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Abstract. In a complete metric space that is equipped with a doubling measure and supports

a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p =

1. Then we use this property to prove the existence of 1-finely open strict subsets and strict

quasicoverings of 1-finely open sets. As an application, we study fine Newton–Sobolev spaces in the

case p = 1, that is, Newton–Sobolev spaces defined on 1-finely open sets.

1. Introduction

Nonlinear fine potential theory in metric spaces has been studied in several papers
in recent years, see [7, 8, 6]. Much of nonlinear potential theory, for 1 < p <
∞, deals with p-harmonic functions, which are local minimizers of the Lp-norm of
|∇u|. Such minimizers can be defined also in metric measure spaces by using upper
gradients, and the notion can be extended to the case p = 1 by considering functions
of least gradient, which are BV functions that minimize the total variation locally;
see Section 2 for definitions.

Nonlinear fine potential theory is concerned with studying p-harmonic functions
and related superminimizers by means of the p-fine topology. For nonlinear fine
potential theory and its history in the Euclidean setting, for 1 < p < ∞, see especially
the monographs [1, 15, 23], as well as the monograph [3] in the metric setting. The
typical assumptions of a metric space, which we make also in this paper, are that
the space is complete, equipped with a doubling measure, and supports a Poincaré
inequality.

A central result in fine potential theory is the (weak) Cartan property for super-
minimizer functions. In [21] we proved the following formulation of this property in
the case p = 1.

Theorem 1.1. [21, Theorem 1.1] Let A ⊂ X and let x ∈ X \ A such that A is
1-thin at x. Then there exist R > 0 and u1, u2 ∈ BV(X) that are 1-superminimizers
in B(x,R) such that max{u∧

1 , u
∧
2} = 1 in A ∩ B(x,R) and u∨

1 (x) = 0 = u∨
2 (x).

In [22] we used this property to prove the so-called Choquet property concerning
finely open and quasiopen sets in the case p = 1, similarly as can be done when
1 < p < ∞ (see [8]). On the other hand, it is natural to consider an alternative version
of the weak Cartan property. In the case p > 1, superminimizers are Newton–Sobolev
functions, but in the case p = 1 they are only BV functions and so the question arises
whether the functions u1, u2 above can be replaced by a Newton–Sobolev function
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(even though it would no longer be a superminimizer). In Theorem 3.11 we show
that such a new Cartan-type property indeed holds.

It is said that a set A is a p-strict subset of a set D if there exists a Newton–
Sobolev function u ∈ N1,p(X) such that u = 1 on A and u = 0 on X \D. In [7] it
was shown that if U is a p-finely open set (1 < p < ∞) and x ∈ U , then there exists
a p-finely open strict subset V ⋐ U such that x ∈ V . The proof was based on the
weak Cartan property. In Theorem 4.3 we show that the analogous result is true in
the case p = 1. Here we need the Cartan-type property involving a Newton–Sobolev
function (instead of the BV superminimizer functions).

This result on the existence of 1-strict subsets can be combined with the quasi-
Lindelöf principle to prove the existence of strict quasicoverings of 1-finely open sets,
that is, countable coverings by 1-finely open strict subsets. We do this in Proposi-
tion 5.4, and it is again analogous to the case 1 < p < ∞, see [7]. Such coverings will
be useful in future research when considering partition of unity arguments in finely
open sets. In this paper, we apply strict quasicoverings in defining and studying
fine Newton–Sobolev spaces, that is, Newton–Sobolev spaces defined on finely open
or quasiopen sets. In the case 1 < p < ∞, these were studied in [7]. In Section 5 we
show that the theory we have developed allows us to prove directly analogous results
in the case p = 1.

2. Preliminaries

In this section we introduce the notation, definitions, and assumptions used in
the paper. Throughout this paper, (X, d, µ) is a complete metric space that is equip-
ped with a metric d and a Borel regular outer measure µ that satisfies a doubling
property, meaning that there exists a constant Cd ≥ 1 such that

0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r)) < ∞

for every ball B(x, r) := {y ∈ X : d(y, x) < r}. We also assume that X supports
a (1, 1)-Poincaré inequality defined below, and that X contains at least 2 points.
For a ball B = B(x, r) and a > 0, we sometimes abbreviate aB := B(x, ar); note
that in metric spaces, a ball (as a set) does not necessarily have a unique center and
radius, but we will always understand these to be predetermined for the balls that
we consider. By iterating the doubling condition, we obtain for any x ∈ X and any
y ∈ B(x,R) with 0 < r ≤ R < ∞ that

(2.1)
µ(B(y, r))

µ(B(x,R))
≥

1

C2
d

( r

R

)Q
,

where Q > 1 only depends on the doubling constant Cd. When we want to state
that a constant C depends on the parameters a, b, . . ., we write C = C(a, b, . . .).
When a property holds outside a set of µ-measure zero, we say that it holds almost
everywhere, abbreviated a.e.

As a complete metric space equipped with a doubling measure, X is proper, that
is, closed and bounded sets are compact. For any µ-measurable set D ⊂ X, we
define Liploc(D) to be the space of functions u on D such that for every x ∈ D there
exists r > 0 such that u ∈ Lip(D ∩ B(x, r)). For an open set Ω ⊂ X, a function
u ∈ Liploc(Ω) is then in Lip(Ω′) for every open Ω′ ⋐ Ω; this notation means that Ω′

is a compact subset of Ω. Other local spaces of functions are defined analogously.
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For any A ⊂ X and 0 < R < ∞, the restricted Hausdorff content of codimension
one is defined to be

HR(A) := inf

{
∞∑

i=1

µ(B(xi, ri))

ri
: A ⊂

∞⋃

i=1

B(xi, ri), ri ≤ R

}
.

The codimension one Hausdorff measure of A ⊂ X is then defined to be

H(A) := lim
R→0

HR(A).

All functions defined on X or its subsets will take values in [−∞,∞]. By a curve
we mean a nonconstant rectifiable continuous mapping from a compact interval of
the real line into X. A nonnegative Borel function g on X is an upper gradient of a
function u on X if for all curves γ, we have

(2.2) |u(x)− u(y)| ≤

∫

γ

g ds,

where x and y are the end points of γ and the curve integral is defined by using an
arc-length parametrization, see [16, Section 2] where upper gradients were originally
introduced. We interpret |u(x)− u(y)| = ∞ whenever at least one of |u(x)|, |u(y)| is
infinite.

Let 1 ≤ p < ∞; we are going to work solely with p = 1, but we give definitions
that cover all values of p where it takes no extra work. We say that a family of curves
Γ is of zero p-modulus if there is a nonnegative Borel function ρ ∈ Lp(X) such that
for all curves γ ∈ Γ, the curve integral

∫
γ
ρ ds is infinite. A property is said to hold

for p-almost every curve if it fails only for a curve family with zero p-modulus. If g is
a nonnegative µ-measurable function on X and (2.2) holds for p-almost every curve,
we say that g is a p-weak upper gradient of u. By only considering curves γ in a set
D ⊂ X, we can talk about a function g being a (p-weak) upper gradient of u in D.

Let D ⊂ X be a µ-measurable set. We define the norm

‖u‖N1,p(D) := ‖u‖Lp(D) + inf ‖g‖Lp(D),

where the infimum is taken over all p-weak upper gradients g of u in D. The usual
Sobolev space W 1,p is replaced in the metric setting by the Newton–Sobolev space

N1,p(D) := {u : ‖u‖N1,p(D) < ∞},

which was first introduced in [25]. We understand every Newton–Sobolev function
to be defined at every x ∈ D (even though ‖ · ‖N1,p(D) is then only a seminorm). It

is known that for any u ∈ N1,p
loc (D), there exists a minimal p-weak upper gradient

of u in D, always denoted by gu, satisfying gu ≤ g a.e. on D for any p-weak upper
gradient g ∈ Lp

loc(D) of u in D, see [3, Theorem 2.25].
For any D ⊂ X, the space of Newton–Sobolev functions with zero boundary

values is defined to be

N1,p
0 (D) := {u|D : u ∈ N1,p(X) and u = 0 on X \D}.

This is a subspace of N1,p(D) when D is µ-measurable, and it can always be under-
stood to be a subspace of N1,p(X).

The p-capacity of a set A ⊂ X is

Capp(A) := inf ‖u‖N1,p(X),
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where the infimum is taken over all functions u ∈ N1,p(X) such that u ≥ 1 on A.
If a property holds outside a set A ⊂ X with Capp(A) = 0, we say that it holds
p-quasieverywhere, or p-q.e. If D ⊂ X is µ-measurable, then

(2.3) ‖u‖N1,p(D) = 0 if u = 0 p-q.e. on D,

see [3, Proposition 1.61].
We know that Capp is an outer capacity, meaning that

Capp(A) = inf
W open
A⊂W

Capp(W )

for any A ⊂ X, see e.g. [3, Theorem 5.31]. By [14, Theorem 4.3, Theorem 5.1], for
any A ⊂ X it holds that

(2.4) Cap1(A) = 0 if and only if H(A) = 0.

We say that a set U ⊂ X is p-quasiopen if for every ε > 0 there is an open set
G ⊂ X such that Capp(G) < ε and U ∪G is open. We say that a function u defined
on a set D ⊂ X is p-quasicontinuous on D if for every ε > 0 there is an open set
G ⊂ X such that Capp(G) < ε and u|D\G is continuous (as a real-valued function). It
is a well-known fact that Newton–Sobolev functions are quasicontinuous; for a proof
of the following theorem, see [10, Theorem 1.1] or [3, Theorem 5.29].

Theorem 2.5. Let Ω ⊂ X be open and let u ∈ N1,p(Ω) (with 1 ≤ p < ∞).
Then u is p-quasicontinuous on Ω.

The variational p-capacity of a set A ⊂ D with respect to D ⊂ X is given by

capp(A,D) := inf

∫

X

gpu dµ,

where the infimum is taken over functions u ∈ N1,p
0 (D) such that u ≥ 1 on A, and gu

is the minimal p-weak upper gradient of u (in X). By truncation, we see that we can
also assume that 0 ≤ u ≤ 1 on X (and the same applies to the p-capacity). For basic
properties satisfied by capacities, such as monotonicity and countable subadditivity,
see [3, 4].

Next we recall the definition and basic properties of functions of bounded vari-
ation on metric spaces, following [24]. See also the monographs [2, 11, 12, 13, 26]
for the classical theory in the Euclidean setting. Let Ω ⊂ X be an open set. Given
u ∈ L1

loc(Ω), the total variation of u in Ω is defined to be

‖Du‖(Ω) := inf

{
lim inf
i→∞

∫

Ω

gui
dµ : ui ∈ Liploc(Ω), ui → u in L1

loc(Ω)

}
,

where each gui
is the minimal 1-weak upper gradient of ui in Ω. (In [24], local

Lipschitz constants were used instead of upper gradients, but the properties of the
total variation can be proved similarly with either definition.) We say that a function
u ∈ L1(Ω) is of bounded variation, and denote u ∈ BV(Ω), if ‖Du‖(Ω) < ∞. For an
arbitrary set A ⊂ X, we define

‖Du‖(A) := inf
W open
A⊂W

‖Du‖(W ).

If u ∈ L1
loc(Ω) and ‖Du‖(Ω) < ∞, then ‖Du‖(·) is a Radon measure on Ω by

[24, Theorem 3.4]. A µ-measurable set E ⊂ X is said to be of finite perimeter if
‖DχE‖(X) < ∞, where χE is the characteristic function of E. The perimeter of E
in Ω is also denoted by P (E,Ω) := ‖DχE‖(Ω).
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The lower and upper approximate limits of a function u on X are defined respec-
tively by

u∧(x) := sup

{
t ∈ R : lim

r→0

µ(B(x, r) ∩ {u < t})

µ(B(x, r))
= 0

}

and

u∨(x) := inf

{
t ∈ R : lim

r→0

µ(B(x, r) ∩ {u > t})

µ(B(x, r))
= 0

}
.

Unlike Newton–Sobolev functions, we understand BV functions to be µ-equivalence
classes. To consider fine properties, we need to consider the pointwise representatives
u∧ and u∨.

We will assume throughout the paper that X supports a (1, 1)-Poincaré inequal-
ity, meaning that there exist constants CP > 0 and λ ≥ 1 such that for every ball
B(x, r), every u ∈ L1

loc(X), and every upper gradient g of u, we have

(2.6)

∫

B(x,r)

|u− uB(x,r)| dµ ≤ CP r

∫

B(x,λr)

g dµ,

where

uB(x,r) :=

∫

B(x,r)

u dµ :=
1

µ(B(x, r))

∫

B(x,r)

u dµ.

The (1, 1)-Poincaré inequality implies the following Sobolev inequality: if x ∈ X,
0 < r < 1

4
diamX, and u ∈ N1,1

0 (B(x, r)), then

(2.7)

∫

B(x,r)

|u| dµ ≤ CSr

∫

B(x,r)

gu dµ

for some constant CS = CS(Cd, CP ) ≥ 1, see [3, Theorem 5.51]. By applying this
to approximating functions in the definition of the total variation, we obtain for any
x ∈ X, 0 < r < 1

4
diamX, and any µ-measurable set E ⊂ B(x, r)

(2.8) µ(E) ≤ CSrP (E,X).

Next we define the fine topology in the case p = 1.

Definition 2.9. We say that A ⊂ X is 1-thin at the point x ∈ X if

lim
r→0

r
cap1(A ∩ B(x, r), B(x, 2r))

µ(B(x, r))
= 0.

We say that a set U ⊂ X is 1-finely open if X \ U is 1-thin at every x ∈ U . Then
we define the 1-fine topology as the collection of 1-finely open sets on X (see [20,
Lemma 4.2] for a proof of the fact that this is indeed a topology).

We denote the 1-fine interior of a set H ⊂ X, i.e. the largest 1-finely open set
contained in H , by fine-intH . We denote the 1-fine closure of H ⊂ X, i.e. the smallest

1-finely closed set containing H , by H
1
. We define the 1-base b1H of H ⊂ X to be

the set of points in X where H is not 1-thin. We say that a function u defined
on a set U ⊂ X is 1-finely continuous at x ∈ U if it is continuous at x when U is
equipped with the induced 1-fine topology on U and [−∞,∞] is equipped with the
usual topology.

By [3, Proposition 6.16], for all x ∈ X and 0 < r < 1
8
diamX (in fact, the second

inequality holds for all r > 0)

(2.10)
µ(B(x, r))

2CSr
≤ cap1(B(x, r), B(x, 2r)) ≤

Cdµ(B(x, r))

r
,
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and so obviously W ⊂ b1W for any open set W ⊂ X.
The following fact is given in [19, Proposition 3.3]:

(2.11) Cap1(A
1
) = Cap1(A) for any A ⊂ X.

The following result describes the close relationship between finely open and
quasiopen sets.

Theorem 2.12. [22, Corollary 6.12] A set U ⊂ X is 1-quasiopen if and only if
it is the union of a 1-finely open set and a H-negligible set.

For an open set Ω ⊂ X, we denote by BVc(Ω) the class of functions ϕ ∈ BV(Ω)
with compact support in Ω, that is, sptϕ ⋐ Ω.

Definition 2.13. We say that u ∈ BVloc(Ω) is a 1-minimizer in Ω if for all
ϕ ∈ BVc(Ω),

(2.14) ‖Du‖(sptϕ) ≤ ‖D(u+ ϕ)‖(sptϕ).

We say that u ∈ BVloc(Ω) is a 1-superminimizer in Ω if (2.14) holds for all nonnegative
ϕ ∈ BVc(Ω).

More precisely, we should talk about spt |ϕ|∨, since ϕ is only a.e. defined. In the
literature, 1-minimizers are usually called functions of least gradient.

3. A new Cartan-type property

In this section we prove the new Cartan-type property, given in Theorem 3.11.
First we take note of a few results that we will need in the proofs; the following is
given in [3, Lemma 11.22].

Lemma 3.1. Let x ∈ X, r > 0, and A ⊂ B(x, r). Then for every 1 < s < t with
tr < 1

4
diamX, we have

cap1(A,B(x, tr)) ≤ cap1(A,B(x, sr)) ≤ CS

(
1 +

t

s− 1

)
cap1(A,B(x, tr)),

where CS is the constant from the Sobolev inequality (2.7).

Theorem 3.2. [21, Theorem 3.11] Let u be a 1-superminimizer in an open set
Ω ⊂ X. Then u∧ : Ω → (−∞,∞] is lower semicontinuous.

As mentioned in the introduction, in [21] we proved a weak Cartan property for
p = 1, more precisely in the following form.

Theorem 3.3. [21, Theorem 5.2] Let A ⊂ X and let x ∈ X \ A be such that A
is 1-thin at x. Then there exist R > 0 and E0, E1 ⊂ X such that χE0

, χE1
∈ BV(X),

χE0
and χE1

are 1-superminimizers in B(x,R), max{χ∧
E0
, χ∧

E1
} = 1 in A ∩ B(x,R),

χ∨
E0
(x) = 0 = χ∨

E1
(x), {max{χ∨

E0
, χ∨

E1
} > 0} is 1-thin at x, and

lim
r→0

r
P (E0, B(x, r))

µ(B(x, r))
= 0, lim

r→0
r
P (E1, B(x, r))

µ(B(x, r))
= 0.

Now we collect a few facts that are not included in the above statement, but are
given in the proof in [21]. Defining Bj := B(x, 2−jR) and Hj := Bj \

9
10
Bj+1 for

j = 0, 1, . . ., there exists an open set W ⊃ A that is 1-thin at x,

(3.4) W ∩
⋃

j=0,2,...

Hj ⊂ E0 and W ∩
⋃

j=1,3,...

Hj ⊂ E1,
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and (see [21, Eq. (5.4)])

E0 ⊂
(
3
2
B0 \

4
5
B1

)
∪

∞⋃

j=2,4,...

5
4
Bj \

4
5
Bj+1 and

E1 ⊂
(
3
2
B1 \

4
5
B2

)
∪

∞⋃

j=3,5,...

5
4
Bj \

4
5
Bj+1.

(3.5)

Moreover, by [21, Eq. (5.5)], for all i = 2, 4, 6, . . . we have

(3.6) P (E0 ∩
5
4
Bi, X) ≤ 5CS cap1(W ∩ Bi, 2Bi),

and similarly for all i = 3, 5, 7, . . .,

(3.7) P (E1 ∩
5
4
Bi, X) ≤ 5CS cap1(W ∩ Bi, 2Bi).

From the proof it can also be seen that if R > 0 is chosen to be smaller, all of
the above results still hold. The same will then apply to the conclusion of the next
lemma. Let Bj and Hj be defined as above.

Lemma 3.8. Let A ⊂ X and let x ∈ X \A be such that A is 1-thin at x. Then
there exists a number R > 0, an open set W ⊃ A that is 1-thin at x, and open sets
Fj ⊃ W ∩Hj such that Fj ⊂

5
4
Bj \

3
4
Bj+1 for all j = 0, 1, . . ., and

(3.9)

∞∑

j=i

P (Fj, X) ≤ 50C2
S cap1(W ∩Bi, 2Bi)

for all i = 0, 1, . . ..

Proof. By using the weak Cartan property (Theorem 3.3), choose R > 0 and
E0, E1 ⊂ X such that χE0

, χE1
∈ BV(X) and χE0

and χE1
are 1-superminimizers in

B(x,R). We can assume that R < 1
2
diamX. Also let W ⊃ A be an open set that is

1-thin at x, as described above. Define

Fj := {χ∧
E0

> 0} ∩ 5
4
Bj \

3
4
Bj+1 for j = 2, 4, . . . ,

and

Fj := {χ∧
E1

> 0} ∩ 5
4
Bj \

3
4
Bj+1 for j = 3, 5, . . . .

By (3.4), we have Fj ⊃ W ∩ Hj for all j = 2, 3, . . . as desired. The sets Fj are
open by Theorem 3.2. By Lebesgue’s differentiation theorem, the sets {χ∧

E0
> 0} and

{χ∧
E1

> 0} differ from E0 and E1, respectively, only by a set of µ-measure zero. Thus
by (3.5) and the fact that the sets Fj are at a positive distance from each other, we
find that for all i = 2, 4, . . .,

P (E0 ∩
5
4
Bi, X) = P

(
⋃

j=i,i+2,...

Fj , X

)
=

∑

j=i,i+2,...

P (Fj, X),

and similarly for all i = 3, 5, . . .,

P (E1 ∩
5
4
Bi, X) =

∑

j=i,i+2,...

P (Fj, X).



1034 Panu Lahti

Combining these with (3.6) and (3.7), and using Lemma 3.1, we have for all i =
2, 3, . . .

∞∑

j=i

P (Fj, X) ≤ 5CS(cap1(W ∩ Bi, 2Bi) + cap1(W ∩ Bi+1, 2Bi+1))

≤ 5CS(cap1(W ∩ Bi, 2Bi) + 5CS cap1(W ∩ Bi+1, 4Bi+1))

≤ 25C2
S(cap1(W ∩Bi, 2Bi) + cap1(W ∩ Bi, 4Bi+1))

= 50C2
S cap1(W ∩ Bi, 2Bi).

Then by replacing R with R/4, we have the result. �

Recall the constant λ ≥ 1 from the Poincaré inequality (2.6). We have the
following boxing inequality from [18, Theorem 3.1]. Note that in [18] it is assumed
that µ(X) = ∞, but the proof reveals that we can alternatively assume µ(F ) <
µ(X)/2.

Theorem 3.10. Let F ⊂ X be an open set of finite perimeter with µ(F ) <
µ(X)/2 (in particular, µ(F ) is finite). Then there exists a collection of balls {Bk =
B(xk, rk)}k∈N such that the balls λBk are disjoint, F ⊂

⋃∞
k=1 5λBk,

1

2Cd
≤

µ(Bk ∩ F )

µ(Bk)
≤

1

2

for all k ∈ N, and
∞∑

k=1

µ(5λBk)

5λrk
≤ CBP (F,X)

for some constant CB = CB(Cd, CP , λ).

Now we can show the following Cartan-type property.

Theorem 3.11. Let A ⊂ X and let x ∈ X \ A be such that A is 1-thin at x.
Then there exists a number R > 0, open sets G ⊂ V ⊂ X, and a function η ∈ N1,1

0 (V )
such that A ∩ B(x,R) ⊂ G, V is 1-thin at x, 0 ≤ η ≤ 1 on X, η = 1 on G, and

(3.12) lim
r→0

r

µ(B(x, r))
‖η‖N1,1(B(x,r)) = 0.

Proof. Take R > 0, an open set W ⊃ A, and open sets Fj ⊂ 5
4
Bj \

3
4
Bj+1 as

given by Lemma 3.8. Let

δ :=
1

28(680λ)QC3
dC

3
S

,

where Q > 1 is the exponent in (2.1). We can assume that R ≤ min
{
1, 1

8
diamX

}
.

Since µ({x}) = 0 (see [3, Corollary 4.3]), we can also assume R to be so small that
µ(5

4
B0) <

1
2
µ(X), and so also µ(Fj) <

1
2
µ(X) for all j = 0, 1, . . .. Since W is 1-thin

at x, we can further assume that R is so small that

(3.13) 2−jR
cap1(W ∩ Bj , 2Bj)

µ(Bj)
< δ

for all j = 0, 1, . . .. Fix j. By the boxing inequality (Theorem 3.10) we find a
collection of balls {Bj

k = B(xj
k, r

j
k)}

∞
k=1 such that the balls λBj

k are disjoint, Fj ⊂⋃∞
k=1 5λB

j
k,

(3.14)
1

2Cd

≤
µ(Bj

k ∩ Fj)

µ(Bj
k)

≤
1

2
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for all k ∈ N, and

(3.15)

∞∑

k=1

µ(5λBj
k)

5λrjk
≤ CBP (Fj, X).

Thus we have

µ(Bj
k) ≤ 2Cdµ(B

j
k ∩ Fj) ≤ 2Cdµ(Fj)

≤ 22−jRCdCSP (Fj, X) by (2.8)

≤ 28−jRCdC
3
S cap1(W ∩Bj , 2Bj) by (3.9).

Thus for all k ∈ N,

(3.16)
µ(Bj

k)

µ(Bj)
≤ 28CdC

3
S2

−jR
cap1(W ∩Bj , 2Bj)

µ(Bj)
≤ 28CdC

3
Sδ

by (3.13). By (3.14) we necessarily have Fj∩Bj
k 6= ∅ for all k ∈ N, and so 5

4
Bj∩Bj

k 6=

∅. Now if rjk ≥ 2−jR for some k ∈ N, then Bj ⊂ 4Bj
k and so

µ(Bj
k)

µ(Bj)
≥

1

C2
d

,

contradicting (3.16) by our choice of δ. Thus rjk ≤ 2−jR for all k ∈ N, so that

xj
k ∈ 3Bj, and thus by (2.1),

(
rjk

2−j+2R

)Q

≤ C2
d

µ(Bj
k)

µ(4Bj)
≤ C2

d

µ(Bj
k)

µ(Bj)
≤ 28C3

dC
3
Sδ

by (3.16), so that by our choice of δ,

(3.17) rjk ≤ (28C3
dC

3
Sδ)

1/Q2−j+2R =
2−jR

170λ
.

Thus recalling that Fj ∩ Bj
k 6= ∅, so that (5

4
Bj \

3
4
Bj+1) ∩ Bj

k 6= ∅, we conclude that

20λBj
k ⊂ Bj−1 \Bj+2 (let B−1 := B(x, 2R)). Now, define Lipschitz functions

ξjk := max

{
0, 1−

dist(·, 10λBj
k)

10λrjk

}
, k ∈ N,

so that ξjk = 1 on 10λBj
k and ξjk = 0 on X \ 20λBj

k. Using the basic properties of
1-weak upper gradients, see [3, Corollary 2.21], we obtain

∫

X

gξj
k
dµ ≤

µ(20λBj
k)

10λrjk
.
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Define V :=
⋃∞

j=0

⋃∞
k=1 10λB

j
k. Now for every i = 1, 2, . . .,

cap1(V ∩ Bi, 4Bi) ≤ cap1

(
∞⋃

j=i−1

∞⋃

k=1

10λBj
k, 4Bi

)

≤
∞∑

j=i−1

∞∑

k=1

cap1

(
10λBj

k, 4Bi

)

≤
∞∑

j=i−1

∞∑

k=1

∫

X

gξj
k
dµ ≤

∞∑

j=i−1

∞∑

k=1

µ(20λBj
k)

10λrjk

≤ C2
dCB

∞∑

j=i−1

P (Fj, X) by (3.15)

≤ 50C2
dCBC

2
S cap1(W ∩Bi−1, 2Bi−1) by (3.9).

(3.18)

Thus

2−iR
cap1(V ∩ Bi, 4Bi)

µ(Bi)
≤ 50C3

dCBC
2
S2

−i+1R
cap1(W ∩ Bi−1, 2Bi−1)

µ(Bi−1)
→ 0

as i → ∞, since W is 1-thin at x. By Lemma 3.1 it is then straightforward to show
that V is also 1-thin at x. Let us also define the Lipschitz functions

ηjk := max

{
0, 1−

dist(·, 5λBj
k)

5λrjk

}
, j = 0, 1, . . . , k = 1, 2, . . . ,

so that ηjk = 1 on 5λBj
k and ηjk = 0 on X \ 10λBj

k, and then let

η := sup
j=0,1,..., k=1,2,...

ηjk.

Recall from Lemma 3.8 that
⋃∞

j=0 Fj ⊃ W ∩ B(x,R); thus η ≥ 1 on

G :=

∞⋃

j=0

∞⋃

k=1

5λBj
k ⊃

∞⋃

j=0

Fj ⊃ W ∩ B(x,R) ⊃ A ∩ B(x,R).

By [3, Lemma 1.52] we know that gη ≤
∑∞

j=0

∑∞
k=1 gηj

k
. Thus for any i = 1, 2, . . .,

∫

Bi

gη dµ ≤
∞∑

j=0

∞∑

k=1

∫

Bi

gηj
k
dµ ≤

∞∑

j=i−1

∞∑

k=1

∫

X

gηj
k
dµ

≤ 50CdCBC
2
S cap1(W ∩Bi−1, 2Bi−1),

where the last inequality follows just as in the last four lines of (3.18). Since we
assumed R ≤ 1 and so 5λrjk ≤ 1 by (3.17), we similarly get

‖η‖L1(Bi) ≤ 50CdCBC
2
S cap1(W ∩ Bi−1, 2Bi−1).

Using the fact that W is 1-thin at x and the doubling property of µ, we get (3.12).
Estimating just as in the last four lines of (3.18), now with i = 1, we get

∫

X

gη dµ ≤
∞∑

j=0

∞∑

k=1

∫

X

gηj
k
dµ ≤ 50CdCBC

2
S cap1(W ∩ B0, 2B0) < ∞.

Thus η ∈ N1,1(X). Clearly η = 0 on X \ V , and so η ∈ N1,1
0 (V ). �
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4. 1-strict subsets

In this section we study 1-strict subsets which are defined as follows.

Definition 4.1. A set A ⊂ D is a 1-strict subset of D ⊂ X if there is a function
u ∈ N1,1

0 (D) such that u = 1 on A.

Equivalently, A is a 1-strict subset of D if cap1(A,D) < ∞. In [22, Proposi-
tion 6.7] we proved the following result by using the weak Cartan property (Theo-
rem 3.3).

Proposition 4.2. Let U ⊂ X be 1-finely open and let x ∈ U . Then there exists
a 1-finely open set W such that x ∈ W ⊂ U , and a function w ∈ BV(X) such that
0 ≤ w ≤ 1 on X, w∧ = 1 on W , and sptw ⋐ U .

This kind of formulation is sufficient for some purposes, but now we are able to
improve it by replacing w ∈ BV(X) with w ∈ N1,1(X). The following is our main
result on the existence of 1-strict subsets.

Theorem 4.3. Let U ⊂ X be 1-finely open and let x ∈ U . Then there exists a
1-finely open set W such that x ∈ W ⊂ U , and a function w ∈ N1,1

0 (U) such that
0 ≤ w ≤ 1 on X, w = 1 on W , and sptw ⋐ U . Moreover, if Cap1({x}) = 0, then
‖w‖N1,1(X) can be made arbitrarily small.

Proof. Applying Theorem 3.11 with the choice A = X \ U , we find a number
R > 0, open sets G ⊂ V ⊂ X, and a function η ∈ N1,1

0 (V ) such that B(x,R) ⊂ G∪U ,
V is 1-thin at x, 0 ≤ η ≤ 1 on X, η = 1 on G, and

lim
r→0

r

µ(B(x, r))
‖η‖N1,1(B(x,r)) = 0.

Choose 0 < r ≤ R such that r‖η‖N1,1(B(x,r))/µ(B(x, r)) ≤ 1 and let

ρ := max

{
0, 1−

4 dist(·, B(x, r/2))

r

}
∈ Lip(X),

so that 0 ≤ ρ ≤ 1 on X, ρ = 1 on B(x, r/2), and spt ρ ⋐ B(x, r). Then let
w := (1 − η)ρ. By the Leibniz rule (see [3, Theorem 2.15]), we have w ∈ N1,1(X)
and∫

X

gw dµ =

∫

B(x,r)

gw dµ ≤

∫

B(x,r)

gη dµ+

∫

B(x,r)

gρ dµ ≤
µ(B(x, r))

r
+

4µ(B(x, r))

r
.

Thus ‖w‖N1,1(X) ≤ (5/r + 1)µ(B(x, r)). If Cap1({x}) = 0, then also H({x}) = 0 by
(2.4), and so we can make µ(B(x, r))/r as small as we like by choosing suitable r.
Then we can also make ‖w‖N1,1(X) arbitrarily small.

Regardless of the value of Cap1({x}), the set V is 1-thin at x, that is, x /∈ b1V .
Since V is open we have V ⊂ b1V ; recall (2.10) and the comment after it. We know

that V
1
= V ∪ b1V by [19, Corollary 3.5], so in conclusion x /∈ V

1
. Thus

W := B(x, r/2) \ V
1
⊂ {w = 1}

is a 1-finely open neighborhood of x. Finally, sptw is compact and

sptw ⊂ spt ρ \G ⊂ (U ∪G) \G ⊂ U,

so that sptw ⋐ U . Clearly now w ∈ N1,1
0 (U). �

Let us make a few more observations concerning 1-strict subsets. In general it is
not clear which subsets A of a set D are 1-strict subsets. If A is a compact subset of
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an open set D, we obviously have cap1(A,D) < ∞, and the test function can even
be chosen to be Lipschitz. When A is a compact subset of a 1-quasiopen set D, we
cannot necessarily choose a Lipschitz test function but one might nonetheless suspect
that cap1(A,D) < ∞. However, this is not always the case.

Example 4.4. Let X = R
2 (unweighted), denote the origin by 0, and let

A :=

∞⋃

j=1

Aj ∪ {0} with Aj := {2−j} × [−1/(2j), 1/(2j)].

Denoting Aε
j := {x ∈ X : dist(x,Aj) < ε}, with ε > 0, let

D :=
∞⋃

j=1

Dj ∪ {0} with Dj := A2−3j

j .

Since all the sets Dj are disjoint, it is straightforward to check that

cap1(A,D) =
∞∑

j=1

cap1(Aj, Dj) =
∞∑

j=1

1

j
= ∞.

Now A is clearly a compact set, and D is 1-quasiopen since D ∪ B(0, r) is an open
set for every r > 0.

One can also make the sets A,D connected by adding the line (0, 1/2]× {0} to
A, and by adding e.g. the sets (2−j−1, 2−j)× (−2−j−1, 2−j−1) to D; then we still have
cap1(A,D) = ∞ but the calculation is somewhat more complicated.

The variational 1-capacity is an outer capacity in the following weak sense.

Proposition 4.5. Let A ⊂ D ⊂ X. Then

cap1(A,D) = inf
V 1-quasiopen

A⊂V⊂D

cap1(V,D).

Proof. We can assume that cap1(A,D) < ∞. Fix 0 < ε < 1. Take u ∈ N1,1
0 (D)

such that u = 1 on A and
∫
X
gu dµ < cap1(A,D) + ε. The set V := {u > 1 − ε} is

1-quasiopen by Theorem 2.5, and

cap1(V,D) ≤

∫

X

gu/(1−ε) dµ =

∫
X
gu dµ

1− ε
≤

cap1(A,D) + ε

1− ε
.

Since 0 < ε < 1 was arbitrary, we have the result. �

Even though 1-quasiopen sets and 1-finely open sets are very closely related
(recall Theorem 2.12), it is not clear whether the following holds.

Open Problem. If D ⊂ X and A ⊂ fine-intD, do we have

cap1(A,D) = inf
V 1-finely open

A⊂V⊂D

cap1(V,D)?

Note that according to Theorem 4.3, the above property does hold in the very
special case when A is a point with 1-capacity zero.

Let us say that a set K ⊂ X is 1-quasiclosed if X \K is 1-quasiopen. Now we
can show that 1-strict subsets have the following continuity.

Proposition 4.6. Let D ⊂ X and let K1 ⊃ K2 ⊃ . . . be bounded 1-quasiclosed
subsets of D such that cap1(K1, D) < ∞. Then for K :=

⋂∞
i=1Ki we have

cap1(K,D) = lim
i→∞

cap1(Ki, D).
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We will show in Example 4.7 below that the assumption cap1(K1, D) < ∞ is
needed.

Proof. Fix ε > 0. By Proposition 4.5 we find a 1-quasiopen set V such that
K ⊂ V ⊂ D and cap1(V,D) < cap1(K,D) + ε. For each j ∈ N we find an open set

G̃j ⊂ X such that V ∪ G̃j is open and Cap1(G̃j) → 0 as j → ∞. For each i, j ∈ N,
we find an open set Gi,j ⊂ X such that Ki \Gi,j is compact and Cap1(Gi,j) < 2−i−j.

Letting Gj := G̃j ∪
⋃∞

i=1Gi,j for each j ∈ N, we have that each V ∪ Gj is open,
each Ki \ Gj is compact, and Cap1(Gj) → 0 as j → ∞. Then for each j ∈ N we
find a function wj ∈ N1,1(X) such that 0 ≤ wj ≤ 1 on X, wj = 1 on Gj, and
‖wj‖N1,1(X) → 0 as j → ∞. Passing to a subsequence (not relabeled), we can assume
that wj → 0 a.e.

Since cap1(K1, D) < ∞, we find v ∈ N1,1
0 (D) such that 0 ≤ v ≤ 1 on X and

v = 1 on K1. For each j ∈ N, let ρj := vwj. Then ‖ρj‖L1(X) → 0 as j → ∞, and by
the Leibniz rule (see [3, Theorem 2.15]),

∫

X

gρj dµ ≤

∫

X

gwj
dµ+

∫

X

wjgv dµ → 0

as j → ∞; for the second term this follows from Lebesgue’s dominated convergence
theorem. Thus cap1(Gj ∩K1, D) → 0. Fix j ∈ N such that cap1(Gj ∩K1, D) < ε.
Since every Ki \Gj is compact and V ∪Gj is open, for some i ∈ N we have Ki \Gj ⊂
V ∪Gj. Thus Ki ⊂ V ∪Gj . Then

cap1(Ki, D) ≤ cap1(V ∪ (Gj ∩K1), D) ≤ cap1(V,D) + cap1(Gj ∩K1, D)

≤ cap1(K,D) + ε+ cap1(Gj ∩K1, D) ≤ cap1(K,D) + 2ε.

Since ε > 0 was arbitrary, the proof is concluded. �

Example 4.7. In the notation of Example 4.4, let Ki :=
⋃∞

j=iAj ∪ {0} for
each i ∈ N. These are compact sets and similarly as in Example 4.4 we find that
cap1(Ki, D) = ∞ for every i ∈ N. However, cap1(K,D) = 0 for K :=

⋂∞
i=1Ki = {0},

by the fact that a point has 1-capacity zero and by using (2.3).

5. Application to fine Sobolev spaces

Björn–Björn–Latvala [7] have studied different definitions of Newton–Sobolev
spaces on quasiopen sets in metric spaces in the case 1 < p < ∞. As an application
of the theory we have developed, we show that the analogous results hold for p = 1.

First we prove the following fact in a very similar way as it is proved in the case
1 < p < ∞, see [8, Theorem 1.4(b)] and [6, Theorem 4.9(b)]. Recall that a function
u defined on a set U ⊂ X is 1-quasicontinuous on U if for every ε > 0 there is an
open set G ⊂ X such that Cap1(G) < ε and u|U\G is continuous (as a real-valued
function).

Theorem 5.1. A function u on a 1-quasiopen set U is 1-quasicontinuous on U
if and only if it is finite 1-q.e. and 1-finely continuous 1-q.e. on U .

Proof. To prove one direction, suppose there is a set N ⊂ U such that Cap1(N) =
0 and u is finite and 1-finely continuous at every point in V := U \ N . By Theo-
rem 2.12, we can assume that V is 1-finely open. Let {(aj , bj)}

∞
j=1 be an enumeration

of all intervals in R with rational endpoints and let

Vj := {x ∈ V : aj < u(x) < bj}.
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By the 1-fine continuity of u, the sets Vj are 1-finely open. Hence by Theorem 2.12,
they are also 1-quasiopen. Fix ε > 0. There are open sets Gj ⊂ X such that
Cap1(Gj) < 2−j−1ε and each Vj ∪Gj is open. Since Cap1 is an outer capacity, there
is also an open set GN ⊃ N such that Cap1(GN) < ε/2. Now

G := GN ∪
∞⋃

j=1

Gj

is an open set such that Cap1(G) < ε, and u|U\G is continuous since Vj ∪G are open
sets.

To prove the converse direction, by Theorem 2.12 we know that U = V ∪ N ,
where V is 1-finely open and H(N) = 0, and then also Cap1(N) = 0 by (2.4).
By the quasicontinuity of u, for each j ∈ N we find an open set Gj ⊂ X such that

Cap1(Gj) < 1/j and u|V \Gj
is continuous. By (2.11), we have Cap1(Gj

1
) = Cap1(Gj)

for each j ∈ N, and so the set

A := N ∪
∞⋂

j=1

Gj
1

satisfies Cap1(A) = 0. If x ∈ U \A, then x ∈ V \Gj
1

for some j ∈ N. Since V \Gj
1

is a 1-finely open set and u|
V \Gj

1 is continuous, it follows that u is finite and 1-finely

continuous at x. �

We will need the following quasi-Lindelöf principle from [22].

Theorem 5.2. [22, Theorem 5.2] For every family V of 1-finely open sets there
is a countable subfamily V ′ such that

Cap1

(
⋃

V ∈V

V \
⋃

V ′∈V ′

V ′

)
= 0.

From now on, U ⊂ X is always a 1-quasiopen set. Note that 1-quasiopen sets
are µ-measurable by [5, Lemma 9.3].

Definition 5.3. A family B of 1-quasiopen sets is a 1-quasicovering of U if it
is countable,

⋃
V ∈B V ⊂ U , and Cap1

(
U \

⋃
V ∈B V

)
= 0. If every V ∈ B is a 1-

finely open 1-strict subset of U with V ⋐ U , then B is a 1-strict quasicovering of U .
Moreover, we say that

1. u ∈ N1,1
fine−loc(U) if u ∈ N1,1(V ) for every 1-finely open 1-strict subset V ⋐ U ;

2. u ∈ N1,1
quasi−loc(U) (respectively L1

quasi−loc(U)) if there is a 1-quasicovering B of

U such that u ∈ N1,1(V ) (respectively L1(V )) for every V ∈ B.

Proposition 5.4. There exists a 1-strict quasicovering B of U . Moreover, the
associated Newton–Sobolev functions can be chosen compactly supported in U .

Proof. By Theorem 2.12, we have U = V ∪ N , where V is 1-finely open and
H(N) = 0, and then also Cap1(N) = 0 by (2.4). For every x ∈ V , by Theorem
4.3 we find a 1-finely open set Vx ∋ x such that Vx ⋐ V and an associated function
vx ∈ N1,1

0 (V ) such that 0 ≤ vx ≤ 1 on X, vx = 1 on Vx, and spt vx ⋐ V . The
collection B′ := {Vx}x∈V covers V , and by the quasi-Lindelöf principle (Theorem 5.2)
and the fact that Cap1(U \ V ) = 0, there exists a countable subcollection B ⊂ B′

such that Cap1

(
U \

⋃
Vx∈B

Vx

)
= 0. �
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It follows that N1,1
fine−loc(U) ⊂ N1,1

quasi−loc(U). From now on, since the proofs given
in [7] in the case 1 < p < ∞ apply almost verbatim also in our setting, we will only
point out the differences with [7].

Theorem 5.5. Let u ∈ N1,1
quasi−loc(U). Then u if finite 1-q.e. and 1-finely contin-

uous 1-q.e. on U . Thus u is also 1-quasicontinuous on U .

Proof. Follow verbatim the proof of [7, Theorem 4.4], except that replace the
reference to [7, Proposition 4.2] by Proposition 5.4, and the references to [6, Theo-
rem 4.9(b)] and [8, Theorem 1.4(b)] by Theorem 5.1. �

Definition 5.6. A nonnegative function g̃u on U is a 1-fine upper gradient of
u ∈ N1,1

quasi−loc(U) if there is a quasicovering B of U such that for every V ∈ B,

u ∈ N1,1(V ) and g̃u = gu,V a.e. on V , where gu,V is the minimal 1-weak upper
gradient of u in V .

Lemma 5.7. If u ∈ N1,1
quasi−loc(U), then it has a unique (in the a.e. sense) 1-fine

upper gradient g̃u.

Proof. Follow verbatim the proof of [7, Lemma 5.2]. �

Theorem 5.8. If u ∈ N1,1
quasi−loc(U) and g̃u is a 1-fine upper gradient of u, then

g̃u is a 1-weak upper gradient of u in U .

Proof. Follow verbatim the proof of [7, Theorem 5.3]. �

Proposition 5.9. If u ∈ N1,1
quasi−loc(U), then there is a 1-strict quasicovering B

of U such that for every V ∈ B, there exists uV ∈ N1,1(X) with u = uV on V .

Proof. Follow verbatim the proof of [7, Proposition 5.5], except that replace the
reference to [7, Theorem 4.4] by Theorem 5.5, and [7, Proposition 4.2] by Proposi-
tion 5.4. �

The following definition is originally from Kilpeläinen–Malý [17].

Definition 5.10. Let U ⊂ R
n. A function u ∈ L1(U) is in W 1,1(U) if

1. there is a quasicovering B of U such that for every V ∈ B there is an open
set GV ⊃ V and uV ∈ W 1,1(GV ) such that u = uV on V , and

2. the fine gradient ∇u, defined by ∇u = ∇uV a.e. on each V ∈ B, also belongs
to L1(U).

Moreover, let

‖u‖W 1,1(U) :=

∫

U

(|u|+ |∇u|) dx.

Recall that we constantly assume U to be a 1-quasiopen set.

Theorem 5.11. Let U ⊂ R
n. Then u ∈ W 1,1(U) if and only if there exists

v ∈ N1,1(U) such that v = u a.e. on U . Moreover, gv = |∇u| a.e. on U and
‖v‖N1,1(U) = ‖u‖W 1,1(U).

Here gv is the minimal 1-weak upper gradient of v in U .

Proof. Follow verbatim the proof of [7, Theorem 5.7], except that replace the
reference to [7, Proposition 5.5] by Proposition 5.9, [3, Proposition A.12] by [3,
Corollary A.4], and [7, Theorem 5.4] by Theorem 5.8. �
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Returning momentarily to the metric space setting, define the space

N̂1,1(U) := {u : u = v a.e. for some v ∈ N1,1(U)}.

Theorem 5.12. Let u ∈ N̂1,1(U). Then u ∈ N1,1(U) if and only if u is 1-
quasicontinuous on U .

Proof. Assume that u is 1-quasicontinuous on U . There is v ∈ N1,1(U) such
that u = v a.e. on U . By Theorem 5.5, v is 1-quasicontinuous on U . By [3, Propo-
sition 5.23] and [9, Proposition 4.2], u = v 1-q.e. on U , and thus u ∈ N1,1(U) by
(2.3).

The converse follows from Theorem 5.5. �

Theorem 5.13. Let U ⊂ R
n, and let u be an everywhere defined function on U .

Then u ∈ N1,1(U) if and only if u ∈ W 1,1(U) and u is 1-quasicontinuous. Moreover,
then ‖u‖N1,1(U) = ‖u‖W 1,1(U).

Proof. This follows from Theorems 5.11 and 5.12. �
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