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Abstract. Quasiconformal maps in the plane are orientation preserving homeomorphisms

that satisfy certain distortion inequalities; infinitesimally, they map circles to ellipses of bounded

eccentricity. Such maps have many useful geometric distortion properties, and yield a flexible and

powerful generalization of conformal mappings. In this work, we study the singularities of these

maps, in particular the sizes of the sets where a quasiconformal map can exhibit given stretching and

rotation behavior. We improve results by Astala–Iwaniec–Prause–Saksman and Hitruhin to give

examples of stretching and rotation sets with non-sigma-finite measure at the critical Hausdorff

dimension. We also improve this to give examples with positive Riesz capacity at the critical

homogeneity, as well as positivity for a broad class of gauged Hausdorff measures at that dimension.

1. Introduction

We say that a map f ∈ W 1,2
loc

(C) is K-quasiconformal if it is an orientation pre-
serving homeomorphism and satisfies the distortion inequality maxα |∂αf | ≤ Kminα

|∂αf | almost everywhere, where ∂α is a directional derivative. Geometrically, f maps
infinitesimal circles to infinitesimal ellipses; these can be viewed as perturbations of
conformal maps, which are 1-quasiconformal. Such maps are also realized as solutions
to the Beltrami equation

∂zf = µ(z)∂zf

where the coefficient µ satisfies ‖µ‖∞ ≤ K−1
K+1

< 1.
We are interested in geometric distortion properties of these maps. Given z ∈ C,

we say that f stretches with exponent α and rotates with exponent γ at z if there
exist scales rn → 0 with

lim
n→∞

log |f(z + rn)− f(z)|

log rn
= α and lim

n→∞

arg(f(z + rn)− f(z))

log |f(z + rn)− f(z)|
= γ.

Here, the argument is interpreted as the total angular change with respect to f(z)
along the image of the ray [z + rn,∞); see section 2 or [4] for the full definitions.

A classical theorem of Mori (see [7]) states that every K-quasiconformal map
is locally 1/K-Hölder continuous, which implies that 1/K ≤ α ≤ K. In the more
recent [4], Astala, Iwaniec, Prause and Saksman improved this substantially to give
the exact range of both stretching and rotation exponents which can be realized
by a K-quasiconformal map f : if we let BK ⊂ C be the open disk centered at
1
2
(K + 1

K
) with radius 1

2
(K − 1

K
), then f can stretch like α and rotate like γ if and

only if α(1 + iγ) ∈ BK . As a particular application, this gives the precise rotation
behavior that a bilipschitz map can exhibit. Moreover, this work gave the precise
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multifractal spectrum FK(α, γ)—that is, the maximal possible Hausdorff dimension
of the simultaneous stretching and rotation set of such maps; the sharp result was
the following theorem.

Theorem 1.1. If f : C → C is a K-quasiconformal mapping with K > 1, and
α(1 + iγ) ∈ BK , then the Hausdorff dimension of the stretching and rotation set Ef

of f is bounded by

dimHEf ≤ FK(α, γ) := 1 + α−
K + 1

K − 1

√
(1− α)2 +

4Kα2γ2

(K + 1)2

and this result is sharp at the level of dimension.

The techniques used to prove this theorem mainly involved improved integrability
estimates for complex powers of the derivatives of f . There is very substantial overlap
with the techniques used in studying area distortion, and as such it is a natural
conjecture that the Hausdorff measure at the critical dimension should be finite, in
analogy with Theorem 1.2 in [2]. However, we will show that this is not the case.

In the direction of lower bounds, that paper gives constructions to attain all di-
mensions below the bound FK(α, γ). Hitruhin improved this in [5] to give examples
of quasiconformal maps whose stretching and rotation sets have positive and finite
Hausdorff measure at the critical dimension. That paper used a Cantor set construc-
tion from [8] to prove this; the work gives a construction of a quasiconformal map
whose distortion of a family of disks is completely understood.

In this work, we improve the above results beyond finite measure, showing that
the stretching and rotation set can actually have positive measure with respect to
many gauged Hausdorff measures which are much smaller than the typical Hd. Our
main theorem is

Theorem 1.2. Let Λ be a gauge function of the form Λ(r) = rdh(r) where h is
a nonnegative, nondecreasing function satisfying the growth condition h(r)/h(s) ≥
Cǫ(r/s)

ǫ for all ǫ > 0 and 0 < r ≤ s sufficiently small. Select parameters α < 1 and
γ such that d > 0 is the maximum allowed Hausdorff dimension of the corresponding
stretching and rotation set; that is, d = FK(α, γ). Then there is a K-quasiconformal
mapping f and a set E with HΛ(E) > 0 such that E is the stretching and rotation
set for f .

We have a generalization to stretching exponents α > 1 under an additional con-
straint on the gauge function Λ. Furthermore, as a corollary, there is an application
to an interesting class of gauge functions:

Corollary 1.3. There are positive measure stretching and rotation sets associ-

ated to the gauges Λ(r) = rd
(
log 1

r

)−β
for every β > 0.

As an interesting second corollary, we can extend this to positive Riesz capacity
Ċβ,p for all parameter choices (β, p) with homogeneity matching the dimension d.
Again, this is a surprising result: by analogy with the work of [2], it is reasonable
to expect that at the critical homogeneity, the Ċβ,p Riesz capacity would be zero
for some range of indices. However, this conjecture is also false, and we have the
following corollary:

Corollary 1.4. Fix any parameter τ = α(1 + iγ) ∈ BK with α ∈ (1/K, 1), and
a pair (β, p) with 1 < p < ∞ and 2 − βp = FK(α, γ). There is a K-quasiconformal
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map f and a set E such that f stretches with exponent α and rotates with exponent
γ at every point in E, and E has positive (β, p)-Riesz capacity.

The paper is organized as follows. In Section 2, we give a brief recollection of
some notions involving quasiconformal mappings, and a more precise definition of
the rotation. In Section 3, we analyze the Hausdorff dimension zero case; our main
results here will be a construction of a quasiconformal mapping that stretches on
any given countable set, as well as a first construction of a map with Hd non-σ-finite
stretching and rotation set, where d = FK(α, γ). In Section 4, we will prove the main
theorem and indicate applications to particular gauges and Riesz capacities.

2. Prerequisites

Following [4], given a quasiconformal map f , we will say that it stretches like α
at a point z0 if there exists a sequence of scales rn decreasing to zero for which

lim
n→∞

log |f(z0 + rn)− f(z0)|

log rn
= α.

Rotation is similar, but a little more subtle. For a principal quasiconformal map
f , that is a map whose domain and codomain are both C and f(z) = z + O

(
1
z

)

as |z| → ∞, we can select a branch of log f . We can find a corresponding choice
of argument, and using this we can understand arg(f(z0 + r) − f(z0)) as the total
rotation around the point f(z0) of the image of the ray [z0 + r,∞) under f . Using
this interpretation, we will say that f rotates like γ at a point z0 if

lim
n→∞

arg(f(z0 + rn)− f(z0))

log |f(z0 + rn)− f(z0)|
= γ

for a sequence rn → 0. It is worth noting that the stretch and rotation at a point are
not uniquely defined; it is possible that a quasiconformal map stretches like α and
α′ at a point with α 6= α′ (or rotates with two different behaviors); this is due to the
dependence on the particular choice of sequence rn.

Given a quasiconformal mapping f , we set Ef (α, γ) to be its simultaneous rotation-
like-γ and stretching-like-α set; when it is clear from context, this will be abbreviated
as Ef . Finally, we have the multifractal spectrum

FK(α, γ) = sup {dimH(Ef(α, γ)) : f is K-quasiconformal}

where this FK(α, γ) is that of Theorem 1.1, as proved in [4].

3. Dimension zero

There are two complementary senses in which we will improve upon results with
positive measure. The first is to give particular examples of stretching and rotation
sets with very large measure, perhaps uncountable or having positive measure with
respect to some gauged Hausdorff measure. The second is to give a broader class
of examples of sets, in particular including that every countable set can appear as
a stretching set. Before the constructions, we will start with a useful lemma that
will allow us to simplify some of the subsequent computations involving stretching.
Although it was not stated as a separate result, the computation here is more or less
contained in [5].
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Lemma 3.1. Suppose that z is a point with the following property: there is a
sequence of balls Bn = B(zn, rn) such that z ∈ Bn for each n, rn → 0, and

log |f(Bn)|

log |Bn|
= α + ǫn

with error ǫn → 0. Then f stretches like α at z.

The utility of this lemma is that we can transfer stretching information at a
central point not only to points at difference r away, but to all nearby points. As an
idea of an application, it is frequently possible to get stretching at exponent α on an
entire Cantor set just by taking a quasiconformal map that stretches like α at each
of the points used at successive scales to generate the Cantor set.

Proof. Fix n. We can rotate using quasisymmetry. Fix a point w ∈ ∂D(zn, rn)
that is equidistant with z and zn (e.g. an intersection point of the perpendicular
bisector of zzn with the boundary of the circle). Then

log |f(z + rn)− f(z)| = log |f(z + rne
iθ)− f(z)| + CK

= log |f(w)− f(z)|+ CK

= log |f(w)− f(w + |z − w|eiν)|+ CK

= log |f(w)− f(zn)|+ C ′
K

= log |f(zn + |w − zn|)− f(zn)|+ C ′′
K

= log |f(zn + rn)− f(zn)|+ C ′′
K

given appropriate choices of ν and θ; the constants CK , C
′
K and C ′′

K are unimportant
except in that they are bounded in terms of K only. Dividing by log rn and letting
n→ ∞, we find that

log |f(z + rn)− f(z)|

log rn
=

log |f(zn + rn)|+ C ′′
K

log rn

=
1
2
log |f(Bn)|+ C ′′′

K
1
2
log |Bn| −

1
2
log π

= α+ ǫn +
2C ′′′

K

log |Bn|
+ o(1)

following a final application of quasisymmetry. The result follows. �

Note that we can replace the measures of the balls with their radii. We can
actually extract a little more information: if C is a fixed constant, and z is a point
for which |z − zn| ≤ Crn, the same result holds. To see this, notice that there
is a polygonal path connecting z to zn where each segment has length rn, and the
number of segments is uniformly bounded by a constant only involving C. Repeating
the double-rotation idea of the proof, we now lose a constant several times (but a
uniformly bounded number), which does not impact the result.

Moreover, the same result holds for rotations:

Lemma 3.2. Suppose that z is a point with the following property: there is a
sequence of balls Bn = B(zn, rn) such that z ∈ Bn for each n, rn → 0, and

arg(f(zn + rn)− f(zn))

log |f(zn + rn)− f(zn)|
= γ + ǫn

with error ǫn → 0. Then f rotates like γ at z.
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Proof. We will only give a brief description of the technique of the proof, as
it is rather similar to the previous one. Fix n, and consider the rays [zn,∞) and
[z,∞) parallel to the positive x-axis. Without loss of generality, we may assume
that zn lies within the ray [z,∞); this is achieved by a rotation, which affects the
total argument change by at most O(1) (in fact, by at most 2π). Since the argument
measures the total angular change along the image of the ray, we may thus rewrite
arg(f(zn + rn) − f(zn)) as arg(f(z + sn) − f(z)) with sn = rn + (zn − z). Now
reusing the double rotation argument of the previous lemma, the numerators and
denominators of the rotation are the same up to an O(1) error, which is enough. �

Our first result will be a large dimension zero set which has the most extreme
stretching and rotation allowed by the multifractal spectrum bounds of [4]. The
construction will be a sort of Cantor set built from disks, within which we can
explicitly keep track of the stretching and rotation.

Theorem 3.3. For any pair (α, γ) for which z|z|α(1+iγ)−1 is K-quasiconformal,
there is a K-quasiconformal map f and an uncountable set Ef for which f stretches
like α and rotates like γ at every point in Ef .

Proof. Start with B0,1 = D and f(z) = z on all of C. Now assume that Bn,i

has been defined and has radius rn, and that there are complex numbers βn,i, wn,i for
which f(z) = βn,iz+wn,i in a neighborhood of Bn,i. Choose a number r̃n (which will
be substantially smaller than rn); take a concentric ball An,i within Bn,i of radius r̃n,
and place two disjoint balls Bn+1,j within An,i each with radius 1

4
r̃n. We now modify

the construction of f ; without loss of generality, we may assume that wn,i = 0 and
f(wni

) = 0 - otherwise, pre- and post-compose with an appropriate translation (this
only simplifies the notation). Now modify the definition of f to become

f(z) =





βn,iz, near Bn,i but in Bc
n,i,

βn,iz
∣∣∣ z
rn

∣∣∣
α(1+iγ)−1

, z ∈ Bn,i \ An,i,

βn,i

(
r̃n
rn

)α−1

eiθz, z ∈ An,i,

where eiθ is chosen so that f is continuous across ∂An,i, and

βn+1,j = βn,i

(
r̃n
rn

)α−1

eiθ.

Note that the original function f is injective; on the other hand, the construc-
tion only carries out a local modification by stretching and rotating the ball An,i,
and remains injective. Moreover, the limiting function of the construction is K-
quasiconformal as long as the parameters (α, γ) are chosen to allow this. In particu-
lar, following [5], we can choose α, γ to be any pair for which FK(α, γ) = 0.

We just need to compute the change in argument induced by crossing the annulus
between Bn,i and An,i, find the corresponding stretching on scale r̃n with respect to
the center point, and choose the sequence of radii carefully. Since

∣∣∣z
r

∣∣∣
α(1+iγ)

=
∣∣∣z
r

∣∣∣
α

eiαγ log |z/r|,

it is immediate that the change in argument across the annulus is αγ log r̃n
rn

+ O(1).
The numerator of the stretching with respect to the center point of Bn,i on scale r̃n
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is

log

∣∣∣∣∣βn,i
(
r̃n
rn

)α−1

eiθr̃n

∣∣∣∣∣ = α log r̃n + log |βn,i| − (α− 1) log rn.

As a consequence, we see that the overall stretching of f with respect to the center
point is

(3.1)
log |f(r̃n)− f(0)|

log r̃n
= α +

log |βn,i|

log r̃n
− (α− 1)

log rn
log r̃n

while the overall rotation is well approximated by

(3.2)
arg (f(r̃n)− f(0))

log |f(r̃n)− f(0)|
≈

αγ log r̃n − αγ log rn
α log r̃n + log |βn,i| − (α− 1) log rn

.

The choice of parameters will be such that the rotation over all but the last annulus
is negligible. Now each βn,i has the same modulus βn; the only potential difference
is the exact rotation. We can easily compute this number from its definition, finding
that

βn =

[
n−1∏

k=0

r̃k
rk

]α−1

.

As a consequence, we have that

log |βn,i|

log r̃n
= (α− 1)

n−1∑

k=0

log r̃k − log rk
log r̃n

.

Because r̃k < rk < 1, we can estimate all the terms roughly by the final term
(provided that r̃k/rk is decreasing, which it will be), finding

(3.3)

∣∣∣∣
log |βn,i|

log r̃n

∣∣∣∣ ≤ 2|1− α|n
log r̃n−1

log r̃n

We have already defined rk+1 =
1
4
r̃k, and now we make the selection that

r̃k = rk
2

k

and the above error estimate (3.3) tends to zero. As an immediate consequence of
this selection, we have that the stretching tends towards α, while the rotation tends
towards γ. This completes the proof. �

Now we will go in the other direction, finding that any countable set is a stretch-
ing set with the worst possible exponent. As a nice application, this shows that
an interesting multifractal spectrum bound in the style of [4] is not possible for
Minkowski dimension; see, e.g. Chapter 5 of [6] for constructions of countable sets
with large Minkowski dimension. There are countable sets whose lower Minkowski
dimension is arbitrarily close to 2, and these can exhibit stretching of exponent 1/K
at every point. The key idea here will be that sums of radial stretches are quasi-
conformal maps; in general, it is quite rare for a sum of quasiconformal maps to be
quasiconformal (let alone injective). This idea will not work for rotations.

Note, however, that this contrasts starkly with the possibilities in other dimen-
sions. For example, a one dimensional set containing a smooth curve or a segment can
never be a stretching set for an exponent other than 1. To see this, consider the fact
that if f stretches with exponent α > 1 at every point within a line segment, f is flat
at every point within that line. Explicitly, if f is viewed as a single-variable function
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on this line, it is (classically) differentiable with derivative zero at every point, hence
non-injective. Considering f−1 shows why f cannot stretch with exponent α < 1.

Theorem 3.4. Given a countable set Λ ⊆ D, there is a K-quasiconformal map-
ping f such that for each λ ∈ Λ there is a sequence of scales rm decreasing to zero
for which

lim
m→∞

log |f(λ+ rm)− f(λ)|

log rm
=

1

K
.

Recall that 1/K is the most extreme possible exponent due to [7].

Proof. Let us begin with the radial stretches

fλ(z) = (z − λ)|z − λ|
1
K
−1 + λ

when |z−λ| ≤ 1, and the identity otherwise. These are K-quasiconformal mappings
that satisfy a Beltrami equation with coefficient µλn. Moreover, their derivatives ∂zfλ
have constant sign where they are defined. To wit,

∂zfλ =

(
1

2K
+

1

2

)
|z − λ|

1
K
−1

within the disk λ+D, and 1 outside. It follows that if we sum such solutions, we can
still have a solution to a Beltrami equation; in particular, assuming that derivatives
and sums commute in this context, we have

∣∣∣∣∣∂z
∞∑

n=1

1

2n
fλn(z)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

n=1

1

2n
∂zfλn(z)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

n=1

1

2n
µλn(z)∂zfλn(z)

∣∣∣∣∣

≤

∞∑

n=1

1

2n
‖µλn‖∞|∂zfλn(z)| =

K − 1

K + 1

∞∑

n=1

1

2n
∂zfλn(z)

=
K − 1

K + 1
∂z

∞∑

n=1

1

2n
fλn(z).

Now given a countable set, we can therefore define a function

(3.4) f(z) =
∞∑

n=1

1

2n
fλn(z).

Modulo swapping the derivatives and the sum, we have shown that f satisfies a
Beltrami equation with coefficient bounded by (K − 1)/(K +1). This condition will
follow very quickly from the dominated convergence theorem. Fix a test function
ϕ ∈ C∞

0 (C) and integrate by parts:

ˆ

f∂xϕ =

ˆ

lim
n→∞

N∑

n=1

1

2n
fλn∂xϕ = lim

n→∞

N∑

n=1

ˆ

1

2n
fλn∂xϕ,

where we have used the fact that |f(z)| ≤
∑

n
1
2n
|fλn(z)| ≤

∑
n

1
2n
(|λ| + 1 + |z|) ≤

2 + |z| from the estimate |fλ(z)| ≤ |z − λ|1/K + |λ| ≤ 2 within the disk λ +D, and
|z| otherwise. Thus f is bounded on the support of ϕ, and the above follows. Now
integrate by parts in each summand to get

ˆ

f∂xϕ = − lim
n→∞

ˆ N∑

n=1

1

2n
∂xfλnϕ.
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Now ϕ is bounded on its support, and |∂xfλn | .K |z − λn|
1/K−1 is locally integrable

(as 1/K − 1 > −1), and summing in n does not change this. Taking
∑∞

n=1
1
2n
|z −

λn|
1/K−1|ϕ| as our dominating function, we again interchange the limits and find that

ˆ

f∂xϕ = −

ˆ

(
∞∑

n=1

∂x
1

2n
fλn

)
ϕ

as desired. Now we have that f has a weak derivative ∂xf . The same argument holds
for ∂y, and hence both ∂z and ∂z. Now it follows immediately that f ∈ W 1,2

loc
(C),

since the weak derivatives of f are each given by sums of L2
loc

functions and these
sums are convergent in L2

loc
. Furthermore, f satisfies a Beltrami equation; thus, the

measurable Riemann mapping theorem (see, for example, Theorem 5.3.2 of [3]) gives
us the following lemma:

Lemma 3.5. Given a countable set {λn}
∞
n=1 ⊆ D, the function f defined in (3.4)

is K-quasiconformal.

We now claim that this function f has the correct stretching behavior at each
point in Λ. Fix λn ∈ Λ; we can assume that λn = 0. Morally, we proceed as follows:
there are contributions to the stretching from terms on two scales, the nearby and the
far away. We can arrange it so that nearby points λm only have very large indices,
so that the exponentially decaying weights will render this negligible; on the other
hand, far away points have the advantage of the smoothness of the radial stretches.

Let us make this precise. We will show that

(3.5) |f(r)− f(0)| = cr1/K + o(r1/K)

with a non-zero constant c (and for all sufficiently small r, with threshold depending
on the index n), from which the theorem will follow. First of all, it is clear that the
term n = m contributes exactly 1

2m
r1/K ; we will estimate away the remaining terms.

To this end, we have for terms with m 6= n that the difference is
∑

m6=n

1

2m
(r − λm)|r − λm|

1
K
−1 −

1

2m
(−λm)| − λm|

1
K
−1

After factoring a term −λm|−λm|
1
K
−1 from each summand and applying the triangle

inequality, we need to estimate

∑

m6=n

1

2m
|λm|

1/K

∣∣∣∣∣

(
1−

r

λm

) ∣∣∣∣1−
r

λm

∣∣∣∣
1/K−1

− 1

∣∣∣∣∣ .

To deal with the term within the absolute value, we need a simple estimate of a
particular function:

Lemma 3.6. If K > 1,
∣∣(1 + z)|1 + z|1/K−1 − 1

∣∣ ≤ C0min
{
|z|, |z|1/K

}
.

for a constant C0 depending only on K.

Proof. For large values of |z|, the triangle inequality implies that this is controlled
by a constant multiple of |z|1/K , which is smaller (up to a constant) than |z|. So let
us assume that |z| is small, e.g. |z| ≤ 1

2
. Write |1+z| = 1+y with y real and |y| ≤ |z|.

If y = 0, |1 + z| = 1 and

(1 + z)|1 + z|1/K−1 − 1 = z.
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Otherwise, select η so that ηy = z; then Taylor expansion gives

(1 + z)|1 + z|1/K−1 − 1 = (1 + ηy)(1 + y)1/K−1 − 1

= 1 +

(
η +

1

K
− 1

)
y +O(y2)− 1

=

(
η +

1

K
− 1

)
y +O(y2)

= z +

(
1

K
− 1

)
y +O(y2)

= z +O(|z|) +O(|z|2),

from which the lemma follows. �

Now we are ready to make the division into two scales. The cutoff point is to
separate in the following way: Since the sequence is fixed, we can choose r small
enough that

r

|λm|
≥

(
1

2n+1C0

) 1
1−1/K

=⇒ m ≥ n + a+ 10,

where a is chosen so that 2a > C0; C0 here is the constant of Lemma 3.6. That is,
when |λm| is smaller than a very large constant multiple of r, the index must be very
large.

The far scale is for terms when (r/|λm|)
1−1/K < 1/2n+1C0. In this case we have

the lemma’s linear estimate available, and the sum over these indices m is at most

C0

∑

m far

1

2m
|λm|

1/K r

|λm|
= C0r

1/K
∑

m far

1

2m

(
r

|λm|

)1−1/K

<
r1/K

2n+1

which is enough. Note that we have no control over the index m here.
Next is the nearby scale where we have the opposite inequality; now m must be

large but we have worse control on the summands. Using the non-linear estimate
from the lemma, we find that the contribution is at most

C0

∑

m near

1

2m
|λm|

1/K

(
r

|λm|

)1/K

= C0

∑

m near

1

2m
r1/K ≤

C0

2n+a+9
r1/K <

r1/K

2n+9

having used the fact that
∑

m≥N
1
2m

= 1
2N−1 .

Combining these two estimates, the contribution from all indices m 6= n is of
the order r1/K with constant significantly less than 2−n. This proves (3.5) and is the
desired result. �

4. Dimension greater than zero

To prepare for the main result, we will define a particular class of gauge func-
tions. These will be gauges which lead to minor perturbations of the pure Hausdorff
meaures, without changing the dimension. The perturbations should be chosen to
tend to zero slowly enough to guarantee this, and will contain some sort of embedded
convexity condition.

Definition 4.1. We will say that a gauge function Λ(r) = rdh(r) is admissible if
h(r) is continuous, nonnegative, non-decreasing on [0,∞), and satisfies the following
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decay condition at the origin: For every ǫ > 0, there exists a constant Cǫ such that
for any 0 < r ≤ s ≤ 1,

h(r)

h(s)
≥ Cǫ

(r
s

)ǫ
.

It will be proven later that functions of the form (log(1/r))−β for β > 0 are
admissible, giving a rich class of examples. We now come to the first theorem of the
section.

Theorem 4.2. Let Λ be an admissible gauge function. Fix K and α ∈ (1/K, 1),
setting d = FK(α, 0). Then there is a set E with positive gauged Hausdorff measure
HΛ(E) and a K-quasiconformal map f so that f stretches like α at every point in
E.

Proof. The main construction of the proof is taken from [8], although our choice
of parameters will be different. We retain the notation from that paper, and for the
sake of self-containment give a brief description of the construction. At each stage of
the construction, we will pack a disk completely with disjoint disks, and then shrink
these disks appropriately to build a set of the desired Hausdorff dimension. The
quasiconformal map will stretch these shrunken disks appropriately.

Step 1. Select m1,1 disjoint disks Di
1,1 of radius R1,1 within the unit disk, followed

by m1,2 disjoint disks (and disjoint from the previously constructed disks as well) Di
1,2

of radius R1,2, and so on. In this manner we pack the unit disk completely in area,
leading to

∞∑

j=1

m1,jR
2
1,j = 1.

It is important to note that we can assume that every R1,j is smaller than some fixed
δ1 > 0, which is as small as we desire. Also for each radius associate a parameter
σ1,j > 0; these will be chosen later, but are all quite small.

Next, we construct a first approximation of our quasiconformal map. Denote the
center of the disk Di

1,j as zi1,j . Let ψi
1,j(z) = zi1,j + (σ1,j)

KR1,jz, and define disks

Di
j = D(zi1,j , R1,j) =

1

(σ1,j)K
ψi
1,j(D),

(Di
j)

′ = D(zi1,j , (σ1,j)
KR1,j) = ψi

1,j(D).

Then our first approximation is

ϕ1(z) =





(σ1,j)
1−K(z − zi1,j) + zi1,j , z ∈ (Di

j)
′,

∣∣∣z−zi1,j
R1,j

∣∣∣
1
K
−1

(z − zi1,j) + zi1,j , z ∈ Di
j \ (D

i
j)

′,

z, z /∈
⋃
Di

j.

This is K-quasiconformal, being a modification of a radial stretch, and is conformal
except for the annular regions between small disks (Di

j)
′ and their dilates Di

j . In

particular, it is important to note that ϕ1 maps the disks of radius (σ1,j)
KR1,j onto

other disks of radius σ1,jR1,j.

Step 2. We repeat the idea of the construction from the previous step. Choose
m2,1 disjoint disks Di

2,1 with centers zi2,1 of radius R2,1, and so on; again these will be



Stretching and rotation sets of quasiconformal mappings 113

subject to the constraint
∞∑

j=1

m2,jR
2
2,j = 1.

Again, we can choose R2,j to be bounded by some δ2 > 0, but as small as needed;
this is the difference from step 1, as we may wish to have δ2 < δ1. Next, we choose
σ2,j > 0.

As before, we follow this with an approximation of the quasiconformal map. Set
ψn
2,k(z) = zn2,k + (σ2,k)

KR2,kz, a radius r{2,k},{1,j} = R2,kσ1,jR1,j and define disks

Di,n
j,k = D(zi,nj,k , r{2,k},{1,j}) = ϕ1

(
1

(σ2,k)K
ψi
1,j ◦ ψ

n
2,k(D)

)
,

(Di,n
j,k)

′ = D(zi,nj,k , (σ2,k)
Kr{2,k},{1,j}) = ϕ1

(
ψi
1,j ◦ ψ

n
2,k(D)

)
.

Now we define

g2(z) =





(σ2,k)
1−K(z − zi,nj,k) + zi,nj,k , z ∈ (Di,n

j,k)
′,

∣∣∣∣
z−zi,nj,k

r{2,k},{1,j}

∣∣∣∣
1
K
−1

(z − zi,nj,k) + zi,nj,k , z ∈ Di,n
j,k \ (D

i,n
j,k)

′,

z, otherwise.

Finally, our second approximation is ϕ2 = g2◦ϕ1. As before, this is aK-quasiconformal
map equal to the identity outside the unit disk; the most important thing to note is
that this map behaves essentially as a radial stretch, sending certain disks of radius
(σ1,jσ2,k)

KR1,jR2,k to certain other disks of radius (σ1,jσ2,k)R1,jR2,k.

Induction step. Assuming that N−1 steps of the construction have been fulfilled,
we repeat the process, getting disks Di

N,j with centers zqN,p, radii RN,p and satisfying

∞∑

j=1

mN,jR
2
N,j = 1.

As before, we have a constraint RN,j < δN and parameters σN,j > 0.
We proceed with the next approximation of the quasiconformal map. Define radii

r{N,p},{N−1,h},...,{1,j} = RN,pσN−1,hr{N−1,h},...,{1,j}

and maps ψq
N,p(z) = zqN,p + (σN,p)

KRN,pz. For multiindices I = (i1, . . . , iN ) and
J = (j1, . . . , jN), we define disks

DI
J = D(zIJ , r{N,p},...,{1,j}) = ϕN−1

(
1

(σN,p)K
ψi1
1,j1

◦ · · · ◦ ψiN
N,jN

(D)

)
,

(DI
J)

′ = D(zIJ , (σN,p)
Kr{N,p},...,{1,j}) = ϕN−1

(
ψi1
1,j1

◦ · · · ◦ ψiN
N,jN

(D)
)
.

As usual, we set

gN(z) =





(σN,p)
1−K(z − zIJ ) + zIJ , z ∈ (DI

J)
′,

∣∣∣ z−zIJ
r{N,p},...,{1,j}

∣∣∣
1
K
−1

(z − zIJ) + zIJ , z ∈ DI
J \ (DI

J)
′,

z, otherwise.

This map is K-quasiconformal, conformal outside of the union of all the annuli
and preserves the disks DI

J . We finally set ϕN = gN ◦ ϕN−1, noting that this is the
identity outside the unit disk and maps disks of radius (σ1,j1 · · ·σN,jN )

KR1,j1 · · ·RN,jN

to disks of radius (σ1,j1 · · ·σN,jN )R1,j1 · · ·RN,jN .



114 Rosemarie Bongers

We now take the limits resulting from this construction. As ϕN is aK-quasiconformal
map which is the identity outside of D, compactness of quasiconformal maps allows
us to select a K-quasiconformal limit

f = lim
n→∞

ϕN

with convergence in the Sobolev space W 1,2
loc

.
To recap, the result of the above construction is a Cantor type set E whose

building blocks at generation N are disks with radius

sj1...jN =
(
(σ1,j1)

KR1,j1

)
. . .
(
(σN,jN )

KRN,jN

)

which are mapped to disks of radius

tj1...jN = (σ1,j1R1,j1) . . . (σN,jNRN,jN )

where we can choose σi,ji more or less freely, subject to the constraint that they are
all small.

Now we will select our parameters σk,jk. We will choose them subject to the
governing equation

R2
1,j1 · · ·R

2
N,jN

= (R1,j1 · · ·RN,jN )
d(σ1,j1 · · ·σN,jN )

Kdh(R1,j1 · · ·RN,jNσ
K
1,j1

· · ·σK
N,jN

).
(4.1)

If we write σk,jk = R
2−d
Kd
k,jk

ηk,jk, the condition is equivalent to

(4.2) 1 = ηKd
1,j1

· · · ηKd
N,jN

h
(
R

2/d
1,j1

· · ·R
2/d
N,jN

ηK1,j1 · · · η
K
N,jN

)
.

To see the relevance of the governing equation, note that if we sum over all the
building blocks of our construction at level N , our choice of parameters gives us

∑

j1,...,jN

m1,j1 · · ·mn,jns
d
j1,...,jn

h(sj1,...,jn)

=
∑

j1,...,jN

m1,j1 · · ·mn,jn(R1,j1 · · ·RN,jN )
2 = 1.

This is suggestive of the desired result, namely that the constructed set has positive
measure in the gauge rdh(r).

We now have three questions left to address: whether we can actually select
our parameters σ in this manner, whether the Cantor set will exhibit the correct
stretching, and whether the set has positive measure with respect to HΛ.

First, we consider the satisfiability of the governing equation for σk,jk ; the se-
lection is made inductively. Looking at the second form of our governing equation,
and recalling that h is continuous, it is immediately clear that we can select ηN,jN to
satisfy the equation—the right hand side tends to zero as ηN,jN does, and to infinity
as ηN,jN does. The only concern is that ηN,jN might be so large as to defeat our
requirement that σN,jN is small. First, notice that RN,jNσ

K
N,jN

< 1; if it were not,
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then we would have

R2
1,j1

· · ·R2
N,jN

= (R1,j1 · · ·RN−1,jN−1
)d(σ1,j1 · · ·σN−1,jN−1

)Kd

· h
(
R1,j1 · · ·RN,jNσ

K
1,j1

· · ·σK
N,jN

)
(RN,jNσ

K
N,jN

)d

≥ (R1,j1 · · ·RN−1,jN−1
)d(σ1,j1 · · ·σN−1,jN−1

)Kd

· h
(
R1,j1 · · ·RN−1,jN−1

σK
1,j1 · · ·σ

K
N−1,jN−1

)

= R2
1,j1 · · ·R

2
N−1,jN−1

,

contradicting the fact that each Rk,jk is much smaller than 1.
The above computation also suggests how to bound each σN,jN , by playing the

governing equation off itself at different generations. In this manner, essentially just
rearranging the above, we find that

R2
N,jN

= Rd
N,jN

σKd
N,jN

h
(
R1,j1 · · ·RN,jNσ

K
1,j1

· · ·σK
N,jN

)

h
(
R1,j1 · · ·RN−1,jN−1

σK
1,j1

· · ·σN−1,jKN−1

) .

Rearranging for σN,jN and applying our growth condition with exponent ǫ, we find
that

σKd
N,jN

≤ R2−d
N,jN

(
1

RN,jNσN,jN

)ǫ
1

Cǫ

.

Consequently,

σN,jN ≤
1

C
1/(Kd+ǫ)
ǫ

R
2−d−ǫ
Kd+ǫ

N,jN
.

As long as ǫ is chosen small enough that 2 − d− ǫ > 0, we may choose all δN small
enough to result in σN,jN < 1/100 as desired.

Next, we proceed to the stretching. Following the general approximation lemma 3.1,
it is sufficient to show that

log tj1,...,jN
log sj1,...,jN

→ α

as N → ∞. In this direction, observe that

log tj1,...,jN
log sj1,...,jN

=

∑N
i=1 logRi,ji +

∑N
i=1 log σi,ji∑N

i=1 logRi,ji +K
∑N

i=1 log σi,ji

=

(
1 + 2−d

Kd

)∑N
i=1 logRi,ji +

∑N
i=1 log ηi,ji(

1 +K 2−d
Kd

)∑N
i=1 logRi,ji +K

∑N
i=1 log ηi,ji

.

Now provided that the perturbation terms are negligible with comparison to the radii
terms, the stretching result follows. Indeed, in that case the quotient tends towards

1 + 2−d
Kd

1 +K 2−d
Kd

=
2 + (K − 1)d

2K
= α.

Thus, we need to prove that

SN :=

∑N
i=1 log ηi,ji∑N
i=1 logRi,ji

tends to zero as N grows.
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To get this result, first notice that SN is negative: the product of all ηi,ji is greater
than 1 (as h is small), while each Ri,ji is less than 1; see (4.2). From this, it follows
that

0 ≥ KdSN =
Kd

∑N
i=1 log ηi,ji∑N

i=1 logRi,ji

=
− log h

(
R

2/d
1,j1

· · ·R
2/d
N,jN

ηK1,j1 · · · η
K
N,jn

)

∑N
i=1 logRi,ji

≥
− log

(
CǫR

2ǫ/d
1,j1

· · ·R
2ǫ/d
N,jN

ηKǫ
1,j1 · · · η

Kǫ
N,jN

)

∑N
k=1 logRi,ji

=
− logCǫ∑N
i=1 logRi,ji

−
2ǫ

d
−KǫSN

where in the inequality we have used that h(r) ≥ Cǫr
ǫ provided that r is sufficiently

small, e.g. that N is sufficiently large; this is the admisibility condition (4.1) applied

with s = 1. To be precise, we require that N is large enough that R
2ǫ/d
1,j1

· · · ηKǫ
N,jn

< 1.
Now rearranging the result, we get

0 ≥ SN ≥

(
1

K(d+ ǫ)

)(
−

| logCǫ|∑N
i=1 logRi,ji

−
2ǫ

d

)

It follows that we have

|SN | ≤
| logCǫ|

N log 2
+O(ǫ) = O(ǫ)

provided that N is chosen large enough given ǫ. Taking ǫ to zero gives the required
stretching.

Now all that remains is to show positivity of the measure of the Cantor set. Our
starting point is an estimate analogous to equation (3.17) in [8]; if D is a building
block at generation N − 1,

∑

Bn children of D

r(Bn)
dh(r(Bn)) =

∑

jN

mN,jNΛ
(
R1,j1 · · ·RN,jNσ

K
1,j1 · · ·σ

K
N,jN

)

=
[
R1,j1 · · ·RN−1,jN−1

σK
1,j1 · · ·σ

K
N−1,jN−1

]d

·
∑

jN

mN,jN (RN,jNσ
K
N,jN

)dh
(
R1,j1 · · ·RN,jNσ

K
1,j1

· · ·σK
N,jN

)

=
∑

jN

mN,jNR
2
1,j1 · · ·R

2
N,jN

= R2
1,j1 · · ·R

2
N−1,jN−1

= (R1,j1 · · ·RN−1,jN−1
)d(σ1,j1 · · ·σN−1,jN−1

)Kd

· h
(
R1,j1 · · ·RN−1,jN−1

σK
1,j1

· · ·σK
N−1,jN−1

)

= Λ(r(D)),(4.3)

where we have used the governing equation (4.1) at generations N and N − 1. As
a consequence, we can iterate this result to find that if {Bn} is a finite collection of
building blocks all contained in D (not necessarily of the same generation), and BN,k
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are the generation N descendents of Bn,∑

Bn

Λ(r(Bn)) =
∑

BN,k

Λ(r(BN,k)).

We now wish to prove a Carleson style packing condition, from which positivity of
measure will follow. We will state this as a separate lemma, similar to Lemma 3.2 of
[8].

Lemma 4.3. Let B be an arbitrary disk and Bn disjoint building blocks of E.
There is an absolute constant C1 independent of the family C = {Bn} such that

∑

Bn∈C
Bn⊂B

Λ(r(Bn)) ≤ C1Λ(r(B)).

Once the lemma has been proven, the positivity of the gauged Hausdorff measure
follows immediately. So let us fix such a family C; we may assume that r(B) ≤ 1,
since the above computation (4.3) shows that the lemma holds when B = D. Choose
the integer H such that all the Bn are contained in some building block at generation
H − 1, but not at generation H ; then let {BH

kp
}mp=0 be the complete list of ancestors

at generation H of our family. Note that the lemma holds with B = BH−1
i0

(by the
same reasoning that it holds for B = D) and so we will assume that

r(B) ≤ r(BH−1
i0

) = sj1,...,jH−1
.

For each of these generation H disks, let B̃H
kp

be the concentric dilate with radius

r(B̃H
kp
) =

sj1,...,jH
σK
H,jH

.

Now as each σN,p is small (e.g. less than 1/100) and since B meets each BH
kp

, we find
that

2r(B) ≥
99

100
r(B̃H

kp
).

Moreover, we have the containment B̃H
kp

⊆ 4B. We now can compute:

∑

Bn∈C

Λ(r(Bn)) ≤

m∑

p=0

Λ(r(BH
kp))

=
[
σK
1,j1
R1,j1 · · ·σ

K
H−1,jH−1

RH−1,jH−1

]d

·
m∑

p=0

(
σK
H,jHkp

RH,jHkp

)d
h
(
R1,j1 · · ·σ

K
H,jHkp

)

= sdj1,...jH−1
h(sj1,...jH−1

)
m∑

p=0

R2
H,jHkp

= sdj1,...jH−1
h(sj1,...jH−1

)
1

π

m∑

p=0

Area(Dp),

where we have defined Dp = D(z
kp
H,jHkp

, RH,jHkp
), recalling that these are disks chosen

during the induction step of the Cantor set’s construction, called Di
N,j. The second

to last equality follows from applications of the governing equation at generations H
and H − 1.
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Now since

r(B̃H
kp
) =

sj1,...,jHkp

σK
H,jHkp

and

r(Dp) = RH,jHkp
=

r(B̃H
kp
)

sj1,...,jH−1

,

it follows that

∑

Bn∈C

Λ(r(Bn)) ≤ sdj1,...jH−1
h(sj1,...jH−1

)

[
r(4B)

sj1,...,jH−1

]2

. r(B)dh(sj1,...,jH−1
)

[
r(B)

sj1,...,jH−1

]2−d

.

Finally, recall the condition (4.1) that for any 0 < x < y ≤ 1, we have

h(x)

h(y)
≥ C

(
x

y

)2−d

.

Applying this to the above, it follows that
∑

Bn∈C

Λ(r(Bn)) . r(B)dh(r(B)) = Λ(r(B)),

as desired. �

We now move to the rotation results.

Theorem 4.4. Let Λ be an admissible gauge function. Fix K and parameters
α, γ so that α(1 + iγ) ∈ BK and α < 1, setting d = FK(α, γ). Then there is a set E
with positive gauged Hausdorff measure HΛ(E) and a K-quasiconformal map f so
that f stretches like α and rotates like γ at every point in E.

Proof. This proof will very closely follow Hitruhin’s modifications in [5] to add ro-
tation to the previous theorem. We selectK < 1/α and let f be theK-quasiconformal

map previously constructed; the corresponding Cantor set has positive Hrdh(r) mea-
sure, where

d = 1 + α−
K + 1

K − 1
(1− α).

Now all we need to do is modify the construction of ϕn for each n by replacing the
old gn by

gn(z) =





(σn,jn)
1−K(z − zIJ )e

iθIJ + zIJ , z ∈ (DI
J)

′,
∣∣∣ z−zIJ
r(DI

J )

∣∣∣
1
K
−1+iαγ K−1

K(1−α)
(z − zIJ ) + zIJ , z ∈ DI

J \ (DI
J)

′,

z, otherwise.

where the change in argument over the annulus DI
J \ (D

I
J)

′ is θIJ , and makes the map
continuous across the boundary crossings. Let f denote the resulting map using ϕn

and gn, rather than the old versions ϕn and gn.
Since the paper [5] has already shown that d = FK(α, γ) is the desired dimension,

and the previous theorem improves this to the perturbed Hausdorff gauge function,
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all that remains is to check that the rotational behavior is correct. That is, we need
to show that

lim
n→∞

arg(f(z0 + rn)− f(z0))

log |f(z0 + rn)− f(z0)|
= γ

for a suitable choice of scales rn → 0, and z0 in a large subset of the Cantor set.
Following the argument in [5], we end up with the result that the total rotation as
we move from ∞ to a disk at scale n is

arg (f(z0 + rn)− f(z0)) = αγ
K − 1

(1− α)

n−1∑

k=1

log σk,jk +O(n).

This O(n) error term will vanish in the limit. Now we select our parameters σk,jk as

before, but with d and K replacing d and K respectively. With our usual notation

σk,jk = R
1−α

αK−1

k,jk
ηk,jk ,

we can compute that

arg(f(z0 + rn)− f(z0))

log |f(z0 + rn)− f(z0)|

=
αγK−1

1−α

[
1−α
αK−1

∑n−1
k=1 logRk,jk +

∑n−1
k=1 ηk,jk

]

α
(
K 1−α

αK−1

∑n−1
k=1 logRk,jk +

∑n−1
k=1 logRk,jk +

∑n−1
k=1 ηk,jk

)

≈
αγ K−1

αK−1

α(K 1−α
αK−1

+ 1)
= γ

K − 1

K(1− α) + αK − 1
= γ,

as desired, where we have used the previous result that
∑N

k=1 ηk,jk is negligible in

comaprison to
∑N

k=1Rk,jk . In particular, letting n→ ∞, the infinitesimal rotation is
exactly γ. �

Now we would like to generalize this theorem to include stretching exponents
greater than 1; this can be done by considering the inverse function f−1, which inverts
the stretching exponent and changes the sign of the rotation exponent. However,
without assuming additional constraints on the perturbation h, it does not seem (to
the best of the author’s knowledge) possible to identify a gauge function h′ for which

Hrd
′
h′(r) (f(E)) > 0.

It turns out that the key obstacle is a lack of decay in h; taking Section 4 of [8] as
inspiration, we will impose the additional condition that for all t > 0, h(t) . h(tK).
Powers of logarithms such as (log 1/r)−β clearly satisfy this condition, so we still have
a useful class of examples.

Theorem 4.5. Let Λ(r) = rdh(r) be an admisible gauge function, with the
additional constraint that h(rK) & h(r) for all r > 0. Let E and f be the stretching
and rotation set and quasiconformal map constructed in Theorem 4.4, with exponents
α and γ. Then f−1 stretches with exponent 1/α and rotates with exponent −αγ at
every point in f(E) and f(E) has positive measure with respect to the gauge function

Λ′(r) = rd
′

hd
′/Kd(r)

where d′ is the Hausdorff dimension of f(E) as given in 1.1.
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Since we have the additional decay constraint on h, the proof of this is a minor
modification of that of Theorem 4.1(b) of [8], again proceeding through a Carleson
type estimate. Rather than repeat a sketch of the argument, we will compare our
conditions on h to those of Uriarte-Tuero. First of all, for technical reasons, it is
important to use only a finite family of disks (as in [8]) at each generation of the
Cantor set (rather, what is important is that there is a minimum choice of Rn,j at
each generation n, so that the construction of the next scale takes place on stricly
smaller scales). In particular, choosing a sequence ǫn → 0 very quickly and packing
an (1− ǫn) portion of the unit disk at each generation will only change the measure
by a factor

∏∞
n=1(1− ǫn) ≈ 1, so the finiteness condition is not an obstacle.

Secondly, it is required in Uriarte-Tuero’s construction that h(t) is a (strictly)
increasing function for which tα/h(t) → 0 as t→ 0 for each α > 0, that h1/(2−d)(t)/t
is decreasing in t, and the logarithmic-type condition h(t) . h(tK). The first and
fourth conditions hold here, as does the second by the definition of admissibility.
Furthermore, admissibility applied with exponent ǫ = 2− d gives us that if r < s,

h
1

2−d (r)/r

h
1

2−d (s)/s
≥
s

r
Cǫ

(r
s

) ǫ
2−d

= Cǫ

Although this does not show that h1/(2−d)(t)/t is decreasing, it is almost decreasing
(and in fact, if r/s is small enough we may assume that Cǫ > 1 by comparing the
admissibility condition with exponent ǫ to the condition with some slightly larger
exponent ǫ′; then with Cǫ > 1 we do have a decreasing function). It turns out that
this is enough for the proof of Uriarte-Tuero’s Theorem 4.1(b) to go through with
minor modifications (e.g. in the appropriate recasting of equation (4.32)). It is worth
pointing out, however, that the logarithmic-type decay condition is independent of
the admissibility condition in the sense that neither is strong enough to imply the
other.

Now to show the usefulness of the theorems, it would be nice to give an explicit
and interesting gauge function. Fortunately, logarithmic perturbations of rd are
admissible, so we have a variety of gauges for which the theorem holds.

Corollary 4.6. There are positive measure stretching and rotation sets associ-

ated to the gauges Λ(r) = rd
(
log 1

r

)−β
for every β > 0.

To be precise, this is not a well-defined gauge function for r ≥ 1; we ought to cut
it off at some point between 0 and 1 so it does not blow up. However, as we only
really care about the behavior as r tends to zero, this is a point we will ignore; we
will assume that s ≤ 1

100
.

Proof. We will show that the gauge functions Λ(r) = rd
(
log 1

r

)−β
are admissible

for all β > 0; all that we need to prove is the growth condition. Fix 0 < r ≤ s with
s small, and ǫ > 0. We need to show that there exists a constant Cǫ,β for which

h(r)

h(s)
≥ Cǫ,β

(r
s

)ǫ

or alternatively, that

sǫ(log(1/s))β

rǫ(log(1/r))β
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is bounded below independent of r and s. We may just as well consider the functions

g(r, s) =
sǫ/β log s

rǫ/β log r
.

on the triangular domain {(r, s) : 0 < r ≤ s ≤ 1
100

}.
First, let us fix s; we minimize the function over r. The r-derivative is

∂g

∂r
=

sǫ/βrǫ/β−1

(rǫ/β log r)2
(− log s)

[
ǫ

β
log r + 1

]
,

which changes sign from negative to positive at r = e−β/ǫ. We now split into two
cases, depending on the size of s.

The first case is that s ≥ e−β/ǫ, so that g(r, s) is in fact minimized at r = e−β/ǫ.
In this case, we have

g(r, s) ≥ g(e−β/ǫ, s) = −
ǫe

β
sǫ/β log s.

If we again differentiate, but in s, we get

−
ǫe

β
sǫ/β−1

[
ǫ

β
log s+ 1

]

which is negative due to the fact that s ≥ e−β/ǫ. Hence, this quantity is minimized
when s = 1

100
; this gives a lower bound of

g(r, s) ≥ g

(
e−β/ǫ,

1

100

)
∀ 0 < r ≤ s, s ≥ e−β/ǫ.

This of course only depends on β and ǫ, which is good enough.
The second case is that s < e−β/ǫ. Here, we may compute the s-derivative, finding

that

∂g

∂s
=

1

rǫ/β log r

[
ǫ

β
sǫ/β−1 log s+ sǫ/β−1

]
=
sǫ/β−1

rǫ/β
1

log r

[
ǫ

β
log s+ 1

]
.

Since r < 1, this is positive; therefore, g increases from its minimum value of 1 at
the bottom of the domain where r = s, and is again bounded below. �

We can also apply this technique to get positive results for Riesz capacities.
Recall that for a set E, the (β, p)-Riesz capacity Ċβ,p is defined by

Ċβ,p(E) = inf {‖g‖p : g ∗ Iβ ≥ χE}

where up to a normalization, Iβ(z) = |z|−(2−β) is the Riesz kernel; see, e.g. [1] for
more details. There is also a dual characterization by Wolff’s theorem that

Ċβ,p(E) ≃ sup
{
µ(E) : supp(µ) ⊆ E, Ẇ µ

β,p(z) ≤ 1 ∀z ∈ C

}

where the homogeneous Wolff potential Ẇ µ
β,p is

Ẇ µ
β,p(z) =

ˆ ∞

0

(
µ
(
B(z, r)

)

r2−βp

)p′−1
dr

r
.

Furthermore, it is important to note that the Riesz capacity is homogeneous of de-
gree 2 − βp, which will correspond with the Hausdorff dimension of the set under
consideration. Our main result here is the following theorem:
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Theorem 4.7. Fix any parameter τ = α(1 + iγ) ∈ BK with α ∈ (1/K, 1), and
a pair (β, p) with 1 < p < ∞ and 2 − βp = FK(α, γ). There is a K-quasiconformal
map f and a set E such that f stretches with exponent α and rotates with exponent
γ at every point in E, and E has positive (β, p)-Riesz capacity.

In particular, this shows that there cannot be a theorem improving the results of
[4] to the level of Riesz capacity zero for any choice of parameters with the correct
homogeneity. This stands in sharp contrast with the results of [2], in which Riesz
capacities were used to give sharper results than gauge functions alone can give.
In [2], at the critical homogeneity, there was a range of parameters (β, p) in which
extremal examples could exist, beyond which there was a negative result showing
the sharpness of Riesz capacities. However, in our case, all possible indices have
associated examples; thus an analogue of their theorem is not possible.

Proof. This theorem is actually much easier to prove than the last one, as the
Riesz capacities of these Cantor type sets have already been estimated in [2]. We will
first make the construction for a fixed (β, p), and then extend it in such a way that
the set will have positive Riesz capacities for all parameter choices simultaneously.
Let E be a Cantor type set as constructed in Theorem 4.2; our choice of parameters
will be

σk,jk = R
2−d
dK
k,jk

(
k + 1

k

)δ

with δ to be chosen soon. Following the techniques of the previous proofs, we can
compute that the stretching exponent is α at every point of E, while the rotation
exponent is γ on a large subset of E.

Now it remains to understand the Riesz capacity of this set. Per the proof of
Theorem 8.3 of [2], if ν is the naturally distributed measure on E, its Wolff potential
is

Ẇ ν
β,p ≃

∞∑

n=2

1

ndK(p′−1)δ

at each x ∈ E. If we select, e.g.

δ = 1 +
1

dK(p′ − 1)
,

then this series is convergent, the Wolff potential is uniformly bounded, and therefore
the set has positive (β, p)-Riesz capacity.

Now we need to extend this from a particular parameter choice to all simulta-
neously. Carry out the above construction, but localized to a disk of radius 1/2.
Fix a new choice (β1, p1) with p1 > p, and carry out the construction with this pa-
rameter choice (meaning, with the updated value of δ) in a disjoint disk of radius
1/4. Continue in this manner with (β2, p2) with p2 > p1, and so on; this gives a set
with positive Riesz capacity for a sequence (βn, pn) with 2 − βnpn = d for every n.
If pn → ∞, a comparison theorem (e.g. Theorem 5.5.1(b) of [1]) shows that E has
positive capacity for all parameter choices. �

It is worth remarking that this theorem actually follows from the previous one,
with the correct choice of h (at least for these Cantor type sets). If we choose the
gauge to be h(r) = (log 1/r)−1 for small enough r, then the resulting Cantor set must
be larger, in a sense, than one only with positive Riesz capacity. This follows from
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an estimate of the ηk,jk. Recall the generating relationship (4.2):

1 = (η1,j1 · · · ηN,jN )
Kd h

(
R

2/d
1,j1

· · ·R
2/d
N,jN

ηK1,j1 · · · η
K
N,jN

)
.

We will show that the choice of ηk,jk to satisfy this equation with this choice of
gauge is typically larger than (1 + 1/k)δ; in particular, that means that the Cantor
set naturally associated to this gauge is significantly larger than that constructed for
positive Riesz capacity. To this end, suppose that ηk,jk ≤ (1 + 1/k)δ for all k. Then
we have

1 = (η1,j1 · · · ηN,jN )
Kd h

(
R

2/d
1,j1

· · ·R
2/d
N,jN

ηK1,j1 · · · η
K
N,jN

)

= (N + 1)Kdδh
(
R

2/d
1,j1

· · ·R
2/d
N,jN

(N + 1)Kδ
)

=
(N + 1)Kdδ

2
d

∑N
k=1 log

1
Rk,jk

−Kδ log(N + 1)
.

However, we can choose the radii Rk,jk as small as we desire, making the right
hand side of this equation arbitrarily small. This leads to a contradiction, showing
that this uniformly bounded selection of ηk,jk was in fact too small. Hence at least
some of the selections ηk,jk must have been larger than (1 + 1/k)δ, a contradiction.
Moreover, asymptotically, the choices of ηk,jk must be much larger than (1 + 1/k)δ,
and larger choices of ηk,jk lead to a larger Cantor set.
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