
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 43, 2018, 945–960

SOME OBSERVATIONS ON KÄENMÄKI MEASURES

Ian D. Morris

University of Surrey, Department of Mathematics
Guildford GU2 7XH, United Kingdom; i.morris@surrey.ac.uk

Abstract. In this note we investigate some properties of equilibrium states of affine iterated

function systems, sometimes known as Käenmäki measures. We give a simple sufficient condition for

Käenmäki measures to have a gap between certain specific pairs of Lyapunov exponents, partially

answering a question of Bárány, Käenmäki and Koivusalo. We also give sharp bounds for the

number of ergodic Käenmäki measures in dimensions up to 4, answering a question of Bochi and

the author within this range of dimensions. Finally, we pose an open problem on the Hausdorff

dimension of self-affine measures which may be reduced to a statement concerning semigroups of

matrices in which a particular weighted product of absolute eigenvalues is constant.

1. Introduction and statement of results

If T1, . . . , Td : R
d → R

d are contractions then it is well known that there exists a
unique nonempty compact set X ⊂ R

d such that X =
⋃N

i=1 TiX. In such a situation
we call (T1, . . . , TN) an iterated function system and the set X its attractor. When the
transformations Ti are all similitudes the set X is called self-similar, and in this case
the dimension properties of the attractor have been well-understood since the 1981
work of Hutchinson [17], at least in the case where the different images TiX do not
too strongly overlap. In the case where the maps Ti are merely affine, the dimension
properties of the attractor are a topic of ongoing investigation (see for example [1, 2,
3, 6, 8, 14, 25]). In this case an upper bound for the Hausdorff dimension was given
by Falconer in 1988 (see [7]) and under mild additional conditions this was shown
to give the exact value of the Hausdorff dimension in almost all cases in a precise
sense; the focus of current research is to demonstrate that Falconer’s formula for
the Hausdorff dimension is valid for large explicit families of affine iterated function
systems.

In [19], Käenmäki introduced a class of measures on symbolic spaces which are
expected to induce measures on the attractor with Hausdorff dimension equal to
Falconer’s bound. Käenmäki’s measures have been investigated in [4, 12, 20, 21, 23,
24], motivated by the ultimate goal of showing that they induce high-dimensional
measures on the attractors of affine iterated function systems. In this note we shall
present two results on Käenmäki measures, one addressing their Lyapunov exponents
(in response to a question of Bárány, Käenmäki and Koivusalo) and one addressing
the maximum number of distinct ergodic Käenmäki measures which a given iterated
function system may have (in response to questions of Käenmäki, Vilppolainen, Bochi
and the author).

Let us now give the definition of a Käenmäki measure. Let Md(R) denote the
vector space of all d×d real matrices, and for A ∈ Md(R) let α1(A), . . . , αd(A) denote
the singular values of A, which are defined to be the non-negative square roots of the
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positive semidefinite matrix ATA listed in decreasing order. For each integer d ≥ 1
and real number s ≥ 0 we define the singular value function ϕs : Md(R) → R, where
Md(R) denotes the vector space of all d× d real matrices, by

ϕs(A) :=

{

α1(A) · · ·α⌊s⌋(A)α⌈s⌉(A)
s−⌊s⌋ if 0 ≤ s ≤ d,

| detA|
s

d if s ≥ d.

For each s ≥ 0 the singular value function satisfies ϕs(AB) ≤ ϕs(A)ϕs(B) for all
A,B ∈ Md(R). If T1, . . . , TN : Rd → R

d are affine contractions each having the form
Tix = Aix+ vi where A1, . . . , AN ∈ Md(R) and v1, . . . , vd ∈ R

d, we observe that for
each s ≥ 0 the limit

P (A, ϕs) := lim
n→∞

1

n
log

N
∑

i1,...,in=1

ϕs (Ain · · ·Ai1)

exists by subadditivity. In this case we define the affinity dimension of A := (A1, . . . ,

AN) to be the quantity

dimaff(A1, . . . , AN) := inf {s ≥ 0: P (A, ϕs) > 0} .

The singular value function and affinity dimension were introduced by Falconer in
[7], and their properties subsequently investigated in [4, 9, 10, 13, 15, 21, 22].

For each N ≥ 1 let ΣN := {1, . . . , N}N which we equip with the infinite product
topology. With respect to this topology ΣN is compact and metrisable. We let
σ : ΣN → ΣN denote the shift transformation σ [(xn)

∞
n=1] := (xn+1)

∞
n=1, which is

continuous. We let Mσ denote the set of all σ-invariant Borel probability measures
on ΣN . A measure ν ∈ Mσ will be called a ϕs-equilibrium state of A = (A1, . . . , AN)
if it maximises the expression

h(µ) + lim
n→∞

1

n

ˆ

logϕs(Ain · · ·Ai1) dµ[(ik)
∞
k=1]

over all µ ∈ Mσ, where h(µ) denotes Kolmogorov–Sinai entropy. In the case where s

is equal to the affinity dimension of A a ϕs-equilibrium state of A is called a Käenmäki

measure.
The first question which we investigate in this article is concerned with the num-

ber of ergodic ϕs-equilibrium states of an invertible matrix tuple A = (A1, . . . , AN) ∈
GLd(R)N . Let us say that A = (A1, . . . , AN) ∈ GLd(R)N is simultaneously triangu-

larisable, or simply triangularisable, if there exists a basis for Rd with respect to which
all of the matrices Ai are upper triangular. Käenmäki asked in [18] whether for every
N, d ≥ 2, every A ∈ GLd(R)N and every s ∈ (0, d) the ϕs-equilibrium state of A is
unique. This question was answered negatively by Käenmäki and Vilppolainen in [21]
where an example with two ergodic ϕs-equilibrium states was constructed; Käenmäki
and Vilppolainen then asked whether the number of ergodic ϕs-equilibrium states is
always finite. This question was answered affirmatively in two dimensions by Feng
and Käenmäki [12], in three dimensions by Käenmäki and the present author in [20],
and in arbitrary dimensions by Bochi and the present author in [4], where the number
of ergodic ϕs-equilibrium states was shown to be bounded by a number depending
only on d and s. It was shown in [20] that the number of ergodic ϕs-equilibrium states
can be at least as high as (d− ⌊s⌋)

(

d
⌊s⌋

)

= ⌈s⌉
(

d
⌈s⌉

)

when s is noninteger, and at least
(

d
s

)

when s is an integer; in both cases the examples constructed were simultaneously
triangularisable. In the integer case this lower bound can be seen to be sharp using
the results of Feng and Käenmäki [12]. On the other hand in the non-integer case the
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best available upper bound for the number of ergodic equilibrium states is
(

d
⌊s⌋

)(

d
⌈s⌉

)

,

proved in [4]. The gap between these upper and lower bounds led to the following
question of Bochi and the present author ([4, Question 2]): if A ∈ GLd(R)N and
s ∈ (0, d) \Z, and A has at least (d− ⌊s⌋)

(

d
⌊s⌋

)

ergodic ϕs-equilibrium states, does it

follow that A is upper triangularisable and hence has precisely (d− ⌊s⌋)
(

d
⌊s⌋

)

ergodic

ϕs-equilibrium states? In this note we answer this question positively for d ≤ 4, with
the exception of the case (d, s) = (4, 2) where we have a sharp bound for the number
of ergodic ϕs-equilibrium states but do not prove triangularisability. We prove:

Theorem 1.1. Let A = (A1, . . . , AN) ∈ GLd(R)N and 0 < s < d ≤ 4. Then the

maximum possible number of ergodic ϕs-equilibrium states of A is precisely
(

d
s

)

if s

is an integer and (d − ⌊s⌋)
(

d
⌊s⌋

)

= ⌈s⌉
(

d
⌈s⌉

)

otherwise. Moreover, if this maximum is

attained and (d, s) 6= (4, 2), then A is simultaneously triangularisable.

Theorem 1.1 is obtained as a consequence of the results of [4] via a somewhat
convoluted case-by-case analysis. Analogues of this argument in dimensions higher
than 4 are complicated not only by the increasing number of sub-cases but also by
a lack of sharp tools for treating those cases in which A is irreducible but some
of its exterior powers are not. Indeed, it is precisely this issue which complicates
our treatment of the case d = 4, s = 2: in that case our techniques lead easily
to the conclusion that if

(

4
2

)

ergodic ϕ2-equilibrium states exist then A
∧2 is upper

triangularisable, but to deduce from this that A is also upper triangularisable would
require the application of nontrivial techniques from the theory of algebraic groups
and Lie groups which we do not attempt to deploy here.

Let us now describe the second question which we address in this article. Let
A = (A1, . . . , AN) ∈ GLd(R)N and let µ ∈ Mσ be ergodic. The Lyapunov exponents

of A with respect to µ are defined to be the numbers

Λj(A, µ) = lim
n→∞

1

n

ˆ

logαj(Ain · · ·Ai1) dµ[(ik)
∞
k=1]

for j = 1, . . . , d, the existence of the limit being guaranteed by the subadditivity of
the sequence

(1.1)

ˆ

log

(

ℓ
∏

j=1

αj(Ain · · ·Ai1)

)

dµ[(ik)
∞
k=1]

for each ℓ = 1, . . . , d (see below). In the article [2], Bárány, Käenmäki and Koivusalo
asked the following question: if µ is a Käenmäki measure for the matrices A =
(A1, . . . , AN) ∈ GLd(R)N , under what circumstances do the Lyapunov exponents
of A with respect to µ take d different values? This question was answered for
Käenmäki measures of planar affine IFS by the author [23, Theorem 13], but in
higher dimensions the question seems more difficult to answer. In this note we give
a partial answer by providing a simple checkable criterion for the separation of those
Lyapunov exponents which are closest to the affinity dimension. We remark that for
each N, d ≥ 2 our criterion is satisfied for a dense, open, full-Lebesgue-measure set
of tuples (A1, . . . , AN) ∈ GLd(R)N .

If 1 ≤ k ≤ d we recall that the kth exterior power of R
d is the vector space

spanned by formal expressions of the form u1 ∧ · · · ∧ uk where u1, . . . , uk ∈ R
d,
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subject to the identifications

(λu1) ∧ u2 ∧ · · · ∧ uk = λ(u1 ∧ · · · ∧ uk),

u1 ∧ · · · ∧ uk = (−1)sign(ς)uς(1) ∧ · · · ∧ uς(k),

(u1 ∧ · · · ∧ uk) + (u′
1 ∧ u2 ∧ · · · ∧ uk) = (u1 + u′

1) ∧ u2 · · · ∧ uk

where λ ∈ R and where ς : {1, . . . , k} → {1, . . . , k} is any permutation. If an inner
product 〈·, ·〉 on R

d is understood, then

(1.2) 〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 := det[〈ui, vj〉]
d
i,j=1

extends by linearity to an inner product on ∧k
R

d. If u1, . . . , ud is a basis for R
d

then the vectors ui1 ∧ · · · ∧ uid such that 1 ≤ i1 < i2 < · · · < ik ≤ d form a

basis for ∧k
R

d, and in particular dim∧k
R

d =
(

d
k

)

. If A : Rd → R
d is linear then

we define A∧k to be the unique linear transformation of ∧k
R

d such that A∧k(u1 ∧
· · · ∧ uk) = Au1 ∧ · · · ∧ Auk for all u1, . . . , uk ∈ R

d. We have (A∧k)T = (AT )∧k

and (AB)∧k = A∧kB∧k for all linear endomorphisms A,B of Rd. If A : Rd → R
d is

given and e1, . . . , ed is a basis for R
d given by (generalised) eigenvectors of A then

it is straightforward to check that vectors of the form ei1 ∧ · · · ∧ eik with 1 ≤ i1 <

· · · < ik ≤ d are a basis for ∧k
R

d given by (generalised) eigenvectors of A∧k. It

follows from these considerations that
∥

∥A∧k‖ = ‖(A∧k)TA∧k
∥

∥

1/2
=
∏k

i=1 αi(A) for

any linear endomorphism A of R
d and any 1 ≤ k ≤ d, where ‖ · ‖ denotes the

Euclidean norm implied by the inner product (1.2). This in particular implies the

inequality
∏k

i=1 αi(AB) ≤
(

∏k
i=1 αi(A)

)(

∏k
i=1 αi(B)

)

for all A,B ∈ Md(R) which

guarantees the existence of the limit (1.1). If A = (A1, . . . , AN) ∈ GLd(R)N and
1 ≤ k ≤ d then we write A

∧k = (A∧k
1 , . . . , A∧k

N ). We note the identity ϕs(A) =
∥

∥A∧⌊s⌋
∥

∥

1+⌊s⌋−s ∥
∥A∧⌈s⌉

∥

∥

s−⌊s⌋
which will be used extensively in this article.

We shall say that A = (A1, . . . , AN) ∈ GLd(R)N is irreducible if there is no proper
nonzero subspace V of Rd such that AiV ⊆ V for all i = 1, . . . , N , and we shall say
that A is strongly irreducible if there is no finite union W =

⋃m
j=1 Vj of proper nonzero

subspaces V ⊂ R
d such that AiW ⊆ W for all i = 1, . . . , N . We will say that A

is k-irreducible (respectively k-strongly irreducible) if A∧k is irreducible (respectively
strongly k-irreducible) in the same sense. Let us say that the absolute eigenvalues of
a matrix A are the absolute values of the eigenvalues of A listed in decreasing order
with repetition according to multiplicity. For the purposes of this article we shall
also say that A = (A1, . . . , AN) is k-proximal if there exist i1, . . . , in ∈ {1, . . . , N}
such that the kth and (k + 1)st absolute eigenvalues of Ain · · ·Ai1 are distinct. (This
definition of k-proximality coincides with more standard notions of k-proximality if
A is strongly k-irreducible—see e.g. [16, §2]—but we shall find this terminology to be
convenient for arbitrary A.) We note A is k-proximal if and only if A∧k is 1-proximal.

In this note we prove the following theorem on the separation of Lyapunov ex-
ponents:

Theorem 1.2. Let A = (A1, . . . , AN) ∈ GLd(R)N and 0 < s < d. Then the

following properties hold:

(i) Suppose that 0 ≤ k < s ≤ k + 1 < d and that A is ℓ-irreducible for ℓ = k,

ℓ = k+1 and ℓ = k+2. Suppose also that A is (k+1)-proximal. If additionally

A is strongly ℓ-irreducible either for ℓ = k, or for both ℓ = k+1 and ℓ = k+2,
then A has a unique ϕs-equilibrium state µ, and Λk+1(A, µ) > Λk+2(A, µ).
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(ii) Suppose that 0 < k ≤ s < k+1 ≤ d and that A is ℓ-irreducible for ℓ = k− 1,
ℓ = k and ℓ = k + 1. Suppose also that A is k-proximal. If additionally A is

strongly ℓ-irreducible either for ℓ = k + 1, or for both ℓ = k − 1 and ℓ = k,

then A has a unique ϕs-equilibrium state µ, and Λk(A, µ) > Λk+1(A, µ).

If s is an integer then the irreducibility conditions may be very slightly weak-
ened: see Remark 1 below. Our criterion is unfortunately insufficient to fully answer
Barany, Käenmäki and Koivusalo’s question even in three dimensions, since for ex-
ample we are not able to exclude the possibility that Λ1(A, µ) = Λ2(A, µ) when µ is
a ϕs-equilibrium state of A ∈ GL3(R)N and 2 < s < 3, or Λ2(A, µ) = Λ3(A, µ) when
µ is a ϕs-equilibrium state of A ∈ GL3(R)N with 0 < s < 1. In a sense these two
cases are equivalent: see Remark 2 below.

The remainder of this article is structured as follows. In §2 we present some
general results and notations which will be applied in proving both of our main
theorems. In §3 and §4 we present the proofs of Theorems 1.1 and 1.2 respectively,
and in §5 we examine the question of when a Käenmäki measure can be a Bernoulli
measure and the implications for the Hausdorff dimension of self-affine measures.

2. General preliminaries

Let N ≥ 2. We say that a word over {1, . . . , N} is any finite sequence i = (ik)
n
k=1

and let Σ∗
N denote the set of all words over {1, . . . , N}. If i = (ik)

n
k=1 we say that

n is the length of i and define |i| := n. If i and j are elements of Σ∗
N we define

their concatenation ij to be the word of length |i| + |j| obtained by running first
through the symbols of i and then through the symbols of j in the obvious manner. If
A1, . . . , AN ∈ Md(R) and i = (ik)

n
k=1 ∈ Σ∗

N we define Ai := Ain · · ·Ai1 . We note that
AiAj = Aji for all i, j ∈ Σ∗

N . For all x = (xk)
∞
k=1 ∈ ΣN we let x|n := (xk)

n
k=1 ∈ Σ∗

N .
For the purposes of this article we shall say that a potential is any function

Φ: Σ∗
N → (0,+∞). We will say that a potential is submultiplicative if Φ(ij) ≤

Φ(i)Φ(j) for every i, j ∈ Σ∗
N and quasimultiplicative if there exist a finite set F ⊂ Σ∗

N

and a real number δ > 0 such that maxk∈F Φ(ikj) ≥ δΦ(i)Φ(j) for every i, j ∈ Σ∗
N .

If Φ is a submultiplicative potential we define a sequence of functions Φn : ΣN → R

by Φn(x) := Φ(x|n), and observe that Φn+m(x) ≤ Φn(σ
mx)Φm(x) for all x ∈ ΣN and

n,m ≥ 1. We define the asymptotic average of a submultiplicative potential Φ with
respect to an ergodic measure µ ∈ Mσ to be the quantity

Λ(Φ, µ) := lim
n→∞

1

n

ˆ

log Φn dµ = inf
n≥1

1

n

ˆ

log Φn dµ,

where we note that the existence of the limit follows by subadditivity. We define the
pressure of a submultiplicative potential Φ to be the quantity

P (Φ) := lim
n→∞

1

n
log
∑

|i|=n

Φ(i) = inf
n≥1

1

n
log
∑

|i|=n

Φ(i)

which again is well-defined by subadditivity. By the subadditive variational principle
(see [5]) we have

(2.1) P (Φ) = sup
µ∈Mσ

h(µ) + Λ(Φ, µ)

and this supremum is always attained since Mσ is weak-* compact and µ 7→ h(µ) +
Λ(Φ, µ) is upper semi-continuous. We say that µ ∈ Mσ is an equilibrium state for
a submultiplicative potential Φ if P (Φ) = h(µ) + Λ(Φ, µ). If A = (A1, . . . , AN) ∈
GLd(R)N is given, we will say (as in the introduction) that µ is a ϕs-equilibrium
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state of A if it is an equilibrium state of the potential Φ(i) := ϕs(Ai), and also
that µ is a ‖ · ‖t-equilibrium state of A if it is an equilibrium state of the potential
Φ′(i) := ‖Ai‖

t, where t > 0.
Our interest in subadditive potentials as a general class is motivated by the

following special case of a theorem of Feng ([11, Theorem 5.5]):

Proposition 2.1. [11] Let N ≥ 2 and let Φ: Σ∗
N → (0,+∞) be a submultiplica-

tive and quasimultiplicative potential. Then there exists a unique equilibrium state

µ for Φ, and moreover there exists C > 0 depending only on Φ such that

C−1e−|i|P (Φ)Φ(i) ≤ µ([i]) ≤ Ce−|i|P (Φ)Φ(i)

for every i ∈ ΣN .

The following property of ϕs-equilibrium states will be useful in both of the
following two sections:

Lemma 2.2. Let A = (A1, . . . , AN) ∈ GLd(R)N and 0 < s < d. Then a

measure µ is a ϕs-equilibrium state of A if and only if it is a ϕd−s-equilibrium state

of A′ = (A′
1, . . . , A

′
N), where for i = 1, . . . , N we define

A′
i := | detAi|

1

d−s

(

A−1
i

)T
.

Proof. Define φ : GLd(R) → GLd(R) by φ(A) := | detA|1/(d−s)(A−1)T and sup-
pose that k ≤ s ≤ k + 1 where k is an integer. Then φ is a homomorphism and

ϕd−s(φ(A)) = | detA|ϕd−s
(

A−1
)

= | detA|α1(A
−1) · · ·αd−k−1(A

−1)αd−k(A
−1)d−s−(d−k−1)

= | detA|αd(A)
−1 · · ·αk+2(A)

−1αk+1(A)
s−k−1

= α1(A) · · ·αk(A)αk+1(A)
s−k = ϕs(A).

We deduce that the potentials Φ(i) := ϕs(Ai) and Φ′(i) := ϕd−s(A′
i) satisfy

Φ′(i) = ϕd−s(A′
i) = ϕd−s(φ(Ai)) = ϕs(Ai) = Φ(i)

for every i ∈ Σ∗
N , where the second equality exploits the fact that φ is a homomor-

phism. The result follows. �

3. Proof of Theorem 1.1

The proof of Theorem 1.1 operates by appeal to a long series of lemmas. The
following result may be easily deduced from the work of Feng and Käenmäki [12] and
is also a special case of [4, Theorem 5]:

Lemma 3.1. Let B = (B1, . . . , BN) ∈ GLd(R)N and s > 0, and define a poten-

tial Φ: Σ∗
N → R by Φ(i) := ‖Bi‖

s. Then Φ has at most d ergodic equilibrium states,

and if exactly d ergodic equilibrium states exist then B is simultaneously triangular-

isable. If on the other hand B is irreducible, then Φ is quasi-multiplicative and there

is a unique equilibrium state for Φ.

The following result was proved in [20]:

Lemma 3.2. [20, Theorem 5] Let A = (A1, . . . , AN) ∈ GLd(R)N and 0 < s < d,

and suppose that there exist ℓ ∈ {1, . . . , d− 1} and a basis for R
d in which we may

write

Ai =

(

Bi Ci

0 Di

)
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where each Bi has dimension ℓ× ℓ and each Di has dimension (d− ℓ)× (d− ℓ). Then

the ϕs-equilibrium states of A are identical to the ϕs-equilibrium states of the tuple

A
′ = (A′

1, . . . , A
′
N) ∈ GLd(R)N defined by

A′
i :=

(

Bi 0
0 Di

)

.

Versions of the following principle are appealed to in a number of works such as
[4, 12, 20]:

Lemma 3.3. Let N ≥ 2 and let Φ: Σ∗
N → (0,+∞) be a submultiplicative

potential. Suppose that there exist submultiplicative potentials Φ1, . . . ,Φm : Σ∗
N →

(0,+∞) and a constant C > 0 such that C−1Φ(i) = max1≤j≤mΦj(i) ≤ CΦ(i)
for every i ∈ Σ∗

N . If µ is an ergodic equilibrium state of Φ, then it is an ergodic

equilibrium state of at least one of the potentials Φj .

Proof. Clearly we have P (Φ) ≥ P (Φj) for each j = 1, . . . , m by direct appeal to
the definition of the pressure P . If µ is an ergodic equilibrium state for Φ then by
the subadditive ergodic theorem we have for µ-a.e. x ∈ ΣN

Λ(Φ, µ) = lim
n→∞

1

n
log Φn(x) = lim

n→∞

1

n
log max

1≤j≤m
Φj

n(x)

= max
1≤j≤m

lim
n→∞

1

n
log Φj

n(x) = max
1≤j≤m

Λ(Φj , µ).

Let j ∈ {1, . . . , m} such that Λ(Φ, µ) = Λ(Φj, µ). We have

P (Φ) = h(µ) + Λ(Φ, µ) = h(µ) + Λ(Φj, µ) ≤ P (Φj) ≤ P (Φ)

by the subadditive variational principle and therefore P (Φj) = h(µ) + Λ(Φj, µ) so
that µ is an equilibrium state of Φj as required. �

The following result is obtained from [4, Theorem 5] by taking k = 2 and n1 = 1:

Lemma 3.4. Let B = (B1, . . . , BN) ∈ GLd1(R)N and C = (C1, . . . , CN) ∈
GLd2(R)N and define a potential Φ by Φ(i) = ‖Bi‖

β‖Ci‖
γ for suitable real constants

β, γ > 0. Suppose that B is irreducible. Then the number of ergodic equilibrium

states of Φ is not greater than d2.

The following result recalls some arguments from [20, §7]:

Lemma 3.5. Suppose that A = (A1, . . . , AN) ∈ GLd(R)N may be written as

X−1AiX =

(

bi 0
0 Ci

)

for each i = 1, . . . , N , where each bi is real, each Ci is a (d − 1) × (d − 1) ma-

trix, and X ∈ GLd(R). Let s ∈ (1, d − 1). Then every ergodic φs-equilibrium

state is either a ϕs-equilibrium state of (C1, . . . , CN), or a ϕs−1-equilibrium state

of (|b1|
1/(s−1)C1, . . . , |bN |

1/(s−1)CN), or a ‖ · ‖-equilibrium state of (|b1|
s−⌊s⌋C

∧⌊s⌋
1 , . . . ,

|bN |
s−⌊s⌋C

∧⌊s⌋
N ).

Proof. Let Âi := X−1AX for each i = 1, . . . , N . We have

‖X−1‖−1‖X‖−1αk(Ai) ≤ αk(Âi) ≤ ‖X−1‖ · ‖X‖αk(Ai)

for every k = 1, . . . , d and i = 1, . . . , N , and it follows that C−1ϕs(Ai) ≤ ϕs(Âi) ≤
Cϕs(Ai) for every i ∈ Σ∗

N for some constant C > 0 depending only on X. In

particular (A1, . . . , AN) and (Â1, . . . , ÂN) have the same ϕs-equilibrium states.
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The singular values of Âi are precisely |bi|, α1(Ci), . . . , αd(Ci) in some order,
with αk(Ci) preceding αk+1(Ci) for each k = 1, . . . , d− 1. Let ℓ := ⌊s⌋. We have for
each i ∈ Σ∗

N

ϕs(Âi) = α1(Âi) · · ·αℓ(Âi)αℓ+1(Âi)
s−ℓ

= max







α1(Ci) · · ·αℓ(Ci)αℓ+1(Ci)
s−ℓ,

|bi|α1(Ci) · · ·αℓ−1(Ci)αℓ(Ci)
s−ℓ,

α1(Ci) · · ·αℓ−1(Ci)αℓ(Ci)|bi|
s−ℓ







= max







ϕs(Ci),
ϕs−1(|bi|

1/(s−1)Ci),
‖|bi|

s−ℓC∧ℓ
i ‖







where the maximum is equal to the first term if αℓ+1(Ci) ≥ |bi|, the second if
αℓ(Ci) ≤ |bi|, and the third if αℓ(Ci) ≤ |bi| ≤ αℓ+1(Ci). Define Φ(i) := ϕs(Ai),
Φ1(i) := ϕs(Ci), Φ2(i) := ϕs−1(|bi|

1/(s−1)Ci), and Φ3(i) := ‖|bi|
s−ℓC∧ℓ

i ‖ for all
i ∈ Σ∗

N . We have

C−1Φ(i) ≤ max
1≤j≤3

Φj(i) ≤ CΦ(i)

for all i ∈ Σ∗
N where C > 0 is a suitable constant, and hence by Lemma 3.3 every

ergodic equilibrium state of Φ must be an ergodic equilibrium state of one of the
three potentials Φj . Thus every φs-equilibrium state is either a ϕs-equilibrium state of
(C1, . . . , CN), or a ϕs−1-equilibrium state of (|b1|C1, . . . , |bN |CN), or a ‖·‖-equilibrium

state of (|b1|
s−⌊s⌋C

∧⌊s⌋
1 , . . . , |bN |

s−⌊s⌋C
∧⌊s⌋
N ) as claimed. �

The following result is a corollary of several results from [20]:

Lemma 3.6. Let B = (B1, . . . , BN) ∈ GLd(R)N and s ∈ (0, d) \Z, and suppose

that B is simultaneously triangularisable. Then there are at most (d − ⌊s⌋)
(

d
⌊s⌋

)

ergodic ϕs-equilibrium states for B.

Proof. By a change of basis we may assume that B is upper triangular; as in the
proof of the previous lemma, this change of basis does not affect the ϕs-equilibrium
states of B. By repeated use of Lemma 3.2 we see that the ϕs-equilibrium states of B
are unchanged if the off-diagonal entries of each Bi are deleted. It now follows by [20,
Theorem 4] that the number of ϕs-equilibrium states can be at most (d−⌊s⌋)

(

d
⌊s⌋

)

. �

We may now prove Theorem 1.1. We first claim that to prove the theorem it
is sufficient to suppose that s ≤ d

2
. Indeed, suppose that this case of the theorem

has been proved and that A = (A1, . . . , AN) ∈ GLd(R)N with d
2
< s < d ≤ 4. By

Lemma 2.2 the number of ϕs-equilibrium states of A is equal to the number of ϕd−s-
equilibrium states of A′ = (A′

1, . . . , A
′
N) defined by A′

i := | detAi|
1/(d−s)(A−1

i )T . If s

is noninteger then by hypothesis this is at most (d − ⌊d − s⌋)
(

d
⌊d−s⌋

)

= ⌈s⌉
(

d
⌈s⌉

)

as

required; if this maximum is attained then by hypothesis A′ must be triangularisable,
which clearly implies the triangularisability of A. If s is an integer then similarly the
number of ϕd−s-equilibrium states is at most

(

d
d−s

)

=
(

d
s

)

and if this maximum is
attained then by hypothesis A

′, and hence A, is triangularisable. This proves the
claim.

We now proceed to prove Theorem 1.1 successively for d = 2, d = 3 and d = 4.
If d = 2 and 0 < s ≤ 1 then ϕs = ‖ · ‖s and the result follows directly by Lemma 3.1,
which in view of the previous claim completes the proof for d = 2. If d = 3 and
0 < s ≤ 1 then similarly the result follows by Lemma 3.1. To complete the case



Some observations on Käenmäki measures 953

d = 3 we suppose that 1 < s ≤ 3
2
. In this case we have ϕs(Ai) = ‖Ai‖

2−s ‖A∧2
i ‖

s−1
,

so if A is irreducible then by Lemma 3.4 the number of ϕs-equilibrium states is not
greater than 3, which is strictly less than the desired upper limit of (3−⌊s⌋)

(

3
⌊s⌋

)

= 6.

Suppose lastly that A is reducible. If A is triangularisable then the result follows by
Lemma 3.6, so we suppose otherwise. If A has a 1-dimensional invariant subspace
then we may write

X−1AiX =

(

bi Di

0 Ci

)

for each i = 1, . . . , N , where each bi is real, each Di is a 1 × 2 matrix, Ci is a 2 × 2
matrix, and X ∈ GL3(R). If instead it has a 2-dimensional invariant subspace then
we may write

X−1AiX =

(

Ci Di

0 bi

)

for each i = 1, . . . , N , where each bi is real, each Di is a 2 × 1 matrix, Ci is a 2 × 2
matrix, and X ∈ GLd(R). In either case (C1, . . . , CN) must be irreducible since
otherwise A would be upper triangularisable, contradicting our assumption. Using
Lemma 3.2 and (in the second case only) a permutation of the basis it follows that
the ϕs-equilibrium states of A are precisely the ϕs-equilibrium states of A′ where

A′
i :=

(

bi 0
0 Ci

)

for each i = 1, . . . , N , where each bi is real and where the 2×2 matrices (C1, . . . , CN)
are irreducible. Using Lemma 3.5, every ergodic ϕs-equilibrium state of A′ is either a
ϕs-equilibrium state of (C1, . . . , CN), a ϕs−1-equilibrium state of (|b1|C1, . . . , |bN |CN),
or a ‖ · ‖-equilibrium state of (|b1|

s−1C1, . . . , |bN |
s−1CN). By appeal to the case d = 2

and the fact that the matrices Ci are not simultaneously triangularisable there can
be at most one equilibrium state of the first type; by the same principle, there can
be at most one equilibrium state of the second type; and by Lemma 3.1 there can
be at most one equilibrium state of the third type. We have shown that if d = 3,
1 < s ≤ 3

2
and A is not upper triangularisable then no more than three ergodic

equilibrium states can exist, and this completes the proof of the theorem in the case
d = 3.

We now consider the case d = 4. If s = 2 then the result follows by noting that
ϕ2(Ai) = ‖A∧2

i ‖ and appealing to Lemma 3.1. If 0 < s ≤ 1 then the result follows
from Lemma 3.1 as before. By our initial claim it remains only to consider the case
s ∈ (1, 2). If A is triangularisable then the result follows from Lemma 3.6 as in the
case d = 3, so it remains only to show that there are strictly fewer than (4−1)

(

4
1

)

= 12
ergodic ϕs-equilibrium states when 1 < s < 2 and A is not triangularisable. If A is
irreducible then by Lemma 3.4 there are not more than 4 ergodic ϕs-equilibrium
states for A. We therefore assume for the remainder of the proof that A is reducible
but not triangularisable.

If A has a 1-dimensional or 1-codimensional invariant subspace then by changing
basis, eliminating off-diagonal blocks and changing the basis once more we may as
in the case d = 3 reduce to the problem of finding the ϕs-equilibrium states of
A
′ = (A′

1, . . . , A
′
N) where

A′
i :=

(

bi 0
0 Ci

)

for each i = 1, . . . , N , each bi is real, each Ci has dimension 3 × 3 and (C1, . . . , CN)
is not simultaneously triangularisable. By Lemma 3.5 every ergodic ϕs-equilibrium
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state of A′ is either a ϕs-equilibrium state of (C1, . . . , CN), a ϕs−1-equilibrium state
of (|b1|C1, . . . , |bN |CN), or a ‖ · ‖-equilibrium state of (|b1|

s−1C1, . . . , |bN |
s−1CN). By

appeal to the case d = 3 there must be fewer than six equilibrium states of the first
type, and by appeal to Lemma 3.1 there can be no more than two equilibrium states
each of the second and third types. In particular the number of ergodic ϕs-equilibrium
states of A must be less than ten when a 1-dimensional or 1-codimensional invariant
subspace exists but A is not triangularisable.

The final remaining case is that in which A has a 2-dimensional invariant subspace
but no 1-dimensional or 1-codimensional invariant subspace. By a suitable change of
basis we may write

X−1AiX =

(

Bi Di

0 Ci

)

for each i = 1, . . . , N where each Bi, Ci and Di is a 2 × 2 real matrix and each
of the tuples (B1, . . . , BN) and (C1, . . . , CN) is irreducible. Using Lemma 3.2 it
follows that the ϕs-equilibrium states of A are precisely the ϕs-equilibrium states of
A
′ = (A′

1, . . . , A
′
N) where

A′
i :=

(

Bi 0
0 Ci

)

for each i = 1, . . . , N . We note that for each i ∈ Σ∗
N the four singular values of A′

i are
precisely α1(Bi), α2(Bi), α1(Ci) and α2(Ci) in some order, with α1(Bi) preceding
α2(Bi) and α1(Ci) preceding α2(Ci). In particular if we define four potentials by
Φ1(i) := α1(Bi)α2(Bi)

s−1 = ϕs(Bi), Φ
2(i) := α1(Bi)α1(Ci)

s−1 = ‖Bi‖ · ‖Ci‖
s−1,

Φ3(i) := α1(Bi)
s−1α1(Ci) = ‖Bi‖

s−1‖Ci‖, Φ4(i) := α1(Ci)α2(Ci)
s−1 = ϕs(Ci),

then

ϕs(A′
i) = max

1≤j≤4
Φj(i)

for every i ∈ Σ∗
N . It follows by Lemma 3.3 that if µ is an ergodic ϕs-equilibrium

state of A then it is an equilibrium state of one of the potentials Φj . By appeal to
the case d = 2 and the irreducibility of (B1, . . . , BN) and (C1, . . . , CN) the potentials
Φ1 and Φ4 can contribute at most one ergodic equilibrium state each, and by appeal
to Lemma 3.4 and irreducibility the potentials Φ2 and Φ3 can contribute at most two
ergodic equilibrium states each. In particular the number of ergodic ϕs-equilibrium
states of A in this case is not higher than six. The proof of the theorem is complete.

4. Separation of Lyapunov exponents

The following result is a special case of [4, Corollary 2.2]:

Lemma 4.1. Let C := (C1, . . . , CN) ∈ GLd1(R)N and D := (D1, . . . , DN) ∈
GLd2(R)N , and let γ, δ > 0. Define a submultiplicative potential Φ: Σ∗

N → (0,+∞)
by Φ(i) := ‖Ci‖

γ‖Di‖
δ. If C and D are both irreducible, and at least one of them is

strongly irreducible, then Φ is quasimultiplicative.

The proof of Theorem 1.2 rests on the following simple lemma.

Lemma 4.2. Let Φ1,Φ2 : Σ∗
N → R be sub-multiplicative and quasi-multiplicative

potentials, and let µ be the unique equilibrium state of Φ1. Suppose that Φ1(i) ≥
Φ2(i) for every i ∈ Σ∗

N and that Λ(Φ1, µ) = Λ(Φ2, µ). Then there exists C > 0 such

that C−1Φ1(i) ≤ Φ2(i) ≤ CΦ1(i) for every i ∈ Σ∗
N .

Proof. By Proposition 2.1 each of Φ1 and Φ2 has a unique equilibrium state.
Since Φ1 ≥ Φ2 it is clear from the definition of the pressure that P (Φ1) ≥ P (Φ2). We
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deduce

P (Φ2) ≥ h(µ) + Λ(Φ2, µ) = h(µ) + Λ(Φ1, µ) = P (Φ1) ≥ P (Φ2)

using the subadditive variational principle (2.1) and the hypothesis Λ(Φ1, µ) =
Λ(Φ2, µ). Hence µ is also the unique equilibrium state of Φ2 and therefore by Propo-
sition 2.1 there exist C1, C2 > 0 such that

C−1
1 Φ1(i) ≤ µ([i]) ≤ C1Φ

1(i)

and

C−1
2 Φ2(i) ≤ µ([i]) ≤ C2Φ

2(i)

for all i ∈ Σ∗
N . The result follows with C := C1C2. �

Proof of Theorem 1.2. To prove (i) we take Φ1(i) := ϕs(Ai) = ‖A∧k
i ‖k+1−s

·‖A
∧(k+1)
i ‖s−k and Φ2(i) := ‖A∧k

i ‖1+
k−s

2 ‖A
∧(k+2)
i ‖

s−k

2 . By Lemma 4.1 each of these
two potentials is submultiplicative and quasimultiplicative. Suppose for a contradic-
tion that Λk+1(A, µ) = Λk+2(A, µ). We have

Φ1(i) =
∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k

= α1(Ai) · · ·αk(Ai)αk+1(Ai)
s−k

≥ α1(Ai) · · ·αk(Ai)αk+1(Ai)
s−k

2 αk+2(Ai)
s−k

2

=
∥

∥A∧k
i

∥

∥

1+ k−s

2

∥

∥

∥
A

∧(k+2)
i

∥

∥

∥

s−k

2

= Φ2(i)

where the middle inequality follows from αk+1(Ai) ≥ αk+2(Ai). On the other hand

Λ(Φ1, µ) =

k
∑

i=1

Λi(A, µ) + (s− k)Λk+1(A, µ)

=
k
∑

i=1

Λi(A, µ) +

(

s− k

2

)

Λk+1(A, µ) +

(

s− k

2

)

Λk+2(A, µ) = Λ(Φ2, µ)

by hypothesis. It follows by Lemma 4.2 that there exists C > 0 such that

C−1 ≤

∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k

∥

∥A∧k
i

∥

∥

1+ k−s

2

∥

∥

∥
A

∧(k+2)
i

∥

∥

∥

s−k

2

≤ C

for every i ∈ Σ∗
N , and this simplifies to

C−1 ≤
αk+1(Ai)

s−k

2

αk+2(Ai)
s−k

2

≤ C.

It follows by Yamamoto’s Theorem that for every i ∈ Σ∗
N

λk+1(Ai)

λk+2(Ai)
= lim

n→∞

(

αk+1(A
n
i )

αk+2(An
i )

)
1

n

= 1,

where λi(B) denotes the absolute value of the ith-largest eigenvalue of the matrix
B. This contradicts the hypothesis that A is (k+1)-proximal, and we conclude that
Λk+1(A, µ) > Λk+2(A, µ) as required.

The proof of (ii) is similar. In this case we take Φ1(i) := ϕs(Ai) = ‖A∧k
i ‖k+1−s

·‖A
∧(k+1)
i ‖s−k and Φ2(i) := ‖A

∧(k−1)
i ‖

1−s+k

2 ‖A
∧(k+1)
i ‖

1+s−k

2 , and again by Lemma 4.1
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each of these two potentials is submultiplicative and quasimultiplicative. Assuming
for a contradiction that Λk(A, µ) = Λk+1(A, µ), we note that

Φ1(i) =
∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k

= α1(Ai) · · ·αk(Ai)αk+1(Ai)
s−k

≥ α1(Ai) · · ·αk−1(Ai)αk(Ai)
1+s−k

2 αk+1(Ai)
1+s−k

2

=
∥

∥

∥
A

∧(k−1)
i

∥

∥

∥

1−s+k

2

∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

1+s−k

2

= Φ2(i)

where the middle inequality follows from αk(Ai) ≥ αk+1(Ai), and also

Λ(Φ1, µ) =
k−1
∑

i=1

Λi(A, µ) + Λk(A, µ) + (s− k)Λk+1(A, µ)

=
k−1
∑

i=1

Λi(A, µ) +

(

1 + s− k

2

)

Λk(A, µ) +

(

1 + s− k

2

)

Λk+1(A, µ)

= Λ(Φ2, µ).

Hence by Lemma 4.2 that there exists C > 0 such that

C−1 ≤

∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k

∥

∥

∥
A

∧(k−1)
i

∥

∥

∥

1−s+k

2

∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

1+s−k

2

≤ C

and consequently

C−1 ≤
αk(Ai)

1+k−s

2

αk+1(Ai)
1+k−s

2

≤ C

for every i ∈ Σ∗
N . We likewise deduce the contradiction λk(Ai) = λk+1(Ai) for every

i ∈ Σ∗
N . �

Remark 1. In the case where k is an integer the irreducibility conditions on A

may be relaxed slightly. The role of these conditions in the proof is to ensure that
both Φ1 and Φ2 are quasi-multiplicative; in (i), if s = k + 1 then Φ1(i) reduces to

‖A
∧(k+1)
i ‖, so it suffices to assume that A∧ℓ is irreducible for ℓ ∈ {k, k+1, k+2} and

strongly irreducible for either ℓ = k or ℓ = k + 2. Equivalently, if s = k in (ii) then
Φ1(i) =

∥

∥A∧k
i

∥

∥ and we may assume that A
∧ℓ is irreducible for ℓ ∈ {k − 1, k, k + 1}

and strongly irreducible for one of ℓ = k − 1 and ℓ = k + 1.

Remark 2. We observe that statements (i) and (ii) of Theorem 1.2 are in fact
equivalent to one another via Lemma 2.2; we leave the details to the reader.

5. When is a Käenmäki measure a Bernoulli measure?

Suppose that T1, . . . , TN : Rd → R
d are affine contractions with linear parts

A1, . . . , AN ∈ GLd(R)N having affinity dimension s ∈ (0, d), and let X =
⋃N

i=1 TiX

be their attractor. Recall that a self-affine measure with respect to T1, . . . , TN is
a Borel probability measure m on R

d such that
∑N

i=1 pim(T−1
i B) = m(B) for all

Borel sets B ⊂ R
d and for some fixed probability vector (p1, . . . , pN). If we define

π : ΣN → X by

π [(xk)
∞
k=1] := lim

n→∞
Tx1

· · ·Txn
v
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for all v ∈ R
d then this limit exists, belongs to X and is independent of v. A measure

on X is then self-affine if and only if it is the projection via π of a Bernoulli measure
on ΣN .

Let ρ(A) denote the spectral radius of the matrix A. It was shown by Hutchinson
in [17] that if the affinities Ti are all similarities—that is, if ρ(Ai)

−1Ai ∈ O(d) for
every i = 1, . . . , N—and if the affinities Ti satisfy the Open Set Condition, then there
exists a self-affine measure on the attractor X whose Hausdorff dimension is equal
to s. We note the following partial converse to this statement in two dimensions:

Proposition 5.1. Let T1, . . . , TN : R2 → R
2 be invertible affine contractions

with linear parts A1, . . . , AN ∈ GL2(R), and suppose that (A1, . . . , AN) is irreducible

and that dimaff(A1, . . . , AN) ∈ (0, 2). If there exists a self-affine measure on the

attractor X =
⋃N

i=1 TiX with Hausdorff dimension equal to s := dimaff(A1, . . . , AN),
then T1, . . . , TN are similitudes with respect to some inner product on R

2.

Proof. The proof reprises parts of [23, §5]; we include these parts in order to
better illuminate the problem which follows. If µ ∈ Mσ then one may show that
dimH π∗µ ≤ s with equality only if µ is a ϕs-equilibrium state of (A1, . . . , AN), see
[19]. Let m = π∗µ be the hypothesised self-affine measure of Hausdorff dimension
s, so that µ is a ϕs-equilibrium state of (A1, . . . , AN) which is a Bernoulli measure.
Suppose firstly that s ≤ 1 and therefore ϕs(Ai) = ‖Ai‖

s for every i ∈ Σ∗
N . The

measure µ then satisfies

C−1‖Ai‖
s ≤ e|i|P (A,ϕs)µ([i]) ≤ C‖Ai‖

s

for every i ∈ ΣN by the combination of Lemma 3.1 and Proposition 2.1. Let i, j ∈
ΣN be arbitrary; then we deduce

C−1‖An
i‖

s ≤ en|i|P (A,ϕs)µ([in]) = en|i|P (A,ϕs)µ([i])n ≤ C‖An
i‖

s,

C−1‖An
j‖

s ≤ en|j|P (A,ϕs)µ([jn]) = en|j|P (A,ϕs)µ([j])n ≤ C‖An
j‖

s

and

C−1 ‖(AiAj)
n‖s ≤ en(|i|+|j|)P (A,ϕs)µ([(ji)n]) = en(|i|+|j|)P (A,ϕs)µ([i])nµ([j])n

≤ C‖(AiAj)
n‖s

for every n ≥ 1, where kn refers to the word formed by concatenating n successive
copies of k and where we have used the fact that µ is a Bernoulli measure. In
particular

C−3/s‖An
i‖ · ‖A

n
j‖ ≤ ‖(AiAj)

n‖ ≤ C3/s‖An
i‖ · ‖A

n
j‖

for every n ≥ 1 and i, j ∈ ΣN so that by Gelfand’s formula

ρ(AiAj) = ρ(Ai)ρ(Aj)

for all i, j ∈ ΣN . Thus the semigroup Γ := {Ai : i ∈ Σ∗
N} ⊂ GL2(R) is irre-

ducible and has the property that ρ : Γ → R is multiplicative; but by a theorem of
Protasov and Voynov [26, Theorem 2] this implies that there exists B ∈ GL2(R)
such that ρ(A)−1B−1AB ∈ O(2) for all A ∈ Γ. It follows in particular that for all
i = 1, . . . , N the matrix ρ(Ai)

−1Ai is an isometry with respect to the inner product
(u, v) 7→ 〈Bu,Bv〉, and therefore each Ti is a similitude with respect to that same
inner product. This proves the proposition in the case s ≤ 1. In the case 1 ≤ s < 2
we similarly obtain ρ(AiAj) ≡ ρ(Ai)ρ(Aj) by using ϕs(Ai) = | detAi|

s−1‖Ai‖
2−s in

place of ‖Ai‖
s throughout. �
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It is natural to ask whether the above result may be extended beyond the planar
case. We make the following conjecture:

Conjecture 5.2. Let T1, . . . , TN → R
d → R

d be invertible affine contractions

with linear parts A1, . . . , AN ∈ GLd(R), and suppose that s := dimaff(A1, . . . , AN) ∈

(0, d). Suppose additionally that (A
∧⌊s⌋
1 , . . . , A

∧⌊s⌋
N ) and (A

∧⌈s⌉
1 , . . . , A

∧⌈s⌉
N ) are both

irreducible and that at least one of them is strongly irreducible. If there exists a self-

affine measure on the attractor X =
⋃N

i=1 TiX with Hausdorff dimension equal to

s := dimaff(A1, . . . , AN), then T1, . . . , TN are similitudes with respect to some inner

product on R
d.

Conjecture 5.2 may be restated in terms of Käenmäki measures as follows: if
A1, . . . , AN ∈ GLd(R) are contractions with affinity dimension s ∈ (0, d), and

(A
∧⌊s⌋
1 , . . . , A

∧⌊s⌋
N ) and (A

∧⌈s⌉
1 , . . . , A

∧⌈s⌉
N ) are both irreducible with at least one being

strongly irreducible, then either the Ai’s are simultaneously conjugate to similarity
matrices or their (unique) Käenmäki measure is not a Bernoulli measure.

The irreducibility hypothesis on the exterior powers of the matrices Ai implies
using [20, Theorem 3] that there is a unique ϕs-equilibrium state for (A1, . . . , AN)
which has the Gibbs property

C−1ϕs(Ai) ≤ e|i|P (A,ϕs)µ([i]) ≤ Cϕs(Ai)

for all i ∈ Σ∗
N . By following the argument of Proposition 5.1 we find that the

inequality

C−3ϕs(An
i )ϕ

s(An
j ) ≤ ϕs ((AiAj)

n) ≤ C3ϕs(An
i )ϕ

s(An
j )

is satisfied for all i, j ∈ Σ∗
N and n ≥ 1. Let k := ⌊s⌋. Using Gelfand’s formula

together with the identity ϕs(A) = ‖A∧⌊s⌋‖1+⌊s⌋−s‖A∧⌈s⌉‖s−⌊s⌋ it follows that

ρ((AiAj)
∧⌊s⌋)1+⌊s⌋−sρ((AiAj)

∧⌈s⌉)s−⌊s⌋

= ρ(A
∧⌊s⌋
i )1+⌊s⌋−sρ(A

∧⌈s⌉
i )s−⌊s⌋ρ(A

∧⌊s⌋
j )1+⌊s⌋−sρ(A

∧⌈s⌉
j )s−⌊s⌋

(5.1)

for all i, j ∈ Σ∗
N . In order to prove Conjecture 5.2 by the method of Proposition 5.1

we would need to know under what circumstances the equation (5.1) implies that
the matrices ρ(Ai)

−1Ai belong to a bounded subgroup of GLd(R). We note that

by replacing Ai with (ρ(A
∧⌊s⌋
i )1+⌊s⌋−sρ(A

∧⌈s⌉
i )s−⌊s⌋)−1/sAi for each i = 1, . . . , N this

problem may be reduced to the study of semigroups Γ ⊂ GLd(R) with the property
that

(5.2) ρ
(

A∧⌊s⌋
)1+⌊s⌋−s

ρ
(

A∧⌈s⌉
)s−⌊s⌋

= 1

for all A ∈ Γ. The structure of such semigroups is at the present time opaque. We
therefore ask the following questions in support of Conjecture 5.2:

Question 5.3. Let Γ ⊂ GLd(R) be a semigroup and let s ∈ (0, d), and suppose
that the equation (5.2) is satisfied for all A ∈ Γ. Assume furthermore that the sets
{A∧⌊s⌋ : A ∈ Γ} and {A∧⌈s⌉ : A ∈ Γ} are strongly irreducible. Does it follow that Γ is
contained in a bounded subgroup of GLd(R)?

We note that some degree of irreducibility must be assumed in the above ques-
tion since otherwise counterexamples consisting only of diagonal matrices may be
constructed. Such examples suggest the following question:



Some observations on Käenmäki measures 959

Question 5.4. Let Γ ⊂ GLd(R) be a semigroup and let s ∈ (0, d), and suppose
that

ρ((AB)∧⌊s⌋)1+⌊s⌋−sρ((AB)∧⌈s⌉)s−⌊s⌋

= ρ(A∧⌊s⌋)1+⌊s⌋−sρ(A∧⌈s⌉)s−⌊s⌋ρ(B∧⌊s⌋)1+⌊s⌋−sρ(B∧⌈s⌉)s−⌊s⌋

for all A,B ∈ Γ. Does it follow that in fact ρ((AB)∧⌊s⌋) = ρ(A∧⌊s⌋)ρ(B∧⌊s⌋) and
ρ((AB)∧⌈s⌉) = ρ(A∧⌈s⌉)ρ(B∧⌈s⌉) for all A,B ∈ Γ?

By the conventions of algebraic geometry a function φ : GLd(R) → R is called a
polynomial if there exists a basis on R

d with respect to which φ(A) is a polynomial
function of the entries of the matrix representation of A and of the additional variable
(detA)−1. We recall that a subset Z of GLd(R) is called Zariski dense if every
polynomial GLd(R) → R which vanishes on Z also vanishes on GLd(R). We note
that if a subset of GLd(R) is contained in a bounded subgroup of GLd(R) then it is
not Zariski dense, since every bounded subgroup of GLd(R) is conjugate to O(d) and
therefore preserves an inner product, implying the existence of a polynomial which
vanishes on the subgroup but not on GLd(R). We ask the following weaker form of
Question 5.3:

Question 5.5. Let Γ ⊂ GLd(R) be a semigroup and let s ∈ (0, d), and suppose
that the equation (5.2) is satisfied for all A ∈ Γ. Is it possible that Γ is Zariski dense?
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