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Abstract. Let (X,H) be a P-harmonic space and assume for simplicity that constants are
harmonic. Given a numerical function ϕ on X which is locally lower bounded, let

Jϕ(x) := sup

{
ˆ

∗

ϕdµ : µ ∈ Jx(X)

}
, x ∈ X,

where Jx(X) denotes the set of all Jensen measures µ for x, that is, µ is a compactly supported

measure on X satisfying
´

u dµ ≤ u(x) for every hyperharmonic function u on X . The main purpose

of the paper is to show that, assuming quasi-universal measurability of ϕ, the function Jϕ is the

smallest nearly hyperharmonic function majorizing ϕ and that Jϕ = ϕ ∨ Ĵϕ, where Ĵϕ is the lower

semicontinuous regularization of Jϕ. So, in particular, Jϕ turns out to be at least “as measurable

as” ϕ. This improves recent results, where the axiom of polarity was assumed. The preliminaries

on nearly hyperharmonic functions in the framework of balayage spaces are closely related to the

study of strongly supermedian functions triggered by Mertens more than forty years ago.

1. Representing measures for positive hyperharmonic functions

Let X be a locally compact space with countable base, let B denote the σ-algebra
of all Borel sets in X, and let B(X), C(X) respectively be the set of all numerical
functions on X which are Borel measurable, continuous and real respectively. Fur-
ther, let W be a convex cone of positive lower semicontinuous numerical functions
on X having the following properties.

(C) Continuity: Every w ∈ W is the supremum of its minorants in W ∩ C(X).
(S) Separation: W is linearly separating, that is, for all x 6= y and γ > 0, there

exists a function v ∈ W such that v(x) 6= γv(y).
(T) Transience: There are strictly positive functions u, v ∈ W ∩ C(X) such that

u/v tends to 0 at infinity.

The fine topology onX is the coarsest topology onX which is at least as fine as the
initial topology and such that every function in W is continuous. Given a numerical
function g on X, let ĝ, ĝf respectively denote the largest lower semicontinuous, finely
lower semicontinuous respectively minorant of g.

We recall that (X,W) is a balayage space if the following hold:

• W has the properties (C), (S) and (T).
• If vn ∈ W, vn ↑ v, then v ∈ W.

• If V ⊂ W, then înf V
f

∈ W.
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• If u, v′, v′′ ∈ W, u ≤ v′+ v′′, then there exist u′, u′′ ∈ W such that u = u′+u′′

and u′ ≤ v′, u′′ ≤ v′′.

See [4, 11] for an exposition of the theory in all details; for a description, which is
more expanded than the one given here, see [14, Appendix 8.1].

Examples 1.1. 1. If (X,H) is a P-harmonic space and ∗H+(X) is the convex
cone of positive hyperharmonic functions on X, then (X, ∗H+(X)) is a balayage
space. In particular, the theory of balayage spaces covers the potential theory for
large classes of elliptic and parabolic differential equations of second order (for details
the reader might consult [9, Section 7.1]). In addition, it covers, for example, the
theory of Riesz potentials.

2. If X is a Hunt process on X with transition semigroup P = (Pt)t>0 such that
its convex cone

EX := {u ∈ B+(X) : sup
t>0

Ptu = u}

of excessive functions satisfies (C), (S) and (T), then (X,EP) is a balayage space. It
is easily seen that EP satisfies (C), if the resolvent kernels Vλ :=

´

e−λtPt dt, λ > 0,
are strong Feller, that is, Vλf ∈ C(X) for every bounded f ∈ B(X).

We observe that, conversely, for every balayage space (X,W) with 1 ∈ W, there
exists a Hunt process X on X such that EX = W.

In the following let (X,W) be a balayage space and let us fix a strictly positive
function u0 ∈ W ∩ C(X). Further, let P(X) be the set of all continuous real poten-
tials, that is, functions p ∈ W ∩ C(X) such that p/v vanishes at infinity for some
strictly positive v ∈ W ∩ C(X). We shall say that a numerical function ϕ on X is
P-bounded, if |ϕ| ≤ p for some p ∈ P(X); the set of all P-bounded functions in C(X)
will be denoted by CP(X). For every numerical function ϕ onX, let ϕ̂ denote its lower
semicontinuous regularization, that is, ϕ̂(x) := lim infy→x ϕ(y) for every x ∈ X. If V
is a subset of W and v := inf V, then v̂ ∈ W and v̂(x) = v̂f(x) := f-lim infy→x v(y),
x ∈ X (lower limit with respect to the fine topology).

We recall that, for every numerical function ϕ ≥ 0, a reduced function Rϕ and

a swept function R̂ϕ are defined by

(1.1) Rϕ := inf{u ∈ W : u ≥ ϕ} and R̂ϕ := R̂ϕ.

In particular, we have RA
v := Rv1A ≤ v and R̂A

v := R̂v1A ≤ RA
v for A ⊂ X and v ∈ W,

which leads to reduced measures εAx and swept measures ε̂Ax , x ∈ X, characterized

by
´

v dεAx = RA
v (x) and

´

v dε̂Ax = R̂A
v (x), v ∈ W. Let us observe that εAx = ε̂Ax for

every x ∈ Ac, since R̂A
v = RA

v on Ac (see [4, VI.2.4]). If x ∈ A, then εAx = εx and,

by [4, VI.9.2], ε̂Ax = ε̂Ax ({x})εx + (1− ε̂Ax ({x})ε
A\{x}
x .

For every x ∈ X, let Mx(W) denote the convex set of all representing measures

for x with respect to W, that is, (positive Radon) measures µ on X such that, for
every w ∈ W,

(1.2)

ˆ

w dµ ≤ w(x).

Since every function in W is an increasing limit of a sequence in P(X), (1.2) holds
for functions in W, if it holds for functions in P(X). Let B∗ denote the σ-algebra of
all (B-)universally measurable sets in X. By [4, VI.12.5, 2.2, 4.3, 4.4],

(1.3) E := {εAx : A ⊂ X} = {εx} ∪ {εAx : A ∈ B, A finely closed, x /∈ A}
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is the set of extreme points of Mx(W). The set Mx(W) is weak∗-compact, that is, for
every sequence (µm) in Mx(W), there exists a subsequence (µmk

) and µ ∈ Mx(W)
such that limk→∞

´

f dµmk
=
´

f dµ for every f ∈ CP(X) (see [4, VI.10.1]). So we
know by Choquet’s theorem that, for every µ ∈ Mx(W), there exists a probability
measure ρ on E such that, for every f ∈ CP(X),

(1.4)

ˆ

f dµ =

ˆ

(
ˆ

f dν

)
dρ(ν),

and then (1.4) holds for every Borel measurable function f ≥ 0 on X. (We might
note that, for a given µ, the measure ρ does not have to be unique; see [12]).

By definition, a subset P of X is polar if R̂P
u0

= 0. Every polar set P is contained

in a polar set in B (see [4, VI.2.2]). Let B̃, B̃∗ respectively denote the σ-algebra of
all sets A in X for which there exists a set B in B,B∗ respectively such that the
symmetric difference A△B is polar. We note that B̃ ∩ B∗ is the σ-algebra Bn of all
nearly Borel sets in X (see [3, page 57]).

If µ ∈ Mx(W), x ∈ X, then µ does not charge polar sets P in X \ {x}. Indeed,
given ε > 0, there exists a function w ∈ W such that w = u0 on P and w(x) < ε, and
we have

´ ∗

P
u0 dµ ≤

´

w dµ ≤ w(x) < ε (cf. [5, Corollary 1.8]), whence µ∗(P ) = 0. So

we know that B̃∗ is contained in the completions of B with respect to the measures
µ ∈ Mx(W), x ∈ X.

2. Positive nearly hyperharmonic functions

Let Uc denote the family of relatively compact open sets in X and V c := X \ V ,
V ∈ Uc. We first recall that W is the set of positive hyperharmonic functions on X,
that is, W consists of all lower semicontinuous numerical functions u ≥ 0 on X
satisfying

(2.1)

ˆ

u dεV
c

x ≤ u(x) for all x ∈ V ∈ Uc,

(see [4, III.2.1]). Extending the definition given for harmonic spaces in [1, Sec-
tion II.1] and [6, p. 119], let us say that an arbitrary function u : X → [0,∞] is nearly

hyperharmonic provided

(2.2)

ˆ ∗

u dεV
c

x ≤ u(x) for all V ∈ Uc and x ∈ V,

where we may replace upper integrals by integrals, if u is B̃∗-measurable.
Obviously, the following holds.

Proposition 2.1. The set N+ of all positive nearly hyperharmonic functions

on X is a convex cone which contains W. It is closed under increasing limits and, in

contrast to W, closed under arbitrary infima.

Let us note that, for all V ∈ Uc and ϕ : X → [0,∞], the function

(2.3) H∗
V ϕ : x 7→

ˆ ∗

ϕdεV
c

x

is lower semicontinuous on V; see [4, III.3.4] (it is even harmonic on V , if ϕ ≤ w for
some w ∈ W ∩ C(X), a consequence of [4, VI.2.6]). This implies the following.

Proposition 2.2. Let u ∈ N+. Then v ∈ N+ for every function v satisfying

û ≤ v ≤ u. In particular, û ∈ W.
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Proof. Indeed, if V ∈ Uc, then H∗
V u ≤ u, whence H∗

V v ≤ H∗
V u ≤ û ≤ v on V . �

Moreover, by [4, III.6.14], for all u ∈ N+ and x ∈ X,

(2.4) û(x) = ûf(x) = sup

{
ˆ ∗

u dεV
c

x : x ∈ V ∈ Uc

}

and, if x ∈ X is not isolated,

(2.5) û(x) = lim
V ↓{x}

{
ˆ ∗

u dεV
c

x : x ∈ V ∈ Uc

}
.

Of course, û(x) = ûf(x) = u(x) for isolated points x in X. Hence we have the
following (cf. [1, p. 48]).

Proposition 2.3. (i) For all u, v ∈ N+, û+ v = û+ v̂.

(ii) If (um) is a sequence in N+ and um ↑ u, then u ∈ N+ and ûm ↑ û.

Given ϕ : X → [0,∞], let

(2.6) Nϕ := inf
{
u ∈ N+ : u ≥ ϕ

}

so that Nϕ is the smallest nearly hyperharmonic majorant of ϕ. Clearly,

(2.7) Nϕ ≤ Rϕ,

since W ⊂ N+. Further we easily obtain the following, where f ∨ g for functions f, g
on X denotes the pointwise maximum of f and g.

Proposition 2.4. Let ϕ : X → [0,∞] and N̂ϕ := N̂ϕ.

(i) Then Nϕ = ϕ ∨ N̂ϕ.

(ii) If ϕ is finely lower semicontinuous, then Nϕ = N̂ϕ = Rϕ ∈ W.

(iii) If ϕ1, ϕ2, . . . : X → [0,∞] and ϕm ↑ ϕ, then Nϕm
↑ Nϕ and N̂ϕm

↑ N̂ϕ.

Proof. (i) Clearly, v := ϕ ∨ N̂ϕ satisfies N̂ϕ ≤ v ≤ Nϕ. Therefore v ∈ N+, by
Proposition 2.2, and Nϕ ≤ v because of ϕ ≤ v.

(ii) If ϕ is finely lower semicontinuous, then w := N̂ϕ ∈ W and w ≥ ϕ, by (2.4).
So w ≥ Rϕ ≥ Nϕ ≥ w.

(iii) Consequence of Proposition 2.3,(ii) and (2.4). �

For all functions ϕ : X → [0,∞] and x ∈ X, let

Mϕ(x) := sup

{
ˆ ∗

ϕdµ : µ ∈ Mx(W)

}
,

M ′
ϕ(x) := sup

{
ˆ ∗

ϕdεV
c

x : x ∈ V ∈ Uc

}
,

M ′′
ϕ(x) := sup

{
ˆ ∗

ϕdεKx : K compact in X \ {x}

}
,

M ′′′
ϕ (x) := sup

{
ˆ ∗

ϕdεAx : A ∈ B, A finely closed, x /∈ A

}
,

where we may replace the upper integrals by integrals, if ϕ is B̃∗-measurable.

Proposition 2.5. Let ϕ be a positive numerical function on X. Then

(2.8) M ′
ϕ =M ′′

ϕ =M ′′′
ϕ ≤Mϕ.

If ϕ is B̃∗-measurable, then ϕ ∨M ′
ϕ =Mϕ.
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Proof. Of course, M ′
ϕ ∨M

′′
ϕ ≤M ′′′

ϕ ≤Mϕ. Let us fix x ∈ X.

Let A be a finely closed Borel set, x /∈ A, and b <
´ ∗
ϕdεAx . By [4, VI.4.6],

εAx is supported by A. So there exists a compact K in A such that
´ ∗

1Kϕdε
A
x > b.

By [4, VI.9.4], 1Kε
A
x ≤ εKx , hence b <

´ ∗
1Kϕdε

A
x ≤

´ ∗
ϕdεKx ≤ M ′′

ϕ(x). Thus
M ′′′

ϕ (x) ≤M ′′
ϕ(x).

Next let K be a compact set in X \ {x}, b < c <
´ ∗
ϕdεKx and p ∈ P(X),

p > 0. Then there exists m ∈ N such that ϕ′ := ϕ ∧ (mp) satisfies
´ ∗
ϕ′ dεKx > c.

Since q := mp is a potential, there exists, by [4, II.5.2], a relatively compact open
neighborhood U of {x} ∪K such that

´

q dεU
c

x < c − b. Let us define V := U \ K
and ν := 1UcεV

c

x . By [4, VI.9.4],

ν ≤ εU
c

x and εKx = 1Kε
V c

x + νK .

Therefore
ˆ

q dνK ≤

ˆ

q dν ≤

ˆ

q dεU
c

x < c− b and c <

ˆ ∗

ϕ′ dεKx ≤

ˆ ∗

ϕdεV
c

x +

ˆ

q dνK .

So b <
´ ∗
ϕdεV

c

x , and we conclude that M ′′
ϕ(x) ≤M ′

ϕ(x) completing the proof of the
equalities in (2.8).

Finally, we suppose that ϕ is B̃∗-measurable and fix µ ∈ Mx(W). Let us assume
for the moment that

´

ϕdµ < ∞. There exist positive Borel measurable functions
f, g on X such that f ≤ ϕ ≤ g and

(2.9)

ˆ

f dµ =

ˆ

ϕdµ =

ˆ

g dµ.

Using the integral representation (1.4), we see that
´

f dν =
´

g dν for ρ-a.e. ν ∈ E,
and hence

ˆ

f dν =

ˆ

ϕdν ≤ ϕ(x) ∨M ′′′
ϕ (x) for ρ-a.e. ν ∈ E.

Thus
´

ϕdµ =
´

f dµ ≤ ϕ(x) ∨ M ′′′
ϕ (x), by (1.4) and (2.9). In the general case,

we apply the previous considerations to the functions ϕ ∧ (mu0), m ∈ N, and let
m→ ∞. �

Corollary 2.6. Let u be a positive numerical function on X and x ∈ X. Then

the following properties are equivalent:

(i) For every V ∈ Uc containing x,
´ ∗
u dεV

c

x ≤ u(x).
(ii) For every subset A of X \ {x},

´ ∗
u dεAx ≤ u(x).

(iii) For every compact K in X \ {x},
´ ∗
u dεKx ≤ u(x).

If u is B̃∗-measurable, then these properties hold if and only if
´

u dµ ≤ u(x) for

every µ ∈ Mx(W).

Moreover, we have the following.

Proposition 2.7. Let u ∈ N+ be B∗-measurable and let µ, ν be measures on X
such that

´

w dµ ≤
´

w dν for every w ∈ W, and
´

p dν < ∞ for some strictly

positive p ∈ P(X). Then
´

u dµ ≤
´

u dν.

Proof. By [4, VI.12.6], there exists a kernel V on X such that V (x, ·) ∈ Mx(W)
for every x ∈ X and µ = νV . By Corollary 2.6, V u ≤ u. Let f be a B-measurable
function on X such that 0 ≤ f ≤ u and f = u (ν + µ)-a.e. Then

´

u dµ =
´

f dµ =
´

V f dν, where V f ≤ V u ≤ u. Thus
´

u dµ ≤
´

u dν. �
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So our (positive) nearly hyperharmonic functions are functions which in [2, 3, 7,
8, 17, 19] (mostly assuming additional measurability properties) are called strongly
supermedian.

3. Identity of Mϕ and Nϕ

In this section, we shall give a fairly straightforward proof for the following result.

Theorem 3.1. For every B̃∗-measurable numerical function ϕ ≥ 0 on X,

Mϕ = Nϕ = ϕ ∨ N̂ϕ.

In particular, Mϕ is the smallest nearly hyperharmonic majorant of ϕ, and Mϕ is (at

least) “as measurable as ϕ”, that is, if A is any σ-algebra on X such that B ⊂ A ⊂ B̃∗

and ϕ is A-measurable, then Mϕ is A-measurable.

Remark 3.2. In a more general setting, this has been shown by more involved
methods for the smaller class of functions ϕ ≥ 0 which are nearly Borel measurable
or, slightly more general, nearly analytic (see [16, 8, 2, 3]).

To prove Theorem 3.1 we start considering the case, where ϕ is upper semicon-
tinuous and P-bounded. We first recall the following ([11, Corollary 1.2.2]).

Proposition 3.3. For all upper semicontinuous P-bounded positive functions

ψ, ψ1, ψ2, . . . on X the following holds:

• The function Rψ is upper semicontinuous. It is harmonic on X \ supp(ψ).
• If ψ is continuous, then Rψ is continuous.

• If ψm ↓ ψ, then Rψm
↓ Rψ.

The following consequence of the theorem of Hahn–Banach is known in more
general situations (see e.g. [18, p. 226]). For the convenience of the reader we include
a complete proof.

Proposition 3.4. Let ψ ≥ 0 be upper semicontinuous and P-bounded. Then,

for every x ∈ X, there exists µ ∈ Mx(W) such that
´

ψ dµ = Rψ(x).

Proof. (a) Let x ∈ X and ϕ ∈ CP(X), ϕ ≥ 0. Since the mapping f 7→ Rf+(x) is
sublinear on CP(X), there exists a linear form µ on CP(X) such that

µ(ϕ) = Rϕ(x) and µ(f) ≤ Rf+(x) for every f ∈ CP(X).

If f ∈ CP(X) and f ≤ 0, then µ(f) ≤ R0(x) = 0. Therefore µ is a measure on X. Of
course, µ(p) ≤ p(x) for every p ∈ P(X), and hence µ ∈ Mx(W).

(b) There exist ϕm ∈ CP(X) such that ϕm ↓ ψ. By (a), for every m ∈ N, there
exists a measure µm ∈ Mx(W) such that µm(ϕm) = Rϕm

(x). We may (passing to
a subsequence) assume without loss of generality that the sequence (µm) converges
to a measure µ ∈ Mx(W) (that is, limm→∞ µm(f) = µ(f) for every f ∈ CP(X)).
Then, for every k ∈ N,

Rψ(x) = lim
m→∞

Rϕm
(x) = lim

m→∞
µm(ϕm) ≤ lim

m→∞
µm(ϕk) = µ(ϕk).

Letting k → ∞, we get Rψ(x) ≤
´

ψ dµ. Trivially
´

ψ dµ ≤
´

Rψ dµ ≤ Rψ(x). �

Corollary 3.5. Let ψ : X → [0,∞] be upper semicontinuous and P-bounded.

Then

Mψ = Nψ = Rψ = ψ ∨ R̂ψ.
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Proof. By Proposition 3.4, Rψ ≤ Mψ. By Proposition 2.4,(i), the nearly hyper-

harmonic function u := Nψ = ψ∨N̂ψ is Borel measurable, and hence, by Corollary 2.6,
Mψ ≤ Mu ≤ u. The proof is finished, since u ≤ Rψ, by (2.7). �

For every ϕ : X → [0,∞], let Ψϕ denote the set of all bounded upper semicon-
tinuous functions 0 ≤ ψ ≤ ϕ with compact support in {ϕ > 0}. We are now able to
prove even more than announced in Theorem 3.1.

Theorem 3.6. Let ϕ : X → [0,∞] be B̃∗-measurable. Then

(3.1) Mϕ = sup{Rψ : ψ ∈ Ψϕ} = Nϕ = ϕ ∨ N̂ϕ,

and there is an increasing sequence (ψm) in Ψϕ such that

(3.2) Nϕ = ϕ ∨ supm∈NRψm
= ϕ ∨ supm∈N R̂ψm

.

If ϕ ≤ s for some s ∈ W ∩ C(X), then Mϕ is harmonic on any open set, where

Mϕ ≥ αϕ for some α > 1.

Proof. Clearly, Mϕ = sup{Mψ : ψ ∈ Ψϕ}, where Mψ = Nψ = Rψ = ψ ∨ R̂ψ for
every ψ ∈ Ψϕ, by Corollary 3.5. Since (ϕ ∧ n)1{x} ∈ Ψϕ, x ∈ X, n ∈ N, we obtain
that

(3.3) Mϕ = sup{Rψ : ψ ∈ Ψϕ} = ϕ ∨ sup{R̂ψ : ψ ∈ Ψϕ} ≤ ϕ ∨ N̂ϕ = Nϕ.

In particular, Mϕ is B̃∗-measurable. By [4, I.1.7], there is an increasing sequence (ψm)

in Ψϕ such that supm∈N R̂ψm
= sup{R̂ψ : ψ ∈ Ψϕ}. Then ϕ ∨ R̂ψm

↑Mϕ as m→ ∞.
We now claim that

(3.4) Mϕ ∈ N+,

and therefore Nϕ ≤Mϕ. Having (3.3) this implies that (3.1) and (3.2) hold.
So let x ∈ V ∈ Uc, µ := εV

c

x . To show that
´

Mϕ dµ ≤ Mϕ(x) we may assume
that

´

ϕdµ <∞, since otherwise Mϕ(x) = ∞. Let a < b <
´

Mϕ dµ. By (3.3), there
exist m ∈ N and ψ ∈ Ψϕ such that

b <

ˆ

ϕ ∨ R̂ψm
dµ and

ˆ

(ϕ− ψ) dµ < b− a.

Of course, we may assume that ψm ≤ ψ. Clearly, ϕ ∨Rψ ≤ Rψ + ϕ− ψ. So

b <

ˆ

ϕ ∨ Rψ dµ ≤

ˆ

Rψ dµ+ (b− a),

and hence

a <

ˆ

Rψ dµ ≤ Rψ(x) ≤ Mϕ(x).

Finally, suppose that ϕ ≤ s for some s ∈ W ∩ C(X) and let U be an open
set, where ϕ vanishes. Then all functions gm := Rψm

|U are harmonic on U , by
Proposition 3.3, and hence Mϕ|U = sup gm is harmonic on U . An application of the
next Proposition completes the proof. �

Proposition 3.7. Let F be a convex cone of numerical functions on a set Y and

f0 ∈ F , 0 < f0 <∞. For every numerical function ϕ ≥ 0 on Y , let

Fϕ := inf{f ∈ F : f ≥ ϕ}.

Then Fϕ1X\A
= Fϕ for every numerical function ϕ ≥ 0 on Y and every A ⊂ X such

that αϕ ≤ Fϕ ∧ (Mf0) on A for some α,M ∈ (1,∞).
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Proof. Clearly, it suffices to consider the case, where ϕ is not identically zero
on A. Trivially, u := Fϕ1X\A

≤ Fϕ. For the reverse inequality let ε > 0, v := u+ εf0,

β := inf{b ∈ (0,∞) : ϕ ≤ bv on A} and γ := 1 ∨ β.

Then 0 < β ≤M/ε and ϕ ≤ γv on X. Hence (β/α)v(x) < ϕ(x) for some x ∈ A and
Fϕ ≤ γv, which leads to βv(x) < αϕ(x) ≤ Fϕ(x) ≤ γv(x). Thus γ = 1, v ≥ Fϕ, and
the proof is completed letting ε→ 0. �

Remark 3.8. Suppose for a moment that every semipolar set is polar (axiom of

polarity, Hunt’s hypothesis (H)) and let ϕ : X → [0,∞] be B̃-measurable. Then, by
[15, Theorem 2.2] and (3.2), there exists an increasing sequence (ψn) in Ψϕ such that

(3.5) Rϕ = ϕ ∨ supn∈NRψn
= Nϕ.

Let us note that the equality Rϕ = Nϕ will follow as well from Proposition 5.3.

Indeed, defining u := Nϕ = ϕ ∨ N̂ϕ, we trivially have Rϕ = Ru. By Proposition 5.3,
the set P := {û < u} is semipolar, hence polar because of hypothesis (H). So we
obtain that R(u−û)1P = (u− û)1P and therefore

Ru ≤ û+R(u−û)1P = û+ (u− û)1P = u ≤ Ru.

Thus Ru = u, Rϕ = Nϕ.
In fact, the equality u = Ru (= inf{w ∈ W : w ≥ u}) holds for every nearly

Borel measurable u ∈ N+ even without assuming the axiom of polarity (see [2,
Theorem 6.4] or [3, Theorem 4.3.3] based on long and subtle preparations).

4. Application to Jensen measures

In this section, let us suppose that (X,W) is a harmonic space, that is, the
harmonic measures µVx = εV

c

x , V relatively compact open in X, x ∈ X, are supported
by the boundary ∂V of V .

Given an open set U inX, let ∗H(U) denote the set of all hyperharmonic functions
on U , that is, lower semicontinuous numerical functions w > −∞ on U such that
´

w dεV
c

x ≤ w(x) for all open V , which are relatively compact in U , and x ∈ V .
Given x ∈ U , let Jx(U) denote the set of all Jensen measures for x with respect

to U , that is, measures µ with compact support in U satisfying

(4.1)

ˆ

w dµ ≤ w(x) for every w ∈ ∗H(U).

In fact, it suffices to know (4.1) for all w ∈ ∗H(U) ∩ C(U), since every w ∈ ∗H(U) is
an increasing limit of functions in ∗H(U) ∩ C(U).

Since W = {w ∈ ∗H(X) : w ≥ 0} and ∗H(X)|U ⊂ ∗H(U), we have

εx ∈ Jx(U) ⊂ Jx(X) ⊂ Mx(W), x ∈ U

(where we consider measures in Jx(U) as measures on X). It will be convenient to
introduce also the union J ′

x(X) of all Jx(U), U open relatively compact in X, x ∈ U
(see [13] for properties implying that J ′

x(X) = Jx(X)).

Finally, for every locally lower bounded function ϕ on X which is B̃∗-measurable,
we define functions Jϕ and J ′

ϕ on X by

Jϕ(x) := sup

{
ˆ

ϕdµ : µ ∈ Jx(X)

}
and J ′

ϕ(x) := sup

{
ˆ

ϕdµ : µ ∈ J ′
x(X)

}
.
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If ϕ ≥ 0, then obviously M ′
ϕ ≤ J ′

ϕ ≤ Jϕ ≤ Mϕ. Therefore Proposition 2.5 and
Theorem 3.6 immediately yield the following.

Theorem 4.1. Let ϕ be a positive B̃∗-measurable numerical function on X.

Then

Jϕ = J ′
ϕ = ϕ ∨M ′

ϕ =Mϕ = Nϕ = ϕ ∨ N̂ϕ.

In particular, Jϕ is Borel measurable if ϕ is Borel measurable.

Similarly as in [15] we may now extend this result to functions ϕ which are not
necessarily positive. To that end let N denote the set of all nearly hyperharmonic
functions on X, that is, locally lower bounded functions w : X →]−∞,∞] such that
´ ∗
w dεV

c

x ≤ w(x) for all x ∈ X and relatively compact open neighborhoods V of x.
We immediately get the following generalization of Proposition 2.3.

Proposition 4.2. The set N of all nearly hyperharmonic functions on X has

the following properties:

(i) N is a convex cone containing ∗H(X).
(ii) For every u ∈ N , û = ûf ∈ ∗H(X).
(iii) If (um) is a sequence in N and um ↑ u, then u ∈ N and ûm ↑ û.
(iv) For every subset V of N which is locally lower bounded, inf V ∈ N .

Extending the definitions of Jϕ, J
′
ϕ, and M ′

ϕ in an obvious way, we get the
following.

Corollary 4.3. Let ϕ be a locally lower bounded B̃∗-measurable numerical func-

tion on X such that ϕ+ h ≥ 0 for some harmonic function h on X. Then

Jϕ = J ′
ϕ = ϕ ∨M ′

ϕ = Nϕ = ϕ ∨ N̂ϕ.

In particular, Jϕ is Borel measurable if ϕ is Borel measurable.

Proof. It suffices to observe that ϕ + h is B̃∗-measurable and that obviously
Jϕ = Jϕ+h − h, J ′

ϕ = J ′
ϕ+h − h, M ′

ϕ =M ′
ϕ+h − h, and Nϕ = Nϕ+h − h. �

Localizing this result we may deal with functions ϕ which are locally lower
bounded.

Corollary 4.4. Let ϕ be a locally lower bounded B̃∗-measurable numerical func-

tion on X such that, for every relatively compact open set U in X, there exists

a harmonic function h on X with ϕ + h ≥ 0 on U . Then

J ′
ϕ = ϕ ∨M ′

ϕ = Nϕ = ϕ ∨ N̂ϕ.

In particular, J ′
ϕ is Borel measurable if ϕ is Borel measurable.

Proof. Let Un be relatively compact open sets in X such that Un ↑ X as n→ ∞.
For every n ∈ N, we apply Corollary 4.3 to the harmonic space (Un,

∗H+(Un)) and
obtain that, for x ∈ Un,

sup

{
ˆ ∗

ϕdµ : µ ∈ Jx(Un)

}
= ϕ(x) ∨ sup

{
ˆ ∗

ϕdεV
c

x : x ∈ V ∈ Uc, V ⊂ Un

}

= inf{w(x) : w nearly hyperharmonic on Un, w ≥ ϕ on Un} =: vn(x),

where vn(x) = ϕ(x) ∨ v̂n(x). Defining vn(x) := ϕ(x), x ∈ X \ Un, we easily see that
the sequence (vn) is increasing to a nearly hyperharmonic function v on X, where

v = Nϕ = ϕ ∨ N̂ϕ, by Proposition 4.2. The proof is completed letting n→ ∞. �
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Remark 4.5. By Remark 3.8, the results in this Section imply the results in
[15, Section 3].

5. Some improvement of the measurability

Let us now return to the general situation of an arbitrary balayage space (X,W).
Sometimes we can say a bit more about the measurability of Nϕ (and hence on the
measurability of Jϕ in Section 4).

We recall that a set A in X is called thin at x ∈ X if ε̂Ax 6= εx. It is totally thin

if it is thin at every x ∈ X. Every totally thin set is finely closed and contained in
a totally thin Borel set. A semipolar set is a countable union of totally thin sets.

So the σ-algebra Bf of all finely Borel subsets of X (that is, the smallest σ-algebra
on X containing all finely open sets) contains all semipolar sets. By [4, VI.5.16]), for
every B ∈ Bf , there are B1, B2 ∈ B such that B1 ⊂ B ⊂ B2 and B2 \B1 is semipolar.
Thus Bf is the smallest σ-algebra containing B and all semipolar sets. In particular,
we have B̃ ⊂ Bf .

Example 5.1. Suppose for the moment that X = R
d×R, d ≥ 1, and W is the

set of all positive hyperharmonic functions associated with the heat equation on R
d+1.

Let S be any subset of Rd × {0}. Then S is semipolar; it is polar if and only if S
has outer d-dimensional Lebesgue measure zero. The function u := 1S + 1Rd×(0,∞) is

nearly hyperharmonic, Bf -measurable, and {û < u} = S.

Proposition 5.2. Let S ∈ B̃∗ be semipolar. Then there exists a sequence (Kn)
of compacts in S such that the set S \

⋃∞
n=1Kn is polar. In particular, S ∈ B̃.

Proof. By [10, Theorem 1.5] (which holds as well for balayage spaces), there exists
a measure µ on X such that µ∗(B) > 0 for every subset B of S which is not polar.
There exists a subset S0 ∈ B∗ of S such that the set P0 := S \ S0 is polar. Moreover,
there exists a sequence (Kn) of compacts in S0 such that P1 := S0 \

⋃∞
n=1Kn is

a µ-null set, and hence polar. Since P0 ∪ P1 is polar, the proof is finished. �

The equivalence in the following proposition is obvious if u ∈ N+ satisfies

(5.1) u = Ru,

since then u is finely upper semicontinuous and the set {û < u} is semipolar by
[4, VI.5.11]. We recall from Remark 3.8 that (5.1) holds if u ∈ N+ is nearly Borel

measurable. It would be interesting to know if it is even satisfied if u is only B̃∗-
measurable.

Proposition 5.3. For every u ∈ N+ the following statements are equivalent:

(i) The set {û < u} is semipolar.

(ii) The function u is finely Borel measurable.

Proof. (i)⇒ (ii): For every t > 0, the set {u ≥ t} is the union of {û ≥ t} ∈ B
and the semipolar set {u ≥ t > û}.

(ii)⇒ (i): There is a semipolar Borel set S0 such that the function v0 := u1X\S0

is B-measurable. Suppose that the set {û < u} is not semipolar. Then the Borel set
A := {û < u} \S0 is not semipolar. So, by [4, VI.8.9], there is a measure µ 6= 0 on X
such that µ(X \A) = 0 and µ does not charge semipolar sets. There exist functions
ψm ∈ Ψv0 such that ψm ↑ v0 outside a µ-null set B ∈ B. By Corollary 3.5,

ψm ≤ Rψm
= Nψm

≤ Nu = u, m ∈ N.
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Hence {supm∈NRψm
< u} ⊂ B ∪S0. Further, the union S1 of all sets {R̂ψm

< Rψm
},

m ∈ N, is semipolar, and we obtain that

û ≥ supm∈N R̂ψm
= supm∈NRψm

= u on X \ (B ∪ S0 ∪ S1).

Thus A ⊂ B ∪ S1 and µ(X) = µ(A) = 0, a contradiction. �

Corollary 5.4. If ϕ : X → [0,∞] is Bf ∩ B̃∗-measurable, then the function Nϕ

is B̃-measurable.

Proof. By Theorem 3.6, the function u := Nϕ is Bf ∩ B̃∗-measurable. Let t ∈ R

and S := {u ≥ t > û}. Then S ∈ B̃∗ and S is semipolar, by Proposition 5.3. So

S ∈ B̃, by Proposition 5.2, and {u ≥ t} = {û ≥ t} ∪ S ∈ B̃. �

Further, let A(X) denote the set of all numerical functions ϕ on X having the
following property: For every t ∈ R, there exists an analytic set A in X such that the
set {ϕ ≥ t}△A is semipolar. By the discussion preceding Proposition 5.3, ϕ ∈ A(X)
for every finely Borel measurable function ϕ.

Proposition 5.5. Let ϕ be a positive function in A(X) which is B̃∗-measurable.

Then Nϕ is finely upper semicontinuous and B̃-measurable.

Proof. By Theorem 3.6, we know that u := Nϕ ∈ A(X) and u is B̃∗-measurable.
Let x ∈ X and u(x) < a. We claim that {u < a} is a fine neighborhood of x.
Indeed, suppose the contrary. Then the set A := {u ≥ a} is not thin at x. Let A′

be an analytic set such that A′ ⊂ A and A \ A′ is semipolar. We fix η ∈ (0, 1) such
that u(x) < aη2. Since V := {u0(x) > ηu0} is a neighborhood of x, we know, by
[4, VI.4.2], that either the analytic set A′ ∩ V or the semipolar set S := (A \A′)∩ V
is not thin at x.

If A′ ∩ V is not thin at x, then, by [4, VI.1.10 and 1.3.5] , there is a compact K
in A′ ∩ V such that RK

u0
(x) > ηu0(x). By definition of semipolar sets, S is the union

of totally thin sets Tm, m ∈ N. By [4, VI.5.7], the union of finitely many totally thin
sets is totally thin. Hence we may assume without loss of generality that Tm ↑ S
as m→ ∞. If S is not thin at x, we then obtain, by [4, VI.1.7], that RTm

u0
(x) > ηu0(x)

for some m ∈ N.
Thus, in any case, there exists a finely closed set F such that

F ⊂ A ∩ V ∈ B̃∗ and RF
u0
(x) > ηu0(x).

Since u ≥ a > aηu0(x)
−1u0 on A ∩ V and εFx (X \ (A ∩ V )) = 0, by [4, VI.4.6], we

conclude that

u(x) ≥

ˆ

u dεFx ≥ aηu0(x)
−1

ˆ

u0 dε
F
x = aηu0(x)

−1RF
u0
(x) ≥ aη2 > u(x),

a contradiction. By Corollary 5.4, the proof is finished. �

Corollary 5.6. Let ϕ : X → [0,∞] be such that, for every t > 0, there exists an

analytic set A in X such that the set {ϕ ≥ t}△A is polar. Then Nϕ is B̃-measurable.
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