
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 91–101

THE CLOSURE OF DIRICHLET SPACES

IN THE BLOCH SPACE

Petros Galanopoulos and Daniel Girela

Aristotle University of Thessaloniki, Department of Mathematics
54124, Thessaloniki, Greece; petrosgala@math.auth.gr

Universidad de Málaga, Análisis Matemático
Campus de Teatinos, 29071 Málaga, Spain; girela@uma.es

Abstract. If 0 < p < ∞ and α > −1, the space of Dirichlet type Dp

α
consists of those

functions f which are analytic in the unit disc D and have the property that f ′ belongs to the

weighted Bergman space Ap

α
. Of special interest are the spaces Dp

p−1
(0 < p < ∞) and the analytic

Besov spaces Bp
= Dp

p−2
(1 < p < ∞). Let B denote the Bloch space. It is known that the closure

of Bp (1 < p < ∞) in the Bloch norm is the little Bloch space B0. A description of the closure in the

Bloch norm of the spaces Hp ∩B has been given recently. Such closures depend on p. In this paper

we obtain a characterization of the closure in the Bloch norm of the spaces Dp

α
∩ B (1 ≤ p < ∞,

α > −1). In particular, we prove that for all p ≥ 1 the closure of the space Dp

p−1
∩ B coincides

with that of H2 ∩ B. Hence, contrary with what happens with Hardy spaces, these closures are

independent of p. We apply these results to study the membership of Blaschke products in the

closure in the Bloch norm of the spaces Dp

α
∩ B.

1. Introduction and main results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C, ∂D
will be the unit circle. Also, dA will denote the area measure on D, normalized so
that the area of D is 1. Thus dA(z) = 1

π
dx dy = 1

π
r dr dθ. The space of all analytic

functions in D will be denoted by Hol(D). We also let Hp (0 < p ≤ ∞) be the
classical Hardy spaces. We refer to [9] for the notation and results regarding Hardy
spaces. The space BMOA consists of those functions f ∈ H1 whose boundary values
have bounded mean oscillation on ∂D. The “little oh” version of BMOA is the space
VMOA. We refer to [15] for the theory of BMOA-functions.

For 0 < p < ∞ and α > −1 the weighted Bergman space Ap
α consists of those

f ∈ Hol(D) such that

‖f‖Ap
α

def
=

(

(α + 1)

ˆ

D

(1− |z|2)α|f(z)|p dA(z)

)1/p

< ∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap. We refer to [10, 19, 31]

for the notation and results about Bergman spaces. The space of Dirichlet type Dp
α

(0 < p < ∞ and α > −1) consists of those f ∈ Hol(D) such that f ′ ∈ Ap
α. In other
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words, a function f ∈ Hol(D) belongs to Dp
α if and only if

‖f‖Dp
α

def
= |f(0)|+

(

(α+ 1)

ˆ

D

(1− |z|2)α|f ′(z)|p dA(z)

)1/p

< ∞.

If α > p − 1 then it is well known that Dp
α = Ap

α−p (see, e.g., [11, Theorem 6]).
For 1 < p < ∞, the space Dp

p−2 is the analytic Besov space Bp. The space B1

requires a special definition: it is the space of all functions f ∈ Hol(D) such that
f ′′ ∈ A1. Although the corresponding semi-norm is not conformally invariant, the
space itself is. Another possible definition (with a conformally invariant semi-norm)
is given in the fundamental article [3], where B1 was denoted by M. The spaces Bp,
1 ≤ p < ∞, form a nested scale of conformally invariant spaces which are contained
in VMOA and show up naturally in different settings (see [3], [8] and [30]). In
particular, D2

0 = B2 is the classical Dirichlet space D.
Finally, we recall that a function f ∈ Hol(D) is said to be a Bloch function if

‖f‖B
def
= |f(0)|+ sup

z∈D
(1− |z|2)|f ′(z)| < ∞.

The space of all Bloch functions will be denoted by B. It is a non-separable Banach
space with the norm ‖ · ‖B just defined. A classical source for the theory of Bloch
functions is [1]. The closure of the polynomials in the Bloch norm is the little Bloch

space B0 which consists of those f ∈ Hol(D) with the property that

lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

It is well known that

H∞ ( BMOA ( ∩0<p<∞Hp, H∞ ( BMOA ( B, V MOA ( B0 ( B.

Anderson, Clunie and Pommerenke [1, p. 36] raised the question of determining
the closure of H∞ in B. They remarked that this closure strictly contains B0 but is
not identical with B. The problem is still open. However, Jones gave an unpublished
description of the closure of BMOA in B (see [2, Theorem 9]). Given f ∈ B and
ε > 0, we define

Ωε(f) = {z ∈ D : (1− |z|2)|f ′(z)| ≥ ε}.

Then a Bloch function f is in the closure of BMOA in the Bloch norm if and only if
for every ε > 0 the Borel measure (1 − |z|2)−1χΩε(f)(z) dA(z) is a Carleson measure
in D. As usual, for a Borel subset E of D, χE denotes the characteristic function of
E. A proof of Jones’ description is provided by Ghatage and Zheng [14].

This study has been broaden to determine the closure in the Bloch norm of other
subspaces of B. For simplicity, if X is a subspace of the Bloch space we shall let
CB(X) denote the closure in the Bloch norm of the space X.

Tjani [26] proved that if f ∈ B, then f ∈ B0 if and only if
´

Ωε(f)
dA(z)

(1−|z|2)2
< ∞ for

every ε > 0. Since all Besov spaces contain the polynomials and are contained in B0,
we have

(1.1) CB(B
p) = B0, 1 ≤ p < ∞.

This was observed in [29] where the closures in the Bloch norm of other conformally
invariant spaces were also described. Bao and Göğüş [5] have recently characterized
the closure in the Bloch norm of the space D2

α ∩ B (−1 < α ≤ 1).
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Monreal Galán and Nicolau [22] described the closure in the Bloch norm of B∩Hp,
for 1 < p < ∞. Galanopoulos, Monreal Galán and Pau [13] have extended this result
to the whole range 0 < p < ∞.

Let us fix some notation. Given a Lebesgue measurable subset Ω of D, we let
Ah(Ω) be the hyperbolic area of Ω, that is,

Ah(Ω) =

ˆ

Ω

dA(z)

(1− |z|2)2
.

Also, for fixed a > 1 and for ξ ∈ ∂D, we let Γa(ξ) = {z ∈ D : |z − ξ| < a(1 − |z|)}
be the Stolz angle with vertex at ξ. Putting [22, Theorem 1] and [13, Theorem 1]
together yields the following result.

Theorem A. Let 0 < p < ∞ and a > 1. A Bloch function f is in the closure in

the Bloch norm of B∩Hp if and only if for every ε > 0 the function Fε(f) defined by

Fε(f)(ξ) = A
1/2
h (Γa(ξ) ∩ Ωε(f)) , ξ ∈ ∂D,

belongs to Lp(∂D), that is,
ˆ

∂D

(
ˆ

Γa(ξ)∩Ωε(f)

dA(z)

(1− |z|2)2

)p/2

|dξ| < ∞.

It is well known that there exists a positive constant C such that

|f(z)| ≤ C‖f‖B log
2

1− |z|
, (z ∈ D), for every f ∈ B,

(see [1, p. 13]). Then it follows trivially that B ⊂ Ap
α whenever 0 < p < ∞ and

α > −1. So the question of characterizing CB(A
p
α ∩ B) is trivial:

(1.2) CB(A
p
α ∩ B) = CB(B) = B, 0 < p < ∞, α > −1.

The main object of this paper is to characterize the closure in the Bloch norm
of the spaces Dp

α ∩ B. As we mentioned above, if p− 1 < α then Dp
α = Ap

α−p. Thus,
using (1.2) we obtain

(1.3) CB(D
p
α ∩ B) = B, 0 < p < ∞, p− 1 < α.

If −1 < α ≤ p − 2 then we have that Dp
α ⊂ Dp

p−2 = Bp ⊂ B, and then (1.1)
implies that

CB(D
p
α ∩ B) = CB(D

p
α) ⊂ CB(B

p) = B0.

Now it is clear that the polynomials lie in Dp
α and then it follows that B0 ⊂ CB(D

p
α).

Consequently, we have

(1.4) CB(D
p
α ∩ B) = B0, 0 < p < ∞, α ≤ p− 2.

If remains to consider the case where p − 2 < α ≤ p − 1 and we shall pay a
special attention to the case α = p− 1 because the spaces Dp

p−1 are the closest ones
to Hardy spaces among all the Dp

α-spaces. By the Littlewood–Paley identity, we have
D2

1 = H2. We have also [21]

Hp ( Dp
p−1, for 2 < p < ∞,

and [11, 27]
Dp

p−1 ( Hp, for 0 < p < 2.

A number of similarities and differences between the spaces Hp and Dp
p−1 are pre-

sented in [4, 16, 17, 23, 27]. As in the case of Hardy spaces, there is no inclusion
relation between the spaces Dp

p−1 and the Bloch space. Despite the fact that there



94 Petros Galanopoulos and Daniel Girela

is no relation of inclusion between Dp
p−1 and Dq

q−1 for p 6= q (see [4, 17, 12]), it was
observed in [7] that

Dp
p−1 ∩ B ⊂ Dq

q−1 ∩ B, 0 < p < q < ∞.

In the next theorem we give a characterization of the closures in the Bloch norm
of the spaces Dp

p−1 ∩ B (1 ≤ p < ∞). We remark that, contrary to what happens
with Hardy spaces, these closures are independent of p.

Theorem 1. Let p ∈ [1,∞) and f ∈ B. Then the following conditions are

equivalent.

(i) f ∈ CB(D
p
p−1 ∩ B).

(ii) For every ε > 0
ˆ

Ωε(f)

dA(z)

1− |z|2
< ∞.

(iii) f ∈ CB(H
2 ∩ B).

As remarked in [22], the equivalence (ii)⇔ (iii) follows immediately from the
case where p = 2 in Theorem A by using Fubini’s theorem. Indeed, using Fubini’s
theorem, for f ∈ B, ε > 0, and a > 1, we have

ˆ

∂D

ˆ

Γa(ξ)∩Ωε(f)

1

(1− |z|2)2
dA(z) |dξ|

=

ˆ

∂D

ˆ

Ωε(f)

χΓa(ξ)(z)
1

(1 − |z|2)2
dA(z) |dξ|

=

ˆ

Ωε(f)

(
ˆ

∂D

χΓa(ξ)(z) |dξ|

)

1

(1− |z|2)2
dA(z)

≍

ˆ

Ωε(f)

(1− |z|2)
dA(z)

(1− |z|2)2
=

ˆ

Ωε(f)

dA(z)

1− |z|2
.

Bearing in mind that (ii) ⇐⇒ (iii), Theorem 1 follows from the following
one where we give a characterization of CB(D

p
α ∩ B) whenever 1 ≤ p < ∞ and

p− 2 < α ≤ p− 1.

Theorem 2. Suppose that 1 ≤ p < ∞, p− 2 < α ≤ p− 1, and let f be a Bloch

function. Then the following conditions are equivalent.

(i) f ∈ CB(D
p
α ∩ B).

(ii) For every ε > 0 we have that
ˆ

Ωε(f)

dA(z)

(1− |z|2)p−α
< ∞.

The proof of Theorem 2 will be presented in Section 2. In Section 3 we discuss
the case 0 < p < 1 and we study also the membership of Blaschke products in the
spaces CB(D

p
α ∩ B).

We close this section noticing that, as usual, we shall be using the convention
that C = C(p, α, q, β, . . . ) will denote a positive constant which depends only upon
the displayed parameters p, α, q, β . . . (which sometimes will be omitted) but not nec-
essarily the same at different occurrences. Moreover, for two real-valued functions
E1, E2 we write E1 . E2, or E1 & E2, if there exists a positive constant C inde-
pendent of the arguments such that E1 ≤ CE2, respectively E1 ≥ CE2. If we have
E1 . E2 and E1 & E2 simultaneously then we say that E1 and E2 are equivalent and
we write E1 ≍ E2.
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2. Proof of Theorem 2

We start recalling a well known lemma (see [31, Lemma3. 10, p. 55]).

Lemma A. Suppose that c is real and t > −1, and set

F (z) =

ˆ

D

(1− |w|2)t

|1− wz|2+t+c
dA(w), z ∈ D.

(i) If c < 0, then F (z) is a bounded function of z
(ii) If c > 0, then F (z) ≍ (1− |z|2)−c, |z| → 1−.

(iii) If c = 0, then F (z) ≍ log 1
(1−|z|2)

, |z| → 1−.

We shall also need the following representation formula for Bloch functions (see
[31, Proposition 4. 27 and p. 112]).

Proposition A. Let f be a Bloch function with f(0) = f ′(0) = 0, then

f(z) =

ˆ

D

(1− |w|2)f ′(w)

(1− zw)2w
dA(w), z ∈ D.

Proof of the implication (i) =⇒ (ii) in Theorem 2. Take a function f in the
closure in the Bloch norm of Dp

α∩B and ε > 0. Then there exists a function g ∈ Dp
α∩B

such that ‖f − g‖B < ε
2
. Clearly, this implies that Ωε(f) ⊆ Ω ε

2
(g). Then it follows

that

ˆ

D

|g′(z)|p(1− |z|2)α dA(z) ≥

ˆ

Ω ε
2

(g)

|g′(z)|p(1− |z|2)α dA(z)

=

ˆ

Ω ε
2

(g)

|g′(z)|p(1− |z|2)p

(1− |z|2)p−α
dA(z)

≥
(ε

2

)p
ˆ

Ω ε
2
(g)

dA(z)

(1− |z|2)p−α

≥
(ε

2

)p
ˆ

Ωε(f)

dA(z)

(1− |z|2)p−α
.

Since g ∈ Dp
α, (ii) follows. �

Proof of the implication (ii) =⇒ (i) in Theorem 2. Suppose that 1 ≤ p < ∞,
p−2 < α ≤ p−1, and let f be a Bloch function which satisfies (ii). Assume without
loss of generality that f(0) = f ′(0) = 0. Using PropositionA we can write f as
follows

f(z) =

ˆ

D

(1− |w|2)f ′(w)

(1− zw)2w
dA(w), z ∈ D.

Take ε > 0. We decompose f in the following way

f(z) =

ˆ

Ωε(f)

(1− |w|2)f ′(w)

(1− wz)2w
dA(w) +

ˆ

D\Ωε(f)

(1− |w|2)f ′(w)

(1− wz)2w
dA(w)

= f1(z) + f2(z).
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For any z ∈ D, we have

(1− |z|2)|f ′
2(z)| ≤ 2(1− |z|2)

ˆ

D\Ωε(f)

(1− |w|2)|f ′(w)|

|1− wz|3
dA(w)

≤ 2ε(1− |z|2)

ˆ

D\Ωε(f)

dA(w)

|1− wz|3

≤ 2ε(1− |z|2)

ˆ

D

dA(w)

|1− wz|3
.

Using LemmaA with t = 0 and c = 1, we obtain that (1−|z|2)|f ′
2(z)| ≤ C ε where C

is a positive constant. Hence, ‖f2‖B ≤ Cε. Equivalently, f1 is a Bloch function with

‖f − f1‖B ≤ Cε.

The proof will be finished if we prove that f1 ∈ Dp
α or, equivalently, that f ′

1 ∈ Ap
α.

We have
ˆ

D

(1− |z|2)α|f ′
1(z)|

p dA(z) =

ˆ

D

(1− |z|2)α|f ′
1(z)|

p−1|f ′
1(z)| dA(z)

=

ˆ

D

(1− |z|2)p−1|f ′
1(z)|

p−1(1− |z|2)α−p+1|f ′
1(z)| dA(z)

≤ ‖f1‖
p−1
B

ˆ

D

(1− |z|2)α−p+1|f ′
1(z)| dA(z)

≤ ‖f1‖
p−1
B

ˆ

D

(1− |z|2)α−p+1

(
ˆ

Ωε(f)

(1− |w|2)|f ′(w)|

|1− w z|3
dA(w)

)

dA(z)

≤ ‖f1‖
p−1
B ‖f‖B

ˆ

Ωε(f)

(
ˆ

D

(1− |z|2)α−p+1

|1− w z|3
dA(z)

)

dA(w).

Observe that α−p+1 > −1 and p−α > 0. Then, using LemmaA with t = α−p+1
and c = p− α and (ii), we obtain

ˆ

D

(1− |z|2)α|f ′
1(z)|

p dA(z) . ‖f1‖
p−1
B ‖f‖B

ˆ

Ωε(f)

dA(z)

(1− |z|2)p−α
< ∞,

that is, f ′
1 ∈ Ap

α as desired. �

3. The case 0 < p < 1 and some further results

Putting together (1.3), (1.4) and Theorem 2 we have the following result.

Theorem 3. Suppose that 0 < p < ∞ and α > −1.

(i) If α ≤ p− 2, then CB(D
p
α ∩ B) = CB(D

p
α) = B0.

(ii) If α > p− 1, then CB(D
p
α ∩ B) = B.

(iii) If p ≥ 1 and p− 2 < α ≤ p− 1, then

CB(D
p
α ∩ B) =

{

f ∈ B :

ˆ

Ωε(f)

dA(z)

(1− |z|2)p−α
< ∞ for all ε > 0

}

.

We do not know whether (iii) remains true for 0 < p < 1. In particular, we do
not know whether CB(D

p
p−1 ∩ B) coincides with CB(H

2 ∩ B) when 0 < p < 1.
We can prove the following result.

Theorem 4. Suppose that 0 < p < 1, −1 < α ≤ p − 1, and let f be a Bloch

function.

(a) If f ∈ CB(D
p
α ∩ B), then

´

Ωε(f)
dA(z)

(1−|z|2)p−α < ∞ for every ε > 0.
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(b) If there exists γ > 2− 1+α
p

such that
´

Ωε(f)
dA(z)

(1−|z|2)γ
< ∞ for every ε > 0, then

f ∈ CB(D
p
α ∩ B).

Proof. For f ∈ B, we have
ˆ

D

(1− |z|2)α+1−p|f ′(z)| dA(z) =

ˆ

D

(1− |z|2)α|f ′(z)|p
[

(1− |z|2)|f ′(z)|
]1−p

dA(z)

≤ ‖f‖1−p
B

ˆ

D

(1− |z|2)α|f ′(z)|p dA(z).

Hence, it follows that Dp
α∩B ⊂ D1

α+1−p∩B. Using this, the fact that −1 < α+1−p ≤
0, and Theorem2, (a) follows.

We turn to prove (b). Observe that

1 ≤ 2−
1 + α

p
< 2.

Suppose that γ > 2 − 1+α
p

and that
´

Ωε(f)
dA(z)

(1−|z|2)γ
< ∞ for every ε > 0. Clearly, we

may assume without loss of generality that γ < 2. Arguing as is the proof of the
implication (ii) =⇒ (i) in Theorem2, the fact f ∈ CB(D

p
p−1 ∩ B) will follow if we

prove that the Bloch function f1 defined by

f1(z) =

ˆ

Ωε(f)

(1− |w|2)f ′(w)

(1− wz)2w
dA(w), z ∈ D,

belongs to the space Dp
α or, equivalently, that

(3.1) f ′
1 ∈ Ap

α.

We are going to present two proofs of (3.1), the second one has been suggested
to us by one of the referees. Observe that 0 < 2 − γ < α+1

p
and 1 − γ > −1. Then

it follows that A1
1−γ ⊂ Ap

α (see [20, p. 703] or [6, Lemma 1. 2])). Hence it suffices to
show that

(3.2) f ′
1 ∈ A1

1−γ.

We have
ˆ

D

(1− |z|2)1−γ |f ′
1(z)| dA(z)

≤

ˆ

D

(1− |z|2)1−γ

ˆ

Ωε(f)

(1− |w|2)|f ′(w)|

|1− w z|3
dA(w) dA(z)

≤ ‖f‖B

ˆ

Ωε(f)

(
ˆ

D

(1− |z|2)1−γ

|1− w z|3
dA(z)

)

dA(w)

≤ ‖f‖B

ˆ

Ωε(f)

dA(w)

(1− |w|2)γ
.

To obtain the last inequality we have used Lemma A with t = 1−γ and c = γ. Then
(3.2) follows.

Let us turn to the other promised proof of (3.1). Notice that

(3.3) 0 < (1− p)(α + 1) < p(1− α).

Pick δ with

(3.4) 0 < δ < (1− p)(α + 1)
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and define h(z) = (1 − |z|2)δ (z ∈ D). Using Hölder’s inequality, Fubini’s theorem,
the facts that δ

1−p
− α < 1, α+ δ

p
> −1 and 1− α− δ

p
> 0, and LemmaA, we obtain

ˆ

D

|f ′
1(z)|

p(1− |z|2)αdA(z) .

ˆ

D

(
ˆ

Ωε(f)

|f ′(w)|(1− |w|2)

|1− w z|3
dA(w)

)p

(1− |z|2)αdA(z)

≤ ‖f‖pB

ˆ

D

(
ˆ

Ωε(f)

dA(w)

|1− w z|3

)p

h(z) h(z)−1(1− |z|2)αp(1− |z|2)α(1−p)dA(z)

. ‖f‖pB

(
ˆ

D

(1− |z|2)α+
δ
p

ˆ

Ωε(f)

dA(w)

|1− w z|3
dA(z)

)p(ˆ

D

(1− |z|2)α−
δ

1−pdA(z)

)1−p

. ‖f‖pB

(

ˆ

Ωε(f)

ˆ

D

(1− |z|2)α+
δ
p

|1− w z|3
dA(z) dA(w)

)p

. ‖f‖pB

(

ˆ

Ωε(f)

dA(w)

(1− |w|2)1−α− δ
p

)p

.

Since 1 − α − (1−p)(α+1)
p

= 2 − α+1
p

, (3.1) follows choosing δ sufficiently close to

(1− p)(α + 1). �

Our next aim is to give applications of the results that we have obtained so far
to study the membership of a Blaschke product in CB(D

p
α ∩ B) for distinct values

of p and α. We refer to [9] for the definition, notation, and results about Blaschke
products. Since H∞ ⊂ H2 ∩ B, Theorem 1 trivially implies that

H∞ ⊂ CB(D
p
p−1 ∩ B), 1 ≤ p < ∞.

In particular any Blaschke product lies in CB(D
p
p−1 ∩ B) whenever 1 ≤ p < ∞.

For 0 < p < 2 the space H∞ is not included in Dp
p−1. Rudin [25, Theorem III]

proved that there exists a Blaschke product B with B /∈ D1
0. Later on, Vinogradov

[27] gave examples of Blaschke products B such that B /∈ Dp
p−1 for all p ∈ (0, 2).

On the other hand, Rudin also proved in [25] that if a sequence {an} ⊂ D satisfies
the condition

(3.5)
∑

(1− |an|) log
1

1− |an|
< ∞

then the Blaschke product whose sequence of zeros is {an} belongs to D1
0 (and,

consequently to Dp
p−1 for all p ≥ 1). The converse of this is not true. Indeed, a result

of Vinogradov [27, Theorem 2. 9, p. 3814] implies that a Blaschke product with zeros
in a Stolz angle lies in Dp

p−1 for all p.
Protas proved in [24, Theorem 1] that if 0 < s < 1 and the sequence {an} of

the zeros of the Blaschke product B satisfies the condition
∑

(1− |an|
2)s < ∞, then

B′ ∈ A1
s−1. Using again [6, Lemma 1. 2] we see that A1

s−1 ⊂ Ap
p−1 for all p ∈ (0, 1),

whenever 0 < s < 1. Then we deduce the following:

If the sequence {an} of the zeros of the Blaschke product B satisfies the condition
∑

(1− |an|
2)s < ∞ for some s < 1, then B ∈ ∩0<p<∞Dp

p−1.

Let us summarize these facts in the following theorem.

Theorem 5. Let B be a Blaschke product and let {an} be its sequence of zeros.

(i) B ∈ CB(D
p
p−1 ∩ B) whenever 1 ≤ p < ∞.

(ii) If
∑

(1− |an|) log
1

1−|an|
< ∞, then B ∈ ∩1≤p<∞Dp

p−1.

(iii) If
∑

(1− |an|
2)s < ∞ for some s < 1, then B ∈ ∩0<p<∞Dp

p−1.
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Suppose that 1 ≤ γ < 2 and let B be the Blaschke product whose sequence of
zeros is {an}. Take ε > 0. We have

|B′(z)| ≤
∑ 1− |an|

2

|1− anz|2
, z ∈ D,

and hence

z ∈ Ωε(B) =⇒ 1 ≤
1

ε
(1− |z|2)

∑ 1− |an|
2

|1− anz|2
.

Then it follows that
ˆ

Ωε(B)

dA(z)

(1− |z|2)γ
≤

1

ε

∑

(1− |an|
2)

ˆ

Ωε(B)

(1− |z|2)1−γ

|1− anz|2
dA(z)

≤
1

ε

∑

(1− |an|
2)

ˆ

D

(1− |z|2)1−γ

|1− anz|2
dA(z).

Now, using Lemma A with t = 1− γ and c = γ − 1, we obtain

(3.6)

ˆ

Ωε(B)

dA(z)

1− |z|2
.

1

ε

∑

(1− |an|
2) log

1

1− |an|2

and

(3.7)

ˆ

Ωε(B)

dA(z)

(1− |z|2)γ
.

1

ε

∑

(1− |an|
2)2−γ , if 1 < γ < 2.

Using these inequalities and Theorem 1 and Theorem 4 with α = p−1, we obtain
results which are weaker than those stated in Theorem 5. However, using (3.7) and
Theorem 4 in the case α < p− 1, we obtain the following result.

Theorem 6. Let B be the Blaschke product whose sequence of zeros is {an}. If

1 ≤ p < ∞, p− 2 < α < p− 1 , and
∑

(1−|an|
2)2−(p−α) < ∞, then B ∈ CB(D

p
α∩B).

Restricting ourselves to interpolating Blaschke products (that is, Blaschke prod-
ucts whose sequences of zeros are universal interpolation sequences [9, Chapter 9]),
we have the following result.

Theorem 7. Let B be an interpolating Blaschke product whose sequence of

zeros is {an}
∞
n=1. Suppose that 1 ≤ p < ∞ and p−2 < α < p−1. Then the following

conditions are equivalent.

(i)
∑

(1− |an|
2)2−(p−α) < ∞.

(ii) B ∈ CB(D
p
α ∩ B).

We remark that this was proved in [5] for the case where p = 2 and 0 < α < 1.

Proof of Theorem 7. The implication (i) =⇒ (ii) follows trivially from Theo-
rem 6. To prove the other implication, suppose that B ∈ CB(D

p
α∩B). By Theorem 3

we have

(3.8)

ˆ

Ωε(f)

dA(z)

(1− |z|2)p−α
< ∞.

Since B is an interpolating Blaschke product, the sequence {an} is uniformly
separated, that is, there exists δ > 0 such that

inf
m≥1

∞
∏

n=1,n 6=m

̺(an, am) ≥ δ.
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Here ̺ denotes the pseudo-hyperbolic distance:

̺(z, w) =

∣

∣

∣

∣

z − w

1− wz

∣

∣

∣

∣

, z, w ∈ D.

Also, for a ∈ D and 0 < r < 1, ∆(a, r) will denote the pseudo-hyperbolic disc of
center a and radius r:

∆(a, r) = {z ∈ D : ̺(z, a) < r}.

Using Lemma 3. 5 of [18] we see that there exist ε > 0 and β ∈ (0, 1) such that the
discs {∆(an, β) : n = 1, 2, 3, . . . } are pairwise disjoint and so that

|B′(z)| ≥
ε

1− |an|2
, z ∈ ∆(an, β), n = 1, 2, 3, . . . .

This implies that

(3.9)

∞
⋃

n=1

∆(an, β) ⊂ Ωε(B).

Using the fact that the discs {∆(an, β)} are pairwise disjoint and (3.9), we obtain
∞
∑

n=1

ˆ

∆(an,β)

dA(z)

(1− |z|2)p−α
=

ˆ

∪∞

n=1
∆(an,β)

dA(z)

(1− |z|2)p−α
≤

ˆ

Ωε(B)

dA(z)

(1− |z|2)p−α
.(3.10)

Now, (see [31, p. 69]) it is well known that

(1− |z|2) ≍ (1− |an|
2), as long as z ∈ ∆(an, β),

and that the area A (∆(an, β)) of ∆(an, β) satisfies A (∆(an, β)) ≍ (1−|an|
2)2. These

two facts imply that
∞
∑

n=1

(1− |an|
2)2−(p−α) ≍

∞
∑

n=1

ˆ

∆(an,β)

dA(z)

(1− |z|2)p−α
.

This, together with (3.10) and (3.8), implies that
∑∞

n=1(1− |an|
2)2−(p−α) < ∞. �
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