1) =
|Q1(0)|

q

(ββ ′)v1
=

|Q1(0)|
q

(m)v1
,

which implies

R(β) = 0 with R(x) = mv1xu1−v1 − |Q1(0)|
q ∈ Z[x].
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By [7], we obtain that P (x) = x2 − nx + m is an irreducible polynomial satisfying
P (β) = 0. Therefore, we have

P |R but R only has roots with module β.

Now R(β ′) = P (β ′) = 0 with |β ′| < |β|. This is a contradiction.
In the same way, we have u2 = v2. Now we obtain that

u1 = v1 and u2 = v2.

Let u1/q = j/i with (i, j) = 1 and j < i (i ≥ 2), then u2/q = (i − j)/i since
u1 + u2 = q. Hence

|Q1(0)| = m
j

i ∈ N and |Q2(0)| = m
i−j

i ∈ N

and thus m
1
i = a ∈ N and m = ai with i ≥ 2. This is a contradiction. �

3.3. Proof of Theorem. It follows from Propositions 1-2 that there are r ∈
(0, 1) and k, k1 ≤ k2 ≤ · · · ≤ kt ∈ N such that

P̄ (r−s) = Q̄(r−s) = 0,

where P̄ and Q̄ are defined in (3.1). Suppose on the contrary that P̄ (x) = P (xk) =
x2k − nxk +m is irreducible in Z[x], then we have

P (xk)|(xkt −
t

∑

i=1

xkt−ki),

which contradicts to Proposition 3. Therefore P (xk) is reducible in Z[x], and thus
m ∈ {ai | a ∈ N and i ∈ N with i ≥ 2} by Proposition 4.
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