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Abstract. Let σi, i = 1, . . . , n, be reverse doubling weights on R
d, DR(Rd) be the set of all

dyadic rectangles on R
d (Cartesian products of usual dyadic intervals) and K : DR(Rd) → [0,∞)

be a map. In this paper we give the n-linear embedding theorem for dyadic rectangles. That is, we
prove that the n-linear embedding inequality for dyadic rectangles

∑

R∈DR(Rd)

K(R)

n∏

i=1

∣∣∣∣
ˆ

R

fi dσi

∣∣∣∣ ≤ C

n∏

i=1

‖fi‖Lpi(σi)

can be characterized by simple testing condition

K(R)
n∏

i=1

σi(R) ≤ C

n∏

i=1

σi(R)
1

pi R ∈ DR(Rd),

in the range 1 < pi < ∞ with
∑n

i=1
1
pi

> 1. As a corollary to this theorem, for reverse doubling

weights, we verify a necessary and sufficient condition for which weighted norm inequality for mul-

tilinear strong positive dyadic operator and for multilinear strong fractional integral operator to

hold.

1. Introduction

The purpose of this paper is to prove the n-linear embedding theorem for dyadic
rectangles. We will denote by DQ(Rd) the family of all dyadic cubes Q = 2−k(m +
[0, 1)d), k ∈ Z, m ∈ Z

d, and by DR(Rd) the family of all dyadic rectangles on R
d.

By dyadic rectangle we mean the Cartesian product of the dyadic intervals DQ(R).
Throughout this paper the letter n stands for an integer which is greater than one.

In a series of works [3, 4, 8, 11, 13, 14, 15, 16], the n-linear embedding inequality
has been characterized for dyadic cubes. Let σi, i = 1, . . . , n, denote positive Borel
measures on R

d and let K : DQ(Rd) → [0,∞) be a map. The n-linear embedding
inequality for dyadic cubes

(1.1)
∑

Q∈DQ(Rd)

K(Q)

n∏

i=1

∣∣∣∣
ˆ

Q

fi dσi

∣∣∣∣ ≤ C

n∏

i=1

‖fi‖Lpi(dσi)

can be characterized in the full range 1 < pi < ∞. The n-linear embedding theorem
(1.1), either can be reduced to the (localized) (n− 1)-linear embedding theorems, or
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characterized by certain n-weight discrete Wolff potential conditions. The division
line is whether the exponents p1, . . . , pn are in the super-dual range

∑n

i=1
1
pi

≥ 1

or in the strictly sub-dual range
∑n

i=1
1
pi

< 1. The methods of each range seem to

be rather different (see [15]). The main technique used is that of “parallel corona”
decomposition from the work of Lacey et al. [7] on the two-weight boundedness of
the Hilbert transform. However, this powerful technique deeply depends on the tree
structure of dyadic cubes and one can not apply it to the case of dyadic rectangles.
Even though, it is natural to consider what happens in the case DR(Rd) and the
partial answer is given in this paper.

By “weights” we will always mean nonnegative, locally integrable functions which
are positive on a set of positive measure. Given a measurable set E and a weight ω,
we use ω(E) to denote the quantity

´

E
ω dx and use 1E to denote the characteristic

function of E.
Let 1 ≤ p < ∞ and ω be a weight. We define the weighted Lebesgue space Lp(ω)

to be a Banach space equipped with the norm

‖f‖Lp(ω) =

(
ˆ

Rd

|f |p dω

) 1

p

,

where we have used the notation dω := ω dx. Given 1 < p < ∞, p′ = p

p−1
will denote

the conjugate exponent of p.
Let R(Rd) denote the set of all rectangles in R

d with sides parallel to the coor-
dinate axes. We say that a weight ω is “reverse doubling weight” if it satisfies that
there is a constant β > 1 such that βω(R′) ≤ ω(R) for any R′, R ∈ R(Rd) where R′

is any one of the two equal divisions of R. We shall prove the following theorem.

Theorem 1.1. Let 1 < pi < ∞ with
∑n

i=1
1
pi

> 1. Let K : DR(Rd) → [0,∞)

be a map and let σi, i = 1, . . . , n, be reverse doubling weights on R
d. The following

statements are equivalent:

(a) The n-linear embedding inequality for dyadic rectangles

(1.2)
∑

R∈DR(Rd)

K(R)
n∏

i=1

∣∣∣∣
ˆ

R

fi dσi

∣∣∣∣ ≤ c1

n∏

i=1

‖fi‖Lpi(σi)

holds for all fi ∈ Lpi(σi), i = 1, . . . , n;

(b) The testing condition

(1.3) K(R)
n∏

i=1

σi(R) ≤ c2

n∏

i=1

σi(R)
1

pi

holds for all dyadic rectangles R ∈ DR(Rd).

Moreover, the least possible constants c1 and c2 are equivalent.

Corollary 1.2. Let 1 < pi < ∞ and 1 < q < ∞ with
∑n

i=1
1
pi

> 1
q
. Let

K : DR(Rd) → [0,∞) be a map and let σi, i = 1, . . . , n, and ω be reverse doubling

weights on R
d. The following statements are equivalent:

(a) The weighted norm inequality for multilinear strong positive operator

(1.4) ‖TK(f1, . . . , fn)‖Lq(ω) ≤ c1

n∏

i=1

‖fi‖Lpi(σ
1−pi
i )
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holds for all fi ∈ Lpi(σ1−pi
i ), i = 1, . . . , n; Here,

TK(f1, . . . , fn) :=
∑

R∈DR(Rd)

K(R)1R

n∏

i=1

ˆ

R

fi dx.

(b) The testing condition

(1.5) K(R)ω(R)
1

q

n∏

i=1

σi(R) ≤ c2

n∏

i=1

σi(R)
1

pi

holds for all dyadic rectangles R ∈ DR(Rd).

Moreover, the least possible constants c1 and c2 are equivalent.

Remark. We notice that (1.5) is equivalent to the condition that

K(R)ω(R)
1

q

n∏

i=1

σi(R)
1

p′
i ≤ c2

holds for all dyadic rectangles R ∈ DR(Rd). This is known as the Fefferman–Phong-
type condition which was first observed in [2]. In [1], the corresponding results were
established for the multilinear fractional strong maximal operator. In [5], two-weight
inequalities of various type for the strong fractional maximal functions and potentials
with multiple kernels defined on R

2 were also established. In the recent paper [12],
using our iteration method (see Lemma 2.2 below), Sawyer and Wang proved that
the inequality (1.4) holds if the weights satisfy the theta bump condition.

In the last section (Section 5) we shall apply Corollary 1.2 to multilinear strong
fractional integral operator.

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C1, C2, do not change in different
occurrences. By A ≈ B we mean that c−1B ≤ A ≤ cB with some positive finite
constant c independent of appropriate quantities.

2. Lemmas

We need two lemmas and we will give their proofs for the sake of completeness.

Lemma 2.1. Given a weight σ in R
d and 1 < p < q < ∞, the following

statements are equivalent:

(a) The Carleson type embedding inequality for dyadic cubes

(2.1)
∑

Q∈DQ(Rd)

σ(Q)
q

p

(
1

σ(Q)

ˆ

Q

f dσ

)q

≤ c1

(
ˆ

Rd

f p dσ

) q

p

holds for all nonnegative function f ∈ Lp(σ);
(b) The testing condition

(2.2)
∑

Q′∈DQ(Rd)
Q′⊂Q

σ(Q′)
q

p ≤ c2σ(Q)
q

p

holds for all cubes Q ∈ DQ(Rd).

Moreover, the least possible constants c1 and c2 are equivalent.
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Proof. The necessity of (2.2) follows at once if we substitute the test function
f = 1Q into inequality (2.1). To show that inequality (2.2) is sufficient, we fix a (big
enough) dyadic cube Q0 ∈ DQ(Rd) and we prove the inequality

(2.3)
∑

Q∈DQ(Rd)
Q⊂Q0

σ(Q)
q

p

(
1

σ(Q)

ˆ

Q

f dσ

)q

≤ Cc2

(
ˆ

Q0

f p dσ

) q

p

.

We define the collection of principal cubes F for the pair (f, σ). Namely,

F :=

∞⋃

k=0

Fk,

where F0 := {Q0},

Fk+1 :=
⋃

F∈Fk

chF(F )

and chF(F ) is defined by the set of all maximal dyadic cubes Q ⊂ F such that

1

σ(Q)

ˆ

Q

f dσ >
2

σ(F )

ˆ

F

f dσ.

Observe that

∑

F ′∈chF (F )

σ(F ′) ≤

(
2

σ(F )

ˆ

F

f dσ

)−1 ∑

F ′∈chF (F )

ˆ

F ′

f dσ

≤

(
2

σ(F )

ˆ

F

f dσ

)−1 ˆ

F

f dσ =
σ(F )

2
,

and, hence,

(2.4) σ(EF(F )) := σ



F \
⋃

F ′∈chF (F )

F ′



 ≥
σ(F )

2
,

where the sets in the collection {EF(F ) : F ∈ F} are pairwise disjoint.
We further define the stopping parent, for Q ∈ DQ(Rd),

πF(Q) := min{F ⊃ Q : F ∈ F}.

Then we can rewrite the series in (2.3) as follows:

∑

Q⊂Q0

σ(Q)
q

p

(
1

σ(Q)

ˆ

Q

f dσ

)q

=
∑

F∈F

∑

Q : πF (Q)=F

σ(Q)
q

p

(
1

σ(Q)

ˆ

Q

f dσ

)q

≤
∑

F∈F

(
2

σ(F )

ˆ

F

f dσ

)q ∑

Q : πF (Q)=F

σ(Q)
q

p

≤ 2qc2
∑

F∈F

(
1

σ(F )

ˆ

F

f dσ

)q

σ(F )
q

p ,

where we have used the condition (2.2).
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Using ‖ · ‖lp ≥ ‖ · ‖lq , for 0 < p ≤ q < ∞, and (2.4) we can proceed further that

∑

Q⊂Q0

σ(Q)
q

p

(
1

σ(Q)

ˆ

Q

f dσ

)q

≤ Cc2

{
∑

F∈F

(
1

σ(F )

ˆ

F

f dσ

)p

σ(F )

} q

p

≤ Cc2

{
∑

F∈F

(
1

σ(F )

ˆ

F

f dσ

)p

σ(EF(F ))

} q

p

≤ Cc2

(
ˆ

Q0

Mσ
DQ[f1Q0

]p dσ

) q

p

≤ Cc2

(
ˆ

Q0

f p dσ

) q

p

,

where Mσ
DQ stands for the dyadic Hardy–Littlewood maximal operator with respect

to the measure dσ and we have used its Lp(σ)-boundedness. This completes the
proof. �

We denote by Pi, i = 1, . . . , d, the projection on the xi-axis. For the dyadic
rectangle R ∈ DR(Rd), the dyadic interval I ∈ DQ(R) and j = 1, . . . , d, we define
the dyadic rectangle

[R; I, j] :=

(
j−1∏

i=1

Pi(R)

)
× I ×

(
d∏

i=j+1

Pi(R)

)
.

Lemma 2.2. Given a weight σ in R
d and 1 < p < q < ∞, the following

statements are equivalent:

(a) The Carleson type embedding inequality for rectangles

(2.5)
∑

R∈DR(Rd)

σ(R)
q

p

(
1

σ(R)

ˆ

R

f dσ

)q

≤ c1

(
ˆ

Rd

f p dσ

) q

p

holds for all nonnegative function f ∈ Lp(σ);
(b) The testing condition

(2.6)
∑

I∈DQ(R)
I⊂Pj(R)

σ([R; I, j])
q

p ≤ c2σ(R)
q

p

holds for all dyadic rectangles R ∈ DR(Rd) and j = 1, . . . , d.

Moreover, the least possible constants c1 and c2 enjoy c1 ≤ Ccd2 and c2 ≤ c1.

Proof. The necessity is clear, so we shall prove the sufficiency. We use induction
on the dimension d. To do this, we assume that the lemma is true for the case d− 1.
We assume that the weight σ in R

d satisfies the testing condition (2.6) (d-dimensional
case). We will write x = (x1, . . . , xd−1, xd) = (x, xd).

We need two observations. First, we verify that, for any dyadic interval Id ∈
DQ(R), if we let

vId(x) :=

ˆ

Id

σ(x, xd) dxd,
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then vId(x) satisfies the testing condition (2.6) ((d − 1)-dimensional case). Indeed,
for any R ∈ DR(Rd−1), setting R = R × Id, we have that, for j = 1, . . . , d− 1,

∑

I∈DQ(R)

I⊂Pj(R)

vId([R; I, j])
q

p =
∑

I∈DQ(R)
I⊂Pj(R)

σ([R; I, j])
q

p ≤ c2σ(R)
q

p = c2vId(R)
q

p .

We next verify that, for a.e. x ∈ R
d−1, if we let

vx(xd) = σ(x, xd),

then vx(xd) satisfies the testing condition (2.2) (one-dimensional case). We must
prove that the inequality

(2.7)
∑

I∈DQ(R)
I⊂Id

vx(I)
q

p ≤ c2vx(Id)
q

p

holds for any Id ∈ DQ(R). For a cube Q ∈ DQ(Rd−1), it follows by setting R = Q×Id
that ∑

I∈DQ(R)
I⊂Pd(R)

σ([R; I, d])
q

p ≤ c2σ(R)
q

p .

Dividing the both sides by the volume |Q|
q

p , we have that

∑

I∈DQ(R)
I⊂Pd(R)

(
1

|Q|

ˆ

Q×I

σ(x, xd) dxd dx

) q

p

≤ c2

(
1

|Q|

ˆ

Q×Id

σ(x, xd) dxd dx

) q

p

.

In the both sides of this inequality, considering the Lebesgue point y with respect
to the integral averages over Q, which exists a.e. in R

d−1 because our argument is
countable, and shrinking Q to y, we obtain

∑

I∈DQ(R)
I⊂Id

(
ˆ

I

σ(y, xd) dxd

) q

p

≤ c2

(
ˆ

Id

σ(y, xd) dxd

) q

p

,

which means (2.7).
By the use of these two observations we can prove the lemma. Fix a nonnegative

function f ∈ Lp(σ). We shall evaluate

(i) :=
∑

Id∈DQ(R)

∑

R∈DR(Rd−1)

σ(R)
q

p

(
1

σ(R)

ˆ

R

f dσ

)q

,

where we have used R = R× Id.
There holds

(i) =
∑

Id∈DQ(R)

∑

R∈DR(Rd−1)

vId(R)
q

p

×

(
1

vId(R)

ˆ

R

(
ˆ

Id

f(x, xd)σ(x, xd) dxdvId(x)
−1

)
vId(x) dx

)q

.
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Since vId(x) satisfies the testing condition (2.6) ((d − 1)-dimensional case), by our
induction assumption, we have that

(i) ≤ Ccd−1
2

∑

Id∈DQ(R)

(
ˆ

Rd−1

(
ˆ

Id

f(x, xd)σ(x, xd) dxdvId(x)
−1

)p

vId(x) dx

) q

p

= Ccd−1
2

[
{· · · · · ·}

p

q

] q

p

.

By integral version of Minkowski’s inequality,

(ii) =





∑

Id∈DQ(R)

(
ˆ

Rd−1

(
ˆ

Id

f(x, xd)σ(x, xd) dxdvId(x)
−1

)p

vId(x) dx

) q

p





p

q

≤

ˆ

Rd−1





∑

Id∈DQ(R)

(
ˆ

Id

f(x, xd)σ(x, xd) dxdvId(x)
−1

)q

vId(x)
q

p





p

q

dx

=

ˆ

Rd−1





∑

Id∈DQ(R)

vx(Id)
q

p

(
1

vx(Id)

ˆ

Id

f(x, xd)vx(xd) dxd

)q





p

q

dx.

Since vx(xd) satisfies (2.2) (one-dimensional case), by Lemma 2.1

(ii) ≤ c
p

q

2

ˆ

Rd−1

ˆ

R

f(x, xd)
pσ(x, xd) dxd dx = c

p

q

2

ˆ

Rd

f p dσ.

Altogether, we obtain

(i) ≤ Ccd2

(
ˆ

Rd

f p dσ

) q

p

.

This proves the lemma. �

3. Proof of Theorem 1.1

In what follows we shall prove Theorem 1.1. We first notice that, if σ is a reverse
doubling weight on R

d with β > 1, then it satisfies the testing condition (2.6).
Indeed, for the dyadic rectangles R ∈ DR(Rd) and j = 1, . . . , d, we have that

∑

I∈DQ(R)
I⊂Pj(R)

σ([R; I, j])
q

p =
∞∑

k=0

∑

I∈DQ(R)

I⊂Pj(R), |I|=2−k|Pj(R)|

σ([R; I, j])
q

p
−1σ([R; I, j])

≤
∞∑

k=0

(
1

βk

) q

p
−1

σ(R)
q

p
−1

∑

I∈DQ(R)
I⊂Pj(R), |I|=2−k|Pj(R)|

σ([R; I, j])

= σ(R)
q

p

∞∑

k=0

(
1

βk

) q

p
−1

= Cσ(R)
q

p .

The necessity of (1.3) follows at once if we substitute the test functions fi = 1R,
i = 1, . . . , n, into inequality (1.2). To show that inequality (1.3) is sufficient, we take
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qi > pi, i = 1, . . . , n, with
∑n

i=1
1
qi

= 1. This is possible because
∑n

i=1
1
pi

> 1. It

follows from testing condition (1.3) and Hölder’s inequality that

∑

R∈DR(Rd)

K(R)
n∏

i=1

∣∣∣∣
ˆ

R

fi dσi

∣∣∣∣ ≤ c2
∑

R∈DR(Rd)

n∏

i=1

σi(R)
1

pi

(
1

σi(R)

ˆ

R

|fi| dσi

)

≤ c2

n∏

i=1




∑

R∈DR(Rd)

σi(R)
qi
pi

(
1

σi(R)

ˆ

R

|fi| dσi

)qi




1

qi

≤ Cc2

n∏

i=1

‖fi‖Lpi(σi),

where we have used Lemma 2.2 by noticing that every σi satisfies the testing condition
(2.6). This completes the proof. �

4. Proof of Corollary 1.2

In what follows we shall prove Corollary 1.2. The necessity of (1.5) follows at
once if we substitute the test functions fi = 1Rσi, i = 1, . . . , n, into inequality (1.4).
To show that inequality (1.5) is sufficient, we notice that the condition

n∑

i=1

1

pi
>

1

q

leads to the condition
1

q′
+

n∑

i=1

1

pi
> 1.

By Theorem 1.1 we have that the inequality

(4.1)
∑

R∈DR(Rd)

K(R)

ˆ

R

g dω
n∏

i=1

ˆ

R

fi dσi ≤ C‖g‖Lq′(ω)

n∏

i=1

‖fi‖Lpi (σi)

holds for all nonnegative functions g ∈ Lq′(ω) and fi ∈ Lpi(σi), provided that the
testing condition

(4.2) K(R)ω(R)

n∏

i=1

σi(R) ≤ Cω(R)
1

q′

n∏

i=1

σi(R)
1

pi

holds for all dyadic rectangles R ∈ DR(Rd).
Since (4.2) is equivalent to our assumption (1.5), the inequality (4.1) is proper.

Rewrite fiσi = hi in (4.1), then

∑

R∈DR(Rd)

K(R)

ˆ

R

g dω

n∏

i=1

ˆ

R

hi dx ≤ Cc2‖g‖Lq′(ω)

n∏

i=1

‖hi‖Lpi(σ
1−pi
i )

.

This means that
ˆ

Rd

gTK(h1, . . . , hn) dω ≤ Cc2‖g‖Lq′(ω)

n∏

i=1

‖hi‖Lpi (σ
1−pi
i )

and, by duality,

‖TK(h1, . . . , hn)‖Lq(ω) ≤ Cc2

n∏

i=1

‖hi‖Lpi(σ
1−pi
i )

,
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which yields the proof. �

5. Applications

In what follows we give some applications to multilinear strong fractional integral
operator.

For a number c > 0 and a rectangle R ∈ R, we will use cR to denote the rectangle
with the same center as R but with c times the side-lengths of R. Let fi, i = 1, . . . , n,
be locally integrable functions on Rd. Let ~α = (α1, . . . , αd) with 0 < αj < n. We

define the following “multilinear strong fractional integral operator” Ĩ~α(f1, . . . , fn)(x),
x ∈ R

d, by

Ĩ~α(f1, . . . , fn)(x) :=

ˆ

y1,...,yn∈Rd

f1(y1) · · ·fn(yn) dy1 · · ·dyn(∏d

j=1maxni=1 |Pj(x)− Pj(yi)|
)n−αj

,

where Pj(x), j = 1, . . . , d, is the projection on the xj-axis of the point x ∈ R
d. This

is different from the multilinear fractional integral operator defined in [10].

Remark. We examine the case n = 1. For ~α = (α1, . . . , αd) with 0 < αj < 1,
x = (x1, . . . , xd) ∈ R

d, u = (u1, . . . , ud) ∈ R
d and f : Rd → R, we have

Ĩ~α(f)(x) =

ˆ

Rd

f(u) du
∏d

j=1 |xj − uj|1−αj

.

This operator with product type kernel was treated on grand Lebesgue spaces by
Kokilashvili and Meskhi [6], where α1 = · · · = αd and R

d is replaced by a bounded
rectangle. We are grateful to Eiichi Nakai for this information.

When n = d = 1, Ĩ~α is just the usual one-dimensional fractional integral operator.

We observe that, for s, t ∈ R with s 6= t, the minimal dyadic interval I ∈ DQ(R)
such that I ∋ s and 3I ∋ t satisfies

|I|

2
< |s− t| < 2|I|.

This observation and a calculus of geometric series enable us that, for any y1, . . . , yn 6=
x,

∑

R∈DR(Rd)

d∏

j=1

|Pj(R)|αj−n1R(x)
n∏

i=1

13R(yi) ≈

(
d∏

j=1

n
max
i=1

|Pj(x)− Pj(yi)|

)αj−n

.

This equation and Fubini’s theorem yield the precise point-wise relation

(5.1) Ĩ~α(f1, . . . , fn)(x) ≈
∑

R∈DR(Rd)

d∏

j=1

|Pj(R)|αj−n1R(x)

n∏

i=1

ˆ

3R

fi(yi) dyi, x ∈ R
d.

Since the right-hand of (5.1) can be controlled by the estimate based upon the finite
number of the systems of dyadic rectangles (see, for example, [9]), by Corollary 1.2,
we have the following.

Proposition 5.1. Let 1 < pi < ∞, i = 1, . . . , n, and 1 < q < ∞ with
∑n

i=1
1
pi
>

1
q
. Let ~α = (α1, . . . , αd) with 0 < αj < n and let σi, i = 1, . . . , n, and ω be reverse

doubling weights on R
d. The following statements are equivalent:
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(a) The weighted norm inequality for multilinear strong fractional integral oper-

ator

‖Ĩ~α(f1, . . . , fn)‖Lq(ω) ≤ c1

n∏

i=1

‖fi‖Lpi(σ
1−pi
i )

holds for all fi ∈ Lpi(σ1−pi
i ), i = 1, . . . , n;

(b) The testing condition

d∏

j=1

|Pj(R)|αj−nω(R)
1

q

n∏

i=1

σi(R) ≤ c2

n∏

i=1

σi(R)
1

pi

holds for all rectangles R ∈ R(Rd).

Moreover, the least possible constants c1 and c2 are equivalent.

Letting ω ≡ σ1 ≡ · · · ≡ σn ≡ 1 and ~α = (α/d, . . . , α/d), we have the following
Hardy–Littlewood–Sobolev inequality for strong fractional integral operator.

Proposition 5.2. Let 1 < q < ∞, 1 < pi < ∞, 0 < α < dn and

1

q
=

n∑

i=1

1

pi
−

α

d
.

Then the multilinear norm inequality

‖Ĩ~α(f1, . . . , fn)‖Lq(Rd) ≤ C

n∏

i=1

‖fi‖Lpi(Rd)

holds for all fi ∈ Lpi(Rd), i = 1, . . . , n.

Remark. About the weighted estimate for multilinear fractional integral oper-
ators see, for example, [10]. We could not find any literature about the Hardy–
Littlewood–Sobolev inequality for our strong fractional integral operators.
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