
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 65–90

ON BOUNDARY EXTENSION OF MAPPINGS IN

METRIC SPACES IN THE TERMS OF PRIME ENDS

Evgeny Sevost’yanov

Zhytomyr Ivan Franko State University
40 Bol’shaya Berdichevskaya Str., 10 008 Zhytomyr, Ukraine; esevostyanov2009@gmail.com

Abstract. We study the boundary behavior of the so-called ring Q-mappings obtained as a

natural generalization of mappings with bounded distortion. We establish a series of conditions

imposed on a function Q(x) for the continuous extension of given mappings with respect to prime

ends in domains with regular boundaries in metric spaces.

1. Introduction

Problems of continuous extension of mappings with finite distortion in terms of
prime ends in R

n were recently investigated in [GRY] for n = 2, and in [KR] for
n > 2. The latter paper was devoted to the case of homeomorphisms between spatial
domains with regular prime ends. However, the case of mappings with branching
was not considered in these papers. The present paper solves similar problems in
general metric spaces and not only for homeomorphisms but also for more general
open discrete mappings, cf. [ABBS], [A] and [Sev1].

The following definitions are from [A] and [ABBS]. Given a metric space (X, d, µ)
with a measure µ, a domain in X is an open path-connected set in X. Recall that
X is locally (path) connected if every neighborhood of a point x ∈ X contains a
(path) connected neighborhood. We define the Mazurkiewicz distance dM on X by
dM(x, y) = inf diamE, where the infimum is over all connected sets E ⊂ X containing
x, y ∈ E. Clearly, dM is a metric on X. Let γ be a curve in Ω. We define its diameter
as follows:

diam γ := sup d(x, y),

where the supremum is taken over all points x, y ∈ γ. When x, y ∈ X, we have

dM(x, y) > d(x, y).

Set

B(x0, r) := {x ∈ X : d(x, x0) < r}, S(x0, r) := {x ∈ X : d(x, x0) = r}.

From now on we assume that the space X is complete and supports a p-Poincaré
inequality, and that the measure is doubling (see [ABBS]). In this case, a space X
is locally connected (see [ABBS, Section 2]), and proper (see [BB, Proposition 3.1]).
The relation between spaces supporting the p-Poincaré inequality and the local con-
nectedness is due to Semmes [Se], cf. the discussion at the end of Section 2 in [ABBS].
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If X is also connected then there exist constants C > 0 and q > 0 such that for all
x ∈ X, 0 < r 6 R and y ∈ B(x,R),

(1.1)
µ(B(y, r))

µ(B(x,R))
6 C

( r
R

)q
,

see [ABBS, (2.2)]. Let Ω  X be a bounded domain in X, i.e. a bounded nonempty
connected open subset of X that is not the whole space X itself. The completion of

the metric space (Ω, dM) is denoted Ω
M
, and dM extends in the standard way to Ω

M
:

For dM -Cauchy sequences {xn}
∞
n=1, {yn}

∞
n=1 ∈ Ω we define the equivalence relation

{xn}
∞
n=1 ∼ {yn}

∞
n=1 if lim

n→∞
dM(xn, yn) = 0.

Note that every Cauchy sequence is trivially equivalent to any of its subsequences.
The collection of all equivalence classes of dM -Cauchy sequences can be formally

considered to be Ω
M

, but we will identify equivalence classes of dM -Cauchy sequences
having a limit in Ω with that limit point. By considering equivalence classes of dM -
Cauchy sequences without limits in Ω we define the boundary of Ω with respect to

dM as ∂MΩ = Ω
M

\ Ω. Since X is proper, we know that Ω is locally compact with

respect to dM , and it follows that Ω is an open subset of Ω
M

. We extend the original

metric dM on Ω to Ω
M

by setting

dM(x∗, y∗) = lim
n→∞

dM(xn, yn),

if x∗ = {xn}
∞
n=1 ∈ Ω

M
and y∗ = {yn}

∞
n=1 ∈ Ω

M
. This is well defined and an extension

of dM .
We call a bounded connected set E  Ω an acceptable set if E ∩ ∂Ω 6= ∅. By

discussion in [ABBS], we know that boundedness and connectedness of an acceptable
set E implies that E is compact and connected. Furthermore, E is infinite, as
otherwise we would have E = E ⊂ Ω. Therefore, E is a continuum. Recall that a
continuum is a connected compact set containing at least two points.

We call a sequence {Ek}
∞
k=1 of acceptable sets a chain if it satisfies the following

conditions:

1. Ek+1 ⊂ Ek for all k = 1, 2, . . . ,
2. dist (Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) > 0 for all k = 1, 2, . . . ,
3. The impression

⋂∞
k=1Ek ⊂ ∂Ω.

Here we have used a notation dist(A,B) := infx∈A,y∈B d(x, y), where d is a metric
in a given metric space. The definition of chain given above corresponds to work
[ABBS], cf. [A] and [ES].

Figure 1. A prime end in domain Ω.
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We say that a chain {Ek}
∞
k=1 divides the chain {Fk}

∞
k=1 if for each k there exists lk

such that Elk ⊂ Fk. Two chains are equivalent if they divide each other. A collection
of all mutually equivalent chains is called an end and denoted [Ek], where {Ek}

∞
k=1

is any of the chains in the equivalence class. The impression of [Ek], denoted I[Ek],
is defined as the impression of any representative chain. The collection of all ends is
called the end boundary and is denoted ∂EΩ. We say that an end [Ek] is a prime end

if it is not divisible by any other end. The collection of all prime ends is called the
prime end boundary and is denoted EΩ.

We say that a sequence of points {xn}
∞
n=1 in Ω converges to the end [Ek], and

write xn → [Ek] as n → ∞, if for all k there exists nk such that xn ∈ Ek whenever
n > nk. If xn → [Ek] as n → ∞, and [Ek] divides [Fk], then xn also converges to
[Fk]. Convergence of points and ends defines a topology on Ω∪∂EΩ (see e.g. [ABBS,
Proposition 8.4]). In this topology, a collection C ⊂ Ω ∪ ∂EΩ of points and ends is
closed if whenever (a point or an end) y ∈ Ω ∪ ∂EΩ is a limit of a sequence in C,
then y ∈ C.

In what follows, we set Ω
P

:= Ω ∪ EΩ. We say that Ω is finitely connected

at a point x0 ∈ ∂Ω if for every r > 0 there is an open set G (open in X) such
that x0 ∈ G ⊂ B(x0, r) and G ∩ Ω has only finitely many components. If Ω is
finitely connected at every boundary point, then it is called finitely connected at the
boundary. The following results have been proved in [ABBS].

Proposition 1.1. Assume that Ω is finitely connected at the boundary. Then
all prime ends have singleton impressions, and every x ∈ ∂Ω is the impression of a
prime end and is accessible (see [ABBS, Theorem 10.8]).

Proposition 1.2. Assume that Ω is finitely connected at the boundary. Then

there is a homeomorphism Φ: Ω
P
→ Ω

M
such that Φ|Ω is the identity map. Moreover,

the prime end closure Ω
P

is metrizable with the metric mP (x, y) := dM(Φ(x),Φ(y)).

The topology on Ω
P

given by this metric is equivalent to the topology given by the
sequential convergence discussed above (see [ABBS, Corollary 10.9]).

Recall, for a given continuous path γ : [a, b] → X in a metric space (X, d), that
its length is the supremum of the sums

k∑

i=1

d(γ(ti), γ(ti−1))

over all partitions a = t0 6 t1 6 . . . 6 tk = b of the interval [a, b]. The path γ is
called rectifiable if its length is finite.

Given a family of paths Γ in X, a Borel function ̺ : X → [0,∞] is called admis-

sible for Γ, abbr. ̺ ∈ admΓ, if
ˆ

γ

̺ ds > 1

for all (locally rectifiable) γ ∈ Γ.
Everywhere further, for any sets E, F , and G in X, we denote by Γ(E, F,G)

the family of all continuous curves γ : [0, 1] → X such that γ(0) ∈ E, γ(1) ∈ F ,
and γ(t) ∈ G for all t ∈ (0, 1). Everywhere further (X, d, µ) and (X ′, d ′, µ ′) are
metric spaces with metrics d and d ′ and locally finite Borel measures µ and µ ′,
correspondingly. We will assume that µ is a Borel measure such that 0 < µ(B) <∞
for all balls B in X.
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Given p > 1, the p-modulus of the family Γ is the number

Mp(Γ) = inf
̺∈admΓ

ˆ

X

̺ p(x) dµ(x).

Should admΓ be empty, we set Mp(Γ) = ∞. A family of paths Γ1 in X is said to be
minorized by a family of paths Γ2 in X, abbr. Γ1 > Γ2, if, for every path γ1 ∈ Γ1,
there is a path γ2 ∈ Γ1 such that γ2 is a restriction of γ1. In this case,

(1.2) Γ1 > Γ2 ⇒ Mp(Γ1) ≤Mp(Γ2)

(see [Fu, Theorem 1]).
Let G and G ′ be domains with finite Hausdorff dimensions α and α ′ > 1 in

spaces (X, d, µ) and (X ′, d ′, µ ′), and let Q : G → [0,∞] be a measurable function.
Given x0 ∈ ∂G, denote Si := S(x0, ri), i = 1, 2, where 0 < r1 < r2 <∞. We say that
a mapping f : G→ G ′ is a ring Q-mapping at a point x0 ∈ ∂G, if the inequality

(1.3) Mα ′(f(Γ(S1, S2, A))) 6

ˆ

A∩G

Q(x)ηα(d(x, x0)) dµ(x)

holds for any ring

(1.4) A = A(x0, r1, r2) = {x ∈ X : r1 < d(x, x0) < r2}, 0 < r1 < r2 <∞,

and any measurable function η : (r1, r2) → [0,∞] such that
ˆ r2

r1

η(r)dr > 1

holds. We also consider the definition (1.3) for maps f : G→ X ′, where G ⊂ X is a
domain of Hausdorff dimension α, and X ′ is a metric space of Hausdorff dimension
α ′.

Remark 1.1. Sometimes, some another (similar) definition of ring Q-maps is
considered. Let G and G ′ be domains with finite Hausdorff dimensions α and α ′ > 1
in spaces (X, d, µ) and (X ′, d ′, µ ′), and let Q : G→ [0,∞] be a measurable function.
Following [Sm], we say that a mapping f : G → G ′ is a ring Q-mapping at a point
x0 ∈ G, if the inequality

(1.5) Mα ′(f(Γ(C1, C0, G))) 6

ˆ

A∩G

Q(x)ηα(d(x, x0))dµ(x)

holds for any ring

A = A(x0, r1, r2) = {x ∈ X : r1 < d(x, x0) < r2}, 0 < r1 < r2 <∞,

and any two continua C0 ⊂ B(x0, r1) ∩ G, C1 ⊂ G \ B(x0, r2), and any measurable
function η : (r1, r2) → [0,∞] such that

(1.6)

ˆ r2

r1

η(r)dr > 1

holds.
Observe that (1.3) implies (1.5). In fact, assume that (1.3) holds. Let C0 ⊂

B(x0, r1) ∩ G, C1 ⊂ G \ B(x0, r2) be two continua. Assume that γ ∈ Γ(C1, C0, G).
Given a curve γ : [0, 1] → G, we set |γ| := {x ∈ G : ∃ t ∈ [0, 1] : γ(t) = x}. Note that
|γ| is not included entirely both in B(x0, r2) and G \B(x0, r2), therefore there exists
y1 ∈ S(x0, r2) ∩ |γ| (see [Ku, Theorem 1, § 46, item I]). Let γ : [0, 1] → G and let
t1 ∈ (0, 1) be such that γ(t1) = y1. There is no loss of generality in assuming that
|γ|[0,t1)| ⊂ B(x0, r2). We put γ1 := γ|[0,t1). Observe that |γ1| ⊂ B(x0, r2), moreover,
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γ1 is not included entirely either in B(x0, r1) or in G \ B(x0, r1). Consequently,
there exists t2 ∈ (0, t1) with γ1(t2) ∈ S(x0, r1) (see [Ku, Theorem 1, § 46, item I]).

There is no loss of generality in assuming that |γ1|[t2,t1]| ⊂ G \ B(x0, r1). Put γ2 =
γ1|[t2,t1]. Observe that γ2 is a subcurve of γ. Hence, Γ(C1, C0, G) > Γ(S1, S2, A) and,
consequently, f(Γ(C1, C0, G)) > f(Γ(S1, S2, A)). Now, by (1.2),

(1.7) Mα ′(f(Γ(C1, C0, G))) 6Mα ′(f(Γ(S1, S2, A))).

Combining (1.3) with (1.7), we obtain (1.5).

We say that the boundary of the domain G is strongly accessible at a point

x0 ∈ ∂G, if, for every neighborhood U of the point x0, there is a compact set E ⊂ G,
a neighborhood V ⊂ U of the point x0 and a number δ > 0 such that

Mα(Γ(E, F,G)) > δ

for every continuum F in G intersecting ∂U and ∂V . We say that the boundary
∂G is strongly accessible, if the corresponding property holds at every point of the
boundary.

For instance, so-called QED-domains in R
n have strongly accessible boundaries,

see [MRSY, Remark 13.10]. In particular, the unit ball and half-plane are domains
with strongly accessible boundaries, that directly follows from [Vu2, Lemma 4.3] and
[MRSY, (7.29)]. Consider also the following examples.

Example 1. Let us give an example of a domain with a strongly accessible
boundary. Consider the unit disk with a cut. Note that it is a plane domain,
whose boundary consists only of finite number of components, and which is finitely
connected on the boundary. Applying [Na3, Theorem 6.2 and Corollary 6.8], we
obtain the desired conclusion, see Figure 2 for illustration.

Figure 2. An example of a domain with a strongly accessible boundary.

Example 2. Let us to give an example of domain without strongly accessible
boundary. Let X = R

2 be equipped with the Euclidean distance d(x, y) = |x − y|
and the Lebesgue measure. Consider the square

∏
= (0, 1)× (0, 1) = {z = (x, y) ∈

R
2 : x ∈ (0, 1), y ∈ (0, 1)}, on the base of which we construct a desired domain D

as follows. Let Ik be a segment Ik = {z = (x, y) : x = 1/k, 0 6 y 6 1/2}, where
k = 2, 3, . . . is fixed. Put D :=

∏
\
⋃∞
k=2 Ik, see Figure 3.

We show that D has no strongly accessible boundary, say, at a point z0 = (0, 1/2).
By definition, we need to show that there exists a neighborhood U of z0 such that,
for every neighborhood V ⊂ U , compact E ⊂ D and a number δ > 0 there exists a
continuum F , intersecting ∂U and ∂V , such that

(1.8) M(Γ(E, F,D)) < δ,
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where M denotes modulus of family of paths in R
2. Put U := B(z0, 1/3), where

z0 = (0, 1/2). Fix V ⊂ U , a compact E ⊂ D and a number δ > 0. Let Rk =
1/k, k = 1, 2, . . .. Since E is a compact in D, there exists k0 > 0 with E ∩
B(z0, Rk0−1) = ∅. We can consider that all points z = (x, y) ∈ E satisfy the
condition x > 1/(k0 − 1). Let Ek be a sequence of continua, defined by Ek ={
z = (x, y) : x = 1

2

(
1
k
+ 1

(k−1)

)
, 1
8
6 y 6 v0

}
, where v0 is some positive number with

v0 < 1/2, 1/2−v0 < dist (z0, ∂V ). Let us to show that Ek∩∂U 6= ∅ and Ek∩∂V 6= ∅

for some k1 ∈ N, k1 > k0, and every k ∈ N. Indeed, let xk =
(

1
2

(
1
k
+ 1

(k−1)

)
, 1
8

)
,

yk =
(

1
2

(
1
k
+ 1

(k−1)

)
, v0

)
are the “lowest” and the “highest” points of Ek, corre-

spondingly. Now |z0 − xk| → 3/8, |z0 − yk| → 1/2 − v0, k → ∞. Thus,
xk 6∈ B(z0, 1/3) = U and yk ∈ V for sufficiently large k > k0. Now, Ek ∩ (D \U) 6= ∅
and Ek ∩ V 6= ∅ for k > k0. Now, by [Ku, Theorem 1.I.5, § 46] we obtain that
Ek ∩ ∂U 6= ∅ and Ek ∩ ∂V 6= ∅. Let k1 be a smallest k > k0, for which above
relations hold.

Figure 3. An example of a domain without a strongly accessible boundary.

Let Lk be a sector of the disk B(z0, Rk−1), defined by Lk = {z = (x, y) =
z0 + reiϕ : 0 < r < Rk−1, ϕ ∈ [0, π/2)}. Put Pk = {z = (x, y) ∈ D : 0 < x <
1/(k − 1), 0 < y 6 1/2} and Dk := Lk ∪ Pk. It is clear, that Dk is a domain, and
that Ek ⊂ Dk. By construction, E ⊂ D \Dk for k > k0.

Let Γk be a family of paths, joining Ek and E in D. In what follows, |γ| is a locus
of γ. If γ ∈ Γk, then |γ| ∩ Dk 6= ∅ 6= |γ| ∩ (D \Dk). Now, by [Ku, Theorem 1.I.5,
§ 46] we obtain that |γ| ∩ ∂Dk 6= ∅. Since the path γ belongs to D, we conclude that
there exists subpath γ1 < γ, joining S(z0, Rk−1) and E, k > k0. Similarly, we may
show that γ has a subpath, joining S(z0, Rk−1) and S(z0, Rk0−1) in R

2. Thus,

(1.9) Γk > Γ(S(z0, Rk−1), S(z0, Rk0−1),R
2), k > k0.

By [Va, Theorem 7.5]

(1.10) M(Γ(S(x0, Rk−1), S(x0, Rk0−1),R
2)) =

2π

log
Rk0−1

Rk−1

→ 0 , k → ∞.
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By (1.9) and (1.10) we obtain that M(Γ(E,Ek, D)) → 0 , k → ∞. From here, we
obtain that there exists k2 > k1 such that M(Γ(E,Ek, D)) < δ. Put F = Ek2. By
properties of Ek, k > k1, established above, F ∩∂U 6= ∅ and F ∩∂V 6= ∅. Moreover,
F satisfies (1.8). Thus, boundary of D is not strongly accessible at z0.

Let X and Y be metric spaces. A mapping f : X → Y is discrete if f −1(y) is
discrete for all y ∈ Y and f is open if it takes open sets onto open sets. Given a
domain D ⊂ X, the cluster set of f : D → Y at b ∈ ∂D is the set C(f, b) of all
points z ∈ Y for which there exists a sequence {bk}

∞
k=1 in D such that bk → b and

f(bk) → z as k → ∞. For a non-empty set E ⊂ ∂D let C(f, E) =
⋃
C(f, b), where

b ranges over set E. A mapping f : G → Y is closed in G ⊂ X if f(A) is closed
in f(G) whenever A closed in G. A mapping f is proper if f −1(K) is compact in
D whenever K is a compact set of f(D). A mapping f is boundary preserving if
C(f, ∂D) ⊂ ∂f(D).

Let D ⊂ X, f : D → X ′ be a discrete open mapping, β : [a, b) → X ′ be a curve,
and x ∈ f−1 (β(a)). A curve α : [a, c) → D is called a maximal f -lifting of β starting
at x, if (1) α(a) = x; (2) f ◦ α = β|[a, c); (3) for c < c′ 6 b, there are no curves
α′ : [a, c′) → D such that α = α′|[a, c) and f ◦α ′ = β|[a, c′). In the case X = X ′ = R

n,
the assumption on f yields that every curve β with x ∈ f −1 (β(a)) has a maximal
f -lifting starting at x (see [Ri, Corollary II.3.3], [MRV, Lemma 3.12]). Consider the
condition

A: for all β : [a, b) → X ′ and x ∈ f −1 (β(a)), a mapping f : D → X ′ has a
maximal f -lifting in D starting at x.

Remark 1.2. As noted above, the condition A holds in R
n for open discrete

mappings. We give some examples of other spaces with a similar property.

1) Riemannian manifolds. The existence of maximal liftings under open
discrete mappings of a domain of a Riemannian manifold into another Riemannian
manifold is established in [IS, Proposition 2.1].

2) Riemannian surfaces. The existence of maximal liftings for open discrete
mappings may be obtained similarly to item 1).

3) Carnot and Heisenberg groups. We refer the reader to the results of
works [MV, Theorem 3.6] and [UV, Lemma 5]. Although these results apply only to
particular cases of open discrete mappings, the general case can be proved similarly.

In a more general situation, the existence of maximal liftings under open dis-
crete mappings of arbitrary orientable topological manifolds is established in [OR,
Theorem 3.4], cf. [HR, Example 1.4(a)].

Let G be a domain in a space (X, d, µ). Similarly to [IR], we say that a function
ϕ : G→ R has finite mean oscillation at a point x0 ∈ G, abbr. ϕ ∈ FMO(x0), if

(1.11) lim
ε→0

1

µ(B(x0, ε))

ˆ

B(x0,ε)

|ϕ(x)− ϕε| dµ(x) <∞

where

ϕε =
1

µ(B(x0, ε))

ˆ

B(x0,ε)

ϕ(x) dµ(x)

is the mean value of the function ϕ(x) over the set B(x0, ε) = {x ∈ G : d(x, x0) < ε}
with respect to the measure µ. Here the condition (1.11) includes the assumption
that ϕ is integrable with respect to the measure µ over the set B(x0, ε) for some
ε > 0.
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Remark 1.3. Some examples of functions of finite mean oscillation in Euclidean
space are well known. For example, the function ϕ(x) = log 1

|x−x0|
has a finite mean

oscillation at every point x0 ∈ R
n, see e.g. [RR, p. 5]. On this basis, it is not difficult

to construct at least three simple examples of such functions in more general metric
spaces.

1) Riemannian manifolds. Let d(x, y) be a geodesic distance in a Riemannian
manifold M

n, n > 2, see [IS]. Now, we put ϕ1(x) := log 1
d(x,x0)

. Since in so-called

normal coordinates (ψ, U) of a neighborhood U of the point x0 the geodesic distance
d(x, x0) equals to |ψ(x) − ψ(x0)|, x ∈ U , the fact that the function ϕ1 belongs to
FMO(x0) follows from the corresponding result for Euclidean space.

2) Hyperbolic space. Let D be the unit disk on the plane. The hyperbolic
distance in the unit disk D is given by the formula

(1.12) h(z1, z2) = log
1 + t

1− t
, t =

|z1 − z2|

|1− z1z2|
,

while the hyperbolic area of a set S in D is calculated as the integral h(S) =
´

S
4 dm(z)
(1−|z|2)2

, see e.g. [RV, (2.4)–(2.5)]. Given a Borel function ρ : D → [0,∞], a

Lebesgue measurable set S ⊂ D and a locally rectifiable path γ : (a, b) → D we
set

(1.13)

ˆ

S

ρ(z) dh(z) :=

ˆ

S

4ρ(z) dm(z)

(1− |z|2)2
,

ˆ

γ

ρ(z) dsh(z) :=

ˆ

γ

2ρ(z) |dz|

1− |z|2
.

Now, we put ϕ2(z) := log 1
h(z,0)

= log 1

log
1+|z|
1−|z|

. Since ϕ2(z) ∼ log 1
|z|

as z → 0, we may

obtain a two-sided estimate C1 · log
1
|z|

6 ϕ2(z) 6 C2 · log
1
|z|

in some neighborhood U

of the origin under some constants C1, C2 > 0. Putting Bh(0, ε) := {x ∈ D : h(x, 0) <
ε}, we observe that h(Bh(0, r)) = π(er/2 − e−r/2)2, see [Berd, Theorem 7.2.2]. Since
er/2 − e−r/2 ∼ r as r → 0, there exist constants C3, C4 > 0 such that C3πr

2 6

h(Bh(0, r)) 6 C4πr
2 for sufficiently small r > 0. Finally, the function 4/(1 − |z|2)2

is bounded from below and from above as z → 0, thus, C5 6 4/(1 − |z|2)2 6 C6 in
some neighborhood of the origin for some positive constants C5 and C6. Using the
definition of FMO in (1.11), let us to show that ϕ2(z) ∈ FMO(0). Given ε > 0
sufficiently small, we obtain that

C5 · C1

πε2 · C4

ˆ

Bh(0,ε)

log
1

|z|
dm(z) 6 ϕ2ε =

1

h(Bh(0, ε))

ˆ

Bh(0,ε)

ϕ2(z) dh(z)

6
C6 · C2

πε2 · C3

ˆ

Bh(0,ε)

log
1

|z|
dm(z),

where dh(z) = 4 dm(z)
(1−|z|2)2

. Setting ϕε :=
1
πε2

´

Bh(0,ε)
log 1

|z|
dm(z), we obtain that ϕ2(z)−

ϕ2ε 6 C̃1

∣∣∣log 1
|z|

− ϕε

∣∣∣, where C̃1 = max{C2, (C5 · C1)/C4}. Similarly, ϕ2ε − ϕ2(z) 6

C̃2

∣∣∣log 1
|z|

− ϕε

∣∣∣ , where C̃2 = max{C1, (C6 · C2)/C3}. Let C = max{C̃1, C̃2}. Now

1

h(Bh(0, ε))

ˆ

Bh(0,ε)

|ϕ2(z)− ϕ2ε| dh(z) 6
C · C6

C3 · πε2

ˆ

B(0, e
ε−1

eε+1)

∣∣∣∣log
1

|z|
− ϕε

∣∣∣∣ dm(z).

Here we have used that Bh(0, ε) = B
(
0, e

ε−1
eε+1

)
and eε−1

eε+1
∼ ε as ε→ 0. By [RR, p. 5],

ϕ2(z) ∈ FMO(0).



On boundary extension of mappings in metric spaces in the terms of prime ends 73

3) Riemannian surfaces. The Poincaré uniformization theorem (1908) states
that every Riemann surface S is represented (up to the conformal equivalence) in the

form of the factor S̃/G, where S̃ is one of the canonical domains: C, C or the unit
disk D in C and G is a discrete group of conformal (= fractional) mappings of S onto

itself. Assume that S has a hyperbolic type, that is, S̃ = D. Moreover, assume that
S = D/G. Note that D/G is a Riemannian surface, see e.g. [Berd, Theorem 6.2.1].

Let p1 and p2 ∈ D/G. Then by the definition p1 and p2 are orbits Gz1 and Gz2

of points z1 and z2 ∈ D, see [RV]. Set

(1.14) h̃(p1, p2) := inf
g1,g2∈G

h(g1(z1), g2(z2)),

where h is a hyperbolic metric in D. Observe that h̃ is a metric on D/G (see [RV]).
Let π : D → D/G be the natural projection. Putting p0 ∈ D/G, we can find z0 ∈

D such that π(z0) = p0. Let D0 be Dirichlet polygon for G centered at z0. Without
loss of generality, we can consider that z0 = 0. Observe that π|D0

is a homeomorphism
of D0 onto some open set U0 ⊂ D/G, cf. [Berd, Proposition 9.2.2(iv)]. Putting

ψ = (π|D0
)−1, we define the area h̃ of a set E ⊂ U0 by h̃(E) =

´

ψ(E)
4 dm(z)
(1−|z|2)2

. We can

find a neighborhood V0 ⊂ U0 of p0 such that h̃(p, p0) = h(ψ(p), 0) for every p ∈ V0,
where h is a hyperbolic metric in D. Now, we put ϕ3(p) := log 1

h(ψ(p),0)
. Using item

2), we obtain that ϕ3 ∈ FMO(p0).

The following result holds.

Theorem 1.1. Let D and D ′ be domains with finite Hausdorff dimensions
α and α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively. Assume that X is
complete and supports an α-Poincaré inequality, and that the measure is doubling.
Let D be a bounded domain which is finitely connected at the boundary, and let
Q : X → (0,∞) be a locally integrable function. Suppose that f : D → D ′, D ′ =
f(D), is a discrete, closed and open ring Q-mapping in ∂D, for which A-condition
holds. Moreover, suppose that ∂D ′ is strongly accessible and D ′ is compact in
X ′. Then f has a continuous extension f : DP → D ′, f(DP ) = D ′, whenever
Q ∈ FMO(∂D).

By correspondence [Ek] 7→ f([Ek]), [Ek] ∈ ED, f([Ek]) ∈ ∂D ′, we mean the
following. If {xk}

∞
k=1 is a sequence with xk → [Ek], k → ∞, then we set: f([Ek]) :=

lim
k→∞

f(xk). The statement of the Theorem 1.1 includes that this limit exists, and it

does not depend on a sequence {xk}
∞
k=1, which converges to [Ek] (see the Figure 4).

Figure 4. A correspondence of prime ends and boundary points under a mapping.
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Remark 1.4. Theorem 1.1, presented above, generalizes [A, Theorem 5], that
corresponds to the case of bounded function Q in (1.3). Together with Example 5
in [A], this theorem shows that homeomorphisms with the condition Mα(Γ)/K 6

Mα(f(Γ)) 6 K ·Mα(Γ) have continuous boundary extension in terms of prime ends.
Note that, the estimate of the modulus of families of paths used here, unlike (1.3), is
two-sided. On this point, cf. [A, Theorems 4, 5 and Corollary 2] and Theorems 1.1
and 4.2.

Remark 1.5. In fact, the FMO type condition that is present in Theorem 1.1
can be replaced by the following more general and more fundamental assumption,
which will be used later in proving all the main results. Given a point x0 ∈ D, assume
that there exists a Lebesgue measurable function ψ : (0,∞) → (0,∞) such that

(1.15) I(ε, ε0) :=

ˆ ε0

ε

ψ(t) dt <∞

for every ε ∈ (0, ε0) and I(ε, ε0) → ∞ as ε→ 0, and

(1.16)

ˆ

ε<d(x,x0)<ε0

Q(x) · ψ α(d(x, x0)) dµ(x) = o (I α(ε, ε0)) , ε→ 0.

2. Main Lemma

The following statement holds (see also [Vu1, Theorem 3.3] for space R
n).

Proposition 2.1. Let (X, d, µ) be metric space with Borel measure µ, and let
D be a domain in X. Assume that the measure is doubling. If f : D → X ′ is a
discrete, closed and open mapping of D onto a set D ′, then f is boundary preserving.
Moreover, f −1(K) is a compact for every compact set K ⊂ D ′.

Proof. Since f is open, D ′ is a domain. Assume, to the contrary, that f is not
boundary preserving. Then there exists x0 ∈ ∂D and y ∈ D ′ such that y ∈ C(f, x0).
Now, we can find a sequence xk → x0 as k → ∞, xk ∈ D, k = 1, 2, . . ., such that
f(xk) → y as k → ∞.

Without loss of generality, we can consider that f(xk) 6= y for all k = 1, 2 . . .. In
fact, by continuity of f , for every k ∈ N there exists δk > 0 such that

(2.1) d ′(f(x), f(xk)) < 1/k ∀ x ∈ B(xk, δk).

We can consider that B(xk, δk) ⊂ D and δk < 1/k. Let r → 0 in (1.1) at y =
x = x0. Now, we obtain that µ({xk}) = 0. Fix i ∈ N. Since, by assumption on
µ, µ(B(xk, δk/2

i)) > 0, we obtain that B(xk, δk/2
i) contains at least two points.

By increasing of i, i = 1, 2, . . ., we obtain a sequence xik ∈ B(xk, δk/2
i) such that

xik → xk as i → ∞ and xik 6= xk for every i ∈ N. By discreteness of f , we can
consider that f(xik) 6= y0 for all i ∈ N. Fix some such i0 ∈ N and set zk := xi0k.
Now, by the triangle inequality,

d(zk, x0) 6 d(zk, xk) + d(xk, x0) → 0, k → ∞,

and, simultaneously, by (2.1)

d ′(f(zk), y) 6 d ′(f(zk), f(xk)) + d ′(f(xk), y) < 1/k + d ′(f(xk), y) → 0, k → ∞.

So, zk ∈ D, zk → x0 as k → ∞, f(zk) → y as k → ∞, and f(zk) 6= y for every
k ∈ N. On the other hand, note that {xk}

∞
k=1 is closed in D, but {f(xk)}

∞
k=1 is not

closed in f(D), because y 6∈ {f(xk)}
∞
k=1. Now f is not closed in D. This contradicts

assumptions of the proposition and disproves that f is not boundary preserving.
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It remains to show that f −1(K) is a compact for every compact set K ⊂ D ′. If
this is not true, there exists a sequence xk ∈ f −1(K), such that xk → x0 ∈ ∂D. As
was shown above, f(xk) → y0 ∈ ∂D ′, which contradicts condition xk ∈ f −1(K). �

The following statement was proved in [GRY, Lemma 5.1] for homeomorphisms
in R

2.

Lemma 2.1. Suppose that the assumptions of Theorem 1.1 are satisfied. More-
over, assume that, for every x0 ∈ ∂D conditions (1.15)–(1.16) hold. Then f has a
continuous extension f : DP → D ′, f(DP ) = D ′.

Proof. By Proposition 1.2, DP is metrizable. Now, by metrizability of DP , it is
sufficient to prove that

L = C(f, P ) :=
{
y ∈ X ′ : y = lim

k→∞
f(xk), xk → P, xk ∈ D

}

consists of single point y0 ∈ ∂D ′. Since D ′ is a compact, L 6= ∅. By Proposition 2.1,
L ⊂ ∂D ′.

Assume, to the contrary, that f cannot be extended to P continuously. Now,
we can find at least two points y0 and z0 ∈ L. Set U = B(y0, r0), where 0 < r0 <
d(y0, z0). Now we can find a sequences yk and zk in f(Ek), k = 1, 2, . . ., P = [Ek],
such that d(y0, yk) < r0 and d(y0, zk) > r0 and, besides that, yk → y0 and zk → z0
as k → ∞. By Remark 4.5 in [ABBS] we can consider that the sets Ek are open.
Moreover, by Remark 2.6 in [ABBS] the set Ek is path connected for every k ∈ N.

Denote x0 := I([Ek]) (see Proposition 1.1). Now we show that, for every r > 0
there exists k ∈ N such that

(2.2) Ek ⊂ B(x0, r) ∩D.

Assume, to the contrary, that there exists r > 0 with the following condition: for
every k ∈ N there exists xk ∈ Ek \ B(x0, r). Since µ is doubling, X is complete if
and only if it is proper (i.e. every closed bounded set is compact), see [BB, Propo-
sition 3.1]. Since D is bounded, D is compact. Now, we can find a subsequence
xkl ∈ D with xkl → x0 as l → ∞ for some x0 ∈ D. Given i ∈ N, there exists l0 ∈ N

such that kl > i for every l > l0. Consequently, xkl ∈ Ekl ⊂ Ei for every l > l0 and
thus, x0 ∈ Ei. Since i is arbitrary, we obtain that x0 ∈

⋂∞
i=1Ei = {x0}. So, x0 = x0.

It remains to show that xk → x0 as k → ∞. Assume the contrary, then there exists
a subsequence xml

∈ D with xml
→ ζ0 as l → ∞. Arguing as above, we obtain that

ζ0 = x0, that disproves the contradiction mentioned above. Now xk → x0 as k → ∞
and thus, xk ∈ B(x0, r). The inclusion (2.2) have been proved.

Since yk, zk ∈ f(Ek), one can find at least two sequences xk, x
′
k ∈ Ek such that

f(xk) = yk and f(x ′
k) = zk. By (2.2) xk → x0 and x ′

k → x0 as k → ∞. According
to the definition of a strongly accessible boundary at a point y0 ∈ ∂D ′, for any
neighborhood U of this point one can find a compact set C0 ⊂ ∂D ′, a neighborhood
V of the point y0 and a number δ > 0 such that

(2.3) Mα ′(Γ(C ′
0, F,D

′)) > δ > 0

for an arbitrary continuum F that intersects ∂U and ∂V . By Proposition 2.1, C :=
f −1(C ′

0) is compact subset of D. Consequently, δ0 = dist(x0, C) > 0. Then, without

loss of generality, we can assume that C0∩B(x0, ε0) = ∅. Since Ek is connected, the
points xk and x ′

k can be connected by a curve γk lying in Ek. Since f(xk) = yk ∈ V
and f(x ′

k) = zk ∈ D ′ \ U for sufficiently large k ∈ N, one can find a number k0 ∈ N
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such that, by virtue of (2.3),

(2.4) Mα ′(Γ(C ′
0, f(γk), D

′)) > δ > 0

for all k > k0. Let Γk denote the family of all semiopen curves βk : [a, b) → D ′ such
that β(a) ∈ f(γk), βk(t) ∈ D ′ for all t ∈ [a, b), and

lim
t→b−0

βk(t) := Bk ∈ C ′
0.

It is obvious that

(2.5) Mα ′(Γk) =Mα ′ (Γ (C ′
0, f(γk), D

′)) .

For each fixed k ∈ N, k > k0, we consider the family Γ ′
k of maximal liftings

αk(t) : [a, c) → D of the family Γk with origin in the set γk. This family exists
and is well defined by virtue of A-condition. First, note that no curve αk(t) ∈ Γ ′

k,
αk : [a, c) → D, can not tend to the boundary of the domain D as t → c − 0 by
virtue of the condition C(f, ∂D) ⊂ ∂D ′. Then C(αk(t), c) ⊂ D. Now assume that
the curve αk(t) does not have a limit as t→ c− 0.

Consider

G =
{
x ∈ X : x = lim

k→∞
α(tk)

}
, tk ∈ [a, c), lim

k→∞
tk = c.

Letting to subsequences, if it is need, we can restrict us by monotone sequences tk.
For x ∈ G, by continuity of f , f (α(tk)) → f(x) as k → ∞, where tk ∈ [a, c), tk → c
as k → ∞. However, f (α(tk)) = β(tk) → β(c) as k → ∞. Thus, f is a constant
on G. On the other hand, α is a compact set, because α is a closed subset of the
compact space D (see [Ku, Theorem 2.II.4, § 41]). Now, by Cantor condition on the
compact α, by monotonicity of α ([tk, c)),

G =

∞⋂

k=1

α ([tk, c)) 6= ∅,

see [Ku, 1.II.4, § 41]. Now, by [Ku, Theorem 5.II.5, § 47], α is connected. By dis-
creteness of f , G is a single-point set, and α : [a, c) → D extends to a closed curve
α : [a, c] → D, and f (α(c)) = β(c).

Therefore, there exists limt→c−0 αk(t) = Ak ∈ D. Observe that, in this case,
by the definition of maximal lifting, we have c = b. Then, on the one hand,
limt→b−0 αk(t) := Ak, and, on the other hand, by virtue of the continuity of the
mapping f in D,

f(Ak) = lim
t→b−0

f(αk(t)) = lim
t→b−0

βk(t) = Bk ∈ C ′
0.

According to the definition of C0, this implies that Ak belongs to C0. We imbed
the compact set C0 into a certain continuum C1 lying completely in the domain D
(see Lemma 1 in [Sm]). Taking a smaller value of ε0 > 0, we can again assume that

C1 ∩B(x0, ε0) = ∅. Now we have that Γ ′
k ⊂ Γ(γk, C1, D). Passing to a subsequence,

if necessary, we can consider that xk and x ′
k ∈ B(x0, 2

−k). Observe that the function

η(t) =

{
ψ(t)/I(2−k, ε0), t ∈ (2−k, ε0),

0, t ∈ R \ (2−k, ε0),

where I(ε) :=
´ ε0
ε
ψ(t) dt, satisfies a normalization condition of the form (1.15).

Therefore, by Remark 1.1 and conditions (1.15) and (1.16), we get

(2.6) Mα ′ (f (Γ ′
k)) 6Mα ′(f(Γ(γk, C1, D))) 6 ∆(k),
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where ∆(k) → 0 as k → ∞. However, Γk = f(Γ ′
k). Therefore, using (2.6), we

conclude that

(2.7) Mα ′(Γk) =Mα ′ (f(Γ ′
k)) 6 ∆(k) → 0 as k → ∞.

Relation (2.7), together with equality (2.5), contradicts inequality (2.4), which proves
the possibility of continuous extension f : DP → D ′.

It remains to show that f(DP ) = D ′. It is clear, that f(DP ) ⊂ D ′. Now we
show the inverse inclusion. Let ζ0 ∈ D ′. If ζ0 ∈ D ′, then there exists ξ0 ∈ D
with f(ξ0) = ζ0 and, consequently, ζ0 ∈ f(D). Assume that ζ0 ∈ ∂D ′. Now there
exists ζm ∈ D ′, ζm = f(ξm), ξm ∈ D, such that ζm → ζ0 as m → ∞. By [ABBS,
Theorem 10.10], DP is a compact metric space. Now, we can consider that ξm → P0

as m → ∞, where P0 is some prime end in DP . Now ζ0 ∈ f(DP ). The inclusion
D ′ ⊂ f(DP ) has been proved. Consequently, f(DP ) = D ′. Lemma is proved. �

3. Proof of the main result

We will say that a space (X, d, µ) is upper α-regular at a point x0 ∈ X if there is
a constant C > 0 such that

µ(B(x0, r)) 6 Crα

for the balls B(x0, r) centered at x0 ∈ X with all radii r < r0 for some r0 > 0. We
will also say that a space (X, d, µ) is upper α-regular if the above condition holds at
every point x0 ∈ X. The following statement can be found in [RS, Lemma 4.1].

Proposition 3.1. Let G be a domain in Ahlfors upper α-regular metric space
(X, d, µ), α > 2. Assume that x0 ∈ G and Q : G→ [0,∞] belongs to FMO(x0). If

(3.1) µ(G ∩ B(x0, 2r)) 6 γ · logα−2 1

r
· µ(G ∩ B(x0, r))

for some r0 > 0 and every r ∈ (0, r0), then Q satisfies (1.16) at x0 with ψ(t) := 1
t log 1

t

.

Proof of the Theorem 1.1 follows from Lemma 2.1 and Proposition 3.1. Indeed,
X is upper regular by (1.1), and (3.1) holds because the measure is doubling by
assumptions. So, the desired statement follows from the Lemma 2.1. �

4. Homeomorphic extension to the boundary

Now we prove results about homeomorphic extension of mappings to the bound-
ary in terms of prime ends. Let us give the following definition (see [MRSY, sec-
tion 13.3], cf. [Va, Definition 17.5(4)] and [Na2, Definition 2.8]). Let (X, d, µ) be
metric space with finite Hausdorff dimension α > 1. We say that the boundary of D
is weakly flat at a point x0 ∈ ∂D if, for every number P > 0 and every neighborhood
U of the point x0, there is a neighborhood V ⊂ U such that Mα(Γ(E, F,D)) > P
for all continua E and F in D intersecting ∂U and ∂V . We say that the boundary
∂D is weakly flat if the corresponding property holds at every point of the boundary.
Given P ∈ ED and f : D → X ′, set

L = C(f, P ) :=
{
y ∈ X ′ : y = lim

k→∞
f(xk), xk → P, xk ∈ D

}
.

Analog of the following lemma was proved in [MRSY, Lemma 13.4] (see also [KR,
Lemma 4] and [Sm, Lemma 5]).

Lemma 4.1. Let D and D ′ be domains with finite Hausdorff dimensions α and
α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively. Assume that X is complete
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and supports an α-Poincaré inequality, and that the measure is doubling. Let D be a
bounded domain which is finitely connected at the boundary, and let Q : X → (0,∞)
be integrable function in D, Q(x) ≡ 0 for x ∈ X \ D. Suppose that f : D → D ′,
D ′ = f(D), is a ring Q-homeomorphism in ∂D, moreover, suppose that ∂D ′ is
weakly flat and D ′ is compact in X ′. If P1 and P2 are different prime ends in ED,
then C(f, P1) ∩ C(f, P2) = ∅.

Proof. Assume that C1 ∩ C2 6= ∅, where Ci = C(f, Pi), i = 1, 2. Now, there
exists y0 ∈ C1 ∩ C2.

I. Let P1 = [Ek], k = 1, 2, . . ., and P2 = [Gl], l = 1, 2, . . . ,. By Remark 4.5 in
[ABBS] we can consider that the sets Ek and Gl are open. By Remark 2.6 in [ABBS]
the sets Ek and Gl is path connected for every k, l ∈ N.

Let us show that there exists k0 ∈ N such that

(4.1) Ek ∩Gk = ∅ ∀ k > k0.

Suppose the contrary, i.e., suppose that for every l = 1, 2, . . . there exists an increasing
sequence kl, l = 1, 2, . . ., such that xkl ∈ Ekl ∩ Gkl, l = 1, 2, . . .. Now xkl → P1 and
xkl → P2, l → ∞. Let mP be the metric on DP defined in Proposition 1.2. By
triangle inequality,

mP (P1, P2) 6 mP (P1, xkl) +mP (xkl, P2) → 0, l → ∞,

that contradicts to Proposition 1.2. Thus, (4.1) holds, as required.
II. Denote x0 := I([Ek]) (see Proposition 1.1). Arguing as in the proof of

Lemma 2.1, we can show that, for every r > 0 there exists N ∈ N such that

(4.2) Ek ⊂ B(x0, r) ∩D ∀ k > N.

Since D is connected and Ek0+1 6= D, we obtain that ∂Ek0+1 ∩ D 6= ∅ (see [Ku,
Ch. 5, § 46, item I]). Set r0 := d(x0, ∂Ek0+1 ∩D). Since Ek0 is compact, r0 > 0. By
(4.2), there exists m0 ∈ N, m0 > k0 + 1, such that

(4.3) Ek ⊂ B(x0, r0/2) ∩D ∀ k > m0.

III. Set D0 := Em0+1, D∗ := Gm0+1. Let us to show that

(4.4) Γ(D0, D∗, D) > Γ(S(x0, r0/2), S(x0, r0), A(x0, r0/2, r0)),

where A(x0, r1, r2) is defined in (1.4). Assume that γ ∈ Γ(D0, D∗, D), γ : [0, 1] → D.
Set

|γ| := {x ∈ D : ∃ t ∈ [0, 1] : γ(t) = x}.

By (4.1), |γ| ∩ Ek0+1 6= ∅ 6= |γ| ∩ (D \ Ek0+1). Thus,

(4.5) |γ| ∩ ∂Ek0+1 6= ∅

(see [Ku, Theorem 1, § 46, item I]). Moreover, observe that

(4.6) γ(1) 6∈ ∂Ek0+1.

Suppose the contrary, i.e., that γ(1) ∈ ∂Ek0+1. By definition of prime end, ∂Ek0+1 ∩
D ⊂ Ek0 . Since dist (D ∩ ∂Ek+1, D ∩ ∂Ek) > 0 for all k = 1, 2, . . ., we obtain
that ∂Ek0+1 ∩D ⊂ Ek0. Now, we have that γ(1) ∈ Ek0 and, simultaneously, γ(1) ∈
Gm0+1 ⊂ Gk0. The last relations contradict with (4.1). Thus, (4.6) holds, as required.

By (4.3), we obtain that |γ| ∩ B(x0, r0/2) 6= ∅. We prove that |γ| ∩ (D \
B(x0, r0/2)) 6= ∅. In fact, if it is not true, then γ(t) ∈ B(x0, r0/2) for every t ∈ [0, 1].
However, by (4.5) we obtain that (∂Ek0+1 ∩ D) ∩ B(x0, r0/2) 6= ∅, that contra-
dicts to the definition of r0. Thus, |γ| ∩ (D \ B(x0, r0/2)) 6= ∅, as required. Now,
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by [Ku, Theorem 1, § 46, item I], there exists t1 ∈ (0, 1] with γ(t1) ∈ S(x0, r0/2).
We can consider that t1 = max{t ∈ [0, 1] : γ(t) ∈ S(x0, r0/2)}. We prove that
t1 6= 1. Suppose the contrary, i.e., suppose that t1 = 1. Now, we obtain that
γ(t) ∈ B(x0, r0/2) for every t ∈ [0, 1). On the other hand, by (4.5) and (4.6), we
obtain that ∂Ek0+1∩B(x0, r0/2) 6= ∅, which contradicts to the definition of r0. Thus,
t1 6= 1, as required. Set γ1 := γ|[t1,1].

By the definition, |γ1| ∩B(x0, r0) 6= ∅. We prove that |γ1| ∩ (D \B(x0, r0)) 6= ∅.
In fact, assume the contrary, i.e., assume that γ1(t) ∈ B(x0, r0) for every t ∈ [t1, 1].
Since γ(t) ∈ B(x0, r0/2) for t < t1, by (4.5) we obtain that |γ1| ∩ ∂Ek0+1 6= ∅.
Consequently, B(x0, r0) ∩ (∂Ek0+1 ∩ D) 6= ∅, that contradicts to the definition of
r0. Thus, |γ1| ∩ (D \ B(x0, r0)) 6= ∅, as required. Now, by [Ku, Theorem 1, § 46,
item I], there exists t2 ∈ (t1, 1] with γ(t2) ∈ S(x0, r). We can consider that t2 =
min{t ∈ [t1, 1] : γ(t) ∈ S(x0, r0)}. We put γ2 := γ|[t1,t2]. Observe that γ > γ2 and
γ2 ∈ Γ(S(x0, r0/2), S(x0, r0), A(x0, r0/2, r0)). Thus, (4.4) has been proved.

IV. Consider the function

η(t) =

{
2/r0, t ∈ (r0/2, r0),

0, t ∈ R \ (r0/2, r0).

Note that η satisfies (1.6) with r1 := r0/2 and r2 := r0. Set S1 := S(x0, r0/2),
S2 := S(x0, r0), A := A(x0, r0/2, r0). Thus, by (1.2), (1.5) and (4.4), we obtain that

(4.7) Mα ′(f(Γ(D0, D∗, D))) 6Mα ′(f(Γ(S1, S2, A))) 6

(
2

r0

)α

· ‖Q‖L1(D) <∞.

Set M0 :=
(

2
r0

)α
· ‖Q‖L1(D), 0 < M0 <∞. Now, by (4.7) we obtain that

(4.8) Mα ′(f(Γ(D0, D∗, D))) 6M0.

V. Let us to show that there exists l0 > 0 such that

(4.9) S(y0, l0) ∩ f(D0) 6= ∅, S(y0, l0) ∩ f(D∗) 6= ∅.

In fact, since y0 ∈ C1∩C2, we obtain that y0 ∈ f(D0). Now, given r1 > 0, there exists

x1 ∈ B(y0, r1)∩f(D0). Similarly, y0 ∈ f(D∗), and there exists x2 ∈ B(y0, r1)∩f(D∗).
Set l0 := min{d ′(y0, x1), d

′(y0, x2)}. We have that f(D0) ∩ B(y0, l0) 6= ∅ 6= f(D0) \
B(y0, l0) and f(D∗) ∩ B(y0, l0) 6= ∅ 6= f(D∗) \ B(y0, l0). By [Ku, Theorem 1, § 46,
item I] we obtain (4.9), as required.

Since ∂D ′ is weakly flat, there exists r∗ ∈ (0, l0) such that

(4.10) Mα ′(Γ(E, F,D ′)) > M0

for each continua E and F in D ′ such that E ∩ S(y0, l0) 6= ∅ 6= E ∩ S(y0, r∗) and
F ∩ S(y0, l0) 6= ∅ 6= F ∩ S(y0, r∗). By (4.9) there exist curves c1 and c2, which join
S(y0, l0) and S(y0, r∗) in domains f(D0) and f(D∗), correspondingly. Put E := c1
and F := c2. Observe that Γ(c1, c2, D

′) ⊂ f(Γ(D0, D∗, D)). Now, by (4.10) we obtain
that

M0 < Mα ′(Γ(c1, c2, D
′)) 6Mα ′(f(Γ(D0, D∗, D))),

that contradicts (4.8). Thus, C(f, P1) ∩ C(f, P2) = ∅, as required. �

There are two important statements which follow from Lemma 4.1.

Theorem 4.1. Under conditions of Lemma 4.1, f −1 has a continuous extension
f −1 : D ′ → DP such that f −1(D ′) = DP .
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Proof. Let us to show that, given ζ0 ∈ ∂D ′, a set C(f −1, ζ0) is a single point

ξ0 ∈ ED, where ED denotes prime ends space of D. In fact, assume that xk
d ′

→ ζ0 as

k → ∞ and yk
d ′

→ ζ0 as k → ∞. By [ABBS, Theorem 10.10], DP is a compact metric
space. Thus, we can consider that f −1(xk) → P1 ∈ ED and f −1(yk) → P2 ∈ ED as
k → ∞. If P1 6= P2, then ζ0 ∈ C(f, P1)∩C(f, P2) that contradicts to the lemma 4.1.

Thus, we have the extension f −1 of f −1 on D ′ such that C(f −1, ∂D ′) ⊂ DP \D.
Let us to show that C(f −1, ∂D ′) = DP \D. Given P0 ∈ ED, we can find xm → P0

as m → ∞. Since µ is doubling, X is complete if and only if it is proper (i.e. every
closed bounded set is compact), see [BB, Proposition 3.1]. Since D is bounded,
D is compact. By assumptions of the theorem, D ′ is compact, as well. Thus, we

may assume that xm → x0 ∈ ∂D and f(xm)
d ′

→ ζ0 ∈ ∂D ′ and m → ∞. Thus,
P0 ∈ C(f −1, ζ0), as required.

Finally, let us to show that f −1 : D ′ → DP is continuous in D ′. In fact, assume
that ζm → ζ0 as m → ∞, ζm, ζ0 ∈ D ′. If ζ0 ∈ D ′, the desired conclusion is obvious.
Now, assume that ζ0 ∈ ∂D ′. We choose ζ∗m ∈ D ′ such that d ′(ζm, ζ

∗
m) < 1/m and

mP (f −1(ζm), f −1(ζ∗m)) < 1/m, where mP is the metric defined in Proposition 1.2.

Since ζ∗m
d ′

→ ζ0, we obtain that f −1(ζ∗m) → f −1(ζ0) as m → ∞. Thus, f −1(ζm) →

f −1(ζ0), as required. �

Example. Given n > 2, p > 1 and α ∈ (0, n/p(n− 1)), set

f(x) =
1 + |x|α

|x|
· x, x ∈ B

n \ {0}.

It is not difficult to see that f is a ring Q-homeomorphism of Bn \ {0} onto A :=

{1 < |y| < 2}, where Q(x) :=
(
1+r α

αr α

)n−1
, r = |x| (see, e.g., [MRSY, Proposition 6.3]).

Moreover, Q ∈ Lp(Bn).
Since ∂A consists of two spheres S

n−1 and S(0, 2), which are C1-manifolds, A
is a collared domain, i.e., each boundary point of the domain has an arbitrarily
small neighborhood such that the part of the neighborhood inside the domain is
quasiconformally equivalent to a ball, see [Na4, Section 2.2], cf. [Va, Theorem 17.12]
and [Na1, Remark 1.5]. Thus, we may consider that all prime ends in A are single
points of ∂A (see [Na4, Theorem 4.1]). Observe that f has no continuous extension
at 0, however, the inverse mapping f −1(y) = y

|y|
(|y| − 1)1/α is continuous in A. In

particular, f −1(Sn−1) = 0. Thus, the statement of the Theorem 4.1 is not valid for
f , but is valid for f −1. In this case, Q 6∈ FMO(0).

Combining Theorem 1.1 with Lemma 4.1, we obtain the following statement.

Theorem 4.2. Let D and D ′ be domains with finite Hausdorff dimensions α and
α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively. Assume that X is complete
and supports an α-Poincaré inequality, and that the measure is doubling. Let D be a
bounded domain which is finitely connected at the boundary, and let Q : X → (0,∞)
be an integrable function in D. Suppose that f : D → D ′, D ′ = f(D), is a ring Q-
homeomorphism in ∂D. Moreover, suppose that ∂D ′ is weakly flat andD ′ is compact
in X ′. Then f has a homeomorphic extension f : DP → D ′, f(DP ) = D ′, whenever
Q ∈ FMO(∂D).
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5. Equicontinuity of families of homeomorphisms

Now we prove that the corresponding families of ring Q-homeomorphisms are
equicontinuous in DP = D∪ED, where ED is a prime ends space. In this section, we
restrict us by a case of homeomorphisms, only. Let us recall some definitions. Let
(X, d) and (X ′, d ′) be metric spaces with distances d and d ′, respectively. A family
F of mappings f : X → X ′ is said to be equicontinuous at a point x0 ∈ X if for every
ε > 0 there is δ > 0 such that d ′(f(x), f(x0)) < ε for all f ∈ F and x ∈ X with
d(x, x0) < δ. The family F is equicontinuous if F is equicontinuous at every point
x0 ∈ X. In what follows, X = DP and d = mP , where mP is defined in Proposition
1.2. The next definition can be found, e.g., in [NP]. A domain D is called a uniform

domain if, for each r > 0, there is δ > 0 such that Mα(Γ(F, F
∗, D)) > δ whenever F

and F ∗ are continua of D with d(F ) > r and d(F ∗) > r. Domains Di, i ∈ I, are said
to be equi-uniform domains if, for r > 0, the modulus condition above is satisfied
by each Di with the same number δ. It should be noted that the proposed concept
of a uniform domain has, generally speaking, no relation to definition, introduced
in [MS].

Given δ > 0, D ⊂ X and a measurable function Q : D → [0,∞], denote RQ,δ(D)
the family of all ring Q-homeomorphisms f : D → X ′ \Kf in D, such that f(D) is
some open set inX ′ and d ′(Kf) = sup

x,y∈Kf

d ′(x, y) > δ, whereKf ⊂ X ′ is a continuum.

The following statement holds.

Lemma 5.1. Let (X, d, µ) and (X ′, d ′, µ ′) be metric spaces, let D be a domain
in X with finite Hausdorff dimension α > 2, and let X ′ be a domain with finite
Hausdorff dimension α ′ > 2. Given x0 ∈ D, assume that conditions (1.15)–(1.16)
hold. If X is locally path connected and locally compact space, and X ′ is a uniform
domain, then RQ,δ(D) is equicontinuous at x0.

Proof. The idea of a proof is closely related to [Sev2, Lemma 2]. Assume the
contrary, i.e., assume that RQ,δ(D) is not equicontinuous at x0. Now, there is exists
xk ∈ D and fk ∈ RQ,δ(D) such that xk → x0 as k → ∞ and

(5.1) d ′(fk(xk), fk(x0)) > ε0

for some ε0. Since X is locally connected by assumption, there is a sequence of balls
B(x0, εk), k = 0, 1, 2, . . ., εk → 0 as k → ∞, such that Vk+1 ⊂ B(x0, εk) ⊂ Vk,
where the Vk are continua in D. There is no loss of generality in assuming that
xk ∈ Vk. Now, x0 and xk can be joined by a curve γk in the domain Vk. Note that an
arbitrary curve γ ∈ Γ(Kfk , fk(γk), X

′) is not included entirely both in fk(B(x0, ε0))
andX ′\fk(B(x0, ε0)), therefore there exists y1 ∈ |γ|∩fk(S(x0, ε0)) (see [Ku, Theorem
1, § 46, item I]). Let γ : [0, 1] → X ′ and let t1 ∈ (0, 1) be such that γ(t1) = y1.
There is no loss of generality in assuming that |γ|[0,t1)| ⊂ fk(B(x0, ε0)). We put
γ1 := γ|[0,t1), and α1 = f −1

k (γ1). Observe that |α1| ⊂ B(x0, ε0), moreover, α1 is not

included entirely either in B(x0, εk−1), or in X \ B(x0, εk−1). Consequently, there
exists t2 ∈ (0, t1) with α1(t2) ∈ S(x0, εk−1) (see [Ku, Theorem 1, § 46, item I]).

There is no loss of generality in assuming that |α1|[t2, t1]| ⊂ X \ B(x0, εk−1). Put
α2 = α1|[t2, t1]. Observe that γ2 := fk(α2) is a subcurve of γ. By the said above,

Γ(Kfk , fk(γk), X
′) > Γ(fk(S(x0, εk−1)), fk(S(x0, ε0)), fk(A)) ,

where A = A(x0, εk−1, ε0), and by (1.2) we obtain

(5.2) Mα ′(Γ(Kfk , fk(γk), X
′)) 6Mα ′(Γ(fk(S(x0, εk−1)), fk(S(x0, ε0)), fk(A))).
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Since I(ε, ε0) → ∞ as ε→ 0, we can consider that I(εk, ε0) > 0 for every k = 1, 2, . . ..
Consider the family of measurable functions

ηk(t) = ψ(t)/I(εk, ε0), t ∈ (ε, ε0).

Observe that
´ ε0
εk
ηk(t) dt = 1. Now, by (1.3), (1.16) and (5.2), we obtain that

(5.3) Mα ′(Γ(Kfk , fk(γk), X
′)) 6 ϕ(εk),

where ϕ is some function with ϕ(εk) → 0 as k → ∞. On the other hand, it follows
from (5.1) that min{d ′(Kfk), d

′(fk(γk))} > r0 for some r0 > 0 and every k = 1, 2, . . . ,.
Now, since X ′ is uniformly domain, we obtain that

(5.4) Mα ′(Γ(Kfk , fk(γk), X
′)) > δ0

for some δ0 > 0 and every k = 1, 2, . . . ,. Now, (5.4) contradicts with (5.3). Thus,
RQ,δ(D) is equicontinuous at x0, as required. �

Given δ > 0, D ⊂ X, a continuum A ⊂ D and a measurable function Q : D →
[0,∞], denote FQ,δ,A(D) the family of all ring Q-homeomorphisms f : D → X ′ \Kf

in D, such that f(D) is some open set in X ′ and d ′(Kf ) = sup
x,y∈Kf

d ′(x, y) > δ and

d ′(f(A)) > δ, where Kf ⊂ X ′ is a continuum. An analog of a following result was
proved in [NP, Theorem 3.1].

Lemma 5.2. Let D and D ′
f := f(D), f ∈ FQ,δ,A(D), be domains with finite

Hausdorff dimensions α and α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively,
and let X ′ be a domain with finite Hausdorff dimension α ′ > 2. Assume that X is
complete and supports an α-Poincaré inequality, and that the measure is doubling.
Let D be a bounded domain which is finitely connected at the boundary, and let
Q : X → (0,∞) be a locally integrable function. Assume that, for every x0 ∈ D
conditions (1.15)–(1.16) hold. If D ′

f := f(D) and X ′ are equi-uniform domains over

f ∈ FQ,δ,A(D) and D ′
f are compacts in X ′, then every f ∈ FQ,δ,A(D) has a continuous

extension f : DP → D ′
f , and FQ,δ,A(D) is equicontinuous in DP .

Proof. Observe that ∂D ′
f = ∂f(D) is strongly accessible for every f ∈ FQ,δ,A(D).

Indeed, assume that x0 ∈ ∂D ′
f . Given a neighborhood U of x0, there exists ε1 > 0

such that V := B(x0, ε1), B(x0, ε1) ⊂ U . Assume that ∂U 6= ∅ and ∂V 6= ∅, now
ε2 := d ′(∂U, ∂V ) > 0. SinceD ′

f are equi-uniform, we obtain thatMα ′(Γ(F,G,D ′
f)) >

δ for some δ > 0, because d ′(F ) > ε2 and d ′(G) > ε2, whenever F and G are continua
in D ′

f with F ∩ ∂U 6= ∅ 6= F ∩ ∂V and G∩ ∂U 6= ∅ 6= G∩ ∂V . Thus, ∂D ′
f = ∂f(D)

is strongly accessible, as required. Now, by Lemma 2.1 every f ∈ FQ,δ,A(D) has a

continuous extension f : DP → D ′
f .

Since µ is doubling, X is complete if and only if it is proper (i.e. every closed
bounded set is compact), see [BB, Proposition 3.1]. Now, X is a locally compact
space. Since X is complete, X supports an α-Poincaré inequality, and the mea-
sure is doubling, we obtain that X is locally connected (see [ABBS], see also [Ch,
Theorem 17.1]). Moreover, X is locally path connected by the Mazurkiewicz–Moore–
Menger theorem (see in [Ku, Theorem 1, Ch. 6, § 50, item II]. Thus, all conditions
of Lemma 5.1 are satisfied. Now, by Lemma 5.1, FQ,δ,A(D) is equicontinuous at x0
for every x0 ∈ D.

It remains to show that FQ,δ,A(D) is equicontinuous on ED = DP \ D. Assume
the contrary, i.e., assume that there exists P0 ∈ ED such that FQ,δ,A(D) is not
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equicontinuous at P0. Now, there is exists Pk ∈ DP and fk ∈ FQ,δ,A(D) such that
Pk → P0 as k → ∞ and

(5.5) d ′(fk(Pk), fk(P0)) > ε0

for some ε0. Since fk has a continuous extension on DP , given k ∈ N, we can find
xk ∈ D with mP (xk, Pk) < 1/k and d(fk(xk), fk(Pk)) < 1/k. Thus, we obtain from
(5.5) that

(5.6) d ′(fk(xk), fk(P0)) > ε0/2 ∀ k = 1, 2, . . . .

Similarly, we can find x ′
k ∈ D such that x ′

k → P0 as k → ∞, and d ′(fk(x
′
k), fk(P0)) <

1/k, k = 1, 2, . . .. Thus, we obtain from (5.6) that

(5.7) d ′(fk(xk), fk(x
′
k)) > ε0/4 ∀ k = 1, 2, . . . ,

where xk and x ′
k ∈ D satisfy conditions xk → P0, x

′
k → P0 as k → ∞.

Denote x0 := I([Ek]) (see Proposition 1.1). By Remark 4.5 in [ABBS] we can
consider that the sets Ek are open. Moreover, by Remark 2.6 in [ABBS] the set Ek is
path connected for every k ∈ N. Arguing as in the proof of Lemma 2.1, we can show
that, for every r > 0 there exists k ∈ N such that Ek ⊂ B(x0, r) ∩D. Thus, there is
no loss of generality in assuming that xk, x

′
k ∈ Ek and Ek ⊂ B(x0, 2

−k). Let γk be a
path, joining xk and x ′

k in Ek. Observe that A ⊂ D \ B(x0, 2
−k) for all k > k0 and

some k0 ∈ N. We can consider that 2−k0 < ε0. Let Γk be a family of curves joining
γk and A in D ′

fk
. By Remark 1.1, we obtain that

(5.8) Mα ′(fk(Γk)) 6Mα ′(fk(Γ(S(x0, 2
−k), S(x0, 2

−k0), A(x0, 2
−k, 2−k0)))).

Observe that

η(t) =

{
ψ(t)/I(2−k, 2−k0), t ∈ (2−k, 2−k0),

0, t ∈ R \ (2−k, 2−k0),

I(ε, ε0) :=
´ ε0
ε
ψ(t) dt, satisfies the condition (1.6) at r1 = 2−k and r2 = 2−k0. By the

definition of a ring Q-homeomorphism at a boundary point, (1.16) and (5.8) imply

(5.9) Mp(fk(Γk)) 6 α(2−k) → 0

as k → ∞, where α(ε) is some nonnegative function with α(ε) → 0 as ε→ 0.
However, fk(Γk) = Γ(fk(γk), fk(A), D

′
fk
). By assumption, d ′(fk(A)) > δ, k =

1, 2, . . ., moreover, by (5.7) we obtain that d ′(fk(γk)) > ε0/4, k = 1, 2, . . .. Since D ′
fk

are are equi-uniform domains, we obtain that

(5.10) Mα ′(fk(Γk)) > r0, k = 1, 2, . . . ,

for some r0 > 0. But (5.10) contradicts (5.9). Thus, FQ,δ,A(D) is equicontinuous at
P0, as required. �

The following main result holds.

Theorem 5.1. Let D and D ′
f := f(D), f ∈ FQ,δ,A(D), be domains with finite

Hausdorff dimensions α and α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively,
and let X ′ be a domain with finite Hausdorff dimension α ′ > 2. Assume that X is
complete and supports an α-Poincaré inequality, and that the measure is doubling.
Let D be a bounded domain which is finitely connected at the boundary, and let
Q : X → (0,∞) be a locally integrable function. Assume that, Q ∈ FMO(D).
If D ′

f := f(D) and X ′ are equi-uniform domains over f ∈ FQ,δ,A(D) and D ′
f are

compacts in X ′, then FQ,δ,A(D) is equicontinuous in DP .
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Proof of the Theorem 5.1 follows from Lemma 5.2 and Proposition 3.1. Indeed,
X is upper regular by (1.1), and (3.1) holds because the measure is doubling by
assumptions. So, the desired statement follows from the Lemma 5.2. �

Remark 5.1. By definition, FQ,δ,A(D) ⊂ RQ,δ(D). The following example shows
that this inclusion, generally speaking, is strict. For simplicity, let X = X ′ = C, µ =
µ ′ = m, where m is the Lebesgue measure in C, and let d(x, y) = d ′(x, y) = |x− y|.
As above, D denotes the unit disk in C.

As known, the linear-fractional automorphisms of the unit disk D ⊂ C onto itself
can be written by the formula f(z) = eiθ z−a

1−az
, z ∈ D, a ∈ C, |a| < 1, θ ∈ [0, 2π).

These mappings f are ring 1-homeomorphisms at every point z0 ∈ D, see e.g. [MRSY,
Theorems 8.1 and 8.6]. It is easy to see that all conditions of Theorem 5.1 are satisfied,
except, possibly, the condition d ′(f(A)) > δ in the definition of the class FQ,δ,A(D).
We may take here Q(z) ≡ 1 and δ = 1, because f omit infinitely many continua of
diameter greater than 1 outside of the unit disk D.

If, for instance, θ = 0, a = 1/n, n = 1, 2, . . ., then fn(z) = z−1/n
1−z/n

= nz−1
n−z

. Let

A = [0, 1/2]. Now fn(0) = −1/n → 0 and fn(1/2) =
n−2
2n−1

→ 1/2 as n → ∞. Thus,

fn satisfies the condition h(fn(A)) > δ for δ = 1/4 and sufficiently large n ∈ N.
Thus, fn ∈ F1,1/4,[0,1/2](D) for some n0 ∈ N and each n > n0.

Now, let gn(z) = z−(n−1)/n
1−z(n−1)/n

= nz−n+1
n−nz+1

. It is easy to see, that gn(z) converges

locally uniformly to −1 inside of D, but gn(1) = 1. Thus, gn is not equicontinuous
at z0 = 1 and, consequently, gn 6∈ F1,1,A(D) for any continua A in D by Theorem 5.1.
However, gn ∈ R1,1(D). Thus, FQ,δ,A(D) ⊂ RQ,δ(D) and FQ,δ,A(D) 6= RQ,δ(D), in
general.

Here we took into account that all prime ends of the unit disk are singletons,
see [Na4, Theorem 4.1].

Remark 5.2. We give one simple example of family ring Q-mappings between
metric spaces, different from R

n. Let h be a hyperbolic metric, and let dsh and dh
are elements of hyperbolic length and area, correspondingly, see (1.12) and (1.13).
We write ρ ∈ adme Γ, if

´

γ
ρ(z) |dz| > 1 for every (locally rectifiable) path γ ∈ Γ.

Put Me(Γ) := inf
ρ∈adme Γ

´

D
ρ2(z) dm(z). Similarly, ρ ∈ admh Γ, if

´

γ
ρ(z) dsh(z) > 1 for

every (locally rectifiable) path γ ∈ Γ. Define Mh(Γ) := inf
ρ∈admh Γ

´

D
ρ2(z) dh(z).

1) Observe that

(5.11) Mh(Γ) =Me(Γ).

Indeed, if ρ ∈ adme Γ, then
´

γ
ρ(z) |dz| > 1 for γ ∈ Γ and, thus, ρ1(z) :=

(1−|z|2)ρ(z)
2

∈

admh Γ, because
´

γ
ρ1(z) dsh(z) =

´

γ
2 (1−|z|2)ρ(z)

2(1−|z|2)
|dz| > 1 for γ ∈ Γ. Thus, Mh(Γ) 6

´

D
4 (1−|z|2)2ρ2(z)

4(1−|z|2)2
dm(z) =

´

D
ρ2(z) dm(z). Letting here to inf over ρ ∈ adme Γ, we ob-

tain that Mh(Γ) 6Me(Γ). The inequality Me(Γ) 6Mh(Γ) can be obtained similarly.
2) Given 0 < r1 < r2 < ∞ and 0 < R1 < R2 < 1, define A := {z ∈ D : R1 <

|z| < R2}, Ã := {z ∈ D : r1 < h(z, 0) < r2}, Si = {z ∈ D : |z| = Ri}, S̃i = {z ∈
D : h(z, 0) = ri}, i = 1, 2. Now, we prove the following statement: if f : D → D

satisfies

(5.12) Me(f(Γ(S1, S2, A))) 6

ˆ

R1<|z|<R2

Q(z)η2(|z|) dm(z)
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for η : [R1, R2] → [0,∞] with
´ R2

R1
η(t) dt > 1, then

(5.13) Mh(f(Γ(S̃1, S̃2, Ã))) 6

ˆ

r1<h(z,0)<r2

Q(z)ζ2(h(z, 0)) dh(z),

ζ : [r1, r1] → [0,∞],
´ r2
r1
ζ(t) dt > 1. Indeed, assume that (5.12) holds for every

0 < R1 < R2 < 1. Given 0 < r1 < r2 <∞, observe that Ã := {z ∈ D : r1 < h(z, 0) <

r2} =
{
z ∈ D : e

r1−1
er1+1

< |z| < er2−1
er2+1

}
and S̃i = {z ∈ D : |z| = eri−1

eri+1
}, i = 1, 2. Let

ζ : [r1, r1] → [0,∞] be a Lebesgue measurable function with
´ r2
r1
ζ(t) dt > 1. Arguing

as in the proof of [RV, Lemma 3.1], putting η(r) := 1
1−r2

· ζ
(
log 1+r

1−r

)
, we observe that

´ R2

R1
η(t) dt = 1, where R1 := er1−1

er1+1
and R2 := er2−1

er2+1
. Thus, (5.13) directly follows

from (5.12) and (5.11).
3) Now, let D/G be a Riemannian surface of hyperbolic type and π : D → D/G

is a universal covering mapping of D onto D/G (see item 3) of Remark 1.3). Let
p0 ∈ D/G be such that π(0) = p0, let D0 be a Dirichlet polygon for G centered at
the origin, and let ψ = (π|D0

)−1. Putting U0 := π(D0), we can find a neighborhood

V0 ⊂ U0 of p0 such that h̃(p, p0) = h(ψ(p), 0), where h̃ is a metric on D/G defined
by (1.14).

Let p > 1 be a number, such that 2/p < 1. Put α ∈ (0, 2/p). We define a
sequence of mappings fm : D → D in the following way:

fm(z) =

{
1+|z|α

2|z|
· z, 1/m 6 |z| < 1,

1+(1/m)α

2(1/m)
· z, 0 < |z| < 1/m.

Notice, that fm satisfies (5.12) and, consequently, (5.13) for Q = 1+|z|α

α|z|α
∈ L1(D) at

every z0 ∈ D, see [Sev2, proof of Theorem 7.1]. Now, mappings

gm(p) =

{
1+|ψ(p)|α

2|ψ(p)|
· ψ(p), p ∈ V0 ∩ π(1/m 6 |z| < 1),

1+(1/m)α

2(1/m)
· ψ(p), p ∈ V0 ∩ π(0 < |z| < 1/m)

a ring Q ◦ ψ-homeomorphisms of V0 ⊂ D/G into D at p0.
Similarly, if D/G∗ is another Riemannian surface, and π∗ : D → D/G∗ is a

universal covering map of D, we may assume that p∗0 ∈ D/G∗ is some point with
π∗(0) = p∗0. Let D∗

0 be a Dirichlet polygon for group G∗ centered at origin, and let
ψ∗ = (π∗|D∗

0
)−1. Putting U∗

0 := π∗(D
∗
0), observe that there exits a neighborhood

V ∗
0 ⊂ U∗

0 of p∗0 such that h̃∗(p, p0) = h(ψ∗(p), 0) for p ∈ V ∗
0 . Here h̃∗ is a metric on

D/G∗, defined similarly to (1.14). Let k ∈ N be so large that gm(p)/k ∈ ψ∗(V
∗
0 ) for

every p ∈ U0. Now, mappings hm(p) := π∗(gm(p)/k) are ring Q◦ψ-homeomorphisms
at p0 of U0 into V ∗

0 .

Remark 5.3. Every homeomorphism f : D → S
∗ of Sobolev class with finite

distortion between Riemannian surfaces S and S
∗ is a ring Q-mapping for each p0 ∈

D, whenever Q(p) = Kf(p) is a maximal dilatation of f at p ∈ D and Kf(p) is
locally integrable (see, e.g., [RV, Lemma 3.1]). There are known examples of ring
Q-homeomorphisms on Carnot and Heisenberg groups (see, e.g., [BFP, p. 7], [UV,
Corollaries 2 and 3], cf. [Ma, Theorem 3.1]). We also point out a result for Riemannian
manifolds, see [Af, Lemma 6].
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6. Equicontinuity of families of maps with A-condition

Given δ > 0,D ⊂ X and a measurable functionQ : D → [0,∞], denote GQ,δ,A(D)
the family of all open discrete ring Q-maps f : D → D ′ \Kf in D with A-condition,
such that d ′(Kf) = supx,y∈Kf

d ′(x, y) > δ, where Kf ⊂ D ′ is a continuum. The
following statement holds.

Lemma 6.1. Let D be a domain in locally path connected and locally compact
space X with finite Hausdorff dimension α > 2, and let D ′ be a uniform domain
with finite Hausdorff dimension α ′ > 2. Given x0 ∈ D, assume that conditions
(1.15)–(1.16) hold. Now, GQ,δ,A(D) is equicontinuous at x0.

Proof. The idea of a proof is closely related to [Sev2, Lemma 2], and similar to
Lemma 5.1. Assume the contrary, i.e., assume that GQ,δ,A(D) is not equicontinuous
at x0. Now, there exists xk ∈ D and fk ∈ GQ,δ,A(D) such that xk → x0 as k → ∞
and

(6.1) d ′(fk(xk), fk(x0)) > ε0

for some ε0. Since X is locally compact metric space, we can consider that B(x0, ε0)
is a compact set in X. Since X is locally compact metric space, we can consider
that B(x0, ε0) is a compact set in X. Since X is locally connected by assumption,
there is a sequence of balls B(x0, εk), k = 0, 1, 2, . . ., εk → 0 as k → ∞, such that

Vk+1 ⊂ B(x0, εk) ⊂ Vk, where the Vk are continua in D. There is no loss of generality
in assuming that xk ∈ Vk. Now, x0 and xk can be joined by a curve γk in the domain
Vk.

By [Sev2, Lemma 3], (1.16) implies that

(6.2) Mα ′(Γ(fk(B(x0, ε)), ∂fk(B(x0, ε0)), D
′)) 6 α(ε)

as ε → 0, where α(ε) is some function with α(ε) → 0 as ε → 0. Thus, we obtain
from (6.2) that

(6.3) Mα ′(Γ(fk(γk), ∂fk(B(x0, ε0)), D
′)) 6 α(εk−1) → 0, k → ∞.

On the other hand, observe that Γ(Kfk , fk(γk), D
′) > Γ(fk(γk), ∂fk(B(x0, ε0)), D

′)
(see [Ku, Ch. 5, § 46, item I]); consequently, by (1.2) we obtain

(6.4) Mα ′(Γ(Kfk , fk(γk), D
′)) 6 Mα ′(Γ(fk(γk), ∂fk(B(x0, ε0)), D

′)).

By (6.1), we obtain that d ′(fk(γk)) > ε0 for every k = 1, 2, . . ., moreover, d ′(Kfk) > δ
for every k = 1, 2, . . ., by assumption of the lemma. Now, since D ′ is a uniform
domain, we obtain that

(6.5) Mα ′(Γ(Kfk , fk(γk), D
′)) > r0

for each k = 1, 2, . . ., and some r0 > 0. Observe that (6.5) contradicts with (6.3) and
(6.4). Thus, GQ,δ,A(D) is equicontinuous at x0, as required. �

Let δ > 0, let D ⊂ X and let Q : D → [0,∞] be a measurable function. Denote
EQ,δ,A(D) the family of all open closed discrete ring Q-maps f : D → X ′ in D with
the following conditions: 1) f satisfies A-condition in D; 2) given f : D → X ′

there exists a continuum Kf ⊂ X ′ \ f(D) and d ′(Kf) = supx,y∈Kf
d ′(x, y) > δ; 3)

given f : D → X ′ there exists a continuum Af ⊂ f(D) such that d ′(Af ) > δ and
d(f −1(Af ), ∂D) > δ. The following statement holds.

Lemma 6.2. Let D and D ′
f := f(D), f ∈ EQ,δ,A(D), be domains with finite

Hausdorff dimensions α and α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively,
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and let X ′ be a domain with finite Hausdorff dimension α ′ > 2. Assume that X is
complete and supports an α-Poincaré inequality, and that the measure is doubling.
Let D be a bounded domain which is finitely connected at the boundary, and let
Q : X → (0,∞) be a locally integrable function. Assume that, for every x0 ∈ D,
conditions (1.15)–(1.16) hold. If D ′

f := f(D) and X ′ are equi-uniform domains over

EQ,δ,A(D) and D ′
f are compacts in X ′, then every f ∈ EQ,δ,A(D) has a continuous

extension f : DP → D ′
f , and EQ,δ,A(D) is equicontinuous in DP .

Proof. Arguing as in the proof of Lemma 5.2, we obtain that ∂D ′
f = ∂f(D) is

strongly accessible for every f ∈ EQ,δ,A(D). Moreover, we see that X is a locally
compact and locally path connected space. Now, by Lemma 2.1 every f ∈ FQ,δ,A(D)

has a continuous extension f : DP → D ′
f . By Lemma 6.1, we also obtain that

EQ,δ,A(D) is equicontinuous in D, because EQ,δ,A(D) ⊂ GQ,δ,A(D).
It remains to show that EQ,δ,A(D) is equicontinuous on ED := DP \D. Assume

the contrary, i.e., assume that there exists P0 ∈ ED such that EQ,δ,A(D) is not

equicontinuous at P0. Now, there is exists Pk ∈ DP and fk ∈ EQ,δ,A(D) such that
Pk → P0 as k → ∞ and

(6.6) d ′(fk(Pk), fk(P0)) > ε0

for some ε0. Since fk has a continuous extension on DP , given k ∈ N, we can find
xk ∈ D with mP (xk, Pk) < 1/k and d(fk(xk), fk(Pk)) < 1/k. Thus, we obtain from
(6.6) that

(6.7) d ′(fk(xk), fk(P0)) > ε0/2 ∀ k = 1, 2, . . . .

Similarly, we can find x ′
k ∈ D such that x ′

k → P0 as k → ∞, and d ′(fk(x
′
k), fk(P0)) <

1/k, k = 1, 2, . . .. Thus, we obtain from (6.7) that

d ′(fk(xk), fk(x
′
k)) > ε0/4 ∀ k = 1, 2, . . . ,

where xk and x ′
k ∈ D satisfy conditions xk → P0, x

′
k → P0 as k → ∞.

Denote x0 := I([Ek]) (see Proposition 1.1). By Remark 4.5 in [ABBS] we can
consider that the sets Ek are open. Moreover, by Remark 2.6 in [ABBS] the set Ek is
path connected for every k ∈ N. Arguing as in the proof of Lemma 2.1, we can show
that, for every r > 0 there exists k ∈ N such that Ek ⊂ B(x0, r) ∩D. Thus, there is
no loss of generality in assuming that xk, x

′
k ∈ Ek and Ek ⊂ B(x0, 2

−k). Let γk be a
path, joining xk and x ′

k in Ek. Let Afk be the set from the definition of EQ,δ,A(D).
Observe that f −1

k (Afk) ⊂ D \ B(x0, 2
−k) for all k > k0 and some k0 ∈ N. We can

consider that 2−k0 < ε0. Let Γk be a family of curves joining γk and f −1
k (Afk) in D.

By Remark 1.1, we obtain that

(6.8) Mα ′(fk(Γk)) 6Mα ′(fk(Γ(S(x0, 2
−k), S(x0, 2

−k0), A(x0, 2
−k, 2−k0)))).

Observe that

η(t) =

{
ψ(t)/I(2−k, 2−k0), t ∈ (2−k, 2−k0),

0, t ∈ R \ (2−k, 2−k0),

I(ε, ε0) :=
´ ε0
ε
ψ(t) dt, satisfies the condition (1.6) at r1 = 2−k and r2 = 2−k0. By the

definition of a ring Q-homeomorphism at a boundary point, (1.16) and (6.8) imply

(6.9) Mα ′(fk(Γk)) 6 α(2−k) → 0

as k → ∞, where α(ε) is some nonnegative function with α(ε) → 0 as ε→ 0.
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On the other hand, let us consider the family Γ(fk(γk), Afk , D
′
fk
). Since D ′

fk
:=

fk(D) are equi-uniform domains, we obtain that

(6.10) Mα ′(Γ(fk(γk), Afk , D
′
fk
)) > r0, k = 1, 2, . . . ,

for some r0 > 0. Let Γ∗
k be the family of all maximal fk-liftings of Γ(fk(γk), Afk , D

′
fk
)

starting at γk. (The family Γ∗
k is well defined in view of condition A). Arguing as

in the proof of Lemma 2.1, we can show that Γ∗
k ⊂ Γk. Besides that, fk(Γ

∗
k ) <

Γ(fk(γk), Afk , D
′
fk
). Thus, we obtain

(6.11) Mα ′(Γ(fk(γk), Afk , D
′
fk
)) 6Mα ′(fk(Γ

∗
k )) 6Mα ′(fk(Γk)).

But (6.10) and (6.11) contradict with (6.9). Thus, EQ,δ,A(D) is equicontinuous at P0,
as required. �

The following main result holds.

Theorem 6.1. Let D and D ′
f := f(D), f ∈ EQ,δ,A(D), be domains with finite

Hausdorff dimensions α and α ′ > 2 in spaces (X, d, µ) and (X ′, d ′, µ ′), respectively,
and let X ′ be a domain with finite Hausdorff dimension α ′ > 2. Assume that X is
complete and supports an α-Poincaré inequality, and that the measure is doubling.
Let D be a bounded domain which is finitely connected at the boundary, and let
Q : X → (0,∞) be a locally integrable function. Assume that Q ∈ FMO(D). If
D ′
f := f(D) and X ′ are equi-uniform domains over f ∈ EQ,δ,A(D) and D ′

f are

compact in X ′, then every f ∈ EQ,δ,A(D) has a continuous extension f : DP → D ′
f ,

and EQ,δ,A(D) is equicontinuous in DP .

Proof of the Theorem 6.1 follows from Lemma 6.2 and Proposition 3.1. Indeed,
X is upper regular by (1.1), and (3.1) holds because the measure is doubling by
assumptions. So, the desired statement follows from the Lemma 6.2. �
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