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Abstract. In this paper we characterize the closed invariant subspaces for the (∗-)multiplier

operator of the quaternionic space of slice L
2 functions. As a consequence, we obtain the inner-

outer factorization theorem for the quaternionic Hardy space on the unit ball and we provide a

characterization of quaternionic outer functions in terms of cyclicity.

1. Introduction and main results

Given a Hilbert space H and a bounded operator T : H → H it is a classical and
challenging problem to investigate and characterize the closed invariant subspaces for
the operator T . We say that a closed subspace K ⊆ H is invariant for T if TK ⊆ K.

Let D = {z ∈ C : |z| < 1} denote the unit disc in the complex plane C and con-
sider the Hilbert space H = L2(∂D), that is, the space of square-integrable functions
on the unit circle. Then, the invariant subspaces for the multiplier operator

Mz(f)(z) := zf(z)

are completely characterized as we shall see shortly.
Let us consider the Hardy space of the unit disc, that is, the function space

H2(D) =

{
f holomorphic in D : f(z) =

∑

n∈N

anz
n and {an}n∈N ∈ ℓ2(N,C)

}
.

It is a well-known fact that each function f ∈ H2(D) admits a boundary value func-
tion, which we still denote by f , in L2(∂D). The set of all these boundary value func-
tions turns out to be a closed subspace of L2(∂D) which we denote by H2(∂D). This
latter space can in turn be identified with ℓ2(N,C), the space of square-summable
sequences over the non-negative integers. It is clear that the multiplier operator Mz

acting on H2(∂D) is a model for the right-shift operator (a0, a1, . . .) 7→ (0, a0, a1, . . .)
on ℓ2(N,C). Therefore, the invariant subspaces for Mz of H2(∂D) are frequently
called shift invariant subspaces. More generally, from now on we will call (shift) in-
variant subspaces the closed subspaces of L2(∂D) that are invariant for the operator
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Mz. Moreover, we say that K ⊆ L2(∂D) is doubly invariant if MzK = K, whereas
we say that K is simply invariant if MzK ( K. The following theorem holds.

Theorem. [Wie33, Beu49, Hal64, . . . ] Let K be a closed subspace of L2(∂D).
Then,

(i) K is a doubly invariant subspace if and only if there exists a (unique) mea-
surable set E ⊆ ∂D such that K = χEL

2(∂D), where χE denotes the charac-
teristic function of the set E;

(ii) K is a simply invariant subspace if and only if there exists a measurable
function ϕ, unique up to a multiplicative constant of modulus 1, such that
|ϕ| = 1 almost everywhere on ∂D and K = ϕH2(∂D).

This result is due to several mathematicians and, in addition to the works we
already mentioned, we refer the reader also to [Nik02, Chapter I] for another proof
of the theorem and a detailed account of its history. As a corollary of the previous
result, the celebrated theorem of Beurling follows.

Theorem. [Beu49] Let K be a non-zero closed subspace of H2(∂D) that is in-
variant for the multiplier operator Mz. Then there exists ϕ ∈ H2(∂D) such that
|ϕ| = 1 almost everywhere on ∂D and K = ϕH2(∂D).

Since Beurling’s paper the problem of characterizing the invariant subspaces of
spaces of holomorphic functions different from the Hardy space has been challenged
by several mathematicians. Among others, we recall the works [Ric88, LR15], where
the case of the Dirichlet space of the unit disc is studied, the work [ARS96] for the
Bergman space case and [RS16, AL18] for the case of the Drury–Arveson space of
the unit ball.

In this paper we work in the quaternionic setting and we study the invariant sub-
spaces of the space of slice L2 functions. Let H denote the skew field of quaternions,
let B = {q ∈ H : |q| < 1} be the quaternionic unit ball and let ∂B be its boundary,
containing elements of the form q = etI , I ∈ S, t ∈ R, where S = {q ∈ H : q2 = −1}
is the two dimensional sphere of imaginary units in H. Then,

H =
⋃

I∈S

(R+RI), R =
⋂

I∈S

(R+RI),

where the “slice” LI := R +RI can be identified with the complex plane C for any
I ∈ S.

We endow ∂B with the measure

(1) dΣ
(
etI

)
= dσ(I) dt,

where dt is the Lebesgue measure on R and dσ is the standard area element of S,
normalized so that σ(S) = Σ(∂B) = 1. The measure dΣ is naturally associated with
the Hardy space H2(B) of slice regular functions on B, see [dFGS18, AS15].

We recall that a function f : B → H is a slice regular function if the restriction
fI of f to B ∩ LI is holomorphic, i.e., it has continuous partial derivatives and it is
such that

∂IfI(x+ yI) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ B∩LI . The class of slice regular functions was introduced in [GS07]
and we refer the reader to the monograph [GSS13] for an introduction to this topic.

The class of slice functions was introduced few years later by Ghiloni and Perotti
[GP11] in a more general setting than the one of this work. In this paper we adopt
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as definition of slice functions the following one. Given a function f : ∂B → H we
say that f is a slice function if, for any J,K ∈ S, J 6= K, and any x + yI ∈ ∂B, it
holds

f(x+ yI) =
(
(J −K)−1J + I(J −K)−1

)
f(x+ yJ)

−
(
(J −K)−1K + I(J −K)−1

)
f(x+ yK).

(2)

For the particular choice of K = −J the above formula reduces to

(3) f(x+ yI) =
1− IJ

2
f(x+ yJ) +

1 + IJ

2
f(x− yJ).

It is well-known that a slice regular function f : B → H satisfies these representation
formulas on the whole unit ball B; see [GSS13].

We now recall the definition of slice Lp spaces. These spaces were introduced by
the second author in [Sar16]. We focus here only on the Hilbert case p = 2 and the
case p = ∞ since it is enough for the purposes of this work. Let us consider the space
of Σ-measurable functions

L2(∂B) =

{
f : ∂B → H : ‖f‖22 =

ˆ

∂B

|f |2 dΣ < ∞

}
.

As usual, the functions in L2(∂B) that coincide Σ-almost everywhere are identified.
Then, the space of slice L2 functions, which from now on we denote by L2

s(∂B), is
the closed subspace of L2(∂B) consisting of slice functions. In [Sar16] it is proved
that

L2
s(∂B) =

{
f ∈ L2(∂B) : f(q) =

∑

n∈Z

qnan for Σ-almost every q, {an}n∈Z ∈ ℓ2(Z,H)

}
.

In particular, L2
s(∂B) endowed with the inner product

〈∑

n∈Z

qnan,
∑

n∈Z

qnbn

〉

L2
s(∂B)

:=
∑

n∈Z

b̄nan

is a quaternionic right Hilbert space and {qn}n∈Z is an orthonormal basis with respect
to this inner product. Moreover, given any I ∈ S, the inner product of L2

s(∂B) has
the integral representation

〈f, g〉L2
s(∂B) =

1

2π

ˆ 2π

0

g(eIθ)f(eIθ) dθ.

Similarly, we define L∞
s (∂B) to be the space of Σ-measurable slice functions that

are essentially bounded, that is, the space of slice functions such that

‖f‖L∞

s (∂B) := ess sup
q∈∂B

|f(q)| < ∞,

where the essential supremum is taken with respect to the measure Σ,

ess sup
q∈∂B

|f(q)| = inf{λ ≥ 0: Σ({q ∈ ∂B : |f(q)| > λ}) = 0}.

Before stating our results, we need a few more definitions. If f(q) =
∑

n∈Z q
nan

is a slice function on ∂B, then the conjugate of f is the defined as

(4) f c(q) :=
∑

n∈Z

qnan.

Morevover, we denote by f̃ the function

f̃(q) := f(q).
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In general, the pointwise product of two slice (or slice regular) functions is not a slice
function, thus a suitable product must be considered, namely, the so-called slice or
∗-product. If f(q) =

∑
n∈Z q

nan and g(q) =
∑

n∈Z q
nbn are two slice functions on ∂B,

then

f ∗ g(q) :=
∑

n∈Z

qn
∑

k∈Z

akbn−k.

This product is related to the pointwise product by the formula

f ∗ g(q) =

{
0 if f(q) = 0,

f(q)g(Tfc(q)) if f(q) 6= 0,

where Tfc(q) := f(q)−1qf(q). We refer the reader to [GSS13, Sar16] for a proof of
this fact.

We denote by f−∗ the inverse of f with respect to the ∗-product. Clearly, the
function f−∗ is not necessarily defined wherever f is. We refer the reader to the
introduction of Section 2 for a precise definition of f−∗.

Similarly to the classical setting, it is natural to investigate the invariant sub-
spaces of L2

s(∂B) for the (∗-)multiplier operator

Mqf = q ∗ f.

The ∗-product is clearly non-commutative; nonetheless, by direct computations, it
follows

Mqf = q ∗ f = f ∗ q = qf.

Then, our first result is a complete characterization of the doubly invariant subspaces,
that is, of those closed subspaces K ⊆ L2

s(∂B) such that MqK = K.

Theorem 1.1. A closed subspace K ⊆ L2
s(∂B) is a doubly invariant subspace if

and only if there exists a unique function ϕ ∈ L2
s(∂B) such that K = ϕ ∗L2

s(∂B) and
ϕ satisfies ϕ̃ ∗ ϕc = ϕ̃.

Notice that ϕ ∈ L2
s(∂B) satisfies ϕ̃∗ϕc = ϕ̃ if and only if ϕ satisfies the conditions

{
ϕ ∗ ϕ = ϕ,

ϕ̃c = ϕ.

In fact, ϕ̃ ∗ ϕc = ϕ̃ if and only if

ϕ ∗ ϕ̃c = (ϕ̃ ∗ ϕc)c = ϕ̃c and ϕ ∗ ϕ̃c = ˜̃ϕ ∗ ϕc = ϕ.

As we will see, the properties of the function ϕ are the ones needed to guarantee
that the multiplier operator Mϕf := ϕ ∗ f is a projection, that is, M2

ϕ = Mϕ, and is
self-adjoint on L2

s(∂B).
The characterization of the doubly invariant subspaces is more explicit thanks to

the following result.

Theorem 1.2. Let f ∈ L2
s(∂B) be such that f ∗ f = f . Then on each sphere

etS ⊆ ∂B the function f behaves as follows. If f |etS denotes the restriction of f to the
sphere etS, then f |etS is either constant 0 or 1, or there exist J = J(t), K = K(t) ∈
S, J 6= K such that

f(etI) = −
(
(J −K)−1K + I(J −K)−1

)

for any etI ∈ etS. Moreover, if f satisfies also f̃ c = f , then K = −J .
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The converse of Theorem 1.2 holds as well as can be easily checked by direct com-
putations. Therefore, we have a characterization of slice L2 idempotent functions.
In particular, these functions are necessarily bounded. We point out that from this
characterization we also deduce that the function ϕ in Theorem 1.1 is not a charac-
teristic function as in the classical setting. We refer the reader to the examples in
Section 2.

The proof of Theorem 1.2 exploits the Representation Formula (2). The simplified
Representation Formula (3) could be used as well and the characterization theorem
should be reformulated accordingly; see Theorem 2.6.

We now focus on the simply invariant subspaces of L2
s(∂B), that is, those closed

subspaces K ⊆ L2
s(∂B) such that MqK ( K. Let H2(∂B) denote the Hardy space

H2(∂B) :=

{
f ∈ L2

s(∂B) : f(q) =
∑

n∈N

qnan, {an}n∈N ∈ ℓ2(N,H)

}
.

Then, H2(∂B) is a closed subspace of L2
s(∂B) which can be identified with the quater-

nionic Hardy space of slice regular functions H2(B); see, e.g., [ACS16, dFGS18].
When we write f ∈ H2(∂B) it will always be implicit that f actually is the bound-
ary value function of a slice regular regular function defined on the whole unit ball
B. Having this in mind, if f ∈ H2(∂B), then the expression f(q) for |q| < 1 is
meaningful.

We prove the following result.

Theorem 1.3. A closed subspace K ⊆ L2
s(∂B) is a simply invariant subspace

if and only if K = ϕ ∗ H2(∂B) for some function ϕ ∈ L∞
s (∂B) such that |ϕ| = 1

Σ-almost everywhere on ∂B. Moreover, such a function is unique up to a unitary
constant if the following sense: if K = ϕ1 ∗H

2(∂B) = ϕ2 ∗H
2(∂B), then ϕ2 = ϕ1 ∗ u

for some u ∈ H such that |u| = 1.

A corollary of the latter result is an analogue of Beurling’s theorem. We point
out that hypercomplex versions of Beurling’s theorem already appeared in [ACS14,
ACS16, AS17]. Nonetheless we state it here for the sake of completeness.

Let H∞(B) denote the space of bounded slice regular functions on the unit ball.
Then, each function f ∈ H∞(B) admits a boundary value function, which we still
denote by f . Hence, the space H∞(B) can be identified with a closed subspace of
L∞
s (∂B) which we denote by H∞(∂B). As in the H2 setting, if f ∈ H∞(∂B), then

in the expression f(q) for |q| < 1 it is implicit that we are considering the slice regular
extension of f to the whole unit ball B.

A function ϕ ∈ H∞(∂B) is an inner function for H2(∂B) if |ϕ(q)| ≤ 1 on B and
|ϕ(q)| = 1 Σ-almost everywhere on ∂B. Then, the following theorem holds.

Theorem 1.4. Let K be a subspace of H2(∂B). Then K is a closed invariant
subspace if and only if K = ϕ ∗ H2(∂B) for some inner function ϕ ∈ H∞(∂B).
Moreover, such a function is unique up to a unitary constant in the following sense:
if K = ϕ1 ∗ H2(∂B) = ϕ2 ∗ H2(∂B), then ϕ2 = ϕ1 ∗ u for some u ∈ H such that
|u| = 1.

Finally, we deduce from Beurling’s theorem the inner-outer factorization of func-
tions in H2(∂B). A function g ∈ H2(∂B) is an outer function for H2(∂B) if for
any f ∈ H2(∂B) such that |g(q)| = |f(q)| for Σ-almost every q ∈ ∂B, it holds
|g(q)| ≥ |f(q)| for any q ∈ B [dFGS18, Definition 5.1]. Then, our factorization result
is the following.
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Theorem 1.5. Let f ∈ H2(∂B), f 6≡ 0. Then f has a factorization f = ϕ ∗ g
where ϕ is inner and g is outer. Moreover, this factorization is unique up to a unitary
constant in the following sense: if f = ϕ ∗ g = ϕ1 ∗ g1, then ϕ1 = ϕ ∗ λ and g1 = λ ∗ g
for some λ ∈ H such that |λ| = 1.

In order to prove the factorization theorem we also provide a characterization of
outer functions in terms of cyclicity. A function g is cyclic for H2(∂B) if and only if

(5) Eg := span {qn ∗ g, n ≥ 0} = H2(∂B).

Thus, we prove that a function g is outer for H2(∂B) if and only if it is cyclic; see
Theorem 4.2.

We point out that we are working with quaternionic right Hilbert spaces, thus
the left-hand side of (5) denotes the closure in H2(∂B) of elements of the form

M∑

n=0

(qn ∗ g)αn =
M∑

n=0

(g ∗ qn)αn = g ∗ pM

where pM is a quaternionic polynomial.
The paper is organized as follows. In Section 2 we recall some basic facts about

slice functions, we prove some properties we will need in the remaining of the paper
and we prove Theorem 1.2. In Section 3 we study on L2

s(∂B) the multiplier opera-
tor Mϕ associated to a generic slice function ϕ, whereas in Section 4 we prove the
characterization of invariant subspaces and the factorization result.

2. Preliminary results and slice idempotent functions

In this section we recall some notation and basic properties of slice functions, we
prove some auxiliary results we will need later and we conclude the section with the
proof of Theorem 1.2. We already defined in Formula (4) the conjugate of a slice
function f . Let us now recall the definition of symmetrization. If f(q) =

∑
n∈Z q

nan
is a slice function on ∂B, the symmetrization of f is defined as

f s(q) := f c ∗ f(q) = f ∗ f c(q).

As in the case of slice regular functions, it holds (f ∗ g)c = gc ∗ f c; see [Sar16]. The
reciprocal f−∗ of f(q) =

∑
n∈Z q

nan with respect to the ∗-product is then given by

f−∗(q) = (f s(q))−1f c(q).

The function f−∗ is defined on ∂B\{q ∈ ∂B | f s(q) = 0} and f∗f−∗ = f−∗∗f = 1.
We recall that f c, f s and f−∗ are slice (slice regular) functions whenever f is a slice
(slice regular) function.

Notice that the L2-norm of a function f ∈ L2
s(∂B) depends only on the moduli

of the coefficients of its power series expansion. Hence f ∈ L2
s(∂B) if and only if its

conjugate f c does, and ‖f‖2
L2
s(∂B) = ‖f c‖2

L2
s(∂B).

The analogous property holds for L∞
s (∂B), that is, a function ϕ belongs to

L∞
s (∂B) if and only if its conjugate ϕc does and the two norms coincide, ‖ϕ‖L∞

s (∂B) =
‖ϕc‖L∞

s (∂B); see [Sar16]. Moreover we have the following proposition.

Proposition 2.1. Let ϕ ∈ L∞
s (∂B). Then, |ϕ| = 1 Σ-almost everywhere on ∂B

if and only if |ϕc| = 1 Σ-almost everywhere on ∂B.

Proof. The proof follows the same lines of the proof [DRGS13, Proposition 5]
for slice regular functions, thus we do not include the details here. See also [GPS17,
Theorem 3.7]. �
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In order to prove Theorem 1.3 we need a result on the Σ-measure of the zero set
of the symmetrization of a a bounded slice function. We refer the reader to Formula
(1) for the definition of the measure Σ.

Let Zϕ = {q ∈ ∂B : ϕ(q) = 0} be the zero set of the function ϕ. Then, as for
slice regular functions (see, e.g., [GSS13, Proposition 3.9]),

(6) Zϕs =
⋃

etI∈Zϕ

etS.

We recall also that if ϕ : B → H is a slice function, then the map

(7) Tϕc(q) = ϕ(q)−1qϕ(q)

is a bijection from B\Zϕs to itself; its inverse, as in the case of slice regular functions,
is the map Tϕ (see [GSS13, Proposition 5.32]). Moreover, if ϕ : ∂B → H and |ϕ| = 1
Σ-almost everywhere on ∂B, then Tϕc is a bijection from ∂B\Zϕs to itself.

The following result holds.

Proposition 2.2. Let ϕ ∈ L∞
s (B) be such that |ϕ| = 1 Σ-almost everywhere on

∂B. Then, Zϕs has vanishing Σ-measure. Moreover it holds that |ϕs| = 1 Σ-almost
everywhere on ∂B as well.

Proof. From the Representation Formula (2) we deduce that if ϕ vanishes at
etI , then either ϕ vanishes identically on the sphere etS, and we call such a sphere
a spherical zero, or it does not have any other zero in etS. Let A be the union of
spherical zeros of ϕ and B the union of spheres where ϕ vanishes only at a point.
Since |ϕ(q)| = 1 for Σ-almost every q, we immediately get that Σ(A) = 0. Consider
now a sphere etS in B and let etI0 ∈ etS be the only point where ϕ vanishes. Then
we have that ϕ(e−tI0) = c for some quaternion c 6= 0 and hence, thanks to the
Representation Formula (3), that, for any other J ∈ S,

ϕ(etJ ) =
1− JI0

2
ϕ(etI0) +

1 + JI0
2

ϕ(e−tI0) =
1 + JI0

2
c.

In particular |ϕ(etJ)| is different from 1 for σ-almost every J ∈ S. Thus dt({t : etS ⊆
B}) = 0 and Σ(B) = 0 as well.

To prove the last part of the statement, we use the fact that Tϕc is a bijection
from ∂B\Zϕs to itself as we remarked above. Since Zϕs has Σ-measure zero, for
Σ-almost every q ∈ ∂B, we get

|ϕs(q)| = |ϕ(q)||ϕc(Tϕc(q))|.

Now, recalling that |ϕ| = 1 Σ-almost everywhere on ∂B if and only if the same holds
true for ϕc, we conclude that |ϕs| = 1 Σ-almost everywhere on ∂B as we wished to
show. �

Also the symmetrization of a function in H2(∂B) cannot vanish on a set with
positive Σ-measure.

Proposition 2.3. Let f ∈ H2(∂B), f 6≡ 0. Then Zfs has vanishing Σ-measure.

Proof. Set ZI0
fs := {etI0 ∈ ∂B : t ∈ (0, π), etS ⊆ Zfs}. The fact that f is in

H2(∂B) and does not vanish identically implies (see [dFGS18, Propositions 3.13 and
4.4]) that f s ∈ H1(∂B) and, on each slice ∂B∩LI0 , it vanishes on a zero dt-measure
set, thus

´

Z
I0
fs
dt = 0. Notice that Zfs is symmetric with respect to the real axis and
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hence it can be decomposed as

(Zfs ∩R) ∪ (ZI0
fs × S) = (Zfs ∩R) ∪ {etS ⊆ ∂B : etI0 ∈ ZI0

fs}

= (Zfs ∩R) ∪ {etS ⊆ ∂B : t ∈ (0, π), etS ⊆ Zfs} = Zfs.

Since (Zfs ∩R) ⊆ {−1, 1} we conclude that

Σ(Zfs) =

ˆ

Zfs

dΣ(etI) =

ˆ

S

ˆ

Z
I0
fs

dt dσ(I) =

ˆ

Z
I0
fs

dt

ˆ

S

dσ(I) = 0. �

From the above proposition we deduce the following result.

Lemma 2.4. Let ϕ ∈ L∞
s (∂B) and denote by ϕ̃ the slice function defined by

ϕ̃(q) = ϕ(q̄). Then |ϕ| = 1 Σ-almost everywhere on ∂B if and only if ϕ̃ ∗ ϕc =
ϕc ∗ ϕ̃ = 1 Σ-almost everywhere on ∂B.

Proof. Consider the power series expansion of ϕ, ϕ(etI) =
∑

n∈Z e
ntIan holding

Σ-almost everywhere on ∂B. Then,

|ϕ(etI)|2 =
∑

n∈Z

entIan
∑

m∈Z

emtIam =
∑

n∈Z

ane
−ntI

∑

m∈Z

emtIam =
∑

n,m∈Z

ane
(m−n)tIam .

On the other hand,

ϕ̃ ∗ ϕc(etI) =
∑

n∈Z

entI
∑

m∈Z

a−man−m =
∑

n,m∈Z

e(n−m)tIaman ,

where the last equality is just a relabeling of the indexes. Recalling the equality
Re(ab) = Re(ba) for any a, b ∈ H, we get that Σ-almost everywhere it holds

|ϕ(e−tI)|2 = Re(ϕ̃ ∗ ϕc(etI)).(8)

Analogously, it is possible to prove that

|ϕc(etI)|2 = Re(ϕc ∗ ϕ̃(etI)).

Now, if ϕ̃∗ϕc(q) = ϕc∗ϕ̃(q) = 1 for Σ-almost every q ∈ ∂B, then |ϕ(q)| = |ϕc(q)| = 1
for Σ-almost every q as well.

In the other direction, if |ϕ(q)| = 1 for Σ-almost every q ∈ ∂B, then also |ϕ̃(q)| =
1 and |ϕc(q)| = 1 for Σ-almost every q (since q 7→ q̄ is a diffeomorphism of ∂B to
itself and thanks to Proposition 2.1). In particular, thanks to Proposition 2.2, the
zero set Zϕ̃s of ϕ̃s has measure zero and the map Tϕ̃c(q) = ϕ̃(q)−1qϕ̃(q) is a bijection
of ∂B\Zϕ̃s to itself, hence, for Σ-almost every q, it holds

|ϕ̃ ∗ ϕc(q)| = |ϕ̃(q)||ϕc((ϕ̃(q))−1qϕ̃(q))| = 1.

Thus, Σ-almost everywhere on ∂B, using also (8), we have that

|ϕ̃ ∗ ϕc(q)| = 1 = |ϕ(q̄)|2 = Re(ϕ̃ ∗ ϕc(q)),

which implies that ϕ̃∗ϕc(q) is a (positive) real number and hence equal to its modulus
Σ-almost everywhere on ∂B, that is,

ϕ̃ ∗ ϕc(q) = |ϕ̃ ∗ ϕc(q)| = 1.

Similarly we also obtain ϕc ∗ ϕ̃ = 1 and the proof is complete. �

Remark 2.5. The previous result provides also a characterization for the inner
functions of H2(∂B).
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We conclude the section proving Theorem 1.2. Before actually proving the theo-
rem we collect some examples of idempotent functions to show that the class of slice
idempotent functions is not trivial.

• A first example of an idempotent function is the characteristic function of a
set which is symmetric with respect to the real axis. Thus, let E ⊆ ∂B be
such a circular set. Then

χE ∗ χE(q) =

{
0 if χE(q) = 0;

χE(q)χE(q) if χE(q) = 1,

i.e., χE ∗ χE(q) = χE(q). In this case, χE is constant on every sphere, either
equal to 1 or to 0.

• A second example is peculiarly quaternionic. Let J be any imaginary unit,
and consider the slice constant function (defined outside the real axis) ℓ(etI) =
1−IJ

2
. Then, by direct computation it is possible to prove that ℓ∗ℓ(etI) = ℓ(etI)

for any etI ∈ ∂B. The function ℓ can be interpreted as the slice extension
of the characteristic function of the semi-circle {etJ : t ∈ (0, π)} in LJ . A
property that is worth mentioning is that, since these functions have exactly
one zero on each sphere, then their symmetrization are identically vanishing.

• A more complicated example is given by

f(etI) =
1 + I(cos(t)i+ sin(t)j)

2
.

Again, by direct computation it is possible to prove that f ∗ f = f . As in the
previous example, on each sphere etS contained in ∂B, the function f takes
at exactly one point the value 0 and at its conjugate the value 1. This time
the imaginary unit cos(t)i + sin(t)j of the zero of f depends on the sphere.
This example was suggested to us by Altavilla. Similar functions are studied
for different purposes in [AdF].

Proof of Theorem 1.2. It is a simple matter of computations to verify that a
function f of the described form satisfies f ∗f = f . We now prove that all idempotent
functions are of such a form. From (6) we know that if f vanishes at a point etI ,
then f s|etS ≡ 0. Thus, let us consider first a sphere where f s|etS 6= 0. Then, equation
f ∗ f = f implies that, for any I ∈ S,

f s(etI) = f s ∗ f(etI) = f s(etI)f(etI),

hence f(etI) = 1 for any I ∈ S. Secondly, consider now a sphere etS such that
f s|etS ≡ 0. In this case, since f satisfies (2), there are two possibilities: either
f |etS ≡ 0 as well or f |etS has an isolated zero q0 = etJ . If f is constantly equal to zero
we are done; alternatively, consider q 6= q0. Then, equation f ∗ f = f implies that

f(q) = f(q)f(f(q)−1qf(q)) = f(q)f(Tfc(q)),

i.e., f(Tfc(q)) = 1 for every q 6= q0. Recalling that the transformation Tfc maps each
sphere etS into itself, we just proved that if f has an isolated zero q0 = etJ on the
sphere etS, then f assumes value 1 in one point of the same sphere, namely, the point
Tfc(q) = etK for some K ∈ S. We remark that etK is the only point of the sphere
etS where f assumes value 1, in fact, if f(q) = 1 for some other q ∈ etS, then the
representation formula would imply f |etS ≡ 1. This is not the case since f(q0) = 0.
We also remark that etK is, in particular, the isolated zero on etS of f c, the conjugate
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of f . This follows from the fact that, for every q ∈ etS, q 6= q0, it holds

0 = f s(q) = f(q)f c(Tfc(q)) = f(q)f c(etK).

Similarly, it is possible to show that f c(etJ ) = 1. Finally, using Formula (2), we can
represent the functions f and f c on the sphere etS with respect to the points etJ and
etK , obtaining that

f(etI) = −
(
(J −K)−1K + I(J −K)−1

)

and

f c(etI) = ((J −K)−1J + I(J −K)−1)

for any I ∈ S. In particular, if f = f̃ c, necessarily K = −J . �

We proved Theorem 1.2 using the Representation Formula (2). If we want to use
the simplified formula (3), we can reformulate the theorem as follows.

Theorem 2.6. Let f ∈ L2
s(∂B) be such that f ∗ f = f . Then on each sphere

etS ⊆ ∂B the function f behaves as follows. If f |etS denotes the restriction of f to
the sphere etS, then, f |etS is either constant 0 or 1, or there exists J = J(t) ∈ S such
that

(9) f(etI) =
1 + IJ

2
f(e−tJ).

Moreover, f(e−tJ) = 1 + yK for some y ∈ R and K ∈ S such that K ⊥ J (with

respect to the scalar product of R3). In particular, if f̃ c = f , then f(e−tJ) = 1.

Proof. The fact that on each sphere f is constant (either 0 or 1) or satisfies (9)
follows as in the proof of Theorem 1.2. In particular, equation (9) holds if f has
an isolated zero etJ on the sphere etS. Thus, it only remains to investigate the term
f(e−tJ). In order to ease the notation in the computations, we set a := f(e−tJ).
Then, from equation f ∗ f = f and (9) we get

a = af(a−1e−tJa)

i.e., f(a−1e−tJa) = 1. Computing f(a−1e−tJa) explicitly we obtain the equation

1− (a−1Ja)J

2
a = 1,

that holds if and only if

(10) aJ + Ja = 2J.

In particular, we observe that Re(aJ + Ja) = 0. Assuming now that a is of the form
a = x+ yK for some K ∈ S and x, y ∈ R, equation (10) holds true if and only if

2xJ + y(KJ + JK) = 2J.

It is well-known that KJ = −〈K, J〉+K×J where 〈·, ·〉 and × denote the standard
scalar and cross product in R3 respectively. Thus, equation (10) becomes

2xJ − 2y 〈K, J〉 = 2J

and this last equality is satisfied if and only if x = 1 and y = 0 or x = 1, y 6= 0
and K⊥ J , that is, if and only if a = f(e−tJ) = 1 + yK for y ∈ R and K⊥J , as we

wished to show. In particular, if f = f̃ c, with analogous computations it is possible
to prove that a = f(e−tJ ) = 1. �
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3. Multiplier operators on L
2

s
(∂B)

In this short section we extend to the setting of slice L2 functions some concerning
multiplier operators on H2(∂B) proved in [ABCS15]. The results in this section
are not hard to prove and follow from some easy observations. Nonetheless, for the
reader’s convenience and for future reference, we state the results here as propositions.

Namely, we study the boundedness of Mϕ, the multiplier operator associated to
a generic slice measurable function ϕ, on L2

s(∂B) and we explicitly write M †
ϕ, the

adjoint operator of Mϕ. The following result is standard and we do not include the
proof.

Proposition 3.1. Let ϕ be a measurable slice function on ∂B. Then, the mul-
tiplier operator Mϕ : L

2
s(∂B) → L2

s(∂B), f 7→ ϕ ∗ f , is a bounded linear operator if
and only if ϕ ∈ L∞

s (∂B).

We would like to refine the previous result and prove that the operator Mϕ :
L2
s(∂B) → L2

s(∂B) is an isometry if we assume that |ϕ| = 1 Σ-almost everywhere on
∂B. This fact is a consequence of the following proposition.

Proposition 3.2. Let us consider the multiplier operator Mϕ : L
2
s(∂B) → L2

s(∂B)
where ϕ ∈ L∞

s (∂B). Then, the adjoint operator M †
ϕ : L

2
s(∂B) → L2

s(∂B) is the mul-

tiplier operator associated to ϕ̃c, that is, M †
ϕ = Mϕ̃c .

Proof. Consider the power series expansion of ϕ(q) =
∑

n∈Z q
nan. Then, ϕ̃c(q) =∑

n∈Z q
na−n. If f(q) =

∑
n∈Z qnbn is a function in L2

s(∂B), by definition of adjoint
operator, it holds

〈
M †

ϕf, q
n
〉
L2
s(∂B)

=
〈
f,Mϕq

n
〉
L2
s(∂B)

=
∑

k∈Z

ak−nbk.

Since {qn}n∈Z is a orthonormal basis for L2
s(∂B) we conclude that

M †
ϕf(q) =

∑

n∈Z

qn
∑

k∈Z

ak−nbk =
∑

n∈Z

qn
∑

k∈Z

a−kbn−k = Mϕ̃cf(q)

as we wished to show. �

Corollary 3.3. Let ϕ ∈ L∞
s (∂B). Then, |ϕ| = 1 Σ-almost everywhere on ∂B if

and only if its associated multiplier operator Mϕ : L
2
s(∂B) → L2

s(∂B) is a surjective
isometry.

Proof. On the one hand, if |ϕ| = 1 Lemma 2.4 guarantees that ϕ̃∗ϕc = ϕc∗ϕ̃ = 1,
from which we also get

(ϕ̃ ∗ ϕc)c = (ϕc ∗ ϕ̃)c = 1,

that is,

ϕ̃c ∗ ϕ = ϕ ∗ ϕ̃c = 1.

Thus, from the previous proposition we obtain M †
ϕMϕ = MϕM

†
ϕ = Id, hence Mϕ is a

unitary operator and, in particular, a surjective isometry. On the other hand if Mϕ

is a surjective isometry, then for any m,n ∈ Z,

〈qm, qn〉L2
s(∂B) = 〈Mϕq

m,Mϕq
n〉L2

s(∂B) = 〈qm,M †
ϕMϕq

n〉L2
s(∂B)

namely M †
ϕMϕ = Id. Thus ϕ̃c ∗ ϕ = 1 and, thanks to Lemma 2.4, we conclude. �
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4. Invariant subspaces and the inner-outer factorization

In this section we prove our main results.

Proof of Theorem 1.1. Suppose first that ϕ ∈ L2
s(∂B) is such that ϕ ∗ ϕ = ϕ

and ϕ̃c = ϕ and let us prove that ϕ ∗ L2
s(∂B) is a closed doubly invariant subspace.

Consider the multiplier operator Mϕ associated with ϕ. Thanks to Theorem 1.2,
ϕ ∈ L∞

s (∂B), hence the operator Mϕ : L
2
s(∂B) → L2

s(∂B) is bounded. The hypothesis
on ϕ clearly imply that M2

ϕ = Mϕ and M †
ϕ = Mϕ. That is, Mϕ is a self-adjoint

projection operator. In particular, we get that ϕ ∗ L2
s(∂B), the range of Mϕ, is a

closed subspace of L2
s(∂B). See, for instance, [GMP13].

The double invariance of ϕ ∗ L2
s(∂B) is immediate since

q ∗ ϕ ∗ L2
s(∂B) = ϕ ∗ q ∗ L2

s(∂B) = ϕ ∗ L2
s(∂B).

Consider now a closed subspace K ⊆ L2
s(∂B) such that MqK = K. Let ϕ = PK(1)

be the projection on K of the constant function 1. Then 1 − ϕ ∈ K⊥. Since K is
doubly invariant, if ϕ has power series expansion ϕ(q) =

∑
n∈Z q

nan, we get that, for
any k ∈ Z

(11) 0 = 〈Mk
q ϕ, 1− ϕ〉L2(∂B) = a−k −

∑

n∈Z

anan−k.

Then Equation (11) yields that, Σ-almost everywhere on ∂B,

ϕ̃(q) =
∑

k∈Z

qka−k =
∑

k∈Z

qk
∑

n∈Z

anan−k = ϕc ∗ ϕ̃(q).

It remains to show that K = ϕ ∗L2
s(∂B). Since ϕ ∈ K and K is doubly invariant, we

get that qk ∗ ϕ = ϕ ∗ qk ∈ K for any k ∈ Z and hence ϕ ∗L2
s(∂B) ⊆ K. Suppose now

that ϕ ∗ L2
s(∂B) ( K. Then, since K is a closed subspace, there exists f ∈ K which

is orthogonal to ϕ ∗ L2
s(∂B). Then, for any k ∈ Z,

0 = 〈f,Mϕq
k〉L2

s(∂B) = 〈M †
ϕf, q

k〉L2
s(∂B) = 〈ϕ ∗ f, qk〉L2

s(∂B)

since Mϕ is self-adjoint. Thus, we get that ϕ ∗ f = 0. Moreover, for any k ∈ Z,

〈(1− ϕ) ∗ f, qk〉L2
s(∂B) = 〈M1−ϕf, q

k〉L2
s(∂B) = 〈f,M †

1−ϕq
k〉L2

s(∂B)

= 〈f, (1− ϕ) ∗ qk〉L2
s(∂B) = 〈f, qk ∗ (1− ϕ)〉L2

s(∂B)

= 〈q−k ∗ f, 1− ϕ〉L2
s(∂B) = 0

where the last equality is due to the orthogonality of 1 − ϕ and Mq−k(K). Thus,
(1− ϕ) ∗ f = 0. Hence, f = 1 ∗ f = ϕ ∗ f + (1− ϕ) ∗ f = 0 as we wished to show.

To conclude the proof it remains to prove the uniqueness of the function ϕ.
Assume that there exist two functions ϕ1, ϕ2 that satisfy ϕ̃i ∗ ϕ

c
i = ϕ̃i, i = 1, 2, and

K = ϕ1 ∗ L
2
s(∂B) = ϕ2 ∗ L

2
s(∂B). Then, we want to show that ϕ1 = ϕ2. Since Mϕi

,
i = 1, 2, is a projection and a self-adjoint operator, we get

0 = 〈1− ϕ1, ϕ1 ∗ f〉L2
s(∂B) = 〈1− ϕ2, ϕ2 ∗ f〉L2

s(∂B)

for any f ∈ L2
s(∂B). Thus, since ϕ1 ∗ L

2
s(∂B) = ϕ2 ∗ L

2
s(∂B), we also get

0 = 〈1− ϕ1, ϕ2 ∗ f〉L2
s(∂B) = 〈1− ϕ2, ϕ1 ∗ f〉L2

s(∂B)

for any f ∈ L2
s(∂B). In particular,

0 = 〈1− ϕ1, ϕ2 ∗ f〉L2
s(∂B) = 〈ϕ2 − ϕ2 ∗ ϕ1, f〉L2

s(∂B)
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for any f ∈ L2
s(∂B). Hence, ϕ2 = ϕ2 ∗ ϕ1. Similarly we obtain also ϕ1 = ϕ1 ∗ ϕ2.

Finally,

ϕ2 = ϕ̃c
2 = ϕ̃c

1 ∗ ϕ̃
c
2 = ϕ1 ∗ ϕ2 = ϕ1

as we wished to show. This concludes the proof. �

Proof of Theorem 1.3. Consider first K = ϕ ∗H2(∂B) for some measurable slice
ϕ such that |ϕ| = 1 Σ-almost everywhere on ∂B. Thanks to Corollary 3.3 we have
that K is the image of a closed subspace through an isometry and hence it is a closed
subspace itself.

Let us now show that K is invariant but not doubly invariant with respect to the
shift operator. It holds,

MqK = q ∗ K = q ∗ ϕ ∗H2(∂B) = ϕ ∗ q ∗H2(∂B) ⊆ ϕ ∗H2(∂B) = K.

Moreover, ϕ does not belong to q∗ϕ∗H2(∂B). In fact, suppose that ϕ ∈ q∗ϕ∗H2(∂B).
Then, there exists g ∈ H2(∂B) such that ϕ = q ∗ ϕ ∗ g = ϕ ∗ q ∗ g. Hence, from
Lemma 2.4 we deduce 1 = q ∗ g, that is, g = q−1 /∈ H2(∂B). Hence, MqK ( K.

On the other hand, let K be a closed subset of L2
s(∂B) such that MqK ( K.

Since Mq is an isometry, we get that MqK is a closed subset of K. Hence, there exists
ϕ ∈ K, with ‖ϕ‖L2

s(∂B) = 1, such that ϕ is orthogonal to MqK with respect to the
L2
s(∂B) inner product. In particular, such a ϕ is orthogonal to Mk

q ϕ for any k ≥ 1.
Consider now the power expansion of ϕ, ϕ(q) =

∑
n∈Z q

nan. Then, for any k ≥ 1,

0 = 〈Mk
q ϕ, ϕ〉L2

s(∂B) =
〈∑

n∈Z

q(n+k)an,
∑

n∈Z

qnan

〉
L2
s(∂B)

=
∑

n∈Z

anan−k,

whereas, for any k = −l < 0,

0 = 〈ϕ,M l
qϕ〉L2

s(∂B) =
〈∑

n∈Z

qnan,
∑

n∈Z

q(n+l)an

〉
L2
s(∂B)

=
∑

n∈Z

an−lan =
∑

n∈Z

an+kan,

that is, for any k ∈ Z, k 6= 0,

(12)
∑

n∈Z

anan−k = 0.

Then, for Σ-almost every q ∈ ∂B,

ϕc ∗ ϕ̃(q) =
∑

k∈Z

qk
∑

n∈Z

anan−k =
∑

n∈Z

anan = ‖ϕ‖2L2
s(∂B) = 1.

Thanks to Lemma 2.4 we get then that |ϕ| = 1 Σ-almost everywhere on ∂B.
Let us conclude the proof showing that K = ϕ ∗ H2(∂B). On the one hand we

have that the sequence {Mn
q ϕ}n∈N is an orthonormal sequence contained in K, but

{Mn
q ϕ}n∈N = {qn ∗ ϕ}n∈N = {Mϕ(q

n)}n∈N. Therefore this sequence is the image

of the orthonormal basis {qn}n∈N of H2(∂B) through the isometry Mϕ. Hence,
ϕ ∗H2(∂B) = Mϕ(H

2(∂B)) is contained in K and it is closed. On the other hand,
suppose that ϕ ∗H2(∂B) ( K and consider f ∈ K orthogonal to ϕ ∗H2(∂B). Then,
for any k ≥ 0,

〈M †
ϕf, q

k〉L2
s(∂B) = 〈f,Mϕq

k〉L2
s(∂B) = 0,

and, for any k = −l < 0,

〈M †
ϕf, q

−l〉L2
s(∂B) = 〈f,Mϕq

−l〉L2
s(∂B) = 〈f, ϕ ∗ q−l〉L2

s(∂B)

= 〈f, q−l ∗ ϕ〉L2
s(∂B) = 〈M l

qf, ϕ〉L2
s(∂B) = 0,
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where the last equality is due to the orthogonality of ϕ and M l
q(K). Hence we have

that M †
ϕf = 0 Σ-almost everywhere on ∂B. Thus, 0 = ϕ ∗ ϕ̃c ∗ f = f Σ-almost

everywhere on ∂B and, in particular, we conclude that K = ϕ ∗H2(∂B).
For the uniqueness, let ϕ1, ϕ2 be such that K = ϕ1∗H

2(∂B) = ϕ2∗H
2(∂B). Then,

exploiting Lemma 2.4, we deduce that both ϕ̃c
1 ∗ ϕ2 and ϕ̃c

2 ∗ ϕ1 belong to H2(∂B).
Hence, also (ϕ̃c

1 ∗ ϕ2)
c = ϕc

2 ∗ ϕ̃1 ∈ H2(∂B) and (ϕ̃c
2 ∗ ϕ1)

c = ϕc
1 ∗ ϕ̃2 ∈ H2(∂B).

Using now the fact that for any slice function f we have that f ∈ H2(∂B) if and
only if

f̃ ∈ H̃2(∂B) :=
{
f ∈ L2

s(∂B) : f(q) =
∑

n∈N

q−na−n, {a−n}n∈N ∈ ℓ2(N,H)
}
,

we get that ϕ̃c
1 ∗ ϕ̃2 = ϕ̃c

1 ∗ ϕ2 ∈ H̃2(∂B). So, ϕ̃c
1 ∗ ϕ2 belongs both to H2(∂B) and

H̃2(∂B), thus ϕ̃c
1 ∗ ϕ2 ≡ u, with u ∈ H. Finally, applying again Lemma 2.4, we

deduce that ϕ2 = ϕ1 ∗ u and, clearly, |u| = 1 as we wished to show. �

The proof of Theorem 1.4, Beurling’s theorem for the quaternionic Hardy space,
can be easily deduced from Theorem 1.3.

We now exploit Theorem 1.4 to prove the inner-outer factorization result. We
recall that a function g ∈ H2(∂B) is cyclic if

Eg := span
{
qn ∗ g, n ≥ 0

}
= H2(∂B).

It is easy to prove that Eg is the smallest closed invariant subspace of H2(∂B)
containing g. Then, the following holds.

Theorem 4.1. Let f ∈ H2(∂B), f 6≡ 0. Then f has a factorization f = ϕ ∗ g
where ϕ is inner and g is cyclic. Moreover, this factorization is unique up to a unitary
constant in the following sense: if f = ϕ ∗ g = ϕ1 ∗ g1, then ϕ1 = ϕ ∗ u and g1 = u ∗ g
for some u ∈ H such that |u| = 1.

Proof. Let f ∈ H2(∂B) and let Ef be the smallest closed invariant subspace of
H2(∂B) containing f . If Ef coincides with H2(∂B), then we are done. Otherwise,
thanks to Theorem 1.4 there exists an inner function ϕ ∈ H∞(∂B) such that Ef =
ϕ∗H2(∂B), and hence there exists g ∈ H2(∂B) such that f = ϕ∗g. Let us show that
Eg = H2(∂B). Consider a function h ∈ H2(∂B). Then ϕ ∗ h ∈ ϕ ∗ H2(∂B) = Ef .
Therefore, there exists a sequence of polynomials pn such that f ∗ pn converges in
H2(∂B) to ϕ ∗ h. But

‖f ∗ pn − ϕ ∗ h‖L2
s(∂B) = ‖ϕ ∗ g ∗ pn − ϕ ∗ h‖L2

s(∂B) = ‖ϕ ∗ (g ∗ pn − h)‖L2
s(∂B),

thus, recalling that if ϕ is inner, then, thanks to Corollary 3.3, Mϕ is an isometry for
L2
s(∂B), we conclude that g ∗ pn converges in H2(∂B) to h, and hence that h ∈ Eg.

The uniqueness follows from the uniqueness of the inner function identifying Ef :
if f = ϕ1 ∗ g1, with ϕ1 inner and g1 cyclic, then

span
{
qn ∗ f, n ≥ 0

}
= span

{
qn ∗ ϕ1 ∗ g1, n ≥ 0

}
= span

{
ϕ1 ∗ q

n ∗ g1, n ≥ 0
}

= ϕ1 ∗ span
{
qn ∗ g1, n ≥ 0

}
.

Hence Ef = ϕ1∗H
2(∂B) which, thanks to Beurling’s theorem, implies that ϕ1 = ϕ∗u,

with |u| = 1. Therefore g1 = u−∗ ∗ g = ū ∗ g. �

Now, we want to prove that a function g is cyclic if and only if it is outer. We
refer the reader to the introduction for the definition of outer functions. Here we
recall that if g ∈ H2(∂B) is an outer function, then g(q) 6= 0 for every q ∈ B. In
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fact, from [dFGS18] we know that g admits the factorization g(q) = h ∗ b(q) where
h(q) 6= 0 for any q ∈ B and b is a Blaschke product. In particular, |b(q)| = 1 for
Σ-almost every q ∈ ∂B, thus |g| = |h| Σ-almost everywhere on ∂B. Since g is outer,
it holds |g(q)| ≥ |h(q)| > 0 for any q ∈ B, therefore g cannot vanish in B.

Theorem 4.2. Let g ∈ H2(∂B). Then, the following are equivalent:

(i) g is cyclic, i.e., Eg = H2(∂B);
(ii) for any f ∈ H2(∂B) such that f ∗ g−∗ ∈ L2

s(∂B), we have that f ∗ g−∗ ∈
H2(∂B);

(iii) g is outer, i.e., if f ∈ H2(∂B) is such that |f | = |g| Σ-almost everywhere on
∂B, then |f(q)| ≤ |g(q)| for any q ∈ B.

Proof. Let us first show that (i) is equivalent to (ii). Suppose that g is cyclic
and let f ∈ H2(∂B) be such that f ∗ g−∗ is in L2

s(∂B). We want to show that
〈f ∗ g−∗, qk〉L2

s(∂B) = 0 for any k < 0. Consider the sequence of polynomials {pn}n∈N
such that g ∗pn converges to the constant function 1 in H2(∂B). Notice that, for any
I ∈ S and any k ∈ Z, setting ∂BI = ∂B ∩ LI , we have

|〈f ∗ g−∗ − f ∗ pn, q
k〉L2

s(∂B)| =

∣∣∣∣
1

2π

ˆ 2π

0

e−tkI(f ∗ g−∗(etI)− f ∗ pn(e
tI)) dt

∣∣∣∣

≤
1

2π

ˆ 2π

0

∣∣f ∗ g−∗ ∗ (1− g ∗ pn(e
tI))

∣∣ dt

=
1

2π

ˆ 2π

0

χ{∂BI\Zf∗g−∗}(e
tI)

∣∣f ∗ g−∗(etI)
∣∣ ∣∣1− g ∗ pn(T(f∗g−∗)c(e

tI))
∣∣ dt

≤ 2‖f ∗ g−∗‖L2
s(∂B)‖1− g ∗ pn‖L2

s(∂B)

where the last inequality follows from the Representation Formula (3) and Cauchy–
Schwarz inequality. In particular we deduce that for negative values of k, it holds

0 = lim
n→+∞

|〈f ∗ g−∗ − f ∗ pn, q
k〉L2

s(∂B)| = |〈f ∗ g−∗, qk〉L2
s(∂B)|

and we can conclude that f ∗ g−∗ ∈ H2(∂B).
Suppose now that condition (ii) holds, and consider the factorization of g = ϕ∗f

with ϕ inner and f cyclic.
Thanks to Lemma 2.4, ‖ϕ−∗‖L2

s(∂B) = ‖ϕ̃c‖L2
s(∂B) = ‖ϕ‖L2

s(∂B), so ϕ−∗ ∈ L2
s(∂B).

But ϕ−∗ = f ∗ g−∗ which, by (ii), implies that ϕ−∗ ∈ H2(∂B). Thus, both ϕ and ϕ−∗

are in H2(∂B). Thanks to [dFGS18, Proposition 5.14] that guarantees that if both a
function and its ∗-reciprocal belong to H2(∂B), then the function is outer, we have
that the inner function ϕ is also an outer function. Therefore, it is a constant u of
modulus 1. In particular, g = u ∗ f and hence it is obviously cyclic.

Let us now show that condition (iii) implies condition (ii). Let f ∈ H2(∂B) be
such that f ∗ g−∗ ∈ L2

s(∂B). The fact that g is outer, yields that g(q) 6= 0 for any
q ∈ B. Hence f ∗ g−∗ is a slice regular function in B, bounded in L2

s(∂B)-norm
and thus it belongs to H2(∂B). At last we show that (i) implies (iii) and this will
conclude the proof. Let f ∈ H2(∂B) be such that |f | = |g| Σ-almost everywhere on
∂B. Since g is cyclic, then there exists a sequence {pM} of quaternionic polynomials

of the form pM(q) =
∑M

n=0 q
nαM,n such that

lim
M→∞

‖f − g ∗ pM‖L2
s(∂B) = 0.

Then, we can select a subsequence {pMj
} such that f(q) = limj→∞ g ∗ pMj

(q) for
Σ-almost every q ∈ ∂B. We remark also that f(q) = limj→∞ g ∗pMj

(q) for any q ∈ B
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since H2(∂B) is a reproducing kernel Hilbert space, thus

|f(q)− g ∗ pMj
(q)| ≤ C‖f − g ∗ pMj

‖L2
s(∂B),

for some positive constant C. Since g ∈ H2(∂B), then g is Σ-almost everywhere
non-vanishing on ∂B (see [dFGS18, Proposition 4.4]), thus

|g(q)| = |f(q)| = |g(q)| lim
j→∞

|pMj
(Tgc(q))|,

for Σ-almost every q ∈ ∂B. That is, for every fixed ε > 0 there exists j0 = j0(ε) such
that for every j > j0 it holds |1 − |pMj

(Tgc(q))|| < ε. Since g ∈ H2(∂B), from (7)
and Proposition 2.3 we deduce that it actually holds |1− |pMj

(q)|| < ε for Σ-almost
every q ∈ ∂B. Finally, exploiting the maximum modulus principle for slice regular
functions (see [GSS13]), we get that for any q ∈ B, it holds

|f(q)| = |g(q)| lim
j→∞

|pMj
(Tgc(q))| < (1 + ε)|g(q)|.

Since this holds for any ε > 0 we finally get |f(q)| ≤ |g(q)| for any q ∈ B as we
wished to show and the proof is concluded. �

The proof of Theorem 1.5 clearly follows from Theorems 4.1 and 4.2.
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