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Abstract. We study the chord-arc Jordan curves that satisfy the Cotlar-type inequality

T∗(f) . M2(Tf), where T is the Cauchy transform, T∗ is the maximal Cauchy transform and

M is the Hardy–Littlewood maximal function. Under the background assumption of asymptotic

conformality we find a characterization of such curves in terms of the smoothness of a parametriza-

tion of the curve.

1. Introduction

Consider a homogeneous smooth Calderón–Zygmund operator in R
n

Tf(x) = p. v.

ˆ

f(x− y)K(y) dy ≡ lim
ǫ→0

Tǫf(x), x ∈ R
n,

where Tǫ is the truncation at level ǫ defined by

Tǫf(x) =

ˆ

|y|>ǫ

f(x− y)K(y) dy, x ∈ R
n,

and f is in Lp(Rn), 1 ≤ p < ∞. Here the kernel K is of class C∞ off the origin,
homogeneous of order −n and with zero integral on the unit sphere

{x ∈ R
n : |x| = 1}.

Let T∗ be the maximal singular integral

T∗f(x) = sup
ǫ>0

|Tǫf(x)|, x ∈ R
n.

A classical fact relating T∗ and the standard Hardy–Littlewood maximal operator
M is Cotlar’s inequality, which reads

(1.1) T∗(f)(x) ≤ C
(
M(Tf)(x) +M(f)(x)

)
, x ∈ R

n.

Combining this with the Lp estimates ‖T (f)‖p ≤ C ‖f‖p and ‖M(f)‖p ≤ C ‖f‖p,
1 < p < ∞ one gets ‖T∗(f)‖p ≤ C ‖f‖p, 1 < p < ∞.

It was discovered in [4] that if T is an even higher order Riesz transform, that is,
if K(x) = P (x)/|x|n+d, with P an even homogeneous polynomial of degree d, then
one can get rid of the second term in the right hand side of (1.1), namely,

(1.2) T∗(f)(x) ≤ CM(Tf)(x), x ∈ R
n.
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Hence ‖T∗(f)‖p ≤ C ‖T (f)‖p, 1 < p < ∞, in this case. However, if T is an odd
higher order Riesz transform, then (1.2) may fail and the right substitute turns out
to be (see [3])

(1.3) T∗(f)(x) ≤ CM2(Tf)(x), x ∈ R
n,

where M2 stands for the iteration of M .
Inequalities of the type (1.2) and (1.3) were first considered in relation to the

David–Semmes problem (see [4],[3] and [9]) and later on were studied in the context
of the Cauchy singular integral on Lipschitz graphs and C1 curves by Girela-Sarríón
in [2]. Let Γ be either a Lipschitz graph or a closed chord-arc curve in the plane, let
T be the Cauchy Singular Integral and M the Hardy–Littlewood maximal operator,
both with respect to the arc-length measure, and let T∗ be the maximal Cauchy
Integral. Precise definitions will be given below. Girela-Sarrión showed in [2] that
the presence at a point z of the curve of a non-zero angle prevents (1.3), with x
replaced by z, to hold. This agrees with the intuition that (1.3) should help in
finding tangent lines, but suggests that it is a condition definetely stronger than the
mere existence of tangents. It was also shown in [2] that if Γ is a closed C1 curve
with the property that the modulus of continuity ω(z, δ) of the unit tangent vector
satisfies

(1.4) ω(z, δ) ≤ C
1

log(1
δ
)
, z ∈ Γ, δ < 1/2,

then (1.3) holds with x ∈ R
n replaced by z ∈ Γ. Observe that condition (1.4)

quantifies the absence of corners in a curve for which (1.3) holds. In this paper we
study the validity of inequality (1.3) in the context of chord-arc curves. A chord-arc
curve is a rectifiable Jordan curve Γ in the plane with the property that there exists
a positive constant C such that, given any two points z1, z2 ∈ Γ one has

l(z1, z2) ≤ C |z1 − z2|,

where l(z1, z2) is the length of the shortest arc in Γ joining z1 and z2. Equivalently
Γ is a bilipschitz image of the unit circle (see [5], Theorem 7.9). Then Γ can be
parametrized by a periodic function γ : R → Γ of period T satisfying the bilipschitz
condition

(1.5)
1

L
|x− y| ≤ |γ(x)− γ(y)| ≤ L |x− y|, x, y ∈ R, |x− y| ≤ T

2
,

for some positive constant L. We say, by slightly abusing language, that γ is a
bilipschitz parametrization of Γ. One can take, for instance, the T -periodic extension
of the arc-length parametrization of Γ with T being the length of Γ.

One can easily define the maximal Hardy–Littlewood operator and the Cauchy
Integral on a chord-arc curve. Given z ∈ Γ let t ∈ R be such that z = γ(t). Set

Γz,r := γ({τ : |τ − t| < r}).

One should look at Γz,r as “balls” of radius r centered at z. Indeed, owing to the
bilipschitz condition (1.5), each Γz,r contains and is contained in a disc in Γ of radius
comparable to r, for r < T . It will be more convenient to work with Γz,r than with
the euclidean discs D(z, r) ∩ Γ, where D(z, r) stands for the planar disc of center z
and radius r.
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Denote by µ the arc-length measure on Γ. For f ∈ L1(Γ, µ) and z ∈ Γ, we define
the Hardy–Littlewood maximal function on the curve Γ as

Mf(z) := sup
r>0

1

µ(Γz,r)

ˆ

Γz,r

|f | dµ.

The Cauchy Integral is defined as

Tf(z) = p. v.
1

π i

ˆ

Γ

1

w − z
f(w) dw ≡ lim

ǫ→0
Tǫf(z), z ∈ Γ,

where

Tǫf(z) =
1

πi

ˆ

Γ\Γz,ǫ

f(w)

w − z
dw

is the truncated Cauchy Integral at level ǫ. The maximal Cauchy Integral is

T∗f(z) := sup
ǫ>0

∣∣Tǫf(z)
∣∣.

Our aim is to investigate under what conditions on Γ one has the inequality

T∗f(z) ≤ CM2(Tf)(z), z ∈ Γ, f ∈ L2(Γ, µ),

where C is a positive constant. Since we know that angles prevent the above in-
equality to hold, we need to require on Γ a condition that excludes them. One such a
condition is asymptotic conformality. Given two points z1, z2 ∈ Γ let A(z1, z2) be the
arc in Γ joining the two points and having smallest diameter (there is only one if the
two points are sufficiently close). The Jordan curve Γ is said to be asymptotically
conformal if, given a positive number δ there exists a positive ǫ, so that for any two
points z1, z2 ∈ Γ satisfying |z1 − z2| < ǫ one has

|z1 − z| + |z2 − z| ≤ (1 + δ)|z1 − z2|, z ∈ A(z1, z2).

Our main result reads as follows.

Theorem. Let T be the Cauchy Integral on an asymptotically conformal chord-
arc curve Γ and let γ be a bilipschitz parametrization of Γ. Then the estimate

(1.6) T∗(f)(z) ≤ CM2(Tf)(z), z ∈ Γ, f ∈ L2(Γ, µ),

holds if and only if there exists C > 0 such that

(1.7)
∣∣γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)

∣∣ ≤ C
ǫ

| log ǫ| ,

for each ǫ satisfying 0 < ǫ < T and for each x ∈ R.

One should recall that condition (1.7) implies that γ is differentiable almost ev-
erywhere in the ordinary sense and the derivative is a function of vanishing mean
oscillation (see [11]). Therefore, for chord arc curves satisfying the background as-
sumption of asymptotical conformality, inequality (1.6) is equivalent to the precise
form of differentiability described in terms of second order differences in (1.7). Also
notice that if γ is the arc-length parametrization of a C1 curve, (1.4) implies (1.7),
so that the Theorem generalizes Girela-Sarrión’s result.

In Section 2 we prove a couple of Lemmas which allow to express condition (1.6)
in an equivalent form in terms of a function related to the geometry of Γ. Section 3
is devoted to take care of a technical question, namely, that it is enough to estimate
truncations at small enough levels. In Section 4 we prove the Theorem by means
of three lemmas, one on them making the connection between the function carrying
the geometrical information and the second difference condition (1.7). In Section 5
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we present an example of a spiraling domain that enjoys the equivalent conditions
in the Theorem but whose boundary is not of class C1. This example justifies the
efforts made in order to extend the condition (1.4) to a less regular case since new
geometric behaviors can be detected.

Our terminology and notation are standard. We let C denote a constant inde-
pendent of the relevant variables under consideration and which may vary at each
occurrence. The notation A . B means that there exists a constant C > 0 such that
A ≤ CB. We write A & B if B . A. The disc centered at z of radius r is denoted
by D(z, r).

2. Two preliminary lemmas

The beginning of the proof follows the ideas of [2], so that we will be rather
concise. Given a function f ∈ L1(Γ, µ) we denote by mΓz,ǫ

(f) =
ffl

Γz,ǫ
f(w) dµ(w) the

mean of f on Γz,ǫ with respect to the arc length measure µ. We let Kz,ǫ denote the
Cauchy kernel truncated at the point z at level ǫ, that is,

Kz,ǫ(w) =
1

π i

1

w − z
χΓ\Γz,ǫ

(w), w ∈ Γ.

Set gz,ǫ = T (Kz,ǫ) and let N > 1 be a big number to be chosen later. Following [2,
p. 673] we obtain the identity

−Tǫf(z) = Iǫ + IIǫ + IIIǫ,

where

Iǫ :=

ˆ

Γz,Nǫ

Tf(w)
(
gz,ǫ(w)−mΓz,Nǫ

(gz,ǫ)
)
dw,

IIǫ := mΓz,Nǫ
(gz,ǫ)

ˆ

Γz,Nǫ

Tf(w) dw

IIIǫ :=

ˆ

Γ\Γz,Nǫ

Tf(w)gz,ǫ(w) dw.(2.1)

Following closely the argument in [2] one can prove that

|Iǫ| ≤ CM2(Tf)(z),

|IIǫ| ≤ CM(Tf)(z),

where the constant C does not depend on the choice of N . Since clearly M(g) ≤
M2(g) for any g, we are left with the task of estimating IIIǫ. The next lemma
provides an expression for IIIǫ in terms of a function encoding the smoothness of Γ.
To state the lemma first we need to clarify the definition of a branch of the logarithm
of w − z, as a function of w with z ∈ Γ fixed, in an appropriate region.

Given z ∈ Γ let ∆z be a curve connecting z and ∞ in the unbounded component
of C \ Γ. Such curves exist and indeed we will construct a special one in Section
4 (under the additional assumption of asymptotic conformality). Hence C \ ∆z

is a simply connected domain containing Γ \ {z} and so there exists in C \ ∆z a
branch of log(w − z). In particular, if z = γ(x) for some x ∈ R, the expressions
log(γ(x+ ǫ)− γ(x)) and log(γ(x− ǫ)− γ(x)) make sense for 0 < ǫ < T.

Lemma 1. Let Γ be a chord-arc curve and γ a bilipschitz parametrization of Γ.
Let z ∈ Γ and let x be a real number such that γ(x) = z. Then for almost every
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w ∈ Γ\Γz,Nǫ we have

T (Kz,ǫ)(w) =
1

π2(z − w)

[
F (x, ǫ) +Gz,ǫ(w)

]
,

where
F (x, ǫ) = log(γ(x+ ǫ)− γ(x))− log(γ(x− ǫ)− γ(x)) + πi

and

(2.2) |Gz,ǫ(w)| ≤
C ǫ

|z − w| .

Proof. Take w ∈ Γ\Γz,Nǫ . Then

T (Kz,ǫ)(w) = − 1

π2
lim
δ→0

ˆ

Γ\(Γw,δ∪Γz,ǫ)

1

(ζ − z)(ζ − w)
dζ

= − 1

π2

1

w − z
lim
δ→0

ˆ

Γ\(Γw,δ∪Γz,ǫ)

(
1

ζ − w
− 1

ζ − z

)
dζ.

Let y ∈ R with γ(y) = w . Then the latest integral in the above formula is

log (γ(y − δ)− γ(y))− log (γ(x+ ǫ)− γ(y)) + log (γ(x− ǫ)− γ(y))

− log (γ(y + δ)− γ(y))−
(
log (γ(y − δ)− γ(x))

− log (γ(x+ ǫ)− γ(x)) + log (γ(x− ǫ)− γ(x))− log (γ(y + δ)− γ(x))
)
.

Assume that γ is differentiable at the point y and the derivative γ′(y) does not vanish.
Then we have that

lim
δ→0

(
log (γ(y − δ)− γ(y))− log (γ(y + δ)− γ(y))

)
= πi,

because the curve ∆w lies in the unbounded component of C \ Γ, and then to the
right hand side of Γ, oriented according to the parametrization γ. Taking limit as δ
goes to 0 we obtain

T (Kz,ǫ)(w) = − 1

π2

1

w − z

((
log(γ(x+ ǫ)− γ(x))− log(γ(x− ǫ)− γ(x)) + πi

)

−
(
log(γ(x+ ǫ)− γ(y))− log(γ(x− ǫ)− γ(y))

))
.

Define
Gz,ǫ(w) = log (γ(x− ǫ)− γ(y))− log (γ(x+ ǫ)− γ(y)).

It remains to show the decay inequality (2.2). According to the choice of ∆w we have
a well defined branch of log(γ(x+ t)− w), −ǫ < t < ǫ. Thus

(2.3) Gz,ǫ(w) = −
ˆ ǫ

−ǫ

d

dt
log(γ(x+ t)− w) dt = −

ˆ ǫ

−ǫ

γ′(x+ t)

γ(x+ t)− w
dt.

Since w = γ(y) ∈ Γ \ Γz,Nǫ, we have y /∈ (x−Nǫ, x+Nǫ) and so

|w − z| = |γ(y)− γ(x)| ≥ |y − x|
L

≥ Nǫ

L
,

which gives, taking N ≥ 2L2,

|w − γ(x+ t)| ≥ |w − z| − |γ(x)− γ(x+ t)|

≥ |w − z|
2

+
Nǫ

2L
− Lǫ ≥ |w − z|

2
.
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Hence, by (2.3),

|Gz,ǫ(w)| ≤
ˆ ǫ

−ǫ

|γ′(x+ t)|
|γ(x+ t)− w| dt ≤

4Lǫ

|w − z| . �

Lemma 2. Let Γ be a chord-arc curve and γ a bilipschitz parametrization of Γ.
Then the inequality

(2.4) T∗(f)(z) ≤ CM2(Tf)(z), z ∈ Γ, f ∈ L2(Γ, µ),

is equivalent to

(2.5) |F (x, ǫ)|| log(ǫ)| ≤ C, 0 < ǫ < T, x ∈ R.

Proof. Assume that (2.5) holds. Then by Lemma 1

IIIǫ =

ˆ

Γ\Γz,Nǫ

Tf(w) T (Kz,ǫ)(w) dw

=
F (x, ǫ)

π2

ˆ

Γ\Γz,Nǫ

Tf(w)

z − w
dw +

1

π2

ˆ

Γ\Γz,Nǫ

Tf(w)
Gz,ǫ(w)

z − w
dw

= F (x, ǫ) IVǫ + Vǫ,

where the last identity is a definition of the terms IVǫ and Vǫ. One can break the
domain of integration in the integrals in IVǫ and Vǫ into a union of dyadic annuli

Aj = γ
{
y ∈ R : Nǫ 2j < |y − x| ≤ Nǫ 2j+1

}
, j = 0, 1, . . . ,

then perform standard estimates and apply (2.2) to get, thanks to the quadratic
decay of the integrand,

(2.6) |Vǫ| ≤ CM
(
T (f)

)
(z).

For IVǫ one only has a first order decay, which gives

|IVǫ| ≤ C
∣∣∣ log

(NL

ǫ

)∣∣∣M(Tf)(z),

thus completing the proof of the sufficient condition.
Assume now (2.4). Recalling that IIIǫ = F (x, ǫ) IVǫ + Vǫ and (2.6), we obtain

(2.7)
∣∣F (x, ǫ) IVǫ

∣∣ ≤ CM2
(
T (f)

)
(z), z ∈ Γ, f ∈ L2(Γ, µ).

The Cauchy Singular Integral operator T is an isomorphism of L2(Γ, µ) onto itself.
This is proved in Lemma 1 of [2, p. 661] for Lipschitz graphs, and the same proof
works in our context. Thus (2.7) can be rewritten as

(2.8)
∣∣∣F (x, ǫ)

ˆ

Γ\Γz,Nǫ

g(w)

z − w
dw
∣∣∣ ≤ CM2(g)(z), z ∈ Γ, g ∈ L2(Γ, µ).

To simplify the notation take x = 0 = γ(x). Assume first that 0 < ǫ < 1. Apply
(2.8) with g the characteristic function of γ((ǫn, ǫ)), where n is a large integer to be
chosen. Then

|F (0, ǫ)|
∣∣∣
ˆ ǫ

ǫn

γ′(t)

γ(t)
dt
∣∣∣ ≤ C
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and ∣∣∣∣
ˆ ǫ

ǫn

γ′(t)

γ(t)
dt

∣∣∣∣ = | log(γ(ǫ))− log(γ(ǫn))|

≥ | log(|γ(ǫ)|)− log(|γ(ǫn)|)| ≥ log
( 1

L2 ǫn−1

)

≥ −2 log(L) + (n− 2) log
(1
ǫ

)
+ log

(1
ǫ

)
≥ | log(ǫ)|

provided n = n(ǫ) is large enough so that −2 log(L)+(n−2) log(1/ ǫ) ≥ 0. Therefore
(2.5) follows in this case.

If 1 ≤ ǫ < T then we take as g the characteristic function of γ((ǫ−n, ǫ)). In this
case we get

∣∣∣∣
ˆ ǫ

ǫ−n

γ′(t)

γ(t)
dt

∣∣∣∣ ≥ −2 log(L) + n log(ǫ) + log(ǫ) ≥ | log(ǫ)|

provided n is chosen so that −2 log(L) + n log(ǫ) ≥ 0. �

3. Reduction to estimating truncations at small levels

In this section we reduce the proof of (1.6) to estimating the truncations Tǫf for
small ǫ. In the previous section we showed that the estimate of Tǫf can be reduced
to that of the term IIIǫ in (2.1).

Lemma 3. If ǫ0 is a given positive number, then there exists a large positive
number N = N(L) so that

∣∣∣
ˆ

Γ\Γz,Nǫ

Tf(w) gz,ǫ(w) dw
∣∣∣ ≤ CM(Tf)(z), z ∈ Γ, ǫ0 < ǫ,

for a positive constant C = C(ǫ0, L).

The small number ǫ0 will be chosen in the next section.

Proof. Recall that

gz,ǫ(w) = T (Kz,ǫ)(w) = − 1

π2
p. v.

ˆ

Γ\Γz,ǫ

1

(ζ − w)(ζ − z)
dζ

= − 1

π2

1

w − z
p. v.

ˆ

Γ\Γz,ǫ

(
1

ζ − w
− 1

ζ − z

)
dζ

= − 1

π2

1

w − z
p. v.

ˆ

Γ\Γz,ǫ

1

ζ − w
dζ +

1

π2

1

w − z
p. v.

ˆ

Γ\Γz,ǫ

1

ζ − z
dζ

= h(w) + k(w),

where in the last identity we defined h(w) and k(w).
Applying the bilipschitz character of γ we conclude that

(3.1) |k(w)| ≤ 1

π2

L2

N ǫ20
length(Γ), w ∈ Γ \ Γz,Nǫ, ǫ0 < ǫ .

The estimate of h(w) is a little trickier. We have

h(w) = − 1

π2

1

w − z
p. v.

ˆ

Γ

1

ζ − w
dζ +

1

π2

1

w − z
p. v.

ˆ

Γz,ǫ

1

ζ − w
dζ
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A simple application of Cauchy’s Theorem gives that, if Γ has a tangent at w,

p. v.

ˆ

Γ

1

ζ − w
dζ = πi.

As before, the bilipschitz character of γ yields

|w − z| ≥ N ǫ

L
, w ∈ Γ \ Γz,Nǫ

and

|w − ζ | ≥ |w − z| − |z − ζ | ≥ ǫ
(N
L

− L
)
, w ∈ Γ \ Γz,Nǫ, ζ ∈ Γz,ǫ

Choose N so that N/L− L ≥ 1. Then

|w − ζ | ≥ ǫ, w ∈ Γ \ Γz,Nǫ, ζ ∈ Γz,ǫ.

Gathering all the previous estimates we finally get

(3.2) |h(w)| ≤ 1

π

L

N ǫ0
+

1

π2

length(Γ)

ǫ0
, w ∈ Γ \ Γz,Nǫ, ǫ0 < ǫ .

Hence (3.1) and (3.2) yield

|gz,ǫ(w)| ≤ C, w ∈ Γ \ Γz,Nǫ, ǫ0 < ǫ,

where C = C(ǫ0, N, L, length(Γ)) is a constant depending on ǫ0, N, L and length(Γ).
Therefore
∣∣∣∣∣

ˆ

Γ\Γz,Nǫ

Tf(w) gz,ǫ(w) dw

∣∣∣∣∣ ≤ C

ˆ

Γ

|Tf(w)| dµ(w) ≤ C length(Γ)M(Tf)(z),

which completes the proof of the lemma. �

4. The proof of the Theorem

For z 6= 0 let Arg(z) denote the principal argument of z, so that 0 ≤ Arg(z) < 2π.

Lemma 4. Given α > 0 there exists a positive number ǫ0 = ǫ0(L) with the
following property. Assume that 0 < ǫ1 ≤ ǫ0, ǫ1 /2 < ǫ ≤ ǫ1 and that for a fixed
x ∈ R we have γ(x) = 0. If γ(x− τ), τ > 0, satisfies

ǫ1
2L

< |γ(x− τ)| < L ǫ1,

then, for some θ such that γ(x− τ) = |γ(x− τ)|eiθ, we have
∣∣θ −

(
Arg(γ(x+ ǫ)) + π

)∣∣ < α.

Proof. Consider the triangle with vertices 0, γ(x−τ) and γ(x+ǫ) and side lengths
A = |γ(x− τ)|, B = |γ(x+ ǫ)| and C = |γ(x+ ǫ)−γ(x− τ)|. By the cosine Theorem

C2 = A2 +B2 − 2AB cos(φ),

where φ is the angle opposite to the side C. In other terms

1 + cos(φ) =
(A+B − C)(A+B + C)

2AB
.
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By asymptotic conformality, given δ > 0 there exists η0 > 0 such that C = |γ(x +
ǫ) − γ(x − τ)| < η0 implies A + B ≤ (1 + δ)C. The bilipschitz property of γ (1.5)
yields ǫ1 /2L

2 ≤ τ ≤ L2 ǫ1. Hence

1 + cos(φ) ≤ δL4 (ǫ1+τ)2

ǫ1 τ
≤ 2δL6(1 + L2)2.

Taking θ = Arg(γ(x+ ǫ)) + φ we see that |θ − (Arg(γ(x+ ǫ)) + π)| < α provided δ
is small enough. Since

|γ(x+ ǫ)− γ(x− τ)| ≤ L(ǫ+τ) ≤ ǫ0 L(1 + L2),

one has to choose ǫ0 so that ǫ0 L(1 + L2) ≤ η0, which shows the correct dependence
of ǫ0 and completes the proof of the Lemma. �

Given a point z ∈ Γ we want now to construct a special Jordan arc ∆z connecting
z to ∞ in the complement of Γ. Assume, without loss of generality, that z = 0. Take
x ∈ R with γ(x) = 0. Let ǫ0 be the number given in the preceding lemma and define,
for j = 0, 1, 2, . . . , a polar rectangle by

Rj =
{
w = |w|eiθ : ǫ0

2j+1L
< |w| < ǫ0 L

2j
and

∣∣∣θ − Arg
(
γ
(
x+

ǫ0
2j

))
+ π
∣∣∣ < α

}
.

Applying Lemma 4 with ǫ = ǫ1 = ǫ0 /2
j we conclude that

{γ(x− τ) : 0 < τ} ∩
{
w :

ǫ0
2j+1L

< |w| < ǫ0 L

2j

}
⊂ Rj .

We need to introduce another polar rectangle

Sj = Rj ∩
{
w :

ǫ0 L

2j+1
< |w|

}
, j = 0, 1, 2, . . . .

We define inductively ∆z = ∆0 on Sj by just requiring that the Jordan arc ∆0∩Sj

lies in the unbounded component of the complement of Γ, Sj being the closure of Sj .
We then connect ∆0 ∩ S0 with ∞ by a Jordan arc in the complement of Γ, with the
only precaution of not reentering the disc D(0, ǫ0) once ∆0 has left it.

It is worth pointing out that the axis of two consecutive polar rectangles Rj and
Rj+1 make an angle less than α. This follows by the defining property of ǫ0 (see the
proof of Lemma 4).

Lemma 5.

log(γ(x− ǫ))− πi = log(−γ(x− ǫ)), x ∈ R, 0 < ǫ ≤ ǫ0 .

Proof. We know that

(4.1) log(γ(x− ǫ))− πi = log(−γ(x− ǫ)) + 2πmi

for some integer m. Our goal is to compute the difference

log(γ(x− ǫ))− log(−γ(x− ǫ))

by the integral
ˆ

ς

1

z
dz,

where ς is an appropriately chosen Jordan arc connecting −γ(x − ǫ) to γ(x − ǫ) in
the complement of ∆0.
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z(x, ε)

σγ(x− ε)

γ

Γ

γ(x) = 0

−γ(x− ε)

γ(x+ ε)

A

ε0L

2j

ε0

L2j+1

β

Figure 1. The curve ς .

Assume that ǫ0 /2
j+1 < ǫ ≤ ǫ0 /2

j, for some non-negative integer j. Define N as
the smallest integer satisfying

L ǫ0
2j+N

≤ ǫ0
L2j+1

.

This is equivalent to L2 ≤ 2N−1 and so N depends only on L. Hence Rk ⊂
D(0, ǫ0/L 2j+1), k ≥ j +N , and, in particular, Rk, k ≥ j +N , does not intersect the
circumference ∂D(0, |γ(x− ǫ)|).

The angle between the axis of the polar rectangle Rj+l and that of Rj is not
greater than lα ≤ Nα, l = 1, 2, . . . , N − 1. Set β = Nα, so that β can be as small as
desired by taking α = α(L) appropriately. We conclude that

Rj+l ⊂ {w : w = |w|eiθ with |θ − Arg(γ(x+ ǫ) + π)| < β}, l = 1, 2, . . . , N − 1.

We are now ready to define the Jordan arc ς. Let z(x, ǫ) be the point at the
intersection of the circumference ∂D(0, |γ(x− ǫ)|) and the ray

{w : w = |w|eiθ with θ = Arg(γ(x+ ǫ) + π)− β}.
Let A stand for the arc in ∂D(0, |γ(x − ǫ)|) having −γ(x − ǫ) as initial point and
z(x, ǫ) as end point (counterclockwise oriented).

There exists a rectifiable Jordan arc σ joining the points z(x, ǫ) and γ(x− ǫ) in
the bounded component of the complement of Γ with the property that

length(σ) ≤ C |z(x, ǫ)− γ(x− ǫ)|.
This can be seen readily as follows. Set γ̃(eix) = γ(x), x ∈ R. Then γ̃ is a bilipschitz
homeomorphism between T and Γ and thus can be extended to a global bilipschitz
homeomorphism of the plane onto itself (see [7, 8]). The existence of the arc σ is
then easily proved by transferring the question via the extended bilipschitz homeo-
morphism.

Define ς = A∪σ, oriented as already specified. Note that ς lies in the complement
of ∆0, by the previous discussion, in particular, the definition of N and β. Therefore

log(γ(x− ǫ))− log(−γ(x− ǫ)) =

ˆ

ς

1

z
dz.
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On one hand we have
ˆ

A

1

z
dz = πi+O(β)

and on the other hand
∣∣∣
ˆ

σ

1

z
dz
∣∣∣ ≤ C |z(x, ǫ)− γ(x− ǫ)|

|γ(x− ǫ)| ≤ C β = O(β).

If β is small enough so that O(β) < π, then, by (4.1), we get that m = 0, and the
lemma is proved. �

We need a final lemma, which concludes the proof of the Theorem.

Lemma 6. Let Γ be an asymptotically conformal chord-arc curve and let γ be a
bilipschitz parametrization of Γ (in the sense of (1.5)). Then there exists a constant
C > 1 and a positive number ǫ0 such that

C−1 |γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)|
ǫ

≤ |F (x, ǫ)|

≤ C
|γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)|

ǫ
,

(4.2)

for x ∈ R and 0 < ǫ < ǫ0 .

Proof. Without loss of generality assume that γ(x) = 0. Let ǫ0 be the small
number provided by Lemma 4. By the construction of the arc ∆0 described in the
proof of Lemma 4 we have that the segment joining −γ(x − ǫ) and γ(x + ǫ) lies in
the complement of ∆0. We have, by Lemma 5,

F (x, ǫ) = log
(
γ(x+ ǫ)

)
− log

(
γ(x− ǫ)

)
+ πi

= log
(
γ(x+ ǫ)

)
− log

(
− γ(x− ǫ)

)

and so

F (x, ǫ) =

ˆ 1

0

d

dt
log
(
− γ(x− ǫ) + t(γ(x+ ǫ) + γ(x− ǫ))

)
dt

=

ˆ 1

0

γ(x+ ǫ) + γ(x− ǫ)

−γ(x− ǫ) + t(γ(x+ ǫ) + γ(x− ǫ))
dt.

Set, to simplify notation, a = −γ(x − ǫ), b = γ(x + ǫ) and let θ denote the angle
between a and b. By Lemma 4 we know that θ is as small as we wish. In particular
we can assume that cos(θ) ≥ 1/2. Thus, using the cosine Theorem,

|a+ t(b− a)|2 = (1− t)2|a|2 + t2|b|2 + 2(1− t)t|a||b| cos(θ)

≥ 1

2
((1− t)|a|+ t|b|)2 ≥ ǫ2

2L2
,

and

|F (x, ǫ)| ≤
√
2L

ǫ
|γ(x+ ǫ) + γ(x− ǫ)|,

which is the upper estimate in (4.2).
For the lower estimate we set zt = −γ(x − ǫ) + t(γ(x + ǫ) + γ(x − ǫ)). Since

Re(zt) ≥ |zt|/2 and |zt| ≤ 2L ǫ

∣∣∣
ˆ 1

0

1

zt
dt
∣∣∣ ≥ Re

ˆ 1

0

1

zt
dt =

ˆ 1

0

Re(zt)

|zt|2
dt ≥

ˆ 1

0

1

2|zt|
dt ≥ 1

4L ǫ
.
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To complete the proof of the Theorem one only needs to combine Lemmas 2, 3 and
6. �

Remark. Let a = γ(x) − γ(x − ǫ), b = γ(x + ǫ) − γ(x) and let α(x, ǫ) be the
angle spanned by a and b. For a bilipschitz parametrization γ such that

c |x− y| ≤ |γ(x)− γ(y)| ≤ C |x− y|, x, y ∈ R, |x− y| ≤ T

2
,

we have the estimate

|γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)|2 ≤ 2C2ǫ2 − 2c2ǫ2 cosα(x, ǫ).

So, in the general case, we can guarantee just a linear decay of the second finite
difference |γ(x + ǫ) + γ(x − ǫ) − 2γ(x)| and the logarithmic condition (1.7) gives
informations about the local behavior of the best constants c and C around x and
about the decay of α(x, ǫ) for ǫ small. This remark will be useful in the next section.

5. An example

In this section we provide an example of curve γ which is not C1 but for which
the improved Cotlar’s inequality (1.6) holds. The curve will be constructed in a
recursive way and will be parametrized by arc-length. Without loss of generality, we
will focus on defining a curve which is not closed. Indeed, possibly by connecting
the ends of this curve in a smooth way, we can reduce to the same environment of
the previous sections. The idea in the construction of the example is that the curve
should resemble a suitable spiraling sequence of smoothened corners of decreasing
aperture.

Let 0 < α < π/2. Let Fα : [0, 1] → R be the function with support in [1/4, 3/4]
which is linear in [1/4, 1/2] and [1/2, 3/4] with slope tanα in [1/4, 1/2] and − tanα
in [1/2, 3/4]. In other words

Fα(t) := max
{
0,
(1
4
−
∣∣∣t− 1

2

∣∣∣
)
tanα

}
.

Let ξ > 0. For t ∈ R we define the function

ηξ(t) := η
( t
ξ

)1
ξ
,

where η is a smooth, even and positive function such that supp η ⊂ [−1, 1] and
´

η(t) dt = 1. For 0 < ξ < 1/100 we define the regularized function

λα := Fα ∗ ηξ.
We will call the curve Λα :=

(
t, λα(t)

)
t∈[0,1]

α-patch.

An α-patch has the following properties:

• Λα is the graph of a function λα : [0, 1] → R which is symmetric around 1/2.
• if we denote by [a, b] the segment joining the points a, b ∈ R

2, then Λα contains
the segments Iα := [(0, 0

)
, (1/4 − ξ, 0)], IIα := [(1/4 + ξ, ξ tanα), (1/2 −

ξ, (1/4− ξ) tanα)], IIIα := [(1/2 + ξ, (1/4− ξ) tanα), (3/4− ξ, ξ tanα)] and
IVα := [(3/4 + ξ, 0), (1, 0)]. We denote by C i

α, i = 1, 2, 3 the remaining three
non-affine parts of the graph. Precisely, C1

α joins the segments Iα and IIα,
C2

α the segments IIα and IIIα and C3
α the segments IIIα and IVα.

• the function λα is convex on the intervals below C1
α and C3

α and concave on
the interval below C2

α.

The idea is that the α-patch is a smoothened corner, as shown in Figure 2.
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Figure 2. An α-patch.

Remark 1. Let us denote by τ(α) the difference between the length of the (non-
smoothened) graph of Fα and the length of Λα. For what follows, we need to estimate
its behavior for small values of α. It suffices to observe that

τ(α) := length(Fα)− length(Λα)

=

ˆ 1

0

(√
1 + |f ′

α ∗ ηξ|2(t)
)
−
(√

1 + |f ′
α|2(t)

)
dt

=

ˆ 1

0

|f ′
α ∗ ηξ|2(t)− |f ′

α|2(t)(√
1 + |f ′

α ∗ ηξ|2(t)
)
+
(√

1 + |f ′
α|2(t)

) dt ≤ 2‖f ′
α‖∞ = 2 tanα.

(5.1)

Definition of the curve Γ. Let αj := 1/j for j = 1, 2, . . . positive integer. For
the sake of notational convenience we replace the subscript αj by j; for instance, we
write Λj for Λαj

, Ij for Iαj
, . . . , IVj for IVαj

and C i
j for C i

αj
. Moreover, τj := τ(αj).

Now we can define Γ according to the following recursive steps:

• Γ1 := Λ1.
• We would like to glue on II1 an appropriate rescaled, translated and rotated

copy Λ̃2 of Λ2. The angle of rotation is α1. The scaling factor and the
translation are chosen so that the origin of Λ̃2 is (1/4, 0) and the end is(
1/2, (tanα)/4

)
. Denote by ĨI2 the image of II2 via the same affinity which

maps Λ2 to Λ̃2; let us use the tilde to denote the images of the other parts of
the patch via the same map, too. Delete the segment II1 from Λ1 and add
Λ̃2. Now the endings of Λ̃2 should be deleted in order to make a connection
with Λ1. The precise expression for the second step curve is

Γ2 :=
(
(Λ1 \ II1) ∪ Λ̃2

)
\
(
(Ĩ2 ∪ ĨV 2) \ II1

)
.

• given Γn, which is a “gluing” of affine copies Λ̃j of Λj for j ∈ {1, . . . , n}, where

ĨIn is the image of IIj under the same affinity which maps Λj to Λ̃j, we define

Γn+1 := ((Λ̃n \ ĨIn) ∪ Λ̃n+1) \ ((Ĩn+1 ∪ ĨV n+1) \ ĨIn),
where Λ̃n+1 is an re-scaled copy of Λn+1 rotated by an angle

∑n+1
j=1 αj whose

vertices coincide with the images of (1/4, 0) and
(
1/2, tanα/4

)
via the trans-

formation of the plain that sends Λn to Λ̃n.

Then, {Γn}n converges in the Hausdorff distance (a similar case is presented, for
example, in [1]) and we can simply define Γ := limn Γn.
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Figure 3. The second step in the construction of the curve Γ.

Let us now state an estimate that we will use in what follows.

Lemma 7. Given 0 < α < π/2 and z1, z2 ∈ Λα, we have

(5.2) l(z1, z2) ≤
|z1 − z2|
cosα

,

where l(z1, z2) denotes the length of the arc of Λα joining z1 and z2.

Proof. Let t1 := λ−1
α (z1) and t2 := λ−1

α (z2). We have |t1 − t2| ≤ |z1 − z2|.
Moreover, because of the way we constructed Λα, we have that |λ′

α(t)| ≤ tanα for
every t ∈ [0, 1]. Collecting all these observations,

l(z1, z2) =

ˆ t2

t1

√
1 + |λ′

α(t)|2 dt ≤
ˆ t2

t1

√
1 + | tanα|2 dt

= |t2 − t1|
√
1 + | tanα|2 = |t2 − t1|

cosα
≤ |z2 − z1|

cosα
. �

Remark 2. Notice that the inequality (5.2) keeps holding for a scaling of Λα, in

particular for the Λ̃j , j ∈ N.

Let us define L1 = 1/2 and, for n > 1,

Ln := 2−2n+1
( n−1∏

j=1

cosαj

)−1

,

which is half of the diameter of the rescaled patch Λ̃n in the construction of the curve
Γ. Indeed, some trigonometry gives

L1 =
1

2
, L2 =

1

2

(1
2
L1

1

cosα1

)
, L3 =

1

2

(1
2
L2

1

cosα2

)
, · · · , Ln =

1

2

(1
2
Ln−1

1

cosαn−1

)
.

Observe that the definition of Ln does not depend on αn because the scaling of Λ̃n

is determined just by the previous (n− 1) angles. We will use Ln as a quantifier of
the scale.

Lemma 8. For every δ > 0 there exists k ∈ N big enough such that for z1, z2 ∈
Γ ∩ (

⋃∞
j=k Λ̃j) we have

(5.3) l(z1, z2) ≤ (1 + δ)|z1 − z2|.
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Proof. Let us start with some geometrical observation. Let k ∈ N and ζ1, ζ2 ∈ Γ.

Suppose, moreover, that ζ1 ∈ Ĩk and ζ2 ∈ ĨV k. It is useful to define

Rk := l(ζ1, ζ2)− |ζ1 − ζ2|.
Observe that the definition of Rk does not depend on the choice of ζ1 and ζ2 in the
respective segments. In particular, by the construction of the curve Γ and by the
definition of the error term τj in (5.1), it is not difficult to check that we have

(5.4) Rk =

(
3

∞∑

j=k+1

Lj − Lk

)
−

∞∑

j=k+1

2Ljτj .

The term between parentheses in the right hand side is the length of the gluing of
the ‘non-regularized’ α-patches in the construction and the second sum is an error
term due to the smoothing in the definition of α-patch.

Because of how we chose Lj and τj , the quantity Rk represents the error we make

in estimating the length of the arch of the curve between ζ1 ∈ Ĩk and ζ2 ∈ ĨV k

compared to |ζ1 − ζ2|. The presence of factor 2Lj in the last sum in the right hand

side of (5.4) is due to the fact that the diameter of Λ̃j is equal to 2Lj and, thus, the
error term τj has to be rescaled by that value. It turns out that

(5.5)
Rk

Lk

→ 0 as k → ∞,

which justifies the interpretation of Rk as an error term. Indeed, recalling that
cosαl ≥ cosαk for l ≥ k, we have

3

Lk

∞∑

j=k+1

Lj =

∞∑

j=k+1

3

4j−k

(
j−1∏

l=k

cosαl

)−1

≤ 3

∞∑

j=k+1

(
1

4 cosαk

)j−k

=
3

4 cosαk − 1

and the last term tends to 1 as k → ∞. Moreover, using (5.1) and since Lj ≤ 2k−jLk

for j > k, we have that

1

Lk

∞∑

j=k+1

2Ljτj . τk+1

∞∑

j=k+1

2k−j → 0 as k → ∞,

so that (5.5) follows.
Let us combine this observation with (5.2) to prove (5.3). Let z1, z2 ∈ Γ. Observe

that each point of Γ belongs to Λ̃j for at most two different j. Let k1 be the maximum

index such that z1 ∈ Λ̃k1 and let k2 be the maximum index such that z2 ∈ Λ̃k2. The
rest of the proof works with minor changes if we take the minimum instead of the
maximum in the definitions of k1 and k2. The use of this indices helps to make the
calculations more systematic.

Without loss of generality, suppose k1 ≤ k2. If k1 = k2, the points belong to the
image of the same patch. We have two possible scenarios depending on the relative
position of these points. The definition of Rk and the estimate (5.2) allow us to write

(5.6) l(z1, z2) ≤
|z1 − z2|
cosαk1

,
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if the point are at a distance |z1 − z2| ≤ Lk1+1. For |z1 − z2| ≥ Lk1+1/4, we have
to consider the additional error term Rk1+1, which comes from the ‘spiraling’ part of
the curve. In particular

l(z1, z2) ≤
|z1 − z2|
cosαk1

+Rk1+1 ≤
|z1 − z2|
cosαk1

+
Rk1+1

4Lk1+1
|z1 − z2|,

so that, invoking (5.5), the lemma is proven in the case k1 = k2.

Let us consider the other case, k1 < k2. If z2 ∈ Λ̃k1, (5.6) easily applies because

the two points belong to the image of the same patch. So we can suppose z2 6∈ Λ̃k1.
In this case

(5.7) |z1 − z2| ≥
Lk1+1

4
.

Let z′2 ∈ ĨIk1 be the orthogonal projection of z2 on the segment ĨIk1 . The idea now
is, by means of projections, to reduce to the case in which the points belong to the
image of the same patch. For this purpose it is also useful to use the length of the
arcs of the m-th step curve Γm that we used to define Γ. By the triangular inequality
and denoting by

(5.8) hk1+1 := min{h : Λ̃k1+1 ⊂ [0, h]nV +V for some affine line V with normal nV }

the width of Λ̃k1+1, we have

(5.9) |z1 − z′2| ≤ |z1 − z2|+ hk1+1.

Let us remark that, by construction of Γ,

(5.10)
hk1+1

Lk1+1
→ 0 as k → ∞.

Given m ∈ N and u, v ∈ Γm, it is useful to denote by lm(u, v) the length of the arc
of Γm joining u and v. Now we want to prove that

(5.11) l(z1, z2) ≤ lk1(z1, z
′
2) +Rk1+1.

Let us just consider the case z1 ∈ Ĩk1, since the other cases are analogous. If zk2 ∈
Ĩk1+1 or zk2 ∈ ĨV k1+1, (5.11) holds trivially because z2 = z′2. Otherwise, let ζ be

a point on ĨV k1+1 and let us consider the quantities l(z2, ζ) and |z′2 − ζ |. Observe

that the consideration below does not depend on the auxiliary point ζ of ĨV k1+1 we
choose. Clearly l(z2, ζ) ≥ |z′2−ζ | and, because of the definition of Rk1+1, the equality

l(z1, z2) + l(z2, ζ) = Rk1+1 + lk1(z1, z
′
2) + |z′2 − ζ |,

holds. So

l(z1, z2) = lk1(z1, z
′
2) +Rk1+1 + (|z′2 − ζ | − l(z2, ζ)) ≤ lk1(z1, z

′
2) +Rk1+1.

The proof of the lemma is now over: indeed using (5.2), (5.5), (5.7), (5.9) and (5.10)
we get

l(z1, z2)

|z1 − z2|
≤ lk1(z1, z

′
2)

|z1 − z2|
+

Rk1+1

|z1 − z2|
≤ |z1 − z′2|

|z1 − z2| cosαk1

+
Rk1+1

|z1 − z2|

≤ 1

cosαk1

+
4hk1+1

cosαk1Lk1+1

+
4Rk1+1

Lk1+1

→ 1 as k1 → ∞. �
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A rectifiable curve Γ is said asymptotically smooth if, denoting by l(w1, w2) the
length of the shortest arc of Γ between w1, w2 ∈ Γ,

l(w1, w2)

|w1 − w2|
→ 1 as |w1 − w2| → 0, w1, w2 ∈ Γ.

As shown in [6], an asymptotically smooth curve is also asymptotically conformal.

Proposition 1. Γ is asymptotically smooth but not C1.

Proof. Let z̃′j ∈ Γ be the image of the point z′αj
via the map which sends Λj

to Λ̃j. We have that the curve Γ is not C1 at the point z0 := limj zj, where zj is

an arbitrary point of Λ̃j. Indeed, by our choice of the angles in the construction,∑
j αj = +∞ and the curve spirals close to z0.
Let us now turn prove that the curve is asymptotically smooth. Notice that we

may write Γ = Γ1 ∪ Γ2 ∪ {z0}, where Γ1 and Γ2 are smooth curves. Then, for every
couple of points {z1, z2} in one of those two smooth components we can exploit the
smoothness to state that for every δ there exists ǭ such that for ǫ < ǭ and |z1−z2| = ǫ
we have

l(z1, z2) ≤ (1 + δ)ǫ.

This, together with the result of Lemma 8 concludes the proof. �

Let us consider the arc-length parametrization γ of Γ. Being Γ asymptotically
smooth, γ is bilipschitz. In particular,

1

C
|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y|

for a constant C > 1 and x, y ∈ [0, L(Γ)]. As in Remark 4 we denote by α(x, ǫ)
the angle between the vectors γ(x) − γ(x − ǫ) and γ(x + ǫ) − γ(x). Because of the
geometrical considerations in Remark 4, we have that

(5.12) |γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)|2 ≤ ǫ2
(
2− 2

C2
cosα(x, ǫ)

)

for ǫ > 0 and x ∈ [0, L(Γ)]. Now we want to prove the estimate

|γ(x+ ǫ) + γ(x− ǫ)− 2γ(x)| . ǫ

| log ǫ| .

Being Γ smooth off the point z0 and arguing as in [2], the logarithmic condition (1.4)
and the estimate (1.6) are satisfied off that point. Hence it suffices to prove (1.6) for

γ(x) ∈
⋃

k≥k0
Λ̃k ∩ Γ and k0 big enough. To do that, we will study the behavior of

the angle α(x, ǫ) and of the local value of the bilipschitz constant of γ close to the
point z0.

Being the curve asymptotically smooth, as a corollary of Lemma 4 we know that
α(x, ǫ) → 0 for ǫ small. Then, the second factor in the right hand side of (5.12)
behaves as

2− 2

C2
cosα(x, ǫ) =

[
2− 2

C2

]
+

2

C2
α(x, ǫ)2 + O

(
α(x, ǫ)4

)

for ǫ → 0.
Let x0 := γ−1(z0). For ǫ > 0, we denote by Cǫ the smallest constant such that

1

Cǫ

|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y|
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holds for x, y ∈ [x0 − ǫ, x0 + ǫ], i.e. the local value of the lower bilipschitz constant
close to x0.

Using this notation, to our purposes it suffices to prove that

|α(x, ǫ)| . | log ǫ|−1

and

(5.13)

[
1− 1

Cǫ

]
. | log ǫ|−1

for ǫ small and γ(x) close enough to z0.
The following two lemmas respectively prove the estimate for the angle and the

estimate for Cǫ.

Lemma 9. For every ǫ0 there exists an integer k0 such that

|α(x, ǫ)| . | log ǫ|−1

for ǫ < ǫ0, |x− x0| < ǫ0 and γ(x− ǫ) ∈ ⋃∞
k=k0

Λ̃k ∩ Γ.

Proof. Let ǫ > 0 and z = γ(x) ∈ Γ. Moreover, let us define z± := γ(x ± ǫ). Let

k be the maximum index such that z ∈ Λ̃k and let k± be the maximum index such
that z± ∈ Λ̃k±. Without loss of generality, we will prove the lemma for x < x0. Let
us proceed with some geometrical consideration.

Figure 4. A schematic representation of the setting of the proof of Lemma 9.

Let Lz denote the line passing through z and parallel to the segment ĨIk−. Due
to the definition of the angle α(x, ǫ), we can fix the line Lz and bound |α(x, ǫ)| by
the absolute value of the smallest angle ∠([z−, z], Lz) that Lz forms with the segment
[z−, z] plus the absolute value of the smallest angle ∠([z, z+], Lz) that Lz forms with
the segment [z, z+].

If z belongs to Λ̃k−, due to the properties of the αk−−patch, the arc γ([x− ǫ, x])
is entirely contained in a cone of vertex z and aperture ∠([z−, z], Lz). By elementary
geometric considerations, we can write

(5.14) |∠([z−, z], Lz)| ≤ αk−.

Again, due to few geometric observations (that are not substantial for the sequel
and we decide to omit in order to make the proof more concise) and to the way Γ is
defined, it is not difficult to see that

(5.15) |∠([z+, z], Lz)| ≤ 2αk−.

We are left to consider the case z 6∈ Λ̃k−. As we observed in Lemma 8, in this case

we have |z− − z| ≥ Lk−+1/4. Moreover,
⋃∞

j=k−+1 Λ̃j ∩ Γ is contained in a rectangle
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whose base lays on ĨIk−, whose length is smaller than, say, 5Lk−+1/3 and with height
hk−+1 (for its definition we refer to (5.8) in Lemma 8). We recall that

hj

Lj

→ 0 for j → ∞.

Now observe that z+ ∈ ⋃∞
j=k−

Λ̃j ∩ Γ. For every point z in this rectangle, using that

|z − z+| & Lk−+1, it holds that

(5.16) |∠([z−, z], Lz)| . αk−

and

(5.17) |∠([z, z+], Lz)| . αk−.

Joining (5.14),(5.15),(5.16) and (5.17), we get

|α(z, ǫ)| . αk−.

Then, by the construction of Γ and the definition of Lm, Lm+1/Lm ≤ 1/2 for every
m, that by iteration leads to

Lm ≤ 2−m.

Now, if γ(x− ǫ) ∈ Λ̃k− for k− big enough, we have that ǫ . Lk− so that

k− & | log ǫ|
for ǫ small enough. So, gathering all the considerations and recalling that αk− = 1/k−,
we get the desired result. �

Lemma 10. There exists ǫ1 > 0 such that the inequality (5.13) holds for ǫ < ǫ1.

Proof. Let us consider z1, z2 ∈ Γ. Let k1 be the maximum index such that
z1 ∈ Λ̃k1 and k2 the maximum index such that z2 ∈ Λ̃k2. Without loss of generality,
k1 ≤ k2 and γ−1(z1) ≤ γ−1(z̃). The idea is to prove that C−1

ǫ is greater than a
quantity which approximates cosαk1 . It is convenient to split the study into different
cases.

If k1 = k2 and γ−1(z2) < x̄ or k2 = k1 + 1 and z2 ∈ Ĩk1+1, then (5.2) gives

|z1 − z2| ≥ cosαk1l(z1, z2).

If k1 = k2 and γ−1(z2) > x̄ or k2 = k1 + 1 and z2 ∈ ĨV k1+1, then we can write

|z1 − z2| ≥ cosαk1

(
l(z1, z2)−Rk1+1

)
=

(
cosαk1 − cosαk1

Rk1+1

l(z1, z2)

)
l(z1, z2)

and we recall that
Rk1+1

l(z1, z2)
.

Rk1+1

Lk1+1

→ 0 for k1 → ∞.

In the remaining cases, we know from the proof of Lemma 8 that

|z1 − z2| ≥
(
cosαk1 − cosαk1

hk1+1

l(z1, z2)
− cosαk1

Rk1+1

l(z1, z2)

)
l(z1, z2),

so that, using the same argument as at the end of the proof of Lemma 9 together
with the Taylor expansion for the cosine, the proof is completed. �

The two previous lemmas show that the arc-length parametrization γ of Γ is such
that the estimate

T∗(f)(z) . M2(Tf)(z)

holds for every z ∈ Γ.
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Final remarks on the curve Γ. The curve Γ that we studied in this section
can be considered as an example of a critical curve for which the main theorem holds.
Indeed, another look at the estimates we got tells that most of those concerning the
geometry of the curve are close to being sharp. Moreover, the finite second difference
|γ(x+ ǫ)+γ(x− ǫ)−2γ(x)| has the right decay we need; the choice of a slower decay
for the angles αj causes worse estimates for |α(x, ǫ)| and, hence, the finite second
difference estimate to fail. Let us notice that the spiraling of Γ close to the point z0
also gives an idea of how the critical curves may look like.

Asymptotically smooth curves that are not C1 may also be defined by means of
complex analysis (exploiting, for example, the results in [6]) but we found a construc-
tive approach more convenient to our purposes.
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