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Abstract. We present a new and simple proof of Teichmüller–Wittich–Belinskĭı’s and Gutlyan-

skĭı–Martio’s theorems on the conformality of quasiconformal mappings at a given point. Known

proofs gave separate estimates for the radial and angular variations, but our proof unifies them

using Grötzsch-type inequality for the variation of cross-ratio of four points on the Riemann sphere.

We also give a sufficient condition for C1+α-conformality.

Introduction

Quasiconformal mappings are known to be differentiable almost everywhere with
respect to the Lebesgue measure (see [A1], [LV]). However if one picks a specific point,
then the differentiability is not guaranteed. In this paper, we discuss the conformality
(i.e. the differentiability with zero z-derivative) of quasiconformal mappings at a
given point.

Definition. For a quasiconformal mapping f : C → C, we denote

µf(z) =
fz̄(z)

fz(z)
=

∂f
∂z̄
∂f
∂z

, Kf(z) =
1 + |µf(z)|

1− |µf(z)|
and K(f) = ess supKf (z).

We say that f is conformal at z = z0 if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists and is non-zero. For simplicity, we only discuss the conformality at z = 0,
but the conformality at other points can be treated similarly by translating the
coordinate.

There is a well-known criterion for the pointwise conformality:

Theorem 1. (Teichmüller [T], Wittich [W], Belinskĭı [B1], Lehto [L1]; see [LV,
Theorem 6.1]) If f is a quasiconformal mapping satisfying

(1)
1

2π

¨

|z|<r

|µf(z)|

|z|2
dx dy <∞ for some r <∞,

then f is conformal at z = 0.

This theorem was improved by:
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Theorem 2. (Gutlyanskĭı–Martio [GM]) Let f : C → C be a quasiconformal
mapping. If

(2)

¨

|z|<1

|µf(z)|
2

1− |µf(z)|2
dx dy

|z|2
<∞

and the limit

(3) lim
rց0

¨

r<|z|<1

µf(z)

1− |µf(z)|2
dx dy

z2

exists, then f is conformal at z = 0.

The goal of this paper is to give a new and simple proof of this theorem. (Note
that in [GM], it was assumed that (2) holds without 1−|µf(z)|

2 in the denominator,
but this is equivalent for a qc-mapping.) The proof of Theorem 1 consists of the
differentiability of the absolute value |f(z)| (e.g. Teichmüller [T], Wittich [W]; see

[LV] Lemma 6.1), and the estimate the variation of arg f(z)
z

(e.g. Belinskĭı [B1], Lehto
[L1]; see [LV] Lemma 6.2). The proof of Theorem 2 in [GM] also gave the estimates
for the absolute value and the argument.

Our approach unifies the two estimates into the form of the variation of cross-ratio
of four points 0, z1, z2,∞, via Cauchy’s criterion (see Lemmas 4 and 5). The effect
of quasiconformal mapping is usually measured by the integral of µf paired with a
suitable quadratic differential. In our case, the quadratic differential to consider is
ϕz1,z2(z) dz

2, where

(4) ϕz1,z2(z) =
z1

z(z − z1)(z − z2)
.

The quasiconformal variation of cross-ratio is formulated in Theorem 6, and the
Main Theorem 8 is stated in terms of the integral J(µ; z1, z2) defined by (11) using
ϕz1,z2. Heuristically when |z2| ≪ |z1|, in the annular region in-between, |z2| ≪ |z| ≪

|z1|, the quadratic differential ϕz1,z2(z) dz
2 “looks like” c dz2

z2
, and this explains the

appearance of 1
z2

in Theorems 1 and 2. (See [HSS], for a decomposition theorem of
quadratic differentials, in which this idea was extensively used.) This observation will
be justified by the estimates on integrals (Lemmas 10 and 11) via the decomposition
(21).

Moreover we can also derive a more quantitative estimate on the remainder term:

Theorem 3. Let f : C → C be a quasiconformal mapping and suppose that

(5) I(r) =

¨

{z : |z|<r}

|µf(z)|

1− |µf(z)|2
dx dy

|z|2

is finite and has order O(rβ) (r ց 0) for some β > 0. Then for any 0 < α < β
2+β

, f

is C1+α-conformal at 0 in the sense that

(6) f(z) = f(0) + f ′(0)z +O(|z|1+α) as z → 0.

Remark. Schatz [S] obtained a similar result by assuming a stronger conditipn
˜ |µ(z)|

|z|p
dx dy < ∞ (p > 2), which implies (5) with β = p − 2. McMullen [McM]

(Theorem 2.25) obtained the same conclusion by assuming Area(Br(0) ∩ suppµ) =
O(r2+α), which is again stronger.

For further references, see also [RW], [D], [BJ].
The author would like to thank Kari Astala, David Drasin, Frederick Gardiner,

Anatoly Golberg for helpful discussions.
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1. Conformality at z = 0 and cross-ratio

We start with nothing but Cauchy’s criterion. Define the cylinder C = C/2πiZ
and its distance |w|C = inf{|w + 2πin| : n ∈ Z}.

Lemma 4. Let f : C → C be an orientation-preserving homeomorphism with
f(0) = 0 and fix a constant 0 < δ1 ≤ 1. Then the following are equivalent:

(a) f is conformal at z = 0;

(b) there exists a limit limz→0 log
f(z)
z

for a suitable choice of branch of log;
(c) for any ε > 0, there exists r > 0 such that if 0 < |z1| < r and 0 < |z2| ≤ δ1|z1|,

then

(7)

∣∣∣∣ log
f(z1)

z1
− log

f(z2)

z2

∣∣∣∣
C

< ε.

Proof. The most of implications are obvious, and we only prove that (c) implies

(b). First take ε = π
2
, then (c) implies that the variation of the argument of f(z)

z
is

less than π when z is small. In such a case, the distance | · |C in (7) can be replaced
by the Euclidean distance. Now take smaller ε, and let r be as in (c). If |z1|, |z2| < r,
then take the third point z3 so that |z3| ≤ δ1|z1|, |z3| ≤ δ1|z2|, then
∣∣∣∣log

f(z1)

z1
− log

f(z2)

z2

∣∣∣∣
C

≤

∣∣∣∣log
f(z1)

z1
− log

f(z3)

z3

∣∣∣∣
C

+

∣∣∣∣log
f(z2)

z2
− log

f(z3)

z3

∣∣∣∣
C

< 2ε.

By Cauchy’s criterion, we have (b). (In fact, for any sequence zn → 0,
{
log f(zn)

zn

}
will

be a Cauchy sequence in C, hence it is convergent, and this implies the convergence

of log f(z)
z

as z → 0.) �

Definition. For distinct points z1, z2, z3, z4 in C, define the cross-ratio by

Cr(z1, z2, z3, z4) =
z1 − z3
z2 − z3

·
z2 − z4
z1 − z4

.

This definition extends to the case where one of zj ’s is ∞ by taking the limit. The

cross-ratio belongs to the three punctured sphere Ω := Ĉr {0, 1,∞} = Cr {0, 1}.

Denote the hyperbolic distance on Ω by dΩ(·, ·), which is induced from |dz|
Im z

on the
universal cover H.

Let f be as in Lemma 4 and take z1, z2 ∈ C r {0} with z1 6= z2. Denote

ζ1 = z2
z1

= Cr(z1, z2,∞, 0) and ζ2 = f(z2)
f(z1)

= Cr(f(z1), f(z2),∞, 0). We need to

estimate∣∣∣∣log
f(z1)

z1
− log

f(z2)

z2

∣∣∣∣
C

= |log ζ1 − log ζ2|C

= |log Cr(z1, z2,∞, 0)− log Cr(f(z1), f(z2),∞, 0)|C .

Lemma 5. For any L > 0, there exist constants C1 > 0 and 0 < δ1 < 1 such
that if ζ1, ζ2 ∈ Ω = Cr {0, 1} satisfy |ζ1| < δ1 and dΩ(ζ1, ζ2) ≤ L, then

|log ζ1 − log ζ2|C ≤ C1dΩ(ζ1, ζ2) · log
1

|ζ1|
.

Proof. Let ρΩ(ζ)|dζ | be the hyperbolic metric of Ω. It is well-known (see [A2]
§1–8) that there exist 0 < δ0 < 1 and C0 > 0 such that

ρΩ(ζ) ≥
C0

|ζ | log 1
|ζ|

for 0 < |ζ | ≤ δ0.
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Let ν = eL/C0 (> 1). Then for 0 < r ≤ δ0, the distance between {ζ : |ζ | = r} and
{ζ ′ : |ζ ′| = rν} is bounded below by

dΩ(ζ, ζ
′) ≥ C0

ˆ r

rν

ds

s log 1
s

= C0

(
− log log

1

r
+ log log

1

rν

)
= C0 log ν = L.

Let δ1 = δν0 and C1 = ν
C0

. Suppose 0 < |ζ1| ≤ δ1 and dΩ(ζ1, ζ2) ≤ L, and let γ be
the shortest hyperbolic geodesic in Ω joining ζ1 and ζ2. Then, by the above estimate
for the circles of radii |ζ1|

ν , |ζ1|, |ζ1|
1/ν , we have for ζ ∈ γ, |ζ1|

ν ≤ |ζ | ≤ |ζ1|
1/ν ≤ δ0.

Hence

|log ζ1 − log ζ2|C ≤

∣∣∣∣
ˆ

γ

dζ

ζ

∣∣∣∣ ≤
ˆ

γ

|dζ |

|ζ |
≤

1

C0

ˆ

γ

ρΩ(ζ) log
1

|ζ |
|dζ |

≤
ν

C0

log
1

|ζ1|

ˆ

γ

ρΩ(ζ)|dζ | = C1dΩ(ζ1, ζ2) · log
1

|ζ1|
. �

Thus, in order to to show the conformality, we want to show that dΩ(ζ1, ζ2)·log
1

|ζ1|

is small when z1, z2 are small.

2. Grötzsch-type inequality for cross-ratio variation

We need the following Grötzsch-type inequality for cross-ratio variation.

Theorem 6. Let f : Ĉ → Ĉ be a quasiconformal mapping and z1, z2, z3, z4 dis-

tinct points in Ĉ, and put z′j = f(zj) (j = 1, 2, 3, 4). Then

(8) dΩ(Cr(z1, z2, z3, z4),Cr(z
′
1, z

′
2, z

′
3, z

′
4)) ≤ logKf(z1, z2, z3, z4),

where

(9) Kf(z1, z2, z3, z4) :=

sup
θ∈R

¨

C

∣∣∣1 + eiθµ(z) ϕ(z)
|ϕ(z)|

∣∣∣
2

1− |µ(z)|2
|ϕ(z)| dx dy

¨

C

|ϕ(z)| dx dy

with µ(z) = µf(z) and ϕ(z) = 1
(z−z1)(z−z2)(z−z3)(z−z4)

(omit (z − zj) if zj = ∞).

This is a special case of Fundamental Inequality in the Teichmüller theory [GL,
Chap. 4, Theorem 9] applied to four punctured sphere. In fact, this case can be proven
directly as in [A1]. For the completeness, we will outline this proof in Appendix A.

Note that the above inequality implies the classical Grötzsch inequality

dΩ(Cr(z1, z2, z3, z4),Cr(z
′
1, z

′
2, z

′
3, z

′
4)) ≤ logK(f),

sinceKf(z1, z2, z3, z4) ≤ K(f). We now expressKf in terms of the following integrals.

Definition. Let z1, z2 ∈ C r {0} with z1 6= z2. Note that |ϕz1,z2| is integrable
over C. Let

(10) J∗(z1, z2) =

¨

C

|ϕz1,z2(z)| dx dy.

For a measurable function µ : C → C with ||µ(z)||∞ < 1, define

(11) J(µ; z1, z2) = 2

∣∣∣∣
¨

C

µ(z)ϕz1,z2(z)

1− |µ(z)|2
dx dy

∣∣∣∣+ 2

¨

C

|µ(z)|2|ϕz1,z2(z)|

1− |µ(z)|2
dx dy.



Conformality of quasiconformal mappings at a point, revisited 985

Lemma 7. Suppose 0 < |z2| < |z1|. Then for f in Theorem 6, we have

J∗(z1, z2) ≥ 2π
1

|1− z2
z1
|
log

|z1|

|z2|
;

Kf(z1, z2, 0,∞) = 1 +
J(µf ; z1, z2)

J∗(z1, z2)
;

J(µf ; z1, z2) ≤

¨

C

(Kf(z)− 1)|ϕz1,z2(z)| dx dy ≤ (K(f)− 1)J∗(z1.z2).

Proof. Denote ϕ = ϕz1,z2 . By the Residue Theorem, we have for |z2| < r < |z1|,
ˆ

|z|=r

zϕ(z) dz =

ˆ

|z|=r

z1
(z − z1)(z − z2)

dz

= 2πiResz=z2

z1
(z − z1)(z − z2)

= 2πi
z1

z2 − z1
.

Hence 2π
∣∣∣ z1
z1−z2

∣∣∣ =
∣∣∣
´ 2π

0
reiθϕ(reiθ)ireiθ dθ

∣∣∣ ≤ r2
´ 2π

0
|ϕ(reiθ)| dθ and

J∗(z1, z2) ≥

ˆ

{|z2|<|z|<|z1|}

|ϕ(x+ iy)| dx dy =

ˆ |z1|

|z2|

ˆ 2π

0

|ϕ(reiθ)|r dθ dr

≥ 2π

∣∣∣∣
z1

z1 − z2

∣∣∣∣
ˆ |z1|

|z2|

dr

r
= 2π

1

|1− z2
z1
|
log

|z1|

|z2|
.

The equality for Kf is obvious from
∣∣∣∣1 + eiθµf(z)

ϕ(z)

|ϕ(z)|

∣∣∣∣
2

= (1− |µf(z)|
2) + 2Re

(
eiθµf(z)

ϕ(z)

|ϕ(z)|

)
+ 2|µf(z)|

2.

The last inequality follows from 2
|µf (z)|+|µf (z)|

2

1−|µf (z)|2
=

1+|µf (z)|

1−|µf (z)|
− 1 ≤ Kf(z)− 1. �

3. Main Theorem and Proof of Theorems 2 and 3

Our criterion for the pointwise conformality is as follows:

Theorem 8. Let f : C → C be a K-quasiconformal mapping with f(0) = 0 and
suppose that there exists 0 < δ < 1 such that

(12) J(µf ; z1, z2) → 0 when z1 and z2 tend to 0 satisfying 0 < |z2| ≤ δ|z1|.

Then f is conformal at z = 0. Moreover there exists a constant C > 0 depending
only on K such that

(13)

∣∣∣∣log
f(z)

z
− log f ′(0)

∣∣∣∣
C

≤ C lim inf
z2→0

J(µf ; z, z2).

This follows from the following lemma.

Lemma 9. (Key Inequality) Given K > 1, there exist 0 < δ1 < 1 and C > 0
such that if f : C → C is a K-quasiconformal mapping with f(0) = 0, then for
0 < |z2| ≤ δ1|z1|,

(14)

∣∣∣∣log
f(z1)

z1
− log

f(z2)

z2

∣∣∣∣
C

≤ CJ(µf ; z1, z2).
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Proof. Let δ1 < 1 and C1 be as in Lemma 5 for L = logK. Then take C =
C1(1+δ1)

2π
. For two distinct points z1, z2 ∈ C r {0} and consider the cross-ratios

ζ1 =
z2
z1

= Cr(z1, z2,∞, 0) and ζ2 =
f(z2)
f(z1)

= Cr(f(z1), f(z2),∞, 0). By Theorem 6 and

Lemma 7 and log(1 + x) ≤ x (x ≥ 0), we have

(15) dΩ(ζ1, ζ2) ≤ logKf (z1, z2,∞, 0) ≤
J(µf ; z1, z2)

J∗(z1, z2)
≤

J(µf ; z1, z2)

2π 1
|1−

z2
z1

|
log |z1|

|z2|

.

By the classical Grötzsch inequality, we have dΩ(ζ1, ζ2) ≤ logK = L. Hence by
Lemma 5, if 0 < |z2| ≤ δ1|z1|, then we have

∣∣∣∣log
f(z1)

z1
− log

f(z2)

z2

∣∣∣∣
C

=

∣∣∣∣log
ζ1
ζ2

∣∣∣∣
C

≤ C1dΩ(ζ1, ζ2) log
1

|ζ1|

≤
C1

∣∣∣1− z2
z1

∣∣∣
2π

J(µf ; z1, z2) ≤
C1(1 + δ1)

2π
J(µf ; z1, z2)

(16)

= CJ(µf ; z1, z2). �

Proof of Theorem 8. This is an immediate consequence of Lemma 9. By the
assumption (12), in which we may replace δ by a smaller one so that δ ≤ δ1, (c) of
Lemma 4 holds, hence f is conformal at z = 0. Moreover taking the limit z2 → 0 in
(16), we obtain (13). �

In order to deduce Theorem 2 from Theorem 8, we need to relate J(µf ; z1, z2) to
(2) and (3). For this purpose, we define the following quantity.

Definition. Let p > 2 and p > s > 0. For µ ∈ L∞(C) with ||µ||∞ < 1, define

(17) Ip,s(µ; r) =

¨

C

|µ(z)|p

(1− |µ(z)|2)p
dx dy

|z|2
(
1 + |z|

r

)s

For 0 < r < R, denote A(r, R) = {z ∈ C : r < |z| < R}.

The following two lemmas will be proved in §4.

Lemma 10. Let µ ∈ L∞(C) with ||µ||∞ < 1. Then for any p > s > 0 with
p > 2 and 0 < ρ < 1, there exists C ′ = C ′(p, s, ρ) > 0 such that if 0 < |z2| < ρ2|z1|,
then ∣∣∣∣

¨

C

µ(z)ϕz1,z2(z)

1− |µ(z)|2
dx dy

∣∣∣∣(18)

≤
1

1− ρ2

∣∣∣∣
¨

A(ρ−1|z2|,ρ|z1|)

µ(z)

1− |µ(z)|2
dx dy

z2

∣∣∣∣+ C ′Ip,s(µ; |z1|)
1

p ,

¨

C

|µ(z)|2|ϕz1,z2(z)|

1− |µ(z)|2
dx dy(19)

≤
1

1− ρ2

¨

A(ρ−1|z2|,ρ|z1|)

|µ(z)|2

1− |µ(z)|2
dx dy

|z|2
+ C ′Ip,s(µ; |z1|)

1

p .

Lemma 11. For µ ∈ L∞(C) with ||µ||∞ < 1 satisfying (2) and for p > 2 and
p > s > 0, the integral Ip,s(µ; r) is finite. Moreover there exist constants C2 and C3

depending only on K = 1+||µ||∞
1−||µ||∞

such that for 0 < r < r′,

(20) Ip,s(µ; r) ≤ C2

¨

{|z|<r′}

|µ(z)|2

1− |µ(z)|2
dx dy

|z|2
+
C3

s

( r
r′

)s

.
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Therefore Ip,s(µ; r) → 0 as r ց 0.

Assuming these lemmas, we can give:

Proof of Theorem 2. Since the convergence in (3) and (2) imply that the first
terms on the right hand sides of (18) and (19) tend to 0 as z1 → 0, Theorem 2 follows
from Theorem 8 and Lemmas 10, 11. �

Proof of Theorem 3. Suppose I(r) = O(rβ) (r ց 0) and 0 < α < β
2+β

.

According to Theorem 8 and Lemma 10, in order to prove (6), it suffices to show
that all the terms in (18) and (19) have order O(rα). This is obvious for the first
terms. Choose s = 2 and p > 2 so that α < 2β

2+β
1
p
. Let γ = 2

2+β
and take r′ = rγ

in Lemma 11. Both terms on the right hand side of (20) have order O(r
2β
2+β ), hence

Ip,s(µ; r)
1

p = O(rα). Thus (6) is proved. �

4. Estimates on the integrals J(µ; z1, z2) and Ip,s(r)

Proof of Lemma 10. Let µ, p, s, ρ be as in Lemma 10 and suppose 0 < |z2| ≤
ρ2|z1|. Since

ϕz1,z2(z) +
z1

z1 + z2
·
1

z2
=

z1
z1 + z2

(ψ1(z) + ψ2(z)),(21)

where ψ1(z) =
1

(z−z1)(z−z2)
and ψ2(z) =

z1z2
z2(z−z1)(z−z2)

, the decomposition of the integral

into D(ρ−1|z2|) = {z ∈ C : |z| < ρ−1|z2|}, D∗(ρ|z1|) = {z ∈ C : |z| > ρ|z1|} and
A(ρ−1|z2|, ρ|z1|) gives

(22)

∣∣∣∣
¨

C

µ(z)ϕz1,z2(z)

1− |µ(z)|2
dx dy +

z1
z1 + z2

¨

A(ρ−1|z2|,ρ|z1|)

µ(z)

1− |µ(z)|2
dx dy

z2

∣∣∣∣

≤

∣∣∣∣
¨

D(ρ−1|z2|)

µ(z)ϕz1,z2(z)

1− |µ(z)|2
dx dy

∣∣∣∣+
∣∣∣∣
¨

D∗(ρ|z1|)

µ(z)ϕz1,z2(z)

1− |µ(z)|2
dx dy

∣∣∣∣

+
1

|1 + z2
z1
|

( ∣∣∣∣
¨

A(ρ−1|z2|,ρ|z1|)

µ(z)ψ1(z)

1− |µ(z)|2
dx dy

∣∣∣∣

+

∣∣∣∣
¨

A(ρ−1|z2|,ρ|z1|)

µ(z)ψ2(z)

1− |µ(z)|2
dx dy

∣∣∣∣
)
.

It is easy to see that (18) holds if one can prove that each term on the right hand

side of (22) is bounded by Ip,s(µ; |z1|)
1

p up to a constant factor. Take q such that
1
p
+ 1

q
= 1, then 1 < q < 2. For any measurable set D ⊂ C, denote by Ip,s(µ; r,D)

the integral in (17) with the domain C replaced by D. For a measurable set D ⊂ C
and an integrable function ψ(z) on D, the Hölder inequality yields

∣∣∣∣
¨

D

µ(z)ψ(z)

1− |µ(z)|2
dx dy

∣∣∣∣

≤

¨

D

∣∣∣∣∣∣∣

µ(z)

(1− |µ(z)|2)|z|
2

p

(
1 + |z|

r

) s
p

∣∣∣∣∣∣∣
·

∣∣∣∣∣|z|
2

p

(
1 +

|z|

r

) s
p

ψ(z)

∣∣∣∣∣ dx dy

≤ Ip,s(µ; r,D)
1

pH(ψ, r,D)
1

q ,

(23)
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where

H(ψ, r,D) =

¨

D

|z|2q−2

(
1 +

|z|

r

)s(q−1)

|ψ(z)|q dx dy.

In order to estimate the terms in (22), we apply (23) with r = |z1|, ψ = ϕz1,z2, ψ1,
ψ2, and D = D(ρ−1|z2|), D

∗(ρ|z1|)), A(ρ
−1|z2|, ρ|z1|). It suffices to show that the

corresponding H(ψ, r,D) is finite.
For the first term of the right hand side of (22), we now give an estimate on

H(ψ, r,D) for ψ(z) = ϕz1,z2(z) = − 1
z(z−z2)(1−z/z1)

, r = |z1| and D = D(ρ−1|z2|). By

the change of variable z = z2ζ , ζ = ξ + iη, we have

(24)

H(ϕz1,z2, |z1|,D(ρ−1|z2|)) =

¨

{|ζ|< 1

ρ
}

|z2|
2q−2|ζ |2q−2

(
1 + |z2||ζ|

|z1|

)s(q−1)

|z2ζ(z2ζ − z2)(1−
z2ζ
z1
)|q

|z2|
2 dξ dη

≤
(1 + ρ)s(q−1)

(1− ρ)q

¨

{|ζ|< 1

ρ
}

|ζ |q−2

|ζ − 1|q
dξ dη =: H1(ρ).

The last integral converges, because its integrand has order |ζ |q−2 near ζ = 0 with
q − 2 > −2 and order |ζ − 1|−q near ζ = 1 with −q > −2.

Similarly, setting either z = z1ζ or z = z2ζ , we have

H(ϕz1,z2, |z1|,D
∗(ρ|z1|))

=

¨

{|ζ|>ρ}

|z1|
q|z1|

2q−2|ζ |2q−2 (1 + |ζ |)s(q−1)

|z31ζ
2(1− z2

z1ζ
)(ζ − 1)|q

|z1|
2 dξ dη

≤
1

(1− ρ)q

¨

{|ζ|>ρ}

(1 + |ζ |)s(q−1)

|ζ |2|ζ − 1|q
dξ dη =: H2(ρ),

(25)

H(ψ1, |z1|, A(ρ
−1|z2|, ρ|z1|))

=

¨

{
|z2|
ρ|z1|

≤|ζ|≤ρ}

|z1|
2q−2|ζ |2q−2 (1 + |ζ |)s(q−1)

|z21ζ(1−
z2
z1ζ

)(ζ − 1)|q
|z1|

2 dξ dη

≤
(1 + ρ)s(q−1)

(1− ρ)q

¨

{|ζ|≤ρ}

|ζ |q−2

|ζ − 1|q
dξ dη =: H3(ρ),

(26)

H(ψ2, |z1|, A(ρ
−1|z2|, ρ|z1|))

=

¨

{ 1

ρ
≤|ζ|≤

ρ|z1|
|z2|

}

|z2|
3q−2|ζ |2q−2

(
1 + |z2||ζ|

|z1|

)s(q−1)

|z32ζ
2(ζ − 1)(1− z2ζ

z1
)|q

|z2|
2 dξ dη

≤
(1 + ρ)s(q−1)

(1− ρ)2q

¨

{ρ−1≤|ζ|}

1

|ζ |2|ζ − 1|q
dξ dη =: H4(ρ).

(27)

Again the integrals Hj(ρ) converge, for example for j = 2, its integrand has order
|ζ |s(q−1)−2−q near ζ = ∞ with s(q−1)−2−q = q

p
(s−p)−2 < −2 and order |ζ−1|−q

near ζ = 1 with −q > −2. The cases of j = 3, 4 are left to the reader.
Thus by (22), (23) and (24)–(27), there exists C ′ = C ′(p, s, ρ) such that (18)

holds. For (19), replace µ(z) in the numerator by |µ(z)|2|ϕz1,z2(z)|/ϕz1,z2(z) and use
|µ(z)|2 ≤ |µ(z)| to obtain similar estimates. In fact, we can use the same constant
C ′. Thus Lemma 10 is proved. �
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Remark. If we assume (1) in Theorem 1, then it is also possible to show (12) by
estimating

˜

(Kf(z)− 1)|ϕz1,z2(z)|dx dy which is divided into several regions defined
by |z| ≥ ρ−1|z1|, |z − z1| ≤ ρ|z1|, |z − z2| ≤ ρ|z2| and the rest, where 0 < ρ < 1 will
need to be chosen small according to the target ε.

Proof of Lemma 11. Since K + 1
K

+ 2 = 4
1−||µ||2∞

and K − 1
K

= 4||µ||∞
1−||µ||2∞

, the

integrand in Ip,s(µ; r) is bounded by both
(
K + 1

K
+ 2

4

)(
K − 1

K

4

)p−2
|µ(z)|2

1− |µ(z)|2
1

|z|2
and

(
K − 1

K

4

)p
1

|z|2
(

|z|
r

)s .

Integrating over {|z| < r′} and {|z| ≥ r′}, we immediately obtain (20). Hence
Ip,s(µ; r) is finite by the assumption (2).

One can make the first term of the right hand side of (20) small by choosing
r′ small, then make the second term small by choosing r even smaller. Therefore
limrց0 Ip,s(µ; r) = 0. �

Appendix A. Proof of Theorem 6: Grötzsch-type inequality

We prove Theorem 6 closely following Ahlfors [A1, Chap. III.D], but improving
the detail. The difference is that we do not replace |1 + µ̃| by 1 + |µ̃| in (29) below.

Given (z1, z2, z3, z4), there exist τ ∈ C with Im τ > 0 and a holomorphic branched

double covering p : Eτ → Ĉ branching over these four points, where Eτ = C/(Z+Zτ).
(If z4 = ∞, p can be taken as the Weierstrass ℘-function.) Then p(w) satisfies
p′(w)2 = c

∏
j(p(w) − zj) = c

ϕ(p(w))
for some c ∈ C r {0}. There exist a coun-

terpart p̂ : Eτ ′ → Ĉ for (z′1, z
′
2, z

′
3, z

′
4), and a lift f̃ : Eτ → Eτ ′, sending generators

1, τ to 1, τ ′ and satisfying f ◦ p = p̂ ◦ f̃ . For z = ϕ(w), µ = µf , µ̃ = µf̃ , we

have |ϕ(z)| dx dy = |ϕ(p(w))||p′(w)|2 du dv = |c| du dv and µ̃(w) c
|c|

= µ(p(w)) p′(w)
p′(w)

·
p′(w)2ϕ(p(w))
|p′(w)2ϕ(p(w))|

= µ(z) ϕ(z)
|ϕ(z)|

. Therefore the double cover p gives

(28) Kf(z1, z2, z3, z3) = sup
θ∈R

Kf̃ ,θ, where Kf̃ ,θ =

˜

Eτ

|1+eiθµ̃(w)|
2

1−|µ̃(w)|2
du dv

Area(Eτ )
,

and Area(Eτ ) =
˜

Eτ
du dv = Im τ .

We now follow the standard Grötzsch argument: The map f̃ sends each horizontal
curve on Eτ to a closed curve homotopic to a horizontal curve in Eτ ′. Since f̃ is
absolutely continuous along almost all horizontal lines, we have

´ 1

0
|f̃u(u+ iv)|du ≥ 1

for a.a. v. By integrating over v ∈ [0, Im τ ] and using f̃u = f̃w + f̃w = (1 + µ̃)f̃w, we
have

Im τ ≤

¨

Eτ

|(1 + µ̃)f̃w| du dv.

Cauchy–Schwarz inequality together with Jac f̃ = |f̃w|
2 − |f̃w|

2 = |f̃w|
2(1 − |µ̃|2)

implies

(29) Im τ 2 ≤

¨

Eτ

Jac f̃ du dv

¨

Eτ

|1 + µ̃|2

1− |µ̃|2
du dv ≤ Im τ ′

¨

Eτ

|1 + µ̃|2

1− |µ̃|2
du dv.

Hence we have Im τ ≤ Kf̃ ,0 Im τ ′, which means that τ is not contained in the open
horodisk which is tangent to ∂H at ∞ and has distance logKf̃ ,0 to τ ′.
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If we change the generators of Z + Zτ from 1, τ to cτ + d, aτ + b with A =
( a b
c d ) ∈ SL(2,Z), then we obtain an estimate on Im aτ+b

cτ+d
and Im aτ ′+b

cτ ′+d
, and it has

an effect of rotating the horizontal axis and µ̃ in the integral should be replaced by
eiθµ̃ for some θ ∈ R. Thus we obtain Im aτ+b

cτ+d
≤ Kf̃ ,θ Im aτ ′+b

cτ ′+d
, which means τ is

not in the open horodisk which is tangent to ∂H at A−1(∞) = −d
c

and has distance
logKf̃ ,θ to τ ′. If τ had distance greater than log supθ∈RKf̃ ,θ from τ ′, then τ would

be in one of the horodisks as above, because A−1(∞) (A ∈ SL(2,Z)) are dense on
∂H. Hence we conclude that dH(τ, τ

′) ≤ logKf (z1, z2, z3, z3). Finally the cross-ratio
Cr(z1, z2, z3, z4) = λ(τ) as a function of τ is the elliptic modular function λ : H → Ω,
which is a universal covering map. (See [A1].) Therefore dΩ(λ(τ), λ(τ

′)) ≤ dH(τ, τ
′)

and Theorem 6 is proved. �
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