A NEW CARTAN-TYPE PROPERTY AND STRICT QUASICOVERINGS WHEN p = 1 IN METRIC SPACES

Panu Lahti

University of Jyväskylä, Department of Mathematics and Statistics P.O. Box 35, FI-40014 University of Jyväskylä, Finland; panu.k.lahti@jyu.fi

Abstract. In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p =1. Then we use this property to prove the existence of 1-finely open *strict subsets* and *strict quasicoverings* of 1-finely open sets. As an application, we study fine Newton–Sobolev spaces in the case p = 1, that is, Newton–Sobolev spaces defined on 1-finely open sets.

1. Introduction

Nonlinear fine potential theory in metric spaces has been studied in several papers in recent years, see [7, 8, 6]. Much of nonlinear potential theory, for 1 , deals with*p* $-harmonic functions, which are local minimizers of the <math>L^p$ -norm of $|\nabla u|$. Such minimizers can be defined also in metric measure spaces by using *upper* gradients, and the notion can be extended to the case p = 1 by considering functions of least gradient, which are BV functions that minimize the total variation locally; see Section 2 for definitions.

Nonlinear fine potential theory is concerned with studying *p*-harmonic functions and related superminimizers by means of the *p*-fine topology. For nonlinear fine potential theory and its history in the Euclidean setting, for 1 , see especiallythe monographs [1, 15, 23], as well as the monograph [3] in the metric setting. Thetypical assumptions of a metric space, which we make also in this paper, are thatthe space is complete, equipped with a doubling measure, and supports a Poincaréinequality.

A central result in fine potential theory is the *(weak) Cartan property* for superminimizer functions. In [21] we proved the following formulation of this property in the case p = 1.

Theorem 1.1. [21, Theorem 1.1] Let $A \subset X$ and let $x \in X \setminus A$ such that A is 1-thin at x. Then there exist R > 0 and $u_1, u_2 \in BV(X)$ that are 1-superminimizers in B(x, R) such that $\max\{u_1^{\wedge}, u_2^{\wedge}\} = 1$ in $A \cap B(x, R)$ and $u_1^{\vee}(x) = 0 = u_2^{\vee}(x)$.

In [22] we used this property to prove the so-called Choquet property concerning finely open and *quasiopen* sets in the case p = 1, similarly as can be done when 1 (see [8]). On the other hand, it is natural to consider an alternative versionof the weak Cartan property. In the case <math>p > 1, superminimizers are Newton–Sobolev functions, but in the case p = 1 they are only BV functions and so the question arises whether the functions u_1, u_2 above can be replaced by a Newton–Sobolev function

https://doi.org/10.5186/aasfm.2018.4364

²⁰¹⁰ Mathematics Subject Classification: Primary 30L99, 31E05, 26B30.

Key words: Metric measure space, function of bounded variation, fine topology, Cartan property, strict quasicovering, fine Newton–Sobolev space.

(even though it would no longer be a superminimizer). In Theorem 3.11 we show that such a new Cartan-type property indeed holds.

It is said that a set A is a *p*-strict subset of a set D if there exists a Newton–Sobolev function $u \in N^{1,p}(X)$ such that u = 1 on A and u = 0 on $X \setminus D$. In [7] it was shown that if U is a p-finely open set $(1 and <math>x \in U$, then there exists a p-finely open strict subset $V \Subset U$ such that $x \in V$. The proof was based on the weak Cartan property. In Theorem 4.3 we show that the analogous result is true in the case p = 1. Here we need the Cartan-type property involving a Newton–Sobolev function (instead of the BV superminimizer functions).

This result on the existence of 1-strict subsets can be combined with the quasi-Lindelöf principle to prove the existence of strict quasicoverings of 1-finely open sets, that is, countable coverings by 1-finely open strict subsets. We do this in Proposition 5.4, and it is again analogous to the case 1 , see [7]. Such coverings willbe useful in future research when considering partition of unity arguments in finelyopen sets. In this paper, we apply strict quasicoverings in defining and studyingfine Newton-Sobolev spaces, that is, Newton-Sobolev spaces defined on finely openor quasiopen sets. In the case <math>1 , these were studied in [7]. In Section 5 weshow that the theory we have developed allows us to prove directly analogous resultsin the case <math>p = 1.

2. Preliminaries

In this section we introduce the notation, definitions, and assumptions used in the paper. Throughout this paper, (X, d, μ) is a complete metric space that is equipped with a metric d and a Borel regular outer measure μ that satisfies a doubling property, meaning that there exists a constant $C_d \geq 1$ such that

$$0 < \mu(B(x,2r)) \le C_d \mu(B(x,r)) < \infty$$

for every ball $B(x,r) := \{y \in X : d(y,x) < r\}$. We also assume that X supports a (1,1)-Poincaré inequality defined below, and that X contains at least 2 points. For a ball B = B(x,r) and a > 0, we sometimes abbreviate aB := B(x,ar); note that in metric spaces, a ball (as a set) does not necessarily have a unique center and radius, but we will always understand these to be predetermined for the balls that we consider. By iterating the doubling condition, we obtain for any $x \in X$ and any $y \in B(x, R)$ with $0 < r \le R < \infty$ that

(2.1)
$$\frac{\mu(B(y,r))}{\mu(B(x,R))} \ge \frac{1}{C_d^2} \left(\frac{r}{R}\right)^Q,$$

where Q > 1 only depends on the doubling constant C_d . When we want to state that a constant C depends on the parameters a, b, \ldots , we write $C = C(a, b, \ldots)$. When a property holds outside a set of μ -measure zero, we say that it holds almost everywhere, abbreviated a.e.

As a complete metric space equipped with a doubling measure, X is proper, that is, closed and bounded sets are compact. For any μ -measurable set $D \subset X$, we define $\operatorname{Lip}_{\operatorname{loc}}(D)$ to be the space of functions u on D such that for every $x \in D$ there exists r > 0 such that $u \in \operatorname{Lip}(D \cap B(x, r))$. For an open set $\Omega \subset X$, a function $u \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$ is then in $\operatorname{Lip}(\Omega')$ for every open $\Omega' \subseteq \Omega$; this notation means that $\overline{\Omega'}$ is a compact subset of Ω . Other local spaces of functions are defined analogously. For any $A \subset X$ and $0 < R < \infty$, the restricted Hausdorff content of codimension one is defined to be

$$\mathcal{H}_R(A) := \inf\left\{\sum_{i=1}^{\infty} \frac{\mu(B(x_i, r_i))}{r_i} \colon A \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \le R\right\}.$$

The codimension one Hausdorff measure of $A \subset X$ is then defined to be

$$\mathcal{H}(A) := \lim_{R \to 0} \mathcal{H}_R(A).$$

All functions defined on X or its subsets will take values in $[-\infty, \infty]$. By a curve we mean a nonconstant rectifiable continuous mapping from a compact interval of the real line into X. A nonnegative Borel function g on X is an upper gradient of a function u on X if for all curves γ , we have

(2.2)
$$|u(x) - u(y)| \le \int_{\gamma} g \, ds,$$

where x and y are the end points of γ and the curve integral is defined by using an arc-length parametrization, see [16, Section 2] where upper gradients were originally introduced. We interpret $|u(x) - u(y)| = \infty$ whenever at least one of |u(x)|, |u(y)| is infinite.

Let $1 \leq p < \infty$; we are going to work solely with p = 1, but we give definitions that cover all values of p where it takes no extra work. We say that a family of curves Γ is of zero p-modulus if there is a nonnegative Borel function $\rho \in L^p(X)$ such that for all curves $\gamma \in \Gamma$, the curve integral $\int_{\gamma} \rho \, ds$ is infinite. A property is said to hold for p-almost every curve if it fails only for a curve family with zero p-modulus. If g is a nonnegative μ -measurable function on X and (2.2) holds for p-almost every curve, we say that g is a p-weak upper gradient of u. By only considering curves γ in a set $D \subset X$, we can talk about a function g being a (p-weak) upper gradient of u in D.

Let $D \subset X$ be a μ -measurable set. We define the norm

$$||u||_{N^{1,p}(D)} := ||u||_{L^p(D)} + \inf ||g||_{L^p(D)},$$

where the infimum is taken over all *p*-weak upper gradients g of u in D. The usual Sobolev space $W^{1,p}$ is replaced in the metric setting by the Newton–Sobolev space

$$N^{1,p}(D) := \{ u \colon \|u\|_{N^{1,p}(D)} < \infty \},\$$

which was first introduced in [25]. We understand every Newton–Sobolev function to be defined at every $x \in D$ (even though $\|\cdot\|_{N^{1,p}(D)}$ is then only a seminorm). It is known that for any $u \in N^{1,p}_{\text{loc}}(D)$, there exists a minimal *p*-weak upper gradient of *u* in *D*, always denoted by g_u , satisfying $g_u \leq g$ a.e. on *D* for any *p*-weak upper gradient $g \in L^p_{\text{loc}}(D)$ of *u* in *D*, see [3, Theorem 2.25].

For any $D \subset X$, the space of Newton–Sobolev functions with zero boundary values is defined to be

$$N_0^{1,p}(D) := \{ u | _D \colon u \in N^{1,p}(X) \text{ and } u = 0 \text{ on } X \setminus D \}.$$

This is a subspace of $N^{1,p}(D)$ when D is μ -measurable, and it can always be understood to be a subspace of $N^{1,p}(X)$.

The *p*-capacity of a set $A \subset X$ is

$$\operatorname{Cap}_p(A) := \inf \|u\|_{N^{1,p}(X)},$$

where the infimum is taken over all functions $u \in N^{1,p}(X)$ such that $u \ge 1$ on A. If a property holds outside a set $A \subset X$ with $\operatorname{Cap}_p(A) = 0$, we say that it holds p-quasieverywhere, or p-q.e. If $D \subset X$ is μ -measurable, then

(2.3)
$$||u||_{N^{1,p}(D)} = 0$$
 if $u = 0$ p-q.e. on D

see [3, Proposition 1.61].

We know that Cap_p is an outer capacity, meaning that

$$\operatorname{Cap}_p(A) = \inf_{\substack{W \text{ open} \\ A \subset W}} \operatorname{Cap}_p(W)$$

for any $A \subset X$, see e.g. [3, Theorem 5.31]. By [14, Theorem 4.3, Theorem 5.1], for any $A \subset X$ it holds that

(2.4)
$$\operatorname{Cap}_1(A) = 0$$
 if and only if $\mathcal{H}(A) = 0$.

We say that a set $U \subset X$ is *p*-quasiopen if for every $\varepsilon > 0$ there is an open set $G \subset X$ such that $\operatorname{Cap}_p(G) < \varepsilon$ and $U \cup G$ is open. We say that a function *u* defined on a set $D \subset X$ is *p*-quasicontinuous on *D* if for every $\varepsilon > 0$ there is an open set $G \subset X$ such that $\operatorname{Cap}_p(G) < \varepsilon$ and $u|_{D \setminus G}$ is continuous (as a real-valued function). It is a well-known fact that Newton–Sobolev functions are quasicontinuous; for a proof of the following theorem, see [10, Theorem 1.1] or [3, Theorem 5.29].

Theorem 2.5. Let $\Omega \subset X$ be open and let $u \in N^{1,p}(\Omega)$ (with $1 \leq p < \infty$). Then u is p-quasicontinuous on Ω .

The variational *p*-capacity of a set $A \subset D$ with respect to $D \subset X$ is given by

$$\operatorname{cap}_p(A, D) := \inf \int_X g_u^p \, d\mu,$$

where the infimum is taken over functions $u \in N_0^{1,p}(D)$ such that $u \ge 1$ on A, and g_u is the minimal *p*-weak upper gradient of u (in X). By truncation, we see that we can also assume that $0 \le u \le 1$ on X (and the same applies to the *p*-capacity). For basic properties satisfied by capacities, such as monotonicity and countable subadditivity, see [3, 4].

Next we recall the definition and basic properties of functions of bounded variation on metric spaces, following [24]. See also the monographs [2, 11, 12, 13, 26] for the classical theory in the Euclidean setting. Let $\Omega \subset X$ be an open set. Given $u \in L^1_{loc}(\Omega)$, the total variation of u in Ω is defined to be

$$\|Du\|(\Omega) := \inf \left\{ \liminf_{i \to \infty} \int_{\Omega} g_{u_i} d\mu \colon u_i \in \operatorname{Lip}_{\operatorname{loc}}(\Omega), \ u_i \to u \text{ in } L^1_{\operatorname{loc}}(\Omega) \right\},$$

where each g_{u_i} is the minimal 1-weak upper gradient of u_i in Ω . (In [24], local Lipschitz constants were used instead of upper gradients, but the properties of the total variation can be proved similarly with either definition.) We say that a function $u \in L^1(\Omega)$ is of bounded variation, and denote $u \in BV(\Omega)$, if $||Du||(\Omega) < \infty$. For an arbitrary set $A \subset X$, we define

$$\|Du\|(A) := \inf_{\substack{W \text{ open}\\A \subset W}} \|Du\|(W).$$

If $u \in L^1_{loc}(\Omega)$ and $||Du||(\Omega) < \infty$, then $||Du||(\cdot)$ is a Radon measure on Ω by [24, Theorem 3.4]. A μ -measurable set $E \subset X$ is said to be of finite perimeter if $||D\chi_E||(X) < \infty$, where χ_E is the characteristic function of E. The perimeter of E in Ω is also denoted by $P(E, \Omega) := ||D\chi_E||(\Omega)$.

The lower and upper approximate limits of a function u on X are defined respectively by

$$u^{\wedge}(x) := \sup\left\{t \in \mathbf{R} \colon \lim_{r \to 0} \frac{\mu(B(x,r) \cap \{u < t\})}{\mu(B(x,r))} = 0\right\}$$

and

$$u^{\vee}(x) := \inf \left\{ t \in \mathbf{R} \colon \lim_{r \to 0} \frac{\mu(B(x, r) \cap \{u > t\})}{\mu(B(x, r))} = 0 \right\}$$

Unlike Newton–Sobolev functions, we understand BV functions to be μ -equivalence classes. To consider fine properties, we need to consider the pointwise representatives u^{\wedge} and u^{\vee} .

We will assume throughout the paper that X supports a (1, 1)-Poincaré inequality, meaning that there exist constants $C_P > 0$ and $\lambda \ge 1$ such that for every ball B(x, r), every $u \in L^1_{loc}(X)$, and every upper gradient g of u, we have

(2.6)
$$\int_{B(x,r)} |u - u_{B(x,r)}| \, d\mu \le C_P r \int_{B(x,\lambda r)} g \, d\mu,$$

where

$$u_{B(x,r)} := \oint_{B(x,r)} u \, d\mu := \frac{1}{\mu(B(x,r))} \int_{B(x,r)} u \, d\mu.$$

The (1, 1)-Poincaré inequality implies the following Sobolev inequality: if $x \in X$, $0 < r < \frac{1}{4} \operatorname{diam} X$, and $u \in N_0^{1,1}(B(x, r))$, then

(2.7)
$$\int_{B(x,r)} |u| \, d\mu \le C_S r \int_{B(x,r)} g_u \, d\mu$$

for some constant $C_S = C_S(C_d, C_P) \ge 1$, see [3, Theorem 5.51]. By applying this to approximating functions in the definition of the total variation, we obtain for any $x \in X$, $0 < r < \frac{1}{4} \operatorname{diam} X$, and any μ -measurable set $E \subset B(x, r)$

(2.8)
$$\mu(E) \le C_S r P(E, X).$$

Next we define the fine topology in the case p = 1.

Definition 2.9. We say that $A \subset X$ is 1-thin at the point $x \in X$ if

$$\lim_{r \to 0} r \frac{\operatorname{cap}_1(A \cap B(x, r), B(x, 2r))}{\mu(B(x, r))} = 0$$

We say that a set $U \subset X$ is 1-finely open if $X \setminus U$ is 1-thin at every $x \in U$. Then we define the 1-fine topology as the collection of 1-finely open sets on X (see [20, Lemma 4.2] for a proof of the fact that this is indeed a topology).

We denote the 1-fine interior of a set $H \subset X$, i.e. the largest 1-finely open set contained in H, by fine-int H. We denote the 1-fine closure of $H \subset X$, i.e. the smallest 1-finely closed set containing H, by \overline{H}^1 . We define the 1-base b_1H of $H \subset X$ to be the set of points in X where H is not 1-thin. We say that a function u defined on a set $U \subset X$ is 1-finely continuous at $x \in U$ if it is continuous at x when U is equipped with the induced 1-fine topology on U and $[-\infty, \infty]$ is equipped with the usual topology.

By [3, Proposition 6.16], for all $x \in X$ and $0 < r < \frac{1}{8} \operatorname{diam} X$ (in fact, the second inequality holds for all r > 0)

(2.10)
$$\frac{\mu(B(x,r))}{2C_S r} \le \operatorname{cap}_1(B(x,r), B(x,2r)) \le \frac{C_d \mu(B(x,r))}{r}$$

and so obviously $W \subset b_1 W$ for any open set $W \subset X$.

The following fact is given in [19, Proposition 3.3]:

(2.11)
$$\operatorname{Cap}_1(\overline{A}^1) = \operatorname{Cap}_1(A) \text{ for any } A \subset X.$$

The following result describes the close relationship between finely open and quasiopen sets.

Theorem 2.12. [22, Corollary 6.12] A set $U \subset X$ is 1-quasiopen if and only if it is the union of a 1-finely open set and a \mathcal{H} -negligible set.

For an open set $\Omega \subset X$, we denote by $BV_c(\Omega)$ the class of functions $\varphi \in BV(\Omega)$ with compact support in Ω , that is, spt $\varphi \in \Omega$.

Definition 2.13. We say that $u \in BV_{loc}(\Omega)$ is a 1-minimizer in Ω if for all $\varphi \in BV_c(\Omega)$,

(2.14)
$$\|Du\|(\operatorname{spt}\varphi) \le \|D(u+\varphi)\|(\operatorname{spt}\varphi).$$

We say that $u \in BV_{loc}(\Omega)$ is a 1-superminimizer in Ω if (2.14) holds for all nonnegative $\varphi \in BV_c(\Omega)$.

More precisely, we should talk about spt $|\varphi|^{\vee}$, since φ is only a.e. defined. In the literature, 1-minimizers are usually called functions of least gradient.

3. A new Cartan-type property

In this section we prove the new Cartan-type property, given in Theorem 3.11. First we take note of a few results that we will need in the proofs; the following is given in [3, Lemma 11.22].

Lemma 3.1. Let $x \in X$, r > 0, and $A \subset B(x, r)$. Then for every 1 < s < t with $tr < \frac{1}{4} \operatorname{diam} X$, we have

$$\operatorname{cap}_1(A, B(x, tr)) \le \operatorname{cap}_1(A, B(x, sr)) \le C_S\left(1 + \frac{t}{s-1}\right)\operatorname{cap}_1(A, B(x, tr)),$$

where C_S is the constant from the Sobolev inequality (2.7).

Theorem 3.2. [21, Theorem 3.11] Let u be a 1-superminimizer in an open set $\Omega \subset X$. Then $u^{\wedge} \colon \Omega \to (-\infty, \infty]$ is lower semicontinuous.

As mentioned in the introduction, in [21] we proved a weak Cartan property for p = 1, more precisely in the following form.

Theorem 3.3. [21, Theorem 5.2] Let $A \subset X$ and let $x \in X \setminus A$ be such that A is 1-thin at x. Then there exist R > 0 and $E_0, E_1 \subset X$ such that $\chi_{E_0}, \chi_{E_1} \in BV(X)$, χ_{E_0} and χ_{E_1} are 1-superminimizers in B(x, R), $\max\{\chi_{E_0}^{\wedge}, \chi_{E_1}^{\wedge}\} = 1$ in $A \cap B(x, R)$, $\chi_{E_0}^{\vee}(x) = 0 = \chi_{E_1}^{\vee}(x)$, $\{\max\{\chi_{E_0}^{\vee}, \chi_{E_1}^{\vee}\} > 0\}$ is 1-thin at x, and

$$\lim_{r \to 0} r \frac{P(E_0, B(x, r))}{\mu(B(x, r))} = 0, \quad \lim_{r \to 0} r \frac{P(E_1, B(x, r))}{\mu(B(x, r))} = 0.$$

Now we collect a few facts that are not included in the above statement, but are given in the proof in [21]. Defining $B_j := B(x, 2^{-j}R)$ and $H_j := B_j \setminus \frac{9}{10}\overline{B_{j+1}}$ for $j = 0, 1, \ldots$, there exists an open set $W \supset A$ that is 1-thin at x,

(3.4)
$$W \cap \bigcup_{j=0,2,\dots} H_j \subset E_0 \quad \text{and} \quad W \cap \bigcup_{j=1,3,\dots} H_j \subset E_1,$$

and (see [21, Eq. (5.4)])

(3.5)
$$E_0 \subset \left(\frac{3}{2}B_0 \setminus \frac{4}{5}B_1\right) \cup \bigcup_{j=2,4,\dots}^{\infty} \frac{5}{4}B_j \setminus \frac{4}{5}B_{j+1} \quad \text{and}$$
$$E_1 \subset \left(\frac{3}{2}B_1 \setminus \frac{4}{5}B_2\right) \cup \bigcup_{j=3,5,\dots}^{\infty} \frac{5}{4}B_j \setminus \frac{4}{5}B_{j+1}.$$

Moreover, by [21, Eq. (5.5)], for all i = 2, 4, 6, ... we have

(3.6)
$$P(E_0 \cap \frac{5}{4}B_i, X) \le 5C_S \operatorname{cap}_1(W \cap B_i, 2B_i),$$

and similarly for all $i = 3, 5, 7, \ldots$,

(3.7)
$$P(E_1 \cap \frac{5}{4}B_i, X) \le 5C_S \operatorname{cap}_1(W \cap B_i, 2B_i).$$

From the proof it can also be seen that if R > 0 is chosen to be smaller, all of the above results still hold. The same will then apply to the conclusion of the next lemma. Let B_i and H_i be defined as above.

Lemma 3.8. Let $A \subset X$ and let $x \in X \setminus A$ be such that A is 1-thin at x. Then there exists a number R > 0, an open set $W \supset A$ that is 1-thin at x, and open sets $F_j \supset W \cap H_j$ such that $F_j \subset \frac{5}{4}B_j \setminus \frac{3}{4}B_{j+1}$ for all j = 0, 1, ..., and

(3.9)
$$\sum_{j=i}^{\infty} P(F_j, X) \le 50C_S^2 \operatorname{cap}_1(W \cap B_i, 2B_i)$$

for all i = 0, 1, ...

Proof. By using the weak Cartan property (Theorem 3.3), choose R > 0 and $E_0, E_1 \subset X$ such that $\chi_{E_0}, \chi_{E_1} \in BV(X)$ and χ_{E_0} and χ_{E_1} are 1-superminimizers in B(x, R). We can assume that $R < \frac{1}{2} \operatorname{diam} X$. Also let $W \supset A$ be an open set that is 1-thin at x, as described above. Define

$$F_j := \{\chi_{E_0}^{\wedge} > 0\} \cap \frac{5}{4}B_j \setminus \frac{3}{4}\overline{B_{j+1}} \text{ for } j = 2, 4, \dots,$$

and

$$F_j := \{\chi_{E_1}^{\wedge} > 0\} \cap \frac{5}{4}B_j \setminus \frac{3}{4}\overline{B_{j+1}} \text{ for } j = 3, 5, \dots$$

By (3.4), we have $F_j \supset W \cap H_j$ for all j = 2, 3, ... as desired. The sets F_j are open by Theorem 3.2. By Lebesgue's differentiation theorem, the sets $\{\chi_{E_0}^{\wedge} > 0\}$ and $\{\chi_{E_1}^{\wedge} > 0\}$ differ from E_0 and E_1 , respectively, only by a set of μ -measure zero. Thus by (3.5) and the fact that the sets F_j are at a positive distance from each other, we find that for all $i = 2, 4, \ldots$,

$$P(E_0 \cap \frac{5}{4}B_i, X) = P\left(\bigcup_{j=i,i+2,\dots} F_j, X\right) = \sum_{j=i,i+2,\dots} P(F_j, X),$$

and similarly for all $i = 3, 5, \ldots$,

$$P(E_1 \cap \frac{5}{4}B_i, X) = \sum_{j=i,i+2,\dots} P(F_j, X).$$

Combining these with (3.6) and (3.7), and using Lemma 3.1, we have for all $i = 2, 3, \ldots$

$$\sum_{j=i}^{\infty} P(F_j, X) \le 5C_S(\operatorname{cap}_1(W \cap B_i, 2B_i) + \operatorname{cap}_1(W \cap B_{i+1}, 2B_{i+1}))$$

$$\le 5C_S(\operatorname{cap}_1(W \cap B_i, 2B_i) + 5C_S \operatorname{cap}_1(W \cap B_{i+1}, 4B_{i+1}))$$

$$\le 25C_S^2(\operatorname{cap}_1(W \cap B_i, 2B_i) + \operatorname{cap}_1(W \cap B_i, 4B_{i+1}))$$

$$= 50C_S^2 \operatorname{cap}_1(W \cap B_i, 2B_i).$$

Then by replacing R with R/4, we have the result.

Recall the constant $\lambda \geq 1$ from the Poincaré inequality (2.6). We have the following boxing inequality from [18, Theorem 3.1]. Note that in [18] it is assumed that $\mu(X) = \infty$, but the proof reveals that we can alternatively assume $\mu(F) < \mu(X)/2$.

Theorem 3.10. Let $F \subset X$ be an open set of finite perimeter with $\mu(F) < \mu(X)/2$ (in particular, $\mu(F)$ is finite). Then there exists a collection of balls $\{B_k = B(x_k, r_k)\}_{k \in \mathbb{N}}$ such that the balls λB_k are disjoint, $F \subset \bigcup_{k=1}^{\infty} 5\lambda B_k$,

$$\frac{1}{2C_d} \le \frac{\mu(B_k \cap F)}{\mu(B_k)} \le \frac{1}{2}$$

for all $k \in \mathbf{N}$, and

$$\sum_{k=1}^{\infty} \frac{\mu(5\lambda B_k)}{5\lambda r_k} \le C_B P(F, X)$$

for some constant $C_B = C_B(C_d, C_P, \lambda)$.

Now we can show the following Cartan-type property.

Theorem 3.11. Let $A \subset X$ and let $x \in X \setminus A$ be such that A is 1-thin at x. Then there exists a number R > 0, open sets $G \subset V \subset X$, and a function $\eta \in N_0^{1,1}(V)$ such that $A \cap B(x, R) \subset G$, V is 1-thin at $x, 0 \leq \eta \leq 1$ on $X, \eta = 1$ on G, and

(3.12)
$$\lim_{r \to 0} \frac{r}{\mu(B(x,r))} \|\eta\|_{N^{1,1}(B(x,r))} = 0$$

Proof. Take R > 0, an open set $W \supset A$, and open sets $F_j \subset \frac{5}{4}B_j \setminus \frac{3}{4}B_{j+1}$ as given by Lemma 3.8. Let

$$\delta := \frac{1}{2^8 (680\lambda)^Q C_d^3 C_s^3},$$

where Q > 1 is the exponent in (2.1). We can assume that $R \leq \min \{1, \frac{1}{8} \operatorname{diam} X\}$. Since $\mu(\{x\}) = 0$ (see [3, Corollary 4.3]), we can also assume R to be so small that $\mu(\frac{5}{4}B_0) < \frac{1}{2}\mu(X)$, and so also $\mu(F_j) < \frac{1}{2}\mu(X)$ for all $j = 0, 1, \ldots$ Since W is 1-thin at x, we can further assume that R is so small that

(3.13)
$$2^{-j}R\frac{\operatorname{cap}_1(W \cap B_j, 2B_j)}{\mu(B_j)} < \delta$$

for all $j = 0, 1, \ldots$ Fix j. By the boxing inequality (Theorem 3.10) we find a collection of balls $\{B_k^j = B(x_k^j, r_k^j)\}_{k=1}^{\infty}$ such that the balls λB_k^j are disjoint, $F_j \subset \bigcup_{k=1}^{\infty} 5\lambda B_k^j$,

(3.14)
$$\frac{1}{2C_d} \le \frac{\mu(B_k^j \cap F_j)}{\mu(B_k^j)} \le \frac{1}{2}$$

for all $k \in \mathbf{N}$, and

(3.15)
$$\sum_{k=1}^{\infty} \frac{\mu(5\lambda B_k^j)}{5\lambda r_k^j} \le C_B P(F_j, X).$$

Thus we have

$$\mu(B_k^j) \le 2C_d \mu(B_k^j \cap F_j) \le 2C_d \mu(F_j) \le 2^{2-j} R C_d C_S P(F_j, X) \quad \text{by (2.8)} \le 2^{8-j} R C_d C_S^3 \operatorname{cap}_1(W \cap B_j, 2B_j) \quad \text{by (3.9)}.$$

Thus for all $k \in \mathbf{N}$,

(3.16)
$$\frac{\mu(B_k^j)}{\mu(B_j)} \le 2^8 C_d C_S^3 2^{-j} R \frac{\operatorname{cap}_1(W \cap B_j, 2B_j)}{\mu(B_j)} \le 2^8 C_d C_S^3 \delta^{-1}$$

by (3.13). By (3.14) we necessarily have $F_j \cap B_k^j \neq \emptyset$ for all $k \in \mathbf{N}$, and so $\frac{5}{4}B_j \cap B_k^j \neq \emptyset$. Now if $r_k^j \ge 2^{-j}R$ for some $k \in \mathbf{N}$, then $B_j \subset 4B_k^j$ and so

$$\frac{\mu(B_k^j)}{\mu(B_j)} \ge \frac{1}{C_d^2},$$

contradicting (3.16) by our choice of δ . Thus $r_k^j \leq 2^{-j}R$ for all $k \in \mathbf{N}$, so that $x_k^j \in 3B_j$, and thus by (2.1),

$$\left(\frac{r_k^j}{2^{-j+2}R}\right)^Q \le C_d^2 \frac{\mu(B_k^j)}{\mu(4B_j)} \le C_d^2 \frac{\mu(B_k^j)}{\mu(B_j)} \le 2^8 C_d^3 C_S^3 \delta$$

by (3.16), so that by our choice of δ ,

(3.17)
$$r_k^j \le (2^8 C_d^3 C_s^3 \delta)^{1/Q} 2^{-j+2} R = \frac{2^{-j} R}{170\lambda}.$$

Thus recalling that $F_j \cap B_k^j \neq \emptyset$, so that $(\frac{5}{4}B_j \setminus \frac{3}{4}B_{j+1}) \cap B_k^j \neq \emptyset$, we conclude that $20\lambda B_k^j \subset B_{j-1} \setminus B_{j+2}$ (let $B_{-1} := B(x, 2R)$). Now, define Lipschitz functions

$$\xi_k^j := \max\left\{0, 1 - \frac{\operatorname{dist}(\cdot, 10\lambda B_k^j)}{10\lambda r_k^j}\right\}, \quad k \in \mathbf{N},$$

so that $\xi_k^j = 1$ on $10\lambda B_k^j$ and $\xi_k^j = 0$ on $X \setminus 20\lambda B_k^j$. Using the basic properties of 1-weak upper gradients, see [3, Corollary 2.21], we obtain

$$\int_X g_{\xi_k^j} \, d\mu \leq \frac{\mu(20\lambda B_k^j)}{10\lambda r_k^j}.$$

Define $V := \bigcup_{j=0}^{\infty} \bigcup_{k=1}^{\infty} 10\lambda B_k^j$. Now for every i = 1, 2, ..., $\operatorname{cap}_1(V \cap B_i, 4B_i) \le \operatorname{cap}_1\left(\bigcup_{j=i-1}^{\infty} \bigcup_{k=1}^{\infty} 10\lambda B_k^j, 4B_i\right)$ $\le \sum_{j=i-1}^{\infty} \sum_{k=1}^{\infty} \operatorname{cap}_1\left(10\lambda B_k^j, 4B_i\right)$ $\le \sum_{j=i-1}^{\infty} \sum_{k=1}^{\infty} \int_X g_{\xi_k^j} d\mu \le \sum_{j=i-1}^{\infty} \sum_{k=1}^{\infty} \frac{\mu(20\lambda B_k^j)}{10\lambda r_k^j}$ $\le C_d^2 C_B \sum_{j=i-1}^{\infty} P(F_j, X) \quad \text{by } (3.15)$ $\le 50C_d^2 C_B C_S^2 \operatorname{cap}_1(W \cap B_{i-1}, 2B_{i-1}) \quad \text{by } (3.9).$

Thus

$$2^{-i}R\frac{\operatorname{cap}_1(V\cap B_i, 4B_i)}{\mu(B_i)} \le 50C_d^3C_BC_S^2 2^{-i+1}R\frac{\operatorname{cap}_1(W\cap B_{i-1}, 2B_{i-1})}{\mu(B_{i-1})} \to 0$$

as $i \to \infty$, since W is 1-thin at x. By Lemma 3.1 it is then straightforward to show that V is also 1-thin at x. Let us also define the Lipschitz functions

$$\eta_k^j := \max\left\{0, 1 - \frac{\operatorname{dist}(\cdot, 5\lambda B_k^j)}{5\lambda r_k^j}\right\}, \quad j = 0, 1, \dots, \ k = 1, 2, \dots,$$

so that $\eta_k^j = 1$ on $5\lambda B_k^j$ and $\eta_k^j = 0$ on $X \setminus 10\lambda B_k^j$, and then let

$$\eta := \sup_{j=0,1,\dots,\ k=1,2,\dots} \eta_k^j$$

Recall from Lemma 3.8 that $\bigcup_{j=0}^{\infty} F_j \supset W \cap B(x, R)$; thus $\eta \ge 1$ on

$$G := \bigcup_{j=0}^{\infty} \bigcup_{k=1}^{\infty} 5\lambda B_k^j \supset \bigcup_{j=0}^{\infty} F_j \supset W \cap B(x, R) \supset A \cap B(x, R)$$

By [3, Lemma 1.52] we know that $g_{\eta} \leq \sum_{j=0}^{\infty} \sum_{k=1}^{\infty} g_{\eta_k^j}$. Thus for any $i = 1, 2, \ldots$,

$$\int_{B_i} g_\eta \, d\mu \le \sum_{j=0}^{\infty} \sum_{k=1}^{\infty} \int_{B_i} g_{\eta_k^j} \, d\mu \le \sum_{j=i-1}^{\infty} \sum_{k=1}^{\infty} \int_X g_{\eta_k^j} \, d\mu \le 50C_d C_B C_S^2 \operatorname{cap}_1(W \cap B_{i-1}, 2B_{i-1}),$$

where the last inequality follows just as in the last four lines of (3.18). Since we assumed $R \leq 1$ and so $5\lambda r_k^j \leq 1$ by (3.17), we similarly get

$$\|\eta\|_{L^1(B_i)} \le 50C_d C_B C_S^2 \operatorname{cap}_1(W \cap B_{i-1}, 2B_{i-1}).$$

Using the fact that W is 1-thin at x and the doubling property of μ , we get (3.12). Estimating just as in the last four lines of (3.18), now with i = 1, we get

$$\int_{X} g_{\eta} d\mu \le \sum_{j=0}^{\infty} \sum_{k=1}^{\infty} \int_{X} g_{\eta_{k}^{j}} d\mu \le 50C_{d}C_{B}C_{S}^{2} \operatorname{cap}_{1}(W \cap B_{0}, 2B_{0}) < \infty.$$

Thus $\eta \in N^{1,1}(X)$. Clearly $\eta = 0$ on $X \setminus V$, and so $\eta \in N_0^{1,1}(V)$.

1036

4. 1-strict subsets

In this section we study 1-strict subsets which are defined as follows.

Definition 4.1. A set $A \subset D$ is a *1-strict subset* of $D \subset X$ if there is a function $u \in N_0^{1,1}(D)$ such that u = 1 on A.

Equivalently, A is a 1-strict subset of D if $\operatorname{cap}_1(A, D) < \infty$. In [22, Proposition 6.7] we proved the following result by using the weak Cartan property (Theorem 3.3).

Proposition 4.2. Let $U \subset X$ be 1-finely open and let $x \in U$. Then there exists a 1-finely open set W such that $x \in W \subset U$, and a function $w \in BV(X)$ such that $0 \le w \le 1$ on X, $w^{\wedge} = 1$ on W, and spt $w \Subset U$.

This kind of formulation is sufficient for some purposes, but now we are able to improve it by replacing $w \in BV(X)$ with $w \in N^{1,1}(X)$. The following is our main result on the existence of 1-strict subsets.

Theorem 4.3. Let $U \subset X$ be 1-finely open and let $x \in U$. Then there exists a 1-finely open set W such that $x \in W \subset U$, and a function $w \in N_0^{1,1}(U)$ such that $0 \leq w \leq 1$ on X, w = 1 on W, and spt $w \in U$. Moreover, if $\operatorname{Cap}_1(\{x\}) = 0$, then $\|w\|_{N^{1,1}(X)}$ can be made arbitrarily small.

Proof. Applying Theorem 3.11 with the choice $A = X \setminus U$, we find a number R > 0, open sets $G \subset V \subset X$, and a function $\eta \in N_0^{1,1}(V)$ such that $B(x, R) \subset G \cup U$, V is 1-thin at $x, 0 \leq \eta \leq 1$ on $X, \eta = 1$ on G, and

$$\lim_{r \to 0} \frac{r}{\mu(B(x,r))} \|\eta\|_{N^{1,1}(B(x,r))} = 0.$$

Choose $0 < r \leq R$ such that $r \|\eta\|_{N^{1,1}(B(x,r))} / \mu(B(x,r)) \leq 1$ and let

$$\rho := \max\left\{0, 1 - \frac{4\operatorname{dist}(\cdot, B(x, r/2))}{r}\right\} \in \operatorname{Lip}(X),$$

so that $0 \leq \rho \leq 1$ on X, $\rho = 1$ on B(x, r/2), and $\operatorname{spt} \rho \Subset B(x, r)$. Then let $w := (1 - \eta)\rho$. By the Leibniz rule (see [3, Theorem 2.15]), we have $w \in N^{1,1}(X)$ and

$$\int_X g_w \, d\mu = \int_{B(x,r)} g_w \, d\mu \le \int_{B(x,r)} g_\eta \, d\mu + \int_{B(x,r)} g_\rho \, d\mu \le \frac{\mu(B(x,r))}{r} + \frac{4\mu(B(x,r))}{r}.$$

Thus $||w||_{N^{1,1}(X)} \leq (5/r+1)\mu(B(x,r))$. If $\operatorname{Cap}_1(\{x\}) = 0$, then also $\mathcal{H}(\{x\}) = 0$ by (2.4), and so we can make $\mu(B(x,r))/r$ as small as we like by choosing suitable r. Then we can also make $||w||_{N^{1,1}(X)}$ arbitrarily small.

Regardless of the value of Cap₁({x}), the set V is 1-thin at x, that is, $x \notin b_1 V$. Since V is open we have $V \subset b_1 V$; recall (2.10) and the comment after it. We know that $\overline{V}^1 = V \cup b_1 V$ by [19, Corollary 3.5], so in conclusion $x \notin \overline{V}^1$. Thus

$$W := B(x, r/2) \setminus \overline{V}^1 \subset \{w = 1\}$$

is a 1-finely open neighborhood of x. Finally, spt w is compact and

$$\operatorname{spt} w \subset \operatorname{spt} \rho \setminus G \subset (U \cup G) \setminus G \subset U,$$

so that spt $w \in U$. Clearly now $w \in N_0^{1,1}(U)$.

Let us make a few more observations concerning 1-strict subsets. In general it is not clear which subsets A of a set D are 1-strict subsets. If A is a compact subset of

1037

an open set D, we obviously have $\operatorname{cap}_1(A, D) < \infty$, and the test function can even be chosen to be Lipschitz. When A is a compact subset of a 1-quasiopen set D, we cannot necessarily choose a Lipschitz test function but one might nonetheless suspect that $\operatorname{cap}_1(A, D) < \infty$. However, this is not always the case.

Example 4.4. Let $X = \mathbf{R}^2$ (unweighted), denote the origin by 0, and let

$$A := \bigcup_{j=1}^{\infty} A_j \cup \{0\} \quad \text{with} \quad A_j := \{2^{-j}\} \times [-1/(2j), 1/(2j)].$$

Denoting $A_j^{\varepsilon} := \{x \in X : \operatorname{dist}(x, A_j) < \varepsilon\}$, with $\varepsilon > 0$, let

$$D := \bigcup_{j=1}^{\infty} D_j \cup \{0\}$$
 with $D_j := A_j^{2^{-3j}}$.

Since all the sets D_j are disjoint, it is straightforward to check that

$$\operatorname{cap}_1(A, D) = \sum_{j=1}^{\infty} \operatorname{cap}_1(A_j, D_j) = \sum_{j=1}^{\infty} \frac{1}{j} = \infty.$$

Now A is clearly a compact set, and D is 1-quasiopen since $D \cup B(0, r)$ is an open set for every r > 0.

One can also make the sets A, D connected by adding the line $(0, 1/2] \times \{0\}$ to A, and by adding e.g. the sets $(2^{-j-1}, 2^{-j}) \times (-2^{-j-1}, 2^{-j-1})$ to D; then we still have $\operatorname{cap}_1(A, D) = \infty$ but the calculation is somewhat more complicated.

The variational 1-capacity is an outer capacity in the following weak sense.

Proposition 4.5. Let $A \subset D \subset X$. Then

$$\operatorname{cap}_{1}(A, D) = \inf_{\substack{V \text{ 1-quasiopen}\\ A \subset V \subset D}} \operatorname{cap}_{1}(V, D).$$

Proof. We can assume that $\operatorname{cap}_1(A, D) < \infty$. Fix $0 < \varepsilon < 1$. Take $u \in N_0^{1,1}(D)$ such that u = 1 on A and $\int_X g_u d\mu < \operatorname{cap}_1(A, D) + \varepsilon$. The set $V := \{u > 1 - \varepsilon\}$ is 1-quasiopen by Theorem 2.5, and

$$\operatorname{cap}_1(V,D) \le \int_X g_{u/(1-\varepsilon)} d\mu = \frac{\int_X g_u d\mu}{1-\varepsilon} \le \frac{\operatorname{cap}_1(A,D) + \varepsilon}{1-\varepsilon}.$$

Since $0 < \varepsilon < 1$ was arbitrary, we have the result.

Even though 1-quasiopen sets and 1-finely open sets are very closely related (recall Theorem 2.12), it is not clear whether the following holds.

Open Problem. If $D \subset X$ and $A \subset$ fine-int D, do we have

$$\operatorname{cap}_{1}(A, D) = \inf_{\substack{V \text{ 1-finely open}\\A \subset V \subset D}} \operatorname{cap}_{1}(V, D)?$$

Note that according to Theorem 4.3, the above property does hold in the very special case when A is a point with 1-capacity zero.

Let us say that a set $K \subset X$ is *1-quasiclosed* if $X \setminus K$ is 1-quasiopen. Now we can show that 1-strict subsets have the following continuity.

Proposition 4.6. Let $D \subset X$ and let $K_1 \supset K_2 \supset \ldots$ be bounded 1-quasiclosed subsets of D such that $\operatorname{cap}_1(K_1, D) < \infty$. Then for $K := \bigcap_{i=1}^{\infty} K_i$ we have

$$\operatorname{cap}_1(K,D) = \lim_{i \to \infty} \operatorname{cap}_1(K_i,D).$$

We will show in Example 4.7 below that the assumption $\operatorname{cap}_1(K_1, D) < \infty$ is needed.

Proof. Fix $\varepsilon > 0$. By Proposition 4.5 we find a 1-quasiopen set V such that $K \subset V \subset D$ and $\operatorname{cap}_1(V, D) < \operatorname{cap}_1(K, D) + \varepsilon$. For each $j \in \mathbb{N}$ we find an open set $\widetilde{G}_j \subset X$ such that $V \cup \widetilde{G}_j$ is open and $\operatorname{Cap}_1(\widetilde{G}_j) \to 0$ as $j \to \infty$. For each $i, j \in \mathbb{N}$, we find an open set $G_{i,j} \subset X$ such that $K_i \setminus G_{i,j}$ is compact and $\operatorname{Cap}_1(G_{i,j}) < 2^{-i-j}$. Letting $G_j := \widetilde{G}_j \cup \bigcup_{i=1}^{\infty} G_{i,j}$ for each $j \in \mathbb{N}$, we have that each $V \cup G_j$ is open, each $K_i \setminus G_j$ is compact, and $\operatorname{Cap}_1(G_j) \to 0$ as $j \to \infty$. Then for each $j \in \mathbb{N}$ we find a function $w_j \in N^{1,1}(X)$ such that $0 \leq w_j \leq 1$ on $X, w_j = 1$ on G_j , and $\|w_j\|_{N^{1,1}(X)} \to 0$ as $j \to \infty$. Passing to a subsequence (not relabeled), we can assume that $w_j \to 0$ a.e.

Since $\operatorname{cap}_1(K_1, D) < \infty$, we find $v \in N_0^{1,1}(D)$ such that $0 \le v \le 1$ on X and v = 1 on K_1 . For each $j \in \mathbf{N}$, let $\rho_j := vw_j$. Then $\|\rho_j\|_{L^1(X)} \to 0$ as $j \to \infty$, and by the Leibniz rule (see [3, Theorem 2.15]),

$$\int_X g_{\rho_j} d\mu \le \int_X g_{w_j} d\mu + \int_X w_j g_v d\mu \to 0$$

as $j \to \infty$; for the second term this follows from Lebesgue's dominated convergence theorem. Thus $\operatorname{cap}_1(G_j \cap K_1, D) \to 0$. Fix $j \in \mathbb{N}$ such that $\operatorname{cap}_1(G_j \cap K_1, D) < \varepsilon$. Since every $K_i \setminus G_j$ is compact and $V \cup G_j$ is open, for some $i \in \mathbb{N}$ we have $K_i \setminus G_j \subset V \cup G_j$. Thus $K_i \subset V \cup G_j$. Then

$$\operatorname{cap}_1(K_i, D) \le \operatorname{cap}_1(V \cup (G_j \cap K_1), D) \le \operatorname{cap}_1(V, D) + \operatorname{cap}_1(G_j \cap K_1, D)$$
$$\le \operatorname{cap}_1(K, D) + \varepsilon + \operatorname{cap}_1(G_j \cap K_1, D) \le \operatorname{cap}_1(K, D) + 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the proof is concluded.

Example 4.7. In the notation of Example 4.4, let $K_i := \bigcup_{j=i}^{\infty} A_j \cup \{0\}$ for each $i \in \mathbb{N}$. These are compact sets and similarly as in Example 4.4 we find that $\operatorname{cap}_1(K_i, D) = \infty$ for every $i \in \mathbb{N}$. However, $\operatorname{cap}_1(K, D) = 0$ for $K := \bigcap_{i=1}^{\infty} K_i = \{0\}$, by the fact that a point has 1-capacity zero and by using (2.3).

5. Application to fine Sobolev spaces

Björn–Björn–Latvala [7] have studied different definitions of Newton–Sobolev spaces on quasiopen sets in metric spaces in the case 1 . As an application of the theory we have developed, we show that the analogous results hold for <math>p = 1.

First we prove the following fact in a very similar way as it is proved in the case 1 , see [8, Theorem 1.4(b)] and [6, Theorem 4.9(b)]. Recall that a function <math>u defined on a set $U \subset X$ is 1-quasicontinuous on U if for every $\varepsilon > 0$ there is an open set $G \subset X$ such that $\operatorname{Cap}_1(G) < \varepsilon$ and $u|_{U\setminus G}$ is continuous (as a real-valued function).

Theorem 5.1. A function u on a 1-quasiopen set U is 1-quasicontinuous on U if and only if it is finite 1-q.e. and 1-finely continuous 1-q.e. on U.

Proof. To prove one direction, suppose there is a set $N \subset U$ such that $\operatorname{Cap}_1(N) = 0$ and u is finite and 1-finely continuous at every point in $V := U \setminus N$. By Theorem 2.12, we can assume that V is 1-finely open. Let $\{(a_j, b_j)\}_{j=1}^{\infty}$ be an enumeration of all intervals in \mathbf{R} with rational endpoints and let

$$V_j := \{ x \in V \colon a_j < u(x) < b_j \}.$$

By the 1-fine continuity of u, the sets V_j are 1-finely open. Hence by Theorem 2.12, they are also 1-quasiopen. Fix $\varepsilon > 0$. There are open sets $G_j \subset X$ such that $\operatorname{Cap}_1(G_j) < 2^{-j-1}\varepsilon$ and each $V_j \cup G_j$ is open. Since Cap_1 is an outer capacity, there is also an open set $G_N \supset N$ such that $\operatorname{Cap}_1(G_N) < \varepsilon/2$. Now

$$G := G_N \cup \bigcup_{j=1}^{\infty} G_j$$

is an open set such that $\operatorname{Cap}_1(G) < \varepsilon$, and $u|_{U\setminus G}$ is continuous since $V_j \cup G$ are open sets.

To prove the converse direction, by Theorem 2.12 we know that $U = V \cup N$, where V is 1-finely open and $\mathcal{H}(N) = 0$, and then also $\operatorname{Cap}_1(N) = 0$ by (2.4). By the quasicontinuity of u, for each $j \in \mathbf{N}$ we find an open set $G_j \subset X$ such that $\operatorname{Cap}_1(G_j) < 1/j$ and $u|_{V \setminus G_j}$ is continuous. By (2.11), we have $\operatorname{Cap}_1(\overline{G_j}^{-1}) = \operatorname{Cap}_1(G_j)$ for each $j \in \mathbf{N}$, and so the set

$$A := N \cup \bigcap_{j=1}^{\infty} \overline{G_j}^1$$

satisfies $\operatorname{Cap}_1(A) = 0$. If $x \in U \setminus A$, then $x \in V \setminus \overline{G_j}^1$ for some $j \in \mathbb{N}$. Since $V \setminus \overline{G_j}^1$ is a 1-finely open set and $u|_{V \setminus \overline{G_j}^1}$ is continuous, it follows that u is finite and 1-finely continuous at x.

We will need the following quasi-Lindelöf principle from [22].

Theorem 5.2. [22, Theorem 5.2] For every family \mathcal{V} of 1-finely open sets there is a countable subfamily \mathcal{V}' such that

$$\operatorname{Cap}_1\left(\bigcup_{V\in\mathcal{V}}V\setminus\bigcup_{V'\in\mathcal{V}'}V'\right)=0.$$

From now on, $U \subset X$ is always a 1-quasiopen set. Note that 1-quasiopen sets are μ -measurable by [5, Lemma 9.3].

Definition 5.3. A family \mathcal{B} of 1-quasiopen sets is a 1-quasicovering of U if it is countable, $\bigcup_{V \in \mathcal{B}} V \subset U$, and $\operatorname{Cap}_1(U \setminus \bigcup_{V \in \mathcal{B}} V) = 0$. If every $V \in \mathcal{B}$ is a 1-finely open 1-strict subset of U with $V \subseteq U$, then \mathcal{B} is a 1-strict quasicovering of U. Moreover, we say that

1. $u \in N_{\text{fine-loc}}^{1,1}(U)$ if $u \in N^{1,1}(V)$ for every 1-finely open 1-strict subset $V \Subset U$; 2. $u \in N_{\text{quasi-loc}}^{1,1}(U)$ (respectively $L_{\text{quasi-loc}}^1(U)$) if there is a 1-quasicovering \mathcal{B} of U such that $u \in N^{1,1}(V)$ (respectively $L^1(V)$) for every $V \in \mathcal{B}$.

Proposition 5.4. There exists a 1-strict quasicovering \mathcal{B} of U. Moreover, the associated Newton–Sobolev functions can be chosen compactly supported in U.

Proof. By Theorem 2.12, we have $U = V \cup N$, where V is 1-finely open and $\mathcal{H}(N) = 0$, and then also $\operatorname{Cap}_1(N) = 0$ by (2.4). For every $x \in V$, by Theorem 4.3 we find a 1-finely open set $V_x \ni x$ such that $V_x \Subset V$ and an associated function $v_x \in N_0^{1,1}(V)$ such that $0 \le v_x \le 1$ on X, $v_x = 1$ on V_x , and spt $v_x \Subset V$. The collection $\mathcal{B}' := \{V_x\}_{x \in V}$ covers V, and by the quasi-Lindelöf principle (Theorem 5.2) and the fact that $\operatorname{Cap}_1(U \setminus V) = 0$, there exists a countable subcollection $\mathcal{B} \subset \mathcal{B}'$ such that $\operatorname{Cap}_1(U \setminus \bigcup_{V_x \in \mathcal{B}} V_x) = 0$.

It follows that $N_{\text{fine-loc}}^{1,1}(U) \subset N_{\text{quasi-loc}}^{1,1}(U)$. From now on, since the proofs given in [7] in the case 1 apply almost verbatim also in our setting, we will onlypoint out the differences with [7].

Theorem 5.5. Let $u \in N^{1,1}_{\text{quasi-loc}}(U)$. Then u if finite 1-q.e. and 1-finely continuous 1-q.e. on U. Thus u is also 1-quasicontinuous on U.

Proof. Follow verbatim the proof of [7, Theorem 4.4], except that replace the reference to [7, Proposition 4.2] by Proposition 5.4, and the references to [6, Theorem 4.9(b)] and [8, Theorem 1.4(b)] by Theorem 5.1. \Box

Definition 5.6. A nonnegative function \tilde{g}_u on U is a 1-fine upper gradient of $u \in N^{1,1}_{\text{quasi-loc}}(U)$ if there is a quasicovering \mathcal{B} of U such that for every $V \in \mathcal{B}$, $u \in N^{1,1}(V)$ and $\tilde{g}_u = g_{u,V}$ a.e. on V, where $g_{u,V}$ is the minimal 1-weak upper gradient of u in V.

Lemma 5.7. If $u \in N^{1,1}_{\text{quasi-loc}}(U)$, then it has a unique (in the a.e. sense) 1-fine upper gradient \tilde{g}_u .

Proof. Follow verbatim the proof of [7, Lemma 5.2].

Theorem 5.8. If $u \in N^{1,1}_{\text{quasi-loc}}(U)$ and \tilde{g}_u is a 1-fine upper gradient of u, then \tilde{g}_u is a 1-weak upper gradient of u in U.

Proof. Follow verbatim the proof of [7, Theorem 5.3].

Proposition 5.9. If $u \in N^{1,1}_{\text{quasi-loc}}(U)$, then there is a 1-strict quasicovering \mathcal{B} of U such that for every $V \in \mathcal{B}$, there exists $u_V \in N^{1,1}(X)$ with $u = u_V$ on V.

Proof. Follow verbatim the proof of [7, Proposition 5.5], except that replace the reference to [7, Theorem 4.4] by Theorem 5.5, and [7, Proposition 4.2] by Proposition 5.4. \Box

The following definition is originally from Kilpeläinen–Malý [17].

Definition 5.10. Let $U \subset \mathbb{R}^n$. A function $u \in L^1(U)$ is in $W^{1,1}(U)$ if

- 1. there is a quasicovering \mathcal{B} of U such that for every $V \in \mathcal{B}$ there is an open set $G_V \supset V$ and $u_V \in W^{1,1}(G_V)$ such that $u = u_V$ on V, and
- 2. the fine gradient ∇u , defined by $\nabla u = \nabla u_V$ a.e. on each $V \in \mathcal{B}$, also belongs to $L^1(U)$.

Moreover, let

$$||u||_{W^{1,1}(U)} := \int_U (|u| + |\nabla u|) \, dx.$$

Recall that we constantly assume U to be a 1-quasiopen set.

Theorem 5.11. Let $U \subset \mathbf{R}^n$. Then $u \in W^{1,1}(U)$ if and only if there exists $v \in N^{1,1}(U)$ such that v = u a.e. on U. Moreover, $g_v = |\nabla u|$ a.e. on U and $\|v\|_{N^{1,1}(U)} = \|u\|_{W^{1,1}(U)}$.

Here g_v is the minimal 1-weak upper gradient of v in U.

Proof. Follow verbatim the proof of [7, Theorem 5.7], except that replace the reference to [7, Proposition 5.5] by Proposition 5.9, [3, Proposition A.12] by [3, Corollary A.4], and [7, Theorem 5.4] by Theorem 5.8. \Box

Returning momentarily to the metric space setting, define the space

 $\widehat{N}^{1,1}(U) := \{ u \colon u = v \text{ a.e. for some } v \in N^{1,1}(U) \}.$

Theorem 5.12. Let $u \in \widehat{N}^{1,1}(U)$. Then $u \in N^{1,1}(U)$ if and only if u is 1-quasicontinuous on U.

Proof. Assume that u is 1-quasicontinuous on U. There is $v \in N^{1,1}(U)$ such that u = v a.e. on U. By Theorem 5.5, v is 1-quasicontinuous on U. By [3, Proposition 5.23] and [9, Proposition 4.2], u = v 1-q.e. on U, and thus $u \in N^{1,1}(U)$ by (2.3).

The converse follows from Theorem 5.5.

Theorem 5.13. Let $U \subset \mathbf{R}^n$, and let u be an everywhere defined function on U. Then $u \in N^{1,1}(U)$ if and only if $u \in W^{1,1}(U)$ and u is 1-quasicontinuous. Moreover, then $||u||_{N^{1,1}(U)} = ||u||_{W^{1,1}(U)}$.

Proof. This follows from Theorems 5.11 and 5.12.

References

- ADAMS, D., and L. I. HEDBERG: Function spaces and potential theory. Grundlehren Math. Wiss. 314, Springer-Verlag, Berlin, 1996.
- [2] AMBROSIO, L., N. FUSCO, and D. PALLARA: Functions of bounded variation and free discontinuity problems. - Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2000.
- [3] BJÖRN, A., and J. BJÖRN: Nonlinear potential theory on metric spaces. EMS Tracts Math. 17, Eur. Math. Soc. (EMS), Zürich, 2011.
- [4] BJÖRN, A., and J. BJÖRN: The variational capacity with respect to nonopen sets in metric spaces. - Potential Anal. 40:1, 2014, 57–80.
- [5] BJÖRN, A., and J. BJÖRN: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. - Rev. Mat. Iberoam. 31:1, 2015, 161–214.
- [6] BJÖRN, A., J. BJÖRN, and V. LATVALA: The weak Cartan property for the p-fine topology on metric spaces. - Indiana Univ. Math. J. 64:3, 2015, 915–941.
- [7] BJÖRN, A., J. BJÖRN, and V. LATVALA: Sobolev spaces, fine gradients and quasicontinuity on quasiopen sets. - Ann. Acad. Sci. Fenn. Math. 41:2, 2016, 551–560.
- [8] BJÖRN, A., J. BJÖRN, and V. LATVALA: The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces. - J. Anal. Math. (to appear).
- [9] BJÖRN, A., J. BJÖRN, and J. MALÝ: Quasiopen and p-path open sets, and characterizations of quasicontinuity. - Potential Anal. 46:1, 2017, 181–199.
- [10] BJÖRN, A., J. BJÖRN, and N. SHANMUGALINGAM: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. - Houston J. Math. 34:4, 2008, 1197–1211.
- [11] EVANS, L. C., and R. F. GARIEPY: Measure theory and fine properties of functions. Stud. Adv. Math., CRC Press, Boca Raton, 1992.
- [12] FEDERER, H.: Geometric measure theory. Grundlehren Math. Wiss. 153, Springer-Verlag New York Inc., New York, 1969.
- [13] GIUSTI, E.: Minimal surfaces and functions of bounded variation. Monographs in Mathematics 80, Birkhäuser Verlag, Basel, 1984.
- [14] HAKKARAINEN, H., and J. KINNUNEN: The BV-capacity in metric spaces. Manuscripta Math. 132:1-2, 2010, 51–73.

1042

- [15] HEINONEN, J., T. KILPELÄINEN, and O. MARTIO: Nonlinear potential theory of degenerate elliptic equations. Dover Publications, Inc., Mineola, NY, 2006.
- [16] HEINONEN, J., and P. KOSKELA: Quasiconformal maps in metric spaces with controlled geometry. - Acta Math. 181:1, 1998, 1–61.
- [17] KILPELÄINEN, T., and J. MALÝ: Supersolutions to degenerate elliptic equation on quasi open sets. - Comm. Partial Differential Equations 17:3-4, 1992, 371–405.
- [18] KINNUNEN, J., R. KORTE, N. SHANMUGALINGAM, and H. TUOMINEN: Lebesgue points and capacities via the boxing inequality in metric spaces. - Indiana Univ. Math. J. 57:1, 2008, 401–430.
- [19] LAHTI, P.: A Federer-style characterization of sets of finite perimeter on metric spaces. Calc. Var. Partial Differential Equations 56:5, 2017, 56:150.
- [20] LAHTI, P.: A notion of fine continuity for BV functions on metric spaces. Potential Anal. 46:2, 2017, 279–294.
- [21] LAHTI, P.: Superminimizers and a weak Cartan property for p = 1 in metric spaces. J. Anal. Math. (to appear).
- [22] LAHTI, P.: The Choquet and Kellogg properties for the fine topology when p = 1 in metric spaces. Preprint https://arxiv.org/abs/1712.08027, 2017.
- [23] MALÝ, J., and W. ZIEMER: Fine regularity of solutions of elliptic partial differential equations.
 Math. Surveys Monogr. 51, Amer. Math. Soc., Providence, RI, 1997.
- [24] MIRANDA, M. JR.: Functions of bounded variation on "good" metric spaces. J. Math. Pures Appl. (9) 82:8, 2003, 975–1004.
- [25] SHANMUGALINGAM, N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. - Rev. Mat. Iberoamericana 16:2, 2000, 243–279.
- [26] ZIEMER, W. P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. - Grad. Texts in Math. 120. Springer-Verlag, New York, 1989.

Received 26 January 2018 • Accepted 25 May 2018