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Abstract. This paper deals with the smoothness and strongly pseudoconvexity of p-Weil–

Petersson metric. This metric is a complex Finsler metric on the p-integrable Teichmüller space of a

Riemann surface satisfying Lehner’s condition, which is an extended concept of the Weil–Petersson

metric on the square integrable Teichmüller space.

1. Introduction

The Teichmüller space of a Riemann surface of analytically finite type has a
complex structure modeled on the complex Hilbert space consisting of harmonic
Beltrami differentials on the surface equipped with hyperbolic L2-norm. The Weil–
Petersson metric is an Hermitian metric induced by this Hilbert manifold structure
and is studied in many fields. In the complex analysis, Ahlfors [2, 3] proved that the
Weil–Petersson metric is a Kähler metric and has the negative holomorphic sectional
curvature, negative Ricci curvature and negative scalar curvature. In the hyperbolic
geometry, Wolpert [17, 18] gave the several relations between the Weil–Petersson
metric and the Fenchel–Nielsen coordinate.

In general, that Hilbert manifold structure cannot be introduced to the Teichmül-
ler space of a Riemann surface of analytically infinite type (cf. [9]). Takhtajan and
Teo [15] realized this structure as a distribution on the universal Teichmüller space.
Cui [5] accomplished the same result on the subset of the universal Teichmüller space
independently of Takhtajan and Teo. Hui [6] and Tang [16] extended the argument
of Cui to the subset modeled on p-integrable Beltrami differentials for p ≥ 2, which
we call the p-integrable Teichmüller space. Later, Radnell, Schippers and Staubach
[11, 12, 13] composed a Hilbert manifold structure on a certain refined Teichmüller
space of a bordered Riemann surface, which is refered to as the WP-class Teichmüller
space.

In [5, 15], the Weil–Petersson metric was studied for each Hilbert manifold struc-
ture. In particular, it was shown that this metric is negatively curved (cf. [15]) and
complete (cf. [5]). Recently, Matsuzaki [8] researched some properties of the p-Weil–
Petersson metric on the p-integrable Teichmüller space of the unit disk for p ≥ 2.
This metric is a certain extended concept of the Weil–Petersson metric on the square
integrable Teichmüller space. In fact, it was proved in [8] that the metric is complete
and continuous.

Based on their results, the author [19] introduced some complex analytic structure
on the p-integrable Teichmüller space of a Riemann surface with Lehner’s condition
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for p ≥ 2. In particular, this structure is modeled on p-integrable holomorphic qua-
dratic differentials, or equivalently on p-integrable harmonic Beltrami differentials.
We will remark the latter case in Section 2. Here, a Riemann surface satisfies Lehner’s
condition if the infimum of the length of all simple closed geodesics on the surface is
positive.

It is well-known that the metric structure and analytic structure of the Teich-
müller space can be inherited from those of the universal Teichmüller space in many
cases. In fact, for every hyperbolic Riemann surface R, there exists a canonical em-
bedding of the Teichmüller space of R into the universal one, whose image becomes a
submanifold. Moreover, the embedding becomes a contraction mapping with respect
to their Teichmüller distances. We emphasize that this result does not follow in the
p-integrable Teichmüller space because the hyperbolic Lp-norm is affected by the fig-
ure of Riemann surfaces better than L∞-norm (see Proposition 2.2). Therefore, we
have to study the p-integrable Teichmüller space without using the results of Cui,
Takhtajan and Teo as they are.

In the recent paper [20], the author proved that the Kählerity and negativity
of the Weil–Petersson metric on the square integrable Teichmüller space, which was
proved originally for the Teichmüller space of a compact Riemann surface (cf. [2]).
We expect that this result is generalized to the p-integrable case and that other results
given by Ahlfors and Wolpert would also hold in our case, which is our motivation.

This paper corresponds to the first step to study the metric structure of the p-
integrable Teichmüller space. Our aim is to consider smoothness and strongly pseu-
doconvexity of the p-Weil–Petersson metric because these properties are necessary
for our research in the future.

2. Complex structure on p-integrable Teichmüller space

In this section, we will give the detail of the complex structure on the p-integrable
Teichmüller space moleded on harmonic Beltrami differentials, which is necessary for
the next section. This structure is biholomorphic equivalent to the one obtained
from Theorem 4.4 in [19]. Some readers, which are familiar with complex analytic
structure of the Teichmüller space, may skip this section because we apply how to
construct its structure.

First, we define the p-integrable Teichmüller space. Let Γ be a Fuchsian group
acting on the upper half plane H = {z ∈ C | Im z > 0} and L∞(H,Γ) be the Banach
space of Beltrami differentials on H for Γ and finite L∞-norm

‖µ‖∞ = ess sup
z∈N

|µ(z)|,

where N is a fundamental region on H for Γ. Here, a complex valued measurable
function µ on H is a Beltrami differential for Γ if (µ ◦ γ)γ′/γ′ = µ for every γ ∈ Γ.
Let Bel(H,Γ) be the open unit ball of L∞(H,Γ). Each element in Bel(H,Γ) is called
a Beltrami coefficient on H for Γ. For µ ∈ Bel(H,Γ), let fµ be the quasiconformal
self-mapping of H satisfying the Beltrami equation ∂̄f = µ ∂f and normalized by
fixing 0, 1,∞. Two Beltrami coefficients µ, ν ∈ Bel(H,Γ) are Teichmüller equivalent

if fµ|R = f ν |R. Then the Teichmüller space T (Γ) of Γ is defined as the quotient
space of Bel(H,Γ) by the Tei chmüller equivalence relation. Each element of the
Teichmüller space is called a Teichmüller equivalence class. Let [µ] be the Teichmül-
ler equivalence class represented by µ ∈ Bel(H,Γ). In particular, the Teichmüller
equivalence class represented by the zero function on H is called the base point,
denoted by 0. For a linear map A on L∞(H,Γ), we usually use the representation
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A[µ] as the image of µ ∈ L∞(H,Γ). Hereafter, the reader should be careful so that
he/she does not confuse how to use the bracket “[ ]”.

For p ≥ 1, let Lp(H,Γ) be the Banach space of Beltrami differentials for Γ with
finite hyperbolic Lp-norm

‖µ‖p =

(
ˆ

N

|µ(z)|pρH(z)
2 dσ(z)

)
1
p

,

where ρH(z) = (2 Im z)−1 is the Poincaré metric on H and dσ(z) = dx dy for z =
x + iy. Set Aelp(H,Γ) = Bel(H,Γ) ∩ Lp(H,Γ). The p-integrable Teichmüller space

T p(Γ) of a Fuchsian group Γ is defined by T p(Γ) = {[µ] ∈ T (Γ) | µ ∈ Aelp(H,Γ)}.
Next, we introduce the complex structure on T p(Γ). Let H∗ = {z ∈ C | Im z < 0}

be the lower half plane. A quadratic differential ϕ on H
∗ for Γ is bounded if the

hyperbolic L∞-norm
‖ϕ‖∞ = sup

z∈N∗

|ϕ(z)|ρH∗(z)−2

is finite. Here N∗ is a fundamental region of H
∗ for Γ and ρH∗(z) = (−2 Im z)−1

is the Poincaré metirc on H
∗. Similarly, A quadratic differential ϕ on H

∗ for Γ is
p-integrable if the hyperbolic Lp-norm

‖ϕ‖p =

(
ˆ

N∗

|ϕ(z)|pρH∗(z)2−2p dσ(z)

)
1
p

is finite. Let B(H∗,Γ) and Ap(H∗,Γ) be the Banach space and the Hilbert space
of bounded and square integrable holomorphic quadratic differentials on H

∗ for Γ,
respectively.

There exists a relation between the hyperbolic Lp-norm and L∞-norm for Fuch-
sian groups with Lehner’s condition:

Proposition 2.1. [7, 10, 14] A Fuchsian group Γ satisfies Lehner’s condition if

and only if there exist an index p ≥ 1 and a constant Cp(Γ) depending only on Γ and

p such that

(2.1) ‖ϕ‖∞ ≤ Cp(Γ)‖ϕ‖p

for every ϕ ∈ Ap(H∗,Γ). Especially, Ap(H∗,Γ) is contained in B(H∗,Γ).

Let us introduce harmonic Beltrami differentials. Set

µ[ϕ](z) =
1

4
ρH(z)

−2 ϕ(z) = (Im z)2 ϕ(z)

for ϕ ∈ Ap(H,Γ), where Ap(H,Γ) is the Hilbert space of p-integrable holomorphic
quadratic differentials on H for Γ. Let Lp,∞(H,Γ) = Lp(H,Γ) ∩ L∞(H,Γ). We see
that Lp,∞(H,Γ) forms a Banach space equipped with norm ‖ · ‖p,∞ = ‖ · ‖p + ‖ · ‖∞.
Then µ[ϕ] belongs to Lp,∞(H,Γ).

For a holomorphic function f , the function

Sf =

(

f ′′

f ′

)′

−
1

2

(

f ′′

f ′

)2

is the Schwarzian derivative of f . For µ ∈ Bel(H,Γ), we extend µ to a function on C

by letting 0 on H
∗. Then fµ is defined as the quasiconformal mapping on Ĉ with the

extended Beltrami coefficient µ that is normalized by limz→∞(fµ(z)− z) = 0. Let

(2.2) ϕ[µ](z) = −2DΦ(0)[µ](z̄) =
12

π

ˆ

H

µ(ζ)

(ζ̄ − z)4
dσ(ζ)
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for µ ∈ Lp,∞(H,Γ) and z ∈ H. Here Φ(µ) = Sfµ|H∗
is the Bers projection and DΦ

means the Fréchet derivative of Φ. Note that Φ is a holomorphic map of Aelp(H,Γ)
into Ap(H∗,Γ). It follows that

(2.3) ϕ[µ] = 4b2(ρ
2
H
µ̄)

for every µ ∈ Lp,∞(H,Γ). Here b2 is the Bergman projection. In other words,

b2(ϕ)(z) =
3

π

ˆ

H

ρH(ζ)
−2ϕ(ζ)KH(z, ζ) dσ(z)

for a measurable quadratic differential ϕ, where KH(z, ζ) = (z̄−ζ)−4 is the Bergman
kernel on H. Then ϕ[µ] is an element of Ap(H,Γ). It follows from formula (2.3) and
the reproducing formula of the Bergman kernel that for every ϕ ∈ Ap(H,Γ),

(2.4) ϕ[µ[ϕ]] = ϕ.

Set

(2.5) H [µ](z) = µ[ϕ[µ]](z) = −
1

2
ρH(z)

−2DΦ(0)[µ](z̄)

for µ ∈ Lp,∞(H,Γ), which is called the harmonic Beltrami differential for µ and
z ∈ H. By formula (2.4), we have

H [µ[ϕ]] = µ
[

(ϕ[µ[ϕ]])
]

= µ[ϕ]

for every ϕ ∈ Ap(H,Γ). This fact implies that

(2.6) H2 = H ◦H = H.

In other words, H is a projection of Lp,∞(H,Γ). If we set HBp(H,Γ) = H
(

Lp,∞(H,Γ)
)

,
then we have the direct sum decomposition

(2.7) Lp,∞(H,Γ) = HBp(H,Γ)⊕KerH.

Since H is a bounded linear operator, HBp(H,Γ) is a Banach subspace of Lp,∞(H,Γ).
Now let us introduce a complex structure on T p(Γ).

Aelp(H,Γ) Aelp(H,Γτ) Vτ

T p(Γ) T p(Γτ ) Ap(H∗,Γτ ) HBp(H,Γτ )

R̃e(τ)

̟τ̟

Rτ βτ χ

incl.

incl.

Φ
Φ

Figure.

For τ ∈ T (Γ), let Γτ = f νΓ(f ν)−1 be the Fuchsian group deformed by τ where ν ∈
τ . We note that Γτ is defined independently of the choice of ν. Let ̟τ : Bel(H,Γτ ) →
T (Γτ) be the canonical projection and

βτ ([µ]) = Sfµ|H∗

be the Bers embedding on T (Γτ ). It is known that βτ is a homeomorphism of T (Γτ )
into B(H∗,Γτ ). Theorem 4.4 in [19] means that βτ is also a homeomorphism of
T p(Γτ ) into Ap(H∗,Γτ ). In the proof, Proposition 2.1 is applied essentially.
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Let Bp(τ) = {ϕ ∈ Ap(H∗,Γτ ) | ‖ϕ‖p < 2/Cp(Γ
τ )}. By inequality (2.1), we have

‖ϕ‖∞ < 2 for every ϕ ∈ Bp(τ). Then it follows that for every ϕ ∈ Bp(τ), the
Ahlfors–Weill section of ϕ

χ(ϕ)(z) = −
1

2
ρH∗(z̄)−2ϕ(z̄) = µ

[

−2ϕ(z̄)
]

(z ∈ H)

belongs to HBp(H,Γτ). Indeed, χ is an isometry of Ap(H∗,Γτ ) onto HBp(H,Γτ) by
formula (2.5).

For µ, ν ∈ Bel(H,Γ), let R̃ν(µ) be the Beltrami coefficient of fµ ◦ (f ν)−1 and

R[ν]([µ]) = [R̃ν(µ)]. We call R̃ν and R[ν] the right translation map for ν and [ν],
respectively. Let DE(τ) be the Douady–Earle extension for τ and e(τ) be the Beltrami
coefficient of g1 ◦ DE(τ) ◦ g−1

2 , where g1, g2 are the conformal maps of D = {z ∈
C | |z| < 1} onto H such that g1 ◦ DE(τ) ◦ g−1

2 fixes 0, 1, ∞. By Proposition 5.1 in
[19], the right translation map R̃e(τ) (resp. Rτ ) is a homeomorphism of Aelp(H,Γ)
onto Aelp(H,Γτ ) (resp. of T p(Γ) onto T p(Γτ )).

Set Vτ = χ(Bp(τ)) ⊂ HBp(H,Γ). Then the collection

{Uτ = ̟ ◦ R̃−1
e(τ)(Vτ ) | τ ∈ T p(Γ)}

is an open covering of T p(Γ). In fact, τ belongs to Uτ for every τ ∈ T p(Γ) and
Uτ coincides with the preimage of the open set Vτ under the homeomorphism ςτ =
χ ◦ βτ ◦Rτ . Thus we obtain the family

A = {(Uτ , ςτ ) | τ ∈ T p(Γ)}.

It follows that A forms an atlas of T p(Γ) for every p ≥ 2 and every Fuchsian group
with Lehner’s condition. We omit the proof since it is given almost similarly to
the proof of Theorem 2.3 in [20] by replacing the letter “2” with “p” and by the
post-composition of λτ = βτ ◦Rτ by χ.

Since a chart (Uτ , ςτ ) is modeled on the Banach space HBp(H,Γτ) for every
τ ∈ T p(Γ), we obtain the following representation of the holomorphic tangent space
of T p(Γ) at τ :

T 1,0
τ T p(Γ) ≃ HBp(H,Γτ).

We end this section by remarking the relation between p-integrable (−1, 1)-differentials
for two Fuchsian groups.

Proposition 2.2. Let Γ be a Fuchsian group and Γ′ be a subgroup of Γ. Then

the following three conditions are equivalent:

(1) [Γ : Γ′] < ∞;

(2) Lp(H,Γ) is a subspace of Lp(H,Γ′) as a Banach space;

(3)
(

Lp(H,Γ) ∩ Lp(H,Γ′)
)

\ {0} 6= ∅.

The proof is given similarly to Proposition 2.4 in [20].
For every subgroup Γ′ of Γ, the Banach space L∞(H,Γ) is a subspace of L∞(H,Γ′)

since their L∞-norms coincide in L∞(H,Γ). Comparing this point with the above
proposition, we see that the metric and complex structures of T p(Γ) does not inherit
those of T p(Γ′) generally, and we emphasize that our study is not given as a corollary
of the results obtained in [2] and [15] for infinitely analytic type Fuchsian groups.

3. Definition of p-Weil–Petersson metric

In this section, we define the p-Weil–Petersson metric on the p-integrable Teich-
müller space. We first introduce the complex Finsler metric.
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Definition 3.1. Let M be a complex manifold modeled on a Banach space. A
real valued function F of the holomorphic tangent bundle T 1,0M is a complex Finsler
metric on M if the following two conditions are satisfied:

(1) For every (z, v) ∈ T 1,0M , F (z, v) ≥ 0, and F (z, v) = 0 if and only if v = 0;
(2) For every (z, v) ∈ T 1,0M and λ ∈ C, F (z, λv) = |λ|F (z, v).

For example, the Kobayashi metric and Carathéodory metric on a complex man-
ifold M are upper semicontinuous complex Finsler metrics. Other example is the
Hermitian metric on M , which induces a canonical C∞-smooth complex Finsler met-
ric. Here, a complex Finsler metric on M is Cn-smooth for n ∈ N ∪ {∞} if F is
Cn-smooth on T 1,0M \ {0}, where 0 means the zero section on the holomorphic tan-
gent bundle T 1,0M . In fact, if F is C2-smooth on T 1,0M , then F is induced by an
Hermitian metric on M . Note that the complex Finsler metric in many other papers
is defined as the C∞-smooth one in this paper.

Let z ∈ M and F be a complex Finsler metric on M that F (z, ·) is twice differ-
entiable on the holomorphic tangent space T 1,0

z M . Then F is strongly pseudoconvex

at z if
∂2G

∂t ∂t̄
(z, v + tζ)

∣

∣

∣

∣

t=0

> 0

for every v, ζ ∈ T 1,0
z M \ {0}, where G = F 2. If F is strongly pseudoconvex at

every z ∈ M , then F is called strongly pseudoconvex on M . When M is a finite
dimensional manifold, this condition means that the Levi matrix {Gαβ(z)} is positive
definite for every z ∈ M . The strong pseudoconvexity allows us to define a Hermitian
metric on the vertical bundle of M and to consider its holomorphic flag curvature
(see Chapter 2 in [1]).

In order to define the p-Weil–Petersson metric, we deal with the coordinate trans-
formation on the tangent bundle T 1,0T p(Γ). Take τ, τ ′ ∈ T p(Γ) with Uτ ∩Uτ ′ 6= ∅ and
ξ ∈ Uτ ∩Uτ ′ . Since every chart of A is determined uniquely by some point in T p(Γ),
we may assume τ ′ = ξ. Let us consider the derivative of the coordinate transforma-
tion ςτξ = ςξ ◦ ς

−1
τ : ςτ (Uτ ∩ Uξ) → ςξ(Uτ ∩ Uξ). It clearly follows that ςτξ(ςτ (ξ)) = 0.

Since ντ (ξ) = R̃−1
e(τ)(ςτ (ξ)) belongs to the Teichmüller equivalence class ξ, R̃ντ (ξ) is a

lift of Rξ. In addition, R̃ντ (ξ) = R̃ςτ (ξ) ◦ R̃e(τ) by the definition of righ t translation
maps. Then we have

ςτξ = ςτ ◦ ς
−1
ξ = (χ ◦ βξ ◦Rξ) ◦ (̟ ◦ R̃−1

e(τ))

= χ ◦ βξ ◦ (̟ξ ◦ R̃ντ (ξ)) ◦ R̃
−1
e(τ) = χ ◦ Φ ◦ R̃ςτ (ξ).

This implies that

Dςτξ(ςτ (ξ)) = D(χ ◦ Φ ◦ R̃ςτ (ξ))(ςτ (ξ))

= χ ◦DΦ(0) ◦DR̃ςτ (ξ)(ςτ (ξ)) = H ◦ Lςτ (ξ),

where Lςτ (ξ) = DR̃ςτ (ξ)(ςτ (ξ)) is a bounded linear isomorphism of Lp,∞(H,Γ) onto
Lp,∞(H,Γξ).

Therefore, in an open neighborhood Uτ ⊂ T p(Γ), the p-Weil–Petersson metric

on Uτ is defined as

(3.1) hp
WP(ξ, µ) =

∥

∥H ◦ Lςτ (ξ)[µ]
∥

∥

p,τ

for ξ ∈ Uτ and µ ∈ HBp(H,Γτ ) ≃ T 1,0
τ T p(Γ). Here, ‖·‖p,τ is the hyperbolic Lp-norm of

Lp(H,Γτ). From the argument above, the holomorphic tangent vector (ξ, µ) ∈ Uτ ×
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HBp(H,Γτ) is identified with (ξ,H ◦ Lςτ (ξ)[µ]) ∈ Uξ × HBp(H,Γξ). This observation
implies that hp

WP is invariant under coordinate transformations, that is, hp
WP becomes

a complex valued function on the holomorphic tangent bundle T 1,0T p(Γ). Moreover,
since ‖ · ‖p,τ is a norm, it clearly follows that hp

WP becomes a complex Finsler metric
on T p(Γ).

Remark. In [8], the p-Weil–Petersson metric is defined for the Banach manifold
structure modeled on the Banach space Ap(D∗) of p-integrable holomorphic quadratic
differential on D

∗ = {z ∈ C | |z| > 1}. Since D
∗ is conformally equivalent to

the lower half plane H
∗ and HBp(H, 1) is isometrically isomorphic to Ap(H∗), our

definition is essentially equivalent to Matsuzaki’s one when Γ = 1. Here, 1 = {idH}
means the trivial group.

4. Some lemmas

This section is devoted to some lemmas for the main theorem. Let K(z, w) =
(z − w)−2 for z, w ∈ C. For µ ∈ Bel(H, 1), set

Kµ(z, w̄) = K(fµ(z), fµ(w))∂fµ(z)∂fµ(w) =
∂fµ(z)∂fµ(w)

(

fµ(z)− fµ(w)
)2

and Fz(µ) = −Kµ(z, z̄). The operator Fz(µ) means the deformation of the Poincaré
metric by µ since Fz(0) = −K(z, z̄) = ρH(z)

2. There exists some estimation for
Fz(µ) around µ = 0 as follows:

Lemma 4.1. [15, Lemma 2.5] For every ε > 0, there exists a constant 0 < δ < 1
such that for every µ ∈ HB∞(H, 1) with ‖µ‖∞ < δ and every z ∈ H,

∣

∣Fz(µ)− ρH(z)
2
∣

∣ < ερH(z)
2.

We note that this lemma is actually given for the unit disk D instead of H in
[15]. Since D is conformally equivalent to H, this lemma clearly follows.

For a (Fréchet) differentiable complex valued functional f on a domain U of a
complex Banach space B, let us define

D′f(z)[v] =
1

2
(Df(z)[v]− iDf(z)[iv]) ,

D′′f(z)[v] =
1

2
(Df(z)[v] + iDf(z)[iv])

for (z, v) ∈ U ×B. Then D′f(z) is a bounded complex linear functional and D′′f(z)
is a bounded complex anti-linear functional. If D′′f(z) ≡ 0, then f is holomorphic
at z. Moreover, it follows that D′f(z) = Df(z).

The next lemma is an analogy of Lemma 4.1 for the first variation of Fz.

Lemma 4.2. For every ε > 0, there exists a constant 0 < δ < 1 such that for

every µ ∈ HB∞(H, 1) with ‖µ‖∞ < δ, κ ∈ HB∞(H, 1) and z ∈ H,

|D′Fz(µ)[κ]| < ε‖κ‖∞ρH(z)
2.

Proof. Fix z0 ∈ H arbitrarily. Let

A(w) =
w − Re fµ(z0)

Im fµ(z0)
, B(z) = (Im z0)z + Re z0.
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Then A,B are Möbius transformations preserving H. Set gµ = A◦fµ ◦B. By simple
computation, gµ fixes i and satisfies

|∂gµ(i)|2 = ρH(z0)
−2Fz0(µ).

It clearly follows that the function (µ, z) 7→ fµ(z) is C∞-smooth on U ×H, where U
is a sufficiently small neighborhood at 0 in HB∞(H, 1) (see Theorem 11 in [4]). This
implies that the function Gz0 : µ 7→ |∂gµ(i)|2 is also C∞-smooth in U . In particular,
its z-derivative D′Gz0 = ρH(z0)

−2D′Fz0 , which is a map of U into the Banach space
of bounded complex linear functionals on HB∞(H, 1), is continuous at µ = 0. Hence
for every ε > 0 there exists a positive constant δ > 0 such that

‖D′Gz0(µ)−D′Gz0(0)‖ < ε

for every µ ∈ HB∞(H, 1) with ‖µ‖∞ < δ, that is,

(4.1) |D′Gz0(µ)[κ]−D′Gz0(0)[κ]| < ε‖κ‖∞.

By Lemma 2 in [3], we have

D′Fz0(0)[ν] = −
∂

∂t
Ktν(z0, z̄0)

∣

∣

∣

∣

t=0

= 0

for every ν ∈ HB∞(H, 1). This result and formula (4.1) imply that

ρH(z0)
−2|D′Fz0(µ)[κ]| < ε‖κ‖∞.

Since z0 is taken arbitrarily, the lemma holds. �

Let us denote by Be(z, r) and Bh(z, r) the Euclidean and the hyperbolic open
ball centered at z of radius r, respectively. The following lemma is a generalization
of Lemma 3.2 in [20] for p ≥ 2.

Lemma 4.3. For p ≥ 2 and r > e, let u(r) = log log r and H(r) = {z ∈ H |
|z| > r}. Then

E(r) =

ˆ

Bh(i,u(r))

ρH(z)
2−p

(
ˆ

H(r)

|K(z̄, ζ)|2dσ(ζ)

)
p
2

dσ(z) → 0

as r → ∞.

Proof. Let Area(Bh(i, u(r))) = π sinh2 u(r) be the Euclidean area of Bh(i, u(r)).
Then it follows that

E(r) ≤ Area(Bh(i, u(r))) sup
z∈Bh(i,u(r))

ρH(z)
2−p

(
ˆ

H(r)

|K(z̄, ζ)|2 dσ(ζ)

)
p

2

< 2p−2π sinh2 u(r)(log r)p−2

(
ˆ

H(r)

dσ(ζ)

minz∈Bh(i,u(r)) |ζ − z̄|4

)
p

2

= 2p−2π

(

log r

sinh u(r)

)p−2(

sinh2 u(r)

ˆ

H(r)

dσ(ζ)

minz∈Bh(i,u(r)) |ζ − z̄|4

)
p
2

.

By the proof of Lemma 3.2 in [20], log r/ sinh u(r) → 1 and

sinh2 u(r)

ˆ

H(r)

dσ(ζ)

minz∈Bh(i,u(r)) |ζ − z̄|4
→ 0

as r → ∞. Therefore the lemma holds. �
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5. Main theorems

This section deals with the proof of the main theorems. We first prove the
smoothness of hp

WP, which is based on [2, 3].

Theorem 5.1. Let Γ be a Fuchsian group with Lehner’s condition and p ≥ 2.
If p is an even number, then the p-Weil–Petersson metric hp

WP is C∞-smooth on

T 1,0T p(Γ) \ {0}, otherwise hp
WP is C⌊p⌋−1-smooth on T 1,0T p(Γ) \ {0}. Here ⌊ · ⌋ is the

floor function.

Proof. The definition of hp
WP depends essentially on right translation maps, whose

action is nothing but replacing each point τ in T p(Γ) with the base point in T p(Γτ ).
Then it is sufficient to consider the behavior of hp

WP on the chart U0 at the base point
T p(Γ). We identify U0 with V0 ⊂ HBp(H,Γ). Note that the holomorphic tangent
vector space at each point in V0 can be regarded as HBp(H,Γ).

Let us first consider the Gâteaux z-derivative of hp
WP. We define hµ(ξ + tκ) as

hp
WP(ξ + tκ, µ) for ξ ∈ V0, µ, κ ∈ HBp(H,Γ) \ {0}, and t ∈ C with ξ + tκ ∈ V0. We

first deal with the case of ξ = 0. Set µ(t) = Ltκ[µ], µ̃(t) = H [µ(t)], κ(t) = Ltκ[κ].
Then we have

hµ(tκ)
p = ‖µ̃(t)‖pp =

ˆ

N(t)

|µ̃(t)(z)|pρH(z)
2 dσ(z)

=

ˆ

N

|At(z)|
p |Kt(z, z̄)|

1−p(1− |tκ(z)|2) dσ(z),

where f t = f tκ, N(t) = f t(N), Kt = Ktκ and

At(z) = µ̃(t)(f t(z))∂f t(z)
2
ρH(f

t(z))2 =
3

π

ˆ

H

µ(ζ)Kt(z̄, ζ)
2 dσ(ζ).

Then we obtain

(5.1) D′
Ghµ(tκ)[κ] =

∂hµ

∂t
(tκ) =

1

p
hp
WP(tκ, µ)

1−p(I1 + I2 + I3),

where

I1 =

ˆ

N

|At(z)|
p |Kt(z, z̄)|

1−p ∂

∂t
(1− |tκ(z)|2) dσ(z)

= −t̄

ˆ

N

|At(z)|
p |Kt(z, z̄)|

1−p|κ(z)|2) dσ(z),

I2 =

ˆ

N

|At(z)|
p ∂

∂t
|Kt(z, z̄)|

1−p(1− |tκ(z)|2) dσ(z)

= (1− p)

ˆ

N

|At(z)|
pKt(z, z̄)|Kt(z, z̄)|

−p−1 ∂

∂t
Kt(z, z̄)(1− |tκ(z)|2) dσ(z),

I3 =

ˆ

N

∂

∂t
|At(z)|

p |Kt(z, z̄)|
1−p(1− |tκ(z)|2) dσ(z)

=
p

2

ˆ

N

(

At(z)
∂

∂t
At(z)+At(z)

∂

∂t
At(z)

)

|At(z)|
p−2 |Kt(z, z̄)|

1−p(1−|tκ(z)|2) dσ(z).

Note that hp
WP(tκ, µ) 6= 0 by Condition (1) in Definition 3.1. We have to show

the commutativity between the signs of differentiation and integration in the above
computation. It is sufficient to prove that I1, I2, I3 converge absolutely and uniformly
with respect to t in an open neighborhood of 0.
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We first consider I1. Let D1(t, r) = N(t)∩Bh(i, u(r)) and N(t, r) = N(t)\D1(t, r)
for r > e as Lemma 4.3. We note that the family {D1(t, r) | r > e} is an exhaustion
of N(t). There exists a constant δ1 > 0 such that (|t|2 + |t|)|κ(z)|2 < 1 for |t| < δ1
and z ∈ H. This implies that

ˆ

(f t)−1(N(t,r))

|At(z)|
p |Kt(z, z̄)|

1−p|t||κ(z)|2 dσ(z) ≤ ‖µ̃(t)|N(t,r)‖
p
p.

Since H is a bounded linear operator, we have

‖µ̃(t)|N(t,r)‖
p
p ≤ ‖H‖p‖µ(t)|N(t,r)‖

p
p.

By estimation (3.8) in [20], ‖µ(t)|N(t,r)‖p converges to 0 uniformly with respect to t
as r → 0. Hence I1 converges absolutely and uniformly with respect to t.

Next, we deal with I2. By Lemmas 4.1 and 4.2, for every ε > 0, there exists a
constant 0 < δ2 < 1 such that ρH(z)

2 < (ε+ 1)|Kt(z, z̄)| and
∣

∣

∣

∣

∂

∂t
Kt(z, z̄)

∣

∣

∣

∣

= |D′Fz(tκ)[κ]| < ε‖κ‖∞ρH(z)
2

for |t| < δ2 and z ∈ H. These inequalities imply that
ˆ

(f t)−1(N(t,r))

|At(z)|
p |Kt(z, z̄)|

−p

∣

∣

∣

∣

∂

∂t
Kt(z, z̄)

∣

∣

∣

∣

(1− |tκ(z)|2) dσ(z)

< ε(ε+ 1)‖κ‖∞

ˆ

(f t)−1(N(t,r))

|At(z)|
p |Kt(z, z̄)|

1−p(1− |tκ(z)|2) dσ(z)

= ε(ε+ 1)‖κ‖∞‖µ̃(t)|N(t,r)‖
p
p.

Therefore I2 also converges absolutely and uniformly with respect to t as the case of
I1.

The last part is to check the convergence of I3. Since

∂

∂t
Kt(z̄, ζ) = −

1

π

ˆ

H

∂f t(z)∂f t(ζ)

(w − f t(z))2(w − f t(ζ))2
κ(t)(w) dσ(w),

∂

∂t
At(z) =

6

π

ˆ

H

µ(ζ)Kt(z̄, ζ)
∂

∂t
Kt(z̄, ζ) dσ(ζ),

∂

∂t
At(z) =

6

π

ˆ

H

µ(ζ)Kt(z, ζ̄)
∂

∂t
Kt(z, ζ̄) dσ(ζ),

we have

I3 = −
3p

π2

{
ˆ

N(t)×H

µ̃(t)(z)|µ̃(t)(z)|p−2µ(t)(ζ)Tκ(t)(z̄, ζ)K(z̄, ζ) dσ(z, ζ)

+

ˆ

N(t)×H

µ̃(t)(z)|µ̃(t)(z)|p−2µ(t)(ζ)Tκ(t)(z, ζ̄)K(z, ζ̄) dσ(z, ζ)

}

,

where
ˆ

N(t)×H

· · · dσ(z, ζ) =

ˆ

N(t)

(
ˆ

H

· · · dσ(ζ)

)

dσ(z)

and

Tκ(t)(z̄, ζ) =

ˆ

H

κ(t)(w)K(w, z̄)K(w, ζ) dσ(w).

It is sufficient to show the absolute and uniform convergence of the first integral. Let
D2(r) = H ∩ Be(0, r) for r > e. Then {D1(t, r)×D2(r) | r > e} is an exhaustion of
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N(t) ×H. The complement of D1(t, r)×D2(r) in N(t) ×H has the disjoint union
decomposition

(N(t)×H) \ (D1(t, r)×D2(r)) = (N(t, r)×H) ⊔ (D1(t, r)×H(r)),

where H(r) = H \D2(r). It is sufficient to show that two integrals

I13 (t, r) =

ˆ

N(t,r)×H

|µ̃(t)(z)p−1µ(t)(ζ)Tκ(t)(z̄, ζ)K(z̄, ζ)| dσ(z, ζ),

I23 (t, r) =

ˆ

D1(t,r)×H(r)

|µ̃(t)(z)p−1µ(t)(ζ)Tκ(t)(z̄, ζ)K(z̄, ζ)| dσ(z, ζ)

converge to 0 uniformly with respect to t as r → 0. It follows from the Schwarz
inequality that

I13 (t, r) ≤

ˆ

N(t,r)

|µ̃(t)(z)|p−1‖µ(t)K(z̄, ·)‖2‖Tκ(t)(z̄, ·)‖2 dσ(z),

where

‖µ(t)K(z̄, ·)‖2 =

(
ˆ

H

|µ(t)(ζ)K(z̄, ζ)|2 dσ(ζ)

)
1
2

,

‖Tκ(t)(z̄, ·)‖2 =

(
ˆ

H

|Tκ(t)(z̄, ζ)|
2 dσ(ζ)

)
1
2

.

By Hölder’s inequality, we have

‖µ(t)K(z̄, ·)‖ p
2 ≤

(
ˆ

H

|µ(t)(ζ)|p|K(z̄, ζ)|2dσ(ζ)

)(
ˆ

H

|K(z̄, ζ)|2 dσ(ζ)

)
p

2
−1

(5.2)

= π
p

2
−1ρH(z)

p−2

ˆ

H

|µ(t)(ζ)|p|K(z̄, ζ)|2 dσ(ζ).

We apply the isometry property on the Hilbert transform. Then we obtain

‖Tκ(t)(z̄, ·)‖
2
2 = π2

ˆ

H

|K(w, z̄)κ(t)(w)|2 dσ(w)(5.3)

≤ π2‖κ(t)‖2∞

ˆ

H

|K(w, z̄)|2 dσ(w) = π3‖κ(t)‖2∞ρH(z)
2.

It follows from inequalities (5.2), (5.3) and Hölder’s inequality that

I13 (t, r) ≤ π
3
2‖κ(t)‖∞

ˆ

N(t,r)

|µ̃(t)(z)|p−1ρH(z)‖µ(t)K(z̄, ·)‖2 dσ(z)

≤ π
3
2‖κ(t)‖∞‖µ̃(t)|N(t,r)‖

p−1
p

(
ˆ

N(t,r)

ρH(z)
2−p‖µ(t)K(z̄, ·)‖ p

2 dσ(z)

)
1
p

≤ π2− 1
p ‖κ(t)‖∞‖µ̃(t)|N(t,r)‖

p−1
p

(
ˆ

N(t)×H

|µ(t)(ζ)|p|K(z̄, ζ)|2 dσ(z, ζ)

)
1
p

.
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Let us transform the integral in the last line of this inequality. By the invariance of
µ(t) and K(z̄, ζ) on the action of Γtκ, we have

ˆ

N(t)×H

|µ(t)(ζ)|p|K(z̄, ζ)|2 dσ(z, ζ)(5.4)

=
∑

γ∈Γtκ

ˆ

N(t)×γ(N(t))

|µ(t)(ζ)|p|K(z̄, ζ)|2 dσ(z, ζ)

=
∑

γ∈Γtκ

ˆ

γ−1(N(t))×N(t)

|µ(t)(γ(ζ))|p|K(γ(z), γ(ζ))|2|γ′(z)|2|γ′(ζ)|2 dσ(z, ζ)

=

ˆ

N

|µ(t)(ζ)|p
(
ˆ

H

|K(z̄, ζ)|2 dσ(z)

)

dσ(ζ) = π‖µ(t)‖ p
p .

Therefore, we obtain

I13 (t, r) ≤ π2‖κ(t)‖∞‖µ(t)‖p‖µ̃(t)|N(t,r)‖
p−1
p .

Since ‖κ(t)‖∞ and ‖µ(t)‖p is uniformly bounded on a neighborhood at t = 0, I13 (t, r)
converges to 0 uniformly with respect to t as r → 0.

By similar estimation, we have

I23 (t, r) ≤ π
3
2‖κ(t)‖∞

ˆ

D1(t,r)

|µ̃(t)(z)|p−1ρH(z)‖µ(t)K(z̄, ·)|H(r)‖2 dσ(z)

≤ π
3
2‖κ(t)‖∞‖µ(t)‖∞‖µ̃(t)‖p−1

p E(r)
1
p .

This inequality and Lemma 4.3 imply the uniform convergence of I23 (t, r) with respect
to t.

Therefore the computation of formula (5.1) is justified. It follows from the defi-
nition of hp

WP that

(5.5) D′′
Ghµ(tκ)[κ] =

∂hµ

∂t̄
(tκ) =

(

∂hµ

∂t
(tκ)

)

=

(

∂hµ

∂t
(tκ)

)

= D′
Ghµ(tκ)[κ].

Then hµ has a z̄-derivative at t. Substituting t = 0 for D′
Ghµ(tκ)[κ], we have

D′
Ghµ(0)[κ] = −

3

π2
‖µ‖ 1−p

p

{
ˆ

N×H

µ(z)|µ(z)|p−2µ(ζ)Tκ(z̄, ζ)K(z̄, ζ) dσ(z, ζ)

+

ˆ

N×H

µ(z)|µ(z)|p−2µ(ζ)Tκ(z, ζ̄)K(z, ζ̄)dσ(z, ζ)

}

= −
3

π2
‖µ‖ 1−p

p

ˆ

N×H

µ(z)µ(ζ)

·
(

|µ(z)|p−2 + |µ(ζ)|p−2
)

Tκ(z̄, ζ)K(z̄, ζ) dσ(z, ζ).

The last expression is obtained by changing the role between z and ζ in the second
integral in the middle expression and by transforming its integral as formula (5.4).
Note that I2 = 0 because ∂

∂t
Kt(z, z̄)|t=0 = 0. As the above computation, we obtain

D′
Ghµ(ξ)[κ] = −

3

π2
‖µ̃(ξ)‖ 1−p

p

ˆ

N(ξ)×H

(

µ̃(ξ)(z)|µ̃(ξ)(z)|p−2µ(ξ)(ζ)

+ µ̃(ξ)(ζ)|µ̃(ξ)(ζ)|p−2µ(ξ)(z)
)

Tκ(ξ)(z̄, ζ)K(z̄, ζ) dσ(z, ζ)
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for ξ ∈ V0, where µ(ξ) = Lξ[µ], µ̃(ξ) = H [µ(ξ)] and κ(ξ) = Lξ[κ]. This implies that
D′

Ghµ(ξ) is a complex linear map. Similarly to the estimation for I13 (t, r), we have

|D′
Ghµ(ξ)[κ]| ≤ 6‖µ(ξ)‖∞‖κ(ξ)‖p ≤ 6‖µ(ξ)‖∞‖Lξ‖ ‖κ‖p.

Hence D′
Ghµ(ξ) is a bounded complex linear functional on HBp(H,Γ) and hp

WP is
Gâteaux differentiable on V0.

Let us consider n times differentiablity of hp
WP at the base point for n ≥ 2. This

observation depends essentially on the smoothness of the function P (z) = |z|p on C

for p ≥ 2. In fact, f(z) is C∞-smooth on C if p is an even number, otherwise P (z) is
C⌊p⌋−1-smooth on C because the ⌊p⌋-th derivative of P (z) has a singularity at z = 0.
The integrands in the n-th derivative of ‖µ̃(t)‖pp with respect to t always contain one
of the following terms:

(1) The derivative of (1− |tκ(z)|2) (cf. I1);
(2) The k-th derivative of |Kt(z, z̄)|

1−p (cf. I2);
(3) The k-th derivative of |At(z)|

p (cf. I3).

Here 1 ≤ k ≤ n and z ∈ H. Case (1) makes no problem since |tκ(z)|2 is C∞-smooth
on some sufficiently small neighborhood W at 0. In case (2), since Kt(z, z̄) 6= 0 for
every z ∈ H and every t ∈ W , |Kt(z, z̄)|

1−p is C∞-smooth on W . We have to check
the higher order differentiablity of case (3). For z ∈ H, the function At(z) is C∞-
smooth on W . By this fact and the smoothness of P (z), which was remarked above,
|At(z)|

p is C∞-smooth on W when p is an even number, otherwise |At(z)|
p is C⌊p⌋−1-

smooth on W generally. We can prove the commutativity between differentiation
and integration by repeating or combining the methods used in the estimation of Im
(m = 1, 2, 3). From these results, our claim is satisfied completely. �

Let us prove the main theorem of this paper.

Theorem 5.2. Let Γ be a Fuchsian group with Lehner’s condition and p ≥ 2.
Then hp

WP is strongly pseudoconvex on T p(Γ).

Proof. It suffices to show the strong pseudoconvexity at the base point. By a
simple computation similar to that in the proof of Theorem 5.1, we obtain

∂2

∂t ∂t̄
hp
WP(0, µ+ tκ)2

∣

∣

∣

∣

t=0

= ‖µ‖ 2−2p
p

{

p

2
‖µ‖ p

p

ˆ

N

|µ(z)|p−2|κ(z)|2ρH(z)
2 dσ(z)

−
(p

2
− 1

)

∣

∣

∣

∣

ˆ

N

|µ(z)|p−2µ(z)κ(z)ρH(z)
2dσ(z)

∣

∣

∣

∣

2
}

for every µ, κ ∈ HBp(H,Γ) \ {0}. Note that the commutativity between the signs of
differentiation and integration clearly follows. By the Schwarz inequality, we have

∣

∣

∣

∣

ˆ

N

|µ(z)|p−2µ(z)κ(z)ρH(z)
2 dσ(z)

∣

∣

∣

∣

2

≤ ‖µ‖ p
p

ˆ

N

|µ(z)|p−2|κ(z)|2ρH(z)
2 dσ(z).

Hence it follows that

∂2

∂t ∂t̄
hp
WP(0, µ+ tκ)2

∣

∣

∣

∣

t=0

≥ ‖µ‖ 2−p
p

ˆ

N

|µ(z)|p−2|κ(z)|2ρH(z)
2 dσ(z).

This implies that hp
WP is strongly pseudoconvex at 0 since µ, κ 6= 0. �
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