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Abstract. Instead of standard n-simplexes we deal with n-dimensional cubes with coordinates

on real manifolds. The transition matrices for any two cubes having (n − 1)-dimensional common

side form a group Hn of orthogonal matrices composed of zeros and exactly one non-zero value 1 or

−1 in each row (column). Considering the coverings, a theorem of Gauss–Bonnet type which holds

also for odd-dimensional or non-orientable manifolds is proved. We conjecture that a real manifold

admits a restriction of the transition matrices to a Lie subgroup G of GL(n,R) of dimension ≥ 1,

or the unit element in GL(n,R) if and only if the manifold can be covered by n-cubes such that the

transition matrices take values in the intersection of Hn and G or the unit matrix. The complex

case uses GL(2n,R) and transition matrices of even dimension. The conjecture is supported with

5 examples. We give methods for calculation of the smallest admissible subgroup of Hn and finally,

some conclusions and open questions are presented.

1. Introduction

The Gauss–Bonnet theorem, in its classical form, shows that an essential geo-
metric information of 2-dimensional closed manifold (or a manifold with boundary),
the total curvature, is associated with the important topological invariant, the Euler
characteristic. This theorem became standard in the lectures of differential geometry
at universities in the previous century, for example [8], or [9] which also includes
historical comments. However, the research continued in direction of its generaliza-
tions. Chern popularized it by giving a short and conceptual proof for the case of
even-dimensional closed orientable manifolds [6] on sphere bundle of the manifold
with Levi–Civita connection. Admittedly, a year before the Chern’s proof, the paper
[1] was published with a proof of an analogue of the classical Gauss–Bonnet theorem
for all Riemannian manifolds. It is a complicated work which realizes the proof by
using embedding of the manifolds locally isometrically into suitable Eucledian spaces.
There have been generalizations in different directions of the Gauss–Bonnet–Chern
theorem also, most notably in [4] and [7], but also for applications in relativity, for
example [3] and [2] or physics, for example, [5].

The main result in this work is a proof of a theorem of Gauss–Bonnet type which
holds for odd-dimensional manifolds and for non-orientable manifolds, also. We in-
troduce coverings of real and complex manifolds consisting of n-dimensional cubes
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instead of standard n-simplexes, such that coordinates can be straightforwardly as-
signed. The transition matrices between any two such oriented cubes are determined
so that they belong to a group denoted by Hn of orthogonal matrices composed of
mostly zeros and exactly one non-zero entry 1 or −1 in each row (column). Then,
some methods for calculation of the smallest admissible subgroup of Hn are pre-
sented. We give a conjecture that a manifold admits a restriction of the transition
matrices to a Lie subgroup G of GL(n,R) of dimension ≥ 1, or the unit element in
GL(n,R) if and only if the manifold can be covered by n-cubes such that the tran-
sition matrices take values in the intersection of Hn and G or the unit matrix. The
conjecture is supported by several examples of the appearance of the transition ma-
trices and the procedure of their obtaining. One of the examples addresses complex
manifolds, where instead of the group Hn, the group H ′

2n = H2n ∩ U(n) is employed
in the conjecture, where U(n) is considered as a subset of GL(2n,R). In the end,
conclusions and open questions are issued.

2. Coverings by n-cubes and methods for calculation

of the smallest admissible subgroup of Hn

We firstly consider real manifolds, particularly, coverings of n-dimensional real
manifolds. Instead of standard n-simplexes we can choose a covering consisting of
n-dimensional cubes In. It means that we can introduce coordinates x1, . . . , xn such
that a cube is given by 0 ≤ xi ≤ 1, (1 ≤ i ≤ n), (see Figure 1). By arbitrarily choosing
such a coordinate system on each cube, the transition matrices for any two cubes
having (n−1)-dimensional common side are determined and they are linear mappings
such that the corresponding Jacobi matrix is an orthogonal matrix containing only
1, −1 or 0. Indeed, in each row (column) there is exactly one non-zero value 1 or
−1. We will denote this group by Hn. In order to realize this transformation, it
is sufficient to rotate one of the cubes so that these two simplexes lie in the same
affine subspaces (without loss of generality we can assume that the cubes are not
curvilinear areas). These n-cubes with coordinates will be called oriented cubes.

Figure 1.

III II

I

Figure 2.

Let G denotes a Lie subgroup of GL(n,R) of dimension ≥ 1, or G is the unit
element in GL(n,R), i.e., the unit matrix. We give the following lemma.

Lemma. If the manifold M admits oriented cubes with transition matrices in

G ≤ Hn then it admits oriented cubes with transition matrices in each conjugate

subgroup AGA−1 ≤ Hn for A ∈ Hn.

Proof. It is sufficient to consider the coordinates yi =
∑n

j=1A
i
jx

j in each n-cube

instead of the coordinates xi. �

It is convenient to consider only the orientable manifolds and assume that Hn

consists of all unimodular matrices with elements 1,−1 and 0. We notice that if the

manifold is covered with n-cubes such that it admits the transition matrices in the

group G ≤ Hn, then each n-cube can change its coordinates with transition matrix
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in G. After these changes, all transition matrices will be also in G. It follows from
here that if the manifold is covered with n-cubes such that it admits the transition

matrices in the group G ≤ Hn, then, in order to find the coordinates at each n-

cube, it is sufficient to know the coordinates of only one arbitrary n-cube. Then the

coordinates of the other n-cubes should be chosen one after one n-cube in such a

way, that the transition matrix of each n-cube with respect to one of the previous

neighboring n-cube belongs in G. Then the procedure must be successfully finished

independently from the choice of the order of the n-cubes. Thus, it is sufficient

to have such a covering with n-cubes, and if we did not have any given coordinate

system, then we have to check no more than |Hn ∩G| cases to see whether it admits

restriction to the group G or not. Hence, the main problem is to know when a given
covering with n-cubes has this property for the group G. If it has this property for
the groups G1 and G2 starting with the same coordinates from the same n-cube, then
it is easy to see that we can obtain restriction to the group G1 ∩G2. Moreover, if we
can obtain the restriction to the group G1 starting from one cube with coordinates
x1, . . . , xn and also, we can obtain the restriction to the group G2 starting from the
same n-cube but with another coordinates y1, . . . , yn, then we can obtain a restriction
to the group G1 ∩AG2A

−1 where A is the transition matrix ∂yi/∂xj in Hn.
Note that if a manifold is given with a given covering of n-cubes, the procedure

to check whether it admits restriction to the group G starts from an arbitrary n-
cube with arbitrary “coordinates”. Then we find coordinates to n-cubes one by one
such that the coordinates of each next one has unit Jacobi matrix with respect to at
least one of the previously chosen coordinates of a neighboring n-cube. In the end
we obtain a set S of all possible Jacobi matrices. This is easy to do. Finally, this

covering of n-cubes admits restriction to a discrete group G∩Hn if and only if there

exists a matrix A ∈ Hn such that

ASA−1 ⊂ G ∩Hn, i.e. S ⊂ A−1(G ∩Hn)A.

Now, for a given covering with n-cubes and with fixed coordinates in chosen n-cube
C, the smallest discrete group of “discrete transition matrices” is generated as follows:
choose arbitrary sequence of neighboring n-cubes C0, C1, . . . , Cr, (C0 = C,Cr = C
and r is arbitrary) and choose coordinates in C1, . . . , Cr such that the Jacobians
between C0 and C1, C1 and C2, . . . , Cr−1 and Cr are unit matrices. Then, the Ja-
cobi matrices between C0 and Cr generate the smallest discrete group of transition
matrices. Changing the initial coordinates in C, we obtain its conjugate groups.

3. A theorem of Gauss–Bonnet type

Let us consider a manifold covered by n-cubes without orientation. Then, it
defines a parallel transport of vectors (parallel to the edges). The induced connection
is flat in the interior of each n-cube. Indeed, each manifold covered by n-cubes can be
considered just as limit of Riemannian manifold such that the curvature is almost flat
and the metric g in the interior is g = I. This connection has singularity at k-cubes
for k < n− 1, similarly as the cone has singularity at the vertex. If the n-cubes are
chosen to be unit n-cells in the Euclidean space, this connection is induced by the
flat connection of the surrounding space.

Let us consider, for example, S3. It admits 3 linearly independent vectors fields,
but it does not mean that the transition matrices reduce to the unit matrix. Indeed,
one can verify that if the vector fields are denoted by X, Y and Z, then [X, Y ] 6= 0 or
[X,Z] 6= 0 or [Y, Z] 6= 0. If all of the transition matrices were the unit matrix, then
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it would follow that S3 admits a flat Riemannian connection which is not true. The
standard covering of S3 with eight 3-cubes, does not admit transition matrices of the
form {1}×H2. The reason is that in this case at each point 4 edges meet, which does
not yield the result. In order to find the required covering with 3-cubes, we should
consider one vector field on S3, then find a Riemannian metric on S3 such that the
vector field is everywhere parallel. This Riemannian manifold should be isometrically
embedded into Euclidean space, and then the metric should be “homotoped” up to
almost everywhere flat metric. This is only an example, but it may give an idea how
to prove the conjecture from section 4.

Now, let us consider 2-dimensional manifold M covered by n-cubes and also, let
us consider the characteristic class w obtained from the almost flat connection. Then,
the Gauss–Bonnet theorem

(1)

ˆ

w = 2πχ(M)

reduces to the following form

(2)
∑

K(Ai) = 2πχ(M),

where K(Ai) is the curvature at the vertex Ai. Our aim is to find these curvatures
K(Ai).

If n = 2, then K(Ai) =
π

2
(4−mi) where mi is the number of 2-cubes which have

Ai as a vertex. Indeed, now we verify the formula (2). The number of vertices is

V = v3 + v4 + v5 + v6 + . . .

where vi is the number of vertices where i edges meet. Then, the number of edges is

E =
1

2
(3v3 + 4v4 + 5v5 + . . .)

and the number of faces is

F =
1

4
(3v3 + 4v4 + 5v5 + . . .).

Hence,

χ(M) = V −E + F =
1

4
(v3 + 0v4 − v5 − 2v6 − . . .),

and
∑

K(Ai) =
∑ π

2
(4−mi) = 2πV −

∑ π

2
mi

= 2π(v3 + v4 + v5 + v6 + . . .)−
π

2
· 4F

= 2π(v3 + v4 + v5 + v6 + . . .−
1

4
(3v3 + 4v4 + 5v5 + . . .))

=
1

2
π(v3 − 0v4 − v5 − 2v6 − . . .) = 2πχ(M).

Now, we give a generalization for an arbitrary dimension. Indeed, let the manifold
be covered by n-cubes. At each vertex V we determine index function as follows

(3) ind(V ) = (2n − v)/2n,

where v is the number of n-cubes which have V as a vertex. Note that for the
standard covering of Rn by unit n-cubes at each vertex V it is v = 2n. Thus ind(V)
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is the relative deviation from this standard case. The definition of index of any
greater-dimensional cube is analogous. At each edge E

(4) ind(E) = (2n−1 − e)/2n−1,

where e is the number of n-cubes which have E as an edge. At each 2-dimensional
cube C

(5) ind(C) = (2n−2 − c)/2n−2

where c is the number of n-cubes which have C as 2-dimensional cube. This procedure
continues in the obvious way. Note that the index of each side S (i.e. (n − 1)-
dimensional cube) is 0, because s = 2 and (21 − 2)/21 = 0. Also, the index of each
n-cube is again 0 because (20 − 1)/20 = 0.

Now, we will prove the main theorem. Let us denote by P1, P2, . . . the vertices,
by E1, E2, . . . the edges, by C1, C2, . . . the 2-dimensional cubes and so on.

Theorem. The following formula holds

(6)

n
∑

p=0

(−1)p
∑

i

ind(Q
(p)
i ) = χ(M)

where Q
(p)
i denotes a p-dimensional cube of the manifold M and χ(M) denotes the

Euler characteristic of M.

Proof. The formula (6) means that
(

1−
v1
2n

)

+
(

1−
v2
2n

)

+
(

1−
v3
2n

)

+ · · · −
(

1−
e1

2n−1

)

−
(

1−
e2

2n−1

)

−
(

1−
e3

2n−1

)

− · · ·+
(

1−
c1

2n−2

)

+
(

1−
c2

2n−2

)

+
(

1−
c3

2n−2

)

+ · · · − · · · = χ(M).

This equality is equivalent to

(7)
(

∑

vi

)

− 2
(

∑

ei

)

+ 22
(

∑

ci

)

− · · · = 0.

Let the number of all n-cubes be N . Then,

∑

vi = N · 2n ·

(

n

0

)

,

∑

ei = N · 2n−1 ·

(

n

1

)

,

∑

ci = N · 2n−2 ·

(

n

2

)

,

· · · · · · · · ·

because each n-cube contains exactly 2n−j ·
(

n

j

)

cubes of dimension j (0 ≤ j ≤ n).

Now (7) is satisfied because
(

n

0

)

−

(

n

1

)

+

(

n

2

)

− · · · = (−1)n = 0. �

Note that this theorem is of the type of the Gauss–Bonnet theorem [8]. Indeed,
by multiplication of index function in the definitions (3), (4), (5), by an appropriate
constant depending on n, we obtain Gauss–Bonnet type theorem for the case where
all n-cubes and all (n− 1)-dimensional cubes have flat metric. Moreover, comparing
this theorem with the Gauss–Bonnet theorem we see that this theorem holds also for
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odd-dimensional manifolds and also for non-orientable manifolds, while the Gauss–
Bonnet theorem considers only orientable and even-dimensional manifolds.

4. A conjecture and supporting examples

The conjecture we give in this paper refers to real and complex manifolds. Re-
garding the real case, we give the following

Conjecture. A manifold admits a restriction of the transition matrices to the

group G if and only if the manifold can be covered by n-cubes such that the transition

matrices take values in the set H ′

n = Hn ∩G.

Remark 1. For a given manifold which admits restriction of the transition
matrices to the group G, if there are cubes without orientation, then it is not always
possible to orient the cubes so that the transition matrices belong in G (see Example
3 below).

Remark 2. Note that the transition matrices for the n-cubes are not the same as
those for manifolds. For example, if I, II and III are three squares (n = 2) (Figure 2)
such that the transition matrix between I and II is the identity matrix and between
II and III is also the identity matrix, then the transition matrix between I and III
might not necessarily be the identity matrix.

In order to support the given conjecture, we give the following examples.

Example 1. Let us consider 1-dimensional manifold. It can be considered as
a sequence of segments . . . , AiAi+1, Ai+1Ai+2, Ai+2Ai+3, . . . and each segment AiAi+1

can acquire only one direction
−−→
AiAi+1 or

−−−→
Ai+1Ai. If two neighboring vectors have the

same direction, then transition 1×1 matrix is 1, and it is −1 for opposite directions.
It is obvious that the orientation of each 1-cube can be chosen so that the transition
1× 1 matrix is 1, i.e., to be orientable.

Example 2. Now we will prove that the conjecture holds for the trivial subgroup
G = GL(n,R). Indeed, we should only prove that each manifold can be covered by n-
cubes, neglecting their orientations. Firstly, note that each n-dimensional manifold
can be covered by n-dimensional simplexes. We give a method on how each n-
dimensional simplex can be divided into n + 1 n-cubes. This method is inductive.
Without loss of generality we suppose that the n-dimensional simplex is regular. If
n = 2 the dividing points are the middle points of its sides and the center of the
equilateral triangle (Figure 3). Further, in order to divide the tetrahedron into four
3-cubes, we divide each side of the tetrahedron into three 2-cubes and the vertices of
the required 3-cubes are the vertices of the considered tetrahedron, the centers of its
sides and the center of the tetrahedron (Figure 4). These procedure can be continued
for each simplex of arbitrary dimension.

Example 3. It is known that an orientable manifold admits a non-zero vector
field if and only if the transition matrices can be reduced to the subgroup GL+(1,R)×
GL+(n − 1,R). Hence, in discrete case we should have reduction to the subgroup
{1} × SO(n − 1,R). Specially, if n = 2, we should have reduction to the identity
matrix I2. It is obvious that it can happen only if locally at each point, exactly 4
squares meet. It is easy to see from here that the Euler characteristic is 0, and hence
this must be the torus S1×S1 (assuming that the manifold is compact and orientable).
This shows how easily a conclusion can be made using the given conjecture, although
in this example an already well-known fact is derived.
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Figure 3.
Figure 4.

The vector field has a very good geometrical interpretation using the n-cubes
(Figure 5). Note that if we have a point P on the torus which is a vertex of three
squares (Figure 6), then in I, II and III coordinates can not be defined in such way
that the transition matrices are the unit matrix, although the torus admits a vector
field.

Figure 5.

P

Figure 6.

Example 4. (Orientable manifolds) According to the conjecture above, one
manifold is orientable if it admits n-cubes such that the transition matrices are in
the finite group SO(n,R) ∩ Hn. The conjecture holds for the orientable manifolds,
i.e. for G = GL+(n,R).

Example 5. (Complex manifolds) In this case the conjecture is:

A manifold admits a complex structure if and only if the manifold admits covering

by n-cubes such that the transition matrices take values in the group

H ′

2n = H2n ∩ U(n)

where U(n) is considered as a subset of GL(2n,R).

Firstly, let us see why each 2-dimensional orientable manifold admits complex
structure. Indeed, the covering with 2-cubes for orientable manifolds requires that
the transition matrices should be

(8)

[

1 0
0 1

]

,

[

−1 0
0 −1

]

,

[

0 1
−1 0

]

, and

[

0 −1
1 0

]

.

The covering with 2-cubes for complex manifold requires that the transition matrices
should also be given by (8). Thus, each 2-dimensional orientable manifold admits a
complex structure. Indeed, this well known fact confirms our conjecture for complex
manifolds for n = 2.

Further, we will consider one special case. Let us consider the sphere of dimension
6 embedded in R

7 and covered with 14 6-cubes: C+
i and C−

i , (1 ≤ i ≤ 7). The cubes
C+

i and C−

i intersect the xi-axis, and they do not have common points. All other
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pairs C∗

i and C∗

j (i 6= j) have common 5-cube. The group H ′

6 consists of the following
block matrices





A 0 0
0 B 0
0 0 C



 ,





0 A 0
0 0 B
C 0 0



 ,





0 0 A
B 0 0
0 C 0



 ,





0 0 A
0 B 0
C 0 0



 ,





0 A 0
B 0 0
0 0 C



 ,





A 0 0
0 0 B
0 C 0



 ,

where the 2 × 2 blocks A,B and C are given by (8). This matrix group contains
6 · 43 = 384 elements. It is convenient to consider all these matrices as 7×7 matrices
by setting 1 at (7,7) and 0 at the additional remaining entries. For each i and j
(i 6= j) we define matrices S+

ij and S−

ij as follows:

(S+
ij )rs =



















−1 if r = i and s = j,

1 if r = j and s = i,

1 if i 6= r = s 6= j,

0 otherwise,

(S−

ij )rs =



















1 if r = i and s = j,

−1 if r = j and s = i,

1 if i 6= r = s 6= j,

0 otherwise.

Each of these 14 cubes should be oriented, i.e. for each cube there should be 6
ordered unit vectors in R

7 parallel to the edges of the corresponding cube. Moreover,
we also determine the 7-th vectors a−

17, . . . , a
−

77 and a
+
17, . . . , a

+
77 such that (a−i7)j = δij

and (a+i7)j = −δij . For each cube, the corresponding 7 vectors uniquely determine a
matrix in H7, considered as a set of 7 × 7 matrices, using these 7 vectors as vector
columns. Thus, we should find the following 14 matrices A+

i and A−

i in H ′

6 such that:

1. These matrices belong in H ′

6 and moreover

(A+
i )i7 = −1 and (A−

i )i7 = 1 (1 ≤ i ≤ 7).

2. They should also satisfy the following property for the transition matrices:
• For the neighbor cubes C−

i and C+
j (i 6= j) the transition matrix P =

(A−

i )
−1 · S+

ij · A
+
j belongs to H ′

6;

• For the neighbor cubes C−

i and C−

j (i 6= j) the transition matrix P =

(A−

i )
−1 · S−

ij · A
−

j belongs to H ′

6;

• For the neighbor cubes C+
i and C+

j (i 6= j) the transition matrix P =

(A+
i )

−1 · S−

ij · A
+
j belongs to H ′

6;

• For the neighbor cubes C+
i and C−

j (i 6= j) the transition matrix P =

(A+
i )

−1 · S+
ij · A

−

j belongs to H ′

6.

We will prove that these 14 cubes can not be oriented so that the sphere admits
a complex structure. This is only a special case, and it does not say anything for
another covering of S6 by cubes. Without loss of generality we can suppose that
A−

7 = I7. Then according to the property 2 above, we obtain

(A−

7 )
−1 · S+

71 · A
+
1 = S+

71 · A
+
1 ∈ H ′

6, (A−

7 )
−1 · S+

73 · A
+
3 = S+

73 · A
+
3 ∈ H ′

6,

(A+
7 )

−1 · S−

71 · A
+
1 ∈ H ′

6, (A+
7 )

−1 · S−

73 · A
+
3 ∈ H ′

6,
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and hence

(A+
7 )

−1 · S−

71 · A
+
1 · (A+

1 )
−1 · (S+

71)
−1 = (A+

7 )
−1 · S−

71 · S
−

71 ∈ H ′

6,

(A+
7 )

−1 · S−

73 · A
+
3 · (A+

3 )
−1 · (S+

73)
−1 = (A+

7 )
−1 · S−

73 · S
−

73 ∈ H ′

6.

Thus, (S−

73 · S
−

73)
−1 · S−

71 · S
−

71 ∈ H ′

6. But this is not true because

(S−

73 · S
−

73)
−1 · S−

71 · S
−

71 = diag(−1, 1,−1, 1, 1, 1, 1) 6∈ H ′

6.

Note that this example can be generalized also for arbitrary 2n-dimensional sphere
(n > 1) embedded in R

2n+1 and covered by the standard 4n+ 2-cubes.

5. Conclusions and open questions

Let us assume that the manifold admits restriction of the following subgroup
Hp1 ⊕Hp2 ⊕ · · · ⊕Hpr of Hn (n = p1 + · · ·+ pr). Then it admits restriction to each
subgroup G such that

A ·Hp1 ⊕Hp2 ⊕ · · · ⊕Hpr · A
−1 ≤ G ≤ Hn,

where A is an arbitrary element of Hn. Now, the following question appears: Con-

sidering all such subgroups G which are obtained by any matrix A ∈ Hn and any

admissible subgroup Hp1 ⊕ Hp2 ⊕ · · · ⊕ Hpr , do we obtain all possible subgroups H
of Hn such that the manifold admits restriction to H?

Note that the manifold admits restriction to the subgroup Hp1 ⊕Hp2 ⊕ · · ·⊕Hpr

if and only if the tangent bundle is a Whitney sum of Rp1 ⊕R
p2 ⊕· · ·⊕R

pr . Thus, if
the answer to the question is positive, it is easy to obtain all required subgroups H
of Hn for each manifold. Specially, S6 does not admit any Whitney decomposition of
the tangent bundle and so, S6 does not admit restriction to a subgroup of H6. Hence
S6 does not admit any complex structure, assuming that the answer of the previous
question is positive.

The answer of the previous question would be negative if we consider the Lie
subgroups of GL(n;R), instead of subgroups of the discrete group Hn. For example,
let us consider the sphere S2. Because it does not admit any Whitney decomposition
of the tangent bundle, it follows now that it would not admit any restriction to
subgroup of SL(2,R). Hence, S2 would not admit restriction to the subgroup U(1) ≤
GL(2,R), because dimU(1) = 2 < 4 = dimGL(2,R). Hence, S2 would not admit
complex structure, which is not true.

Note that not all coverings by n-cubes are satisfactory. So, let us give the fol-
lowing definition. The covering of a manifold M by n-cubes is good, if for each
subgroup G ≤ GL(n;R) such that the manifold admits transition matrices in G,
the covering on n-cubes admits orientations of n-cubes such that transition matrices
belong to H ′

n = Hn ∩ G. The conjecture asserts that for each given subgroup G
there exists an orientation of the n-cubes. So, the existence of a “good covering” is
stronger conjecture of the previous one. The following question arises: In order to

obtain a good covering, is it sufficient to consider only the subgroups of the form

A ·Hp1 ⊕Hp2 ⊕ · · · ⊕Hpr · A
−1? If the answer of this question is positive, then the

Example 5 shows that the sphere S6 does not admit complex structure, because S6

does not admit any restriction of subgroups of the form A ·Hp1⊕Hp2⊕· · ·⊕Hpr ·A
−1,

and thus each covering is good. Specially, the covering in the Example 5 is also good.
Although we are not sure that “good covering(s)” exists for each manifold, the

following question appears very naturally. How can we recognize a good covering?
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Indeed, if we have a manifold given by n-cubes, which are the necessary and sufficient

conditions for that covering with n-cubes to be a good covering?

References

[1] Allendoerfer, C. B., and A. Weil: The Gauss–Bonnet theorem for Riemannian polyhedra.
- Trans. Amer. Math. Soc. 53, 1943, 101–129.

[2] Alty, L. J.: The generalized Gauss–Bonnet–Chern theorem. - J. Math. Phys. 36, 1995, 3094–
3105.

[3] Avez, A.: Formule de Gauss–Bonnet-Chern en matrique de signature quelconque. - C. R. Acad.
Sci. 255, 1962, 2049–2051.

[4] Bell, D.: The Gauss–Bonnet theorem for vector bundles. - J. Geom. 85, 2006, 15–21.

[5] Borisov, N., K. Ilinski, and G. Kalinin: New index formulas as a meromorphic generaliza-
tion of the Chern–Gauss–Bonnet theorem. - Lett. Math. Phys. 43, 1998, 249–262.

[6] Chern, S. S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian
manifolds. - Ann. Math. 45:4, 1944, 747–752.

[7] Hsu, E.P.: Stochastic local Gauss–Bonnet–Chern theorem. - J. Theoret. Probab. 10:4, 1997,
819–834.

[8] Kobayashi, S., and K. Nomizu: Foundations of differential geometry, vol. II. - Interscience
Publishers, New York, 1969.

[9] Spivak, M.: Differential geometry. - Publish or Perish, Boston, 1975.

Received 16 March 2018 • Accepted 25 May 2018


