BOUNDARY GROWTH OF GENERALIZED RIESZ POTENTIALS ON THE UNIT BALL IN THE VARIABLE SETTINGS

Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

4-13-11 Hachi-Hon-Matsu-Minami, Higashi-Hiroshima 739-0144, Japan; yomizuta@hiroshima-u.ac.jp

Oita University, Faculty of Education Dannoharu Oita-city 870-1192, Japan; t-ohno@oita-u.ac.jp

Hiroshima University, Graduate School of Education, Department of Mathematics Higashi-Hiroshima 739-8524, Japan; tshimo@hiroshima-u.ac.jp

Abstract. Riesz decomposition theorem says that a superharmonic function is locally represented as the sum of a potential and a harmonic function. In this paper we introduce a generalized Riesz kernel and study the boundary growth for its potential as an extension of Gardiner [3] in the variable settings.

1. Introduction

In the N-dimensional Euclidean space \mathbf{R}^N , we use the notation B(x, r) to denote the open ball centered at x of radius r, whose boundary is written as S(x, r). Set $\mathbf{B} = B(0, 1)$. The spherical mean of u over S(0, r) is defined by

$$M(u,r) = \frac{1}{|S(0,r)|} \int_{S(0,r)} u(x) \, dS(x),$$

where $|S(0,r)| = \omega_{N-1}r^{N-1}$ with ω_{N-1} denoting the area of the unit sphere and dS denotes the surface area measure on S(0,1). It is known that if u is superharmonic in **B**, then M(u,r) is nonincreasing. If u is superharmonic in **B** and $\lim_{r \to 1} M(u,r) > -\infty$, then u is represented as the sum of the Green potential and a harmonic function :

$$u(x) = \int_{\mathbf{B}} G(x, y) \, d\mu(y) + a$$
 harmonic function;

see Theorem 2.3 and Remark 2.4 below. For this, let us consider a generalized Riesz kernel

$$K_{\alpha,m}(x,y) = \frac{1}{(N-\alpha)\omega_{N-1}} \times \begin{cases} I_{\alpha}(x-y) & \text{when } y \in B(0,1/2), \\ I_{\alpha}(x-y) - \sum_{\ell=0}^{m} (1-|y|^2)^{\ell} \phi_{\alpha,\ell}(x,y^*) \\ & \text{when } y \in \mathbf{B} \setminus B(0,1/2), \end{cases}$$

where $I_{\alpha}(x-y) = |x-y|^{\alpha-N}$ (0 < α < N) and $m \ge 0$ (see Section 2 for the definition of $\phi_{\alpha,\ell}(x, y^*)$).

https://doi.org/10.5186/aasfm.2019.4403

²⁰¹⁰ Mathematics Subject Classification: Primary 31B15, 46E35.

Key words: Variable exponent, spherical means, superharmonic functions, generalized Riesz potentials.

The L^q ($1 \le q < \infty$) mean over the spherical surface S(0, r) for a function u is defined by

$$S_q(u,r) = \left(\frac{1}{|S(0,r)|} \int_{S(0,r)} |u(x)|^q \, dS(x)\right)^{1/q} = \left(\frac{1}{\omega_{N-1}} \int_{S(0,1)} |u(r\sigma)|^q \, dS(\sigma)\right)^{1/q}$$

Our starting point is a result by Gardiner [3, Theorem 2] which states that when $(N-3)/(N-1) < 1/q \le (N-2)/(N-1)$ and $q \ge 1$,

$$\liminf_{r \to 1^{-}} (1-r)^{N-1-(N-1)/q} S_q(G\mu, r) = 0$$

for a Green potential $G\mu$ on the unit ball **B**. We refer the reader to [10] for the plane case and [4, Sect. 5] for versions of Gardiner's result for Riesz potentials. Moreover, in [8], the first and the third authors studied the existence of boundary limits for BLD (Beppo Levi and Deny) functions u on the unit ball **B** of \mathbf{R}^N satisfying

$$\int_{\mathbf{B}} |\nabla u(x)|^p (1-|x|)^\gamma \, dx < \infty,$$

where ∇ denotes the gradient, $1 and <math>-1 < \gamma < p - 1$. More precisely, it was shown that

$$\liminf_{r \to 1^{-}} (1-r)^{(N-p+\gamma)/p - (N-1)/q} S_q(u,r) = 0$$

when q > 0 and $(N - p - 1)/(p(N - 1)) < 1/q < (N - p + \gamma)/(p(N - 1))$. Set

$$C(0,r) = \mathbf{B} \setminus B(0,r)$$

for 0 < r < 1. For $m \ge 0$, denote by $M^{p(\cdot),m,\omega}(\mathbf{B})$ the family of all functions $f \in L^1_{\text{loc}}(\mathbf{B})$ such that

$$\|f\|_{M^{p(\cdot),m,\omega}(\mathbf{B})} = \sup_{0 < r < 1} \omega(1-r) \|f\|_{L^{p(\cdot),m}(C(0,r))} < \infty$$

with a variable exponent $p(\cdot)$ (see Section 3). In connection with Gardiner's result [3] and [8, Theorem 1], our main aim in this paper is to discuss the weighted limit:

$$\liminf_{r \to 1-} (1-r)^d \omega (1-r)^p S_q \left(|K_{\alpha,m}f|^{p(r)}, r \right)$$

for $f \in M^{p(\cdot),m+1,\omega}(\mathbf{B})$, where the exponent d will be given later and

$$K_{\alpha,m}f(x) = \int_{\mathbf{B}} K_{\alpha,m}(x,y)f(y) \, dy$$

(see Theorem 4.6 below). For Riesz potentials $K_{\alpha,-1}f(x) = \int_{\mathbf{B}} I_{\alpha}(x-y)f(y) dy$, we refer to [6].

For further related results on spherical means, see e.g. [5], [7] and [9].

2. Generalized Riesz kernels

Throughout this paper, let C denote various positive constants independent of the variables in question. The symbol $g \sim h$ means that $C^{-1}h \leq g \leq Ch$ for some constant C > 0.

Write

$$|x - y|^2 = |x - y^* + ty^*|^2 = |x - y^*|^2(1 + s/|x - y^*|^2),$$

where $t = 1 - |y|^2$, $y^* = y/|y|^2$ and $s = t^2|y^*|^2 + 2t(x - y^*) \cdot y^*$. Note that

$$(1+a+b)^{\gamma} = \sum_{j=0}^{\infty} \left(\begin{array}{c} \gamma\\ j \end{array}\right) (a+b)^{j} = \sum_{j=0}^{\infty} \sum_{k=0}^{j} \left(\begin{array}{c} \gamma\\ j \end{array}\right) \left(\begin{array}{c} j\\ k \end{array}\right) a^{k} b^{j-k}$$

The double series converges absolutely when |a|+|b| < 1. Hence we have the following lemma.

Lemma 2.1. [1, Lemma 2.1] Let $x, y \in \mathbb{R}^N$ and $t \in \mathbb{R}$. If $|t||y^*| < (\sqrt{2} - 1)|x - y^*|$, then

$$\begin{aligned} |x - y^* + ty^*|^{\alpha - N} &= \sum_{\ell=0}^{\infty} \left(\sum_{\ell/2 \le j \le \ell} a_{\ell,j} |x - y^*|^{\alpha - N - 2j} (x \cdot y^* - |y^*|^2)^{2j - \ell} |y^*|^{2(\ell - j)} \right) t^\ell \\ &= \sum_{\ell=0}^{\infty} \phi_{\alpha,\ell}(x, y^*) t^\ell, \end{aligned}$$

where

$$\phi_{\alpha,\ell}(x,y^*) = \sum_{\ell/2 \le j \le \ell} a_{\ell,j} |x - y^*|^{\alpha - N - 2j} (x \cdot y^* - |y^*|^2)^{2j - \ell} |y^*|^{2(\ell - j)}$$

and

$$a_{\ell,j} = \begin{pmatrix} (\alpha - N)/2 \\ j \end{pmatrix} \begin{pmatrix} j \\ \ell - j \end{pmatrix} 2^{2j-\ell}$$

In what follows, let $m \ge 0$. Now let us define

$$K_{\alpha,m}(x,y) = c(\alpha,N) \times \begin{cases} |x-y|^{\alpha-N} & \text{when } y \in B(0,1/2), \\ |x-y|^{\alpha-N} - \sum_{\ell=0}^{m} (1-|y|^2)^{\ell} \phi_{\alpha,\ell}(x,y^*) \\ & \text{when } y \in \mathbf{B} \setminus B(0,1/2), \end{cases}$$

where $c(\alpha, N) = 1/((N - \alpha)\omega_{N-1}).$

Lemma 2.2. (cf. [1, Lemma 2.2])

- (1) For $y \in \mathbf{B}$ and N > 2, $\Delta K_{2,m}(\cdot, y) = \delta_y$ on \mathbf{B} ;
- (2) there exists a constant C > 0 such that

$$|K_{\alpha,m}(x,y)| \le C|x-y|^{\alpha-N}$$

for all $x, y \in \mathbf{B}$;

(3) there exists a constant C > 0 such that

$$|K_{\alpha,m}(x,y)| \le C|x-y|^{\alpha-N-m-1}(1-|y|)^{m+1}$$

for all $x, y \in \mathbf{B}$.

Proof. First we show assertion (1). Consider $F_{\alpha}(t) = |x - y^* + ty^*|^{\alpha - N}$. Then

$$\phi_{2,\ell}(x, y^*) = F_2^{(\ell)}(0)/\ell!,$$

so that $\phi_{2,\ell}(\cdot, y^*)$ is harmonic in **B**. Thus (1) follows.

Next we show assertion (2). We may assume $y \in \mathbf{B} \setminus B(0, 1/2)$. Note that

$$\begin{aligned} |\phi_{\alpha,\ell}(x,y^*)| &\leq \sum_{\ell/2 \leq j \leq \ell} |a_{\ell,j}| |x - y^*|^{\alpha - N - 2j} |x \cdot y^* - |y^*|^2 |^{2j-\ell} |y^*|^{2(\ell-j)} \\ &= \sum_{\ell/2 \leq j \leq \ell} |a_{\ell,j}| |x - y^*|^{\alpha - N - 2j} |x \cdot y^*/|y^*| - |y^*||^{2j-\ell} |y^*|^\ell \\ &= C |x - y^*|^{\alpha - N - \ell} |y^*|^\ell, \end{aligned}$$

so that

$$|\phi_{\alpha,\ell}(x,y^*)|(1-|y|^2)^{\ell} \le C|x-y^*|^{\alpha-N-\ell}|y^*|^{\ell}(1-|y|^2)^{\ell} \le C|x-y^*|^{\ell}(1-|y|^2)^{\ell} \le C|x-y^*|^{\ell} \le C|x-$$

since

$$\frac{|x-y^*|}{1-|y|} \ge \frac{|y^*|-|x|}{1-|y|} \ge \frac{|y^*|-1}{1-|y|} = |y^*|.$$

Hence we obtain

$$|K_{\alpha,m}(x,y)| \le C \left(|x-y|^{\alpha-N} + |x-y^*|^{\alpha-N} \right) \le C |x-y|^{\alpha-N}$$

since

$$|x - y^*| > |y||x - y^*| = |x||x^* - y| = \left(|x - y|^2 + (1 - |x|^2)(1 - |y|^2)\right)^{1/2} > |x - y|.$$

Finally, we show acception (2). If 1 - |y|^2 > |x - y|/4, then

Finally, we show assertion (3). If $1 - |y|^2 \ge |x - y|/4$, then

$$|K_{\alpha,m}(x,y)| \le C|x-y|^{\alpha-N} \le C|x-y|^{\alpha-N-m-1}(1-|y|)^{m+1}$$

Hence we show the case $1-|y|^2<|x-y|/4$ and $1/2\leq |y|<1$. By Taylor's theorem, one can find $0<\theta<1$ such that

$$K_{\alpha,m}(x,y) = \frac{1}{(N-\alpha)\sigma_N(m+1)!} F_{\alpha}^{(m+1)}(\theta(1-|y|^2))(1-|y|^2)^{m+1}.$$

Set

$$G(S) = (1+S)^{(\alpha-N)/2},$$

$$S = S(t) = \frac{2t(x-y^*) \cdot y^*}{|x-y^*|^2} + \frac{t^2|y^*|^2}{|x-y^*|^2}$$

and

$$H(t) = G(S(t)).$$

Then we see by induction on m that $H^{(m+1)}(t)$ is of the form

$$H^{(m+1)}(t) = \sum_{0 \le \ell \le (m+1)/2} c_{m;\ell} G^{(m+1-\ell)}(S(t)) \left(S^{(1)}(t)\right)^{m+1-2\ell} \left(S^{(2)}(t)\right)^{\ell},$$

where $c_{m;\ell}$ are constants. Here note that in case $0 \le t \le 1 - |y|^2 \le |x - y|/4$,

$$|x - y| \le |x - y^*| \le |x - y| + |y - y^*| \le 3|x - y|/2,$$

$$|x - y^* + ty^*| \ge |x - y^*| - t|y^*| \ge |x - y|/2$$

and hence

$$-\frac{8}{9} \le \frac{(|x-y|/2)^2 - |x-y^*|^2}{|x-y^*|^2} \le S(t) \le 0.$$

Thus

$$|S^{(1)}(t)| \le \frac{2|y^*|}{|x-y^*|} + \frac{2(1-|y|^2)|y^*|^2}{|x-y^*|^2} \le C|x-y|^{-1}$$

and

$$|H^{(m+1)}(t)| \le C \sum_{0 \le \ell \le (m+1)/2} |x-y|^{-(m+1-2\ell)} |x-y|^{-2\ell} \le C |x-y|^{-(m+1)}$$

when $1 - |y|^2 < |x - y|/4$ and $1/2 \le |y| < 1$. Now we obtain

$$|K_{\alpha,m}(x,y)| \le C|x-y^*|^{\alpha-N} \left| H^{(m+1)}(\theta(1-|y|^2)) \right| (1-|y|^2)^{m+1}$$

$$\le C|x-y|^{(\alpha-N)-(m+1)}(1-|y|^2)^{m+1},$$

which proves the result.

For reader's convenience we show Riesz decomposition theorem in the following. **Theorem 2.3.** [1, Theorem 5.5] Let u be superharmonic in **B**. (1) If

$$\lim_{r \to 1} M(u, r) > -\infty,$$

then

$$u(x) = \int_{\mathbf{B}} K_{2,0}(x, y) \, d\mu(y) + h(x),$$

where h is harmonic in **B**.

(2) If

$$\liminf_{r \to 1} (1-r)^a M(u,r) > -\infty$$

for some a > 0, then

$$u(x) = \int_{\mathbf{B}} K_{2,m}(x,y) \, d\mu(y) + h_0(x),$$

where h_0 is harmonic in **B** and *m* is an integer greater than *a*.

Remark 2.4. Note that

$$K_{2,0}(x,y) = G(x,y) + (|y|^{2-N} - 1)|x - y^*|^{2-N}.$$

If u is superharmonic in **B** and

$$\lim_{r \to 1} M(u, r) > -\infty,$$

then

$$u(x) = \int_{\mathbf{B}} G(x, y) \, d\mu(y) + v(x) = \int_{\mathbf{B}} K_{2,0}(x, y) \, d\mu(y) + h(x),$$

where v and h are harmonic in **B**.

3. Variable exponent on the unit ball

Let $p(\cdot)$ be a variable exponent on **B** such that

(p1)
$$1 \le p^- \equiv \inf_{x \in \mathbf{B}} p(x) \le \sup_{x \in \mathbf{B}} p(x) \equiv p^+ < \infty;$$

(p2) $|p(x) - p(y)| \le \frac{c_{\mathbf{B}}}{\log(e/||x| - |y||)}$ for $x, y \in \mathbf{B}$ with a constant $c_{\mathbf{B}} > 0.$

By (p2), we see that $p(\cdot)$ is uniformly continuous on **B** and a radial function on **B**. Thus we have

(p3) there exists a constant $p \ge 1$ such that

$$|p(x) - p| \le \frac{c_{\mathbf{B}}}{\log(e/(1 - |x|))} \quad \text{for } x \in \mathbf{B}.$$

For simplicity, we set p(r) = p(x) with r = |x|. A typical example of $p(\cdot)$ is of the form

$$p(x) = p + \frac{c}{\log(e/(1 - |x|))}$$

as in [2].

Let Ω be a measurable set in **B**. For $m \ge 0$, the variable exponent Lebesgue spaces

$$L^{p(\cdot),m}(\Omega) = \left\{ f \in L^{1}_{\text{loc}}(\Omega) \, ; \, \int_{\Omega} \left((1 - |y|)^{m} |f(y)| \right)^{p(y)} \, dy < \infty \right\}$$

is a Banach space with respect to the norm

$$\|f\|_{L^{p(\cdot),m}(\Omega)} = \inf\left\{\lambda > 0; \int_{\Omega} \left(\frac{(1-|y|)^m |f(y)|}{\lambda}\right)^{p(y)} dy \le 1\right\}.$$

Further we consider a weight ω such that

- ($\omega 1$) $\omega(r) > 0$ for $0 < r \le 1$;
- ($\omega 2$) ω is almost decreasing in (0, 1], that is, there is a constant C > 0 such that

$$\omega(t) \le C\omega(s) \quad \text{when } 0 < s < t \le 1;$$

 $(\omega 3) \omega$ is doubling on (0, 1].

Throughout this paper, we always assume that ω satisfies all of $(\omega 1)-(\omega 3)$. We see that $\omega(r) = r^{-\nu} (\log(e+r^{-1}))^{\tau}$ is almost decreasing when $\nu > 0$ and $\tau \in \mathbf{R}$. Set

$$C(0,r) = \mathbf{B} \setminus B(0,r)$$

for 0 < r < 1. For $m \ge 0$, denote by $M^{p(\cdot),m,\omega}(\mathbf{B})$ the family of all functions $f \in L^1_{\text{loc}}(\mathbf{B})$ such that

$$||f||_{M^{p(\cdot),m,\omega}(\mathbf{B})} = \sup_{0 < r < 1} \omega(1-r) ||f||_{L^{p(\cdot),m}(C(0,r))} < \infty.$$

Let us begin with the following elementary estimates for spherical means.

Lemma 3.1. [6, Lemma 2.1] Let 0 < a < 1 and c_1 be positive constants. If $y \in \mathbf{B}$ and $1/2 < t < \min\{1, c_1|y|\}$, then there exists a constant C > 0 such that

$$\int_{S(0,1)} |t\sigma - y|^{a-N} \, dS(\sigma) \le C|t - |y||^{a-1}.$$

For later use, we need a version of Lemma 3.1 when a > 1.

Lemma 3.2. [6, Lemma 2.2] Let 1 < a < N and c_1 be positive constants. If $y \in \mathbf{B}$ and $1/2 < t < \min\{1, c_1|y|\}$, then there exists a constant C > 0 such that

$$\int_{\{\sigma \in S(0,1): |t\sigma - y| < 1 - t\}} |t\sigma - y|^{a - N} dS(\sigma) \le C(1 - t)^{a - 1}.$$

Set

$$I = \frac{1}{|B(x,t)|} \int_{B(x,t) \cap \mathbf{B}} |f(y)| \, dy$$

and

$$J = \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap \mathbf{B}} |f(y)|^{p(y)} \, dy\right)^{1/p(x)}$$

where |B(x,t)| denotes the volume of balls B(x,t). Then I is estimated by J as follows.

Lemma 3.3. [6, Lemma 2.4] Let $\gamma > 0$. If $J \leq \beta_1 t^{-\beta_2}$ for some constants $\beta_1, \beta_2 > 0$, then there exists a constant C > 0 such that

$$I \le C \left(t^{\gamma} + J \right)$$

for all $x \in \mathbf{B}$, 0 < t < 1 and $f \in L^1_{loc}(\mathbf{B})$, where a constant C depends only on β_1, β_2 , γ and c_1 .

Finally it is convenient to see the following estimates.

Lemma 3.4. [6, Lemma 2.5] For 1/2 < r < 1, $\omega (1-r)^{p(r)} \sim \omega (1-r)^p$, $(1-r)^{p(r)} \sim (1-r)^p$.

4. Spherical means near the boundary

In what follows we prepare several estimates for Riesz potentials of functions in $M^{p(\cdot),m+1,\omega}(\mathbf{B})$. For this purpose, write

$$\begin{aligned} K_{\alpha,m}f(x) &= \int_{B(x,(1-|x|)/2)} K_{\alpha,m}(x,y)f(y) \, dy \\ &+ \int_{\{y \in \mathbf{B} \setminus B(x,(1-|x|)/2): \ 1-|y| \le 1-|x|\}} K_{\alpha,m}(x,y)f(y) \, dy \\ &+ \int_{\{y \in \mathbf{B} \setminus B(x,(1-|x|)/2): \ 1-|y| > 1-|x|\}} K_{\alpha,m}(x,y)f(y) \, dy \\ &= K_1(x) + K_2(x) + K_3(x). \end{aligned}$$

We first give an estimate for $K_1(x)$. For this note by Lemma 2.2 (2)

$$|K_1(x)| \le C \int_{B(x,(1-|x|)/2)} |x-y|^{\alpha-N} f(y) \, dy.$$

Set

$$A(0,r) = B(0,r + (1-r)/2) \setminus B(0,r - (1-r)/2)$$

for 1/2 < r < 1.

Lemma 4.1. Let $1 \leq q < \infty$.

(1) Let $\beta > 0$. Suppose

$$(N-1)/q \le N - \alpha p.$$

,

Then, for $\varepsilon > 0$, there exist constants C > 0 and $1/2 < r_1 < 1$ such that

$$S_q\left(|K_1|^{p(r)}, r\right) \le C\omega(1-r)^{-p} \left\{ (1-r)^{\beta} + (1-r)^{\varepsilon(2p-1)-(m+1)p} \\ \times \int_{A(0,r)} |r-|y||^{\alpha p(r)-\varepsilon(2p(r)-1)-N+(N-1)/q} \left(\omega(1-|y|)(1-|y|)^{m+1}f(y)\right)^{p(y)} dy \right\}$$

for all $r_1 < r < 1$ and nonnegative measurable functions f on \mathbf{B} with $\|f\|_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1.$

(2) Suppose

$$(N-1)/q > N - \alpha p.$$

Then there exist constants C > 0 and $1/2 < r_1 < 1$ such that

$$S_q(|K_1|^{p(r)},r) \le C(1-r)^{(\alpha-m-1)p-N+(N-1)/q}\omega(1-r)^{-p}$$

for all $r_1 < r < 1$ and nonnegative measurable functions f on **B** with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1.$

Proof. Let f be a nonnegative measurable function on **B** with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$ and let 1/2 < r = |x| < 1. First we show the assertion (1). Let $\beta > 0$ and let $\varepsilon > 0$ such that

$$(N-1)/q < N - \alpha p + \varepsilon(2p-1).$$

We have

$$\begin{aligned} |K_1(x)| &\leq C \int_{B(x,(1-r)/2)} |x-y|^{\alpha-N} f(y) \, dy \\ &\leq C \int_0^{1-r} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap A(0,r)} f(y) \, dy \right) t^{\alpha-1} \, dt \\ &\leq C(1-r)^{\varepsilon} \int_0^{1-r} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap A(0,r)} t^{\alpha-2\varepsilon} f(y) \, dy \right) t^{\varepsilon-1} \, dt \end{aligned}$$

since $B(x, (1-r)/2) \subset A(0, r)$. Take $1/2 < r_1 < 1$ such that

$$C_{1,p} = \sup_{r_1 < r < 1} \left\{ \alpha p(r) - \varepsilon (2p(r) - 1) - N + (N - 1)/q \right\} < 0.$$

Letting s = r - (1 - r)/2, we see that

$$\int_{A(0,r)} (\omega(1-r)(1-|y|)^{m+1}f(y))^{p(y)} dy$$

$$\leq \int_{C(0,s)} (\omega(2(1-s)/3)(1-|y|)^{m+1}f(y))^{p(y)} dy$$

$$\leq C \int_{C(0,s)} (\omega(1-s)(1-|y|)^{m+1}f(y))^{p(y)} dy \leq C,$$

so that

(4.1)
$$\int_{A(0,r)} (\omega(1-r)(1-|y|)^{m+1}f(y))^{p(y)} dy \le C.$$

Note here from (4.1) that

$$\left(\frac{1}{|B(x,t)|}\int_{B(x,t)\cap A(0,r)} (\omega(1-r)(1-|y|)^{m+1}f(y))^{p(y)}\,dy\right)^{1/p(r)} \le Ct^{-N/p^{-1}}$$

for 0 < t < 1.

Take $\gamma > 0$ such that

$$\gamma > \max\left\{\varepsilon(2-1/p^+) - \alpha, \beta/p - \alpha + m + 1\right\}$$

By Jensen's inequality and Lemmas 3.3 and 3.4, we have

$$\begin{split} \left(\omega(1-r)(1-r)^{-2\varepsilon}|K_{1}(x)|\right)^{p(r)} \\ &\leq C\left(\omega(1-r)(1-r)^{-\varepsilon-m-1} \\ &\times \int_{0}^{1-r} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap A(0,r)} t^{\alpha-2\varepsilon}(1-|y|)^{m+1}f(y)\,dy\right) t^{\varepsilon-1}\,dt\right)^{p(r)} \\ &\leq C(1-r)^{-\varepsilon-(m+1)p} \\ &\times \int_{0}^{1-r} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap A(0,r)} t^{\alpha-2\varepsilon}\omega(1-r)(1-|y|)^{m+1}f(y)\,dy\right)^{p(r)} t^{\varepsilon-1}\,dt \\ &= C(1-r)^{-\varepsilon-(m+1)p} \\ &\times \int_{0}^{1-r} t^{(\alpha-2\varepsilon)p(r)} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)\cap A(0,r)} \omega(1-r)(1-|y|)^{m+1}f(y)\,dy\right)^{p(r)} t^{\varepsilon-1}\,dt \end{split}$$

$$\leq C(1-r)^{-\varepsilon-(m+1)p} \left\{ \int_{0}^{1-r} t^{\alpha p(r)-\varepsilon(2p(r)-1)+\gamma p(r)-1} dt + \int_{0}^{1-r} t^{(\alpha-2\varepsilon)p(r)-N} \left(\int_{B(x,t)\cap A(0,r)} \left(\omega(1-r)(1-|y|)^{m+1}f(y) \right)^{p(y)} dy \right) t^{\varepsilon-1} dt \right\}$$

$$\leq C \left\{ (1-r)^{(\alpha-m-1+\gamma)p-2\varepsilon p} + (1-r)^{-\varepsilon-(m+1)p} + \int_{0}^{1-r} t^{(\alpha-2\varepsilon)p(r)-N} \left(\int_{B(x,t)\cap A(0,r)} \left(\omega(1-r)(1-|y|)^{m+1}f(y) \right)^{p(y)} dy \right) t^{\varepsilon-1} dt \right\}$$

$$\leq C \left\{ (1-r)^{\beta-2\varepsilon p} + (1-r)^{-\varepsilon-(m+1)p} \int_{A(0,r)} |x-y|^{\alpha p(r)-\varepsilon(2p(r)-1)-N} \left(\omega(1-|y|)(1-|y|)^{m+1}f(y) \right)^{p(y)} dy \right\}$$

for $r_1 < r < 1$, since

$$\alpha p(r) - \varepsilon (2p(r) - 1) - N < -(N - 1)/q + C_{1,p} < 0$$

for $r_1 < r < 1$. Then Minkowski's inequality and Lemma 3.1 yield

$$S_{q}\left(|K_{1}|^{p(r)},r\right)$$

$$\leq C\omega(1-r)^{-p}\left\{(1-r)^{\beta}+(1-r)^{\varepsilon(2p-1)-(m+1)p}\right\}$$

$$\times \int_{A(0,r)} S_{q}(|\cdot-y|^{\alpha p(r)-\varepsilon(2p(r)-1)-N},r)\left(\omega(1-|y|)(1-|y|)^{m+1}f(y)\right)^{p(y)} dy\right\}$$

$$\leq C\omega(1-r)^{-p}\left\{(1-r)^{\beta}+(1-r)^{\varepsilon(2p-1)-(m+1)p}\right\}$$

$$\times \int_{A(0,r)} |r-|y||^{\alpha p(r)-\varepsilon(2p(r)-1)-N+(N-1)/q}\left(\omega(1-|y|)(1-|y|)^{m+1}f(y)\right)^{p(y)} dy\right\}$$

for $r_1 < r < 1$, since $r \sim |y|$ on A(0, r) and

$$\alpha p(r) - \varepsilon (2p(r) - 1) - N + (N - 1)/q \le C_{1,p} < 0$$

for $r_1 < r < 1$. Thus assertion (1) is proved.

Next we shall show assertion (2). Let $\varepsilon > 0$ such that

$$(N-1)/q > N - \alpha p + \varepsilon(p-1) > 0.$$

Take $1/2 < r_1 < 1$ such that

$$\inf_{\substack{r_1 < r < 1}} \{ \alpha p(r) - \varepsilon (p(r) - 1) - N + (N - 1)/q \} > 0,$$

$$\sup_{\substack{r_1 < r < 1}} \{ \alpha p(r) - \varepsilon (p(r) - 1) - N \} < 0$$

and $\gamma > 0$ such that

$$\gamma > \varepsilon (1 - 1/p^+) - \alpha.$$

As in the above considerations, we obtain by Lemma 3.2

$$\begin{split} S_q \left(\left(\omega (1-r)(1-r)^{-\varepsilon} |K_1| \right)^{p(r)}, r \right) \\ &\leq C(1-r)^{-\varepsilon - (m+1)p} \left\{ (1-r)^{\alpha p - \varepsilon (p-1) + \gamma p} \\ &+ \int_{A(0,r)} S_q (|\cdot -y|^{\alpha p(r) - \varepsilon (p(r) - 1) - N} \chi_{B(y,(1-r)/2)}, r) \left(\omega (1-r)(1-|y|)^{m+1} f(y) \right)^{p(y)} dy \right\} \\ &\leq C(1-r)^{-\varepsilon - (m+1)p} \left\{ (1-r)^{\alpha p - \varepsilon (p-1) + \gamma p} \\ &+ (1-r)^{\alpha p - \varepsilon (p-1) - N + (N-1)/q} \int_{C(0,r-(1-r)/2)} \left(\omega (1-r)(1-|y|)^{m+1} f(y) \right)^{p(y)} dy \right\} \\ &\leq C(1-r)^{(\alpha - m - 1 - \varepsilon)p - N + (N-1)/q} \end{split}$$

for $r_1 < r < 1$. Thus assertion (2) is proved.

Let $d(\cdot)$ be a valuable exponent on [0, 1) such that

- (d1) $0 < \inf_{t \in [0,1)} d(t) \le \sup_{t \in [0,1)} d(t) < 1;$
- (d2) there exists a positive constant 0 < d < 1 such that

$$|d(t) - d| \le \frac{c_d}{\log(e/(1-t))}$$
 for $0 < t < 1$

with a constant $c_d > 0$.

Set

$$G(t) = (1-t)^d \int_{A(0,t)} |t-|y||^{-d(t)} g(y) \, dy$$

for a nonnegative measurable function g.

To complete the estimate for K_1 , we use the following result.

Lemma 4.2. [7, Lemma 2.7] Let M > 0. If $\sup_{0 < t < 1} \int_{A(0,t)} g(y) \, dy \le M$, then there exists a constant C > 0 such that

$$\inf_{1-2^{-j+1} < t < 1-2^{-j}} G(t) < CM \quad \text{for each positive integer } j.$$

Next we treat $K_2(x)$. For this note from Lemma 2.2 (3) that

$$|K_2(x)| \le C \int_{\{y \in \mathbf{B} \setminus B(x, (1-|x|)/2): 1-|y| \le 1-|x|\}} |x-y|^{\alpha-N-m-1} (1-|y|)^{m+1} f(y) \, dy.$$

Lemma 4.3. Let $1 \leq q < \infty$, and suppose

$$(N-1)/q < N - (\alpha - m - 1)p.$$

Then there exists a constant C > 0 such that

$$S_q\left(|K_2|^{p(r)}, r\right) \le C(1-r)^{(\alpha-m-1)p-N+(N-1)/q}\omega(1-r)^{-p}$$

for all 1/2 < r < 1 and nonnegative measurable functions f on \mathbf{B} with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$.

Proof. Let f be a nonnegative measurable function on **B** with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$ and let 1/2 < r = |x| < 1. Let $\varepsilon > 0$ such that

$$(N-1)/q < N - (\alpha - m - 1)p - \varepsilon(p - 1).$$

We have by Lemma 2.2 (3)

$$\begin{aligned} |K_{2}(x)| &\leq C \int_{\{y \in \mathbf{B} \setminus B(x,(1-|x|)/2): \ 1-|y| \leq 1-|x|\}} |x-y|^{\alpha-N-m-1} (1-|y|)^{m+1} f(y) \, dy \\ &\leq C \int_{(1-r)/2}^{2} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)} f_{2,x}(y) \, dy \right) t^{\alpha-m-2} \, dt \\ &\leq C \int_{(1-r)/2}^{2} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)} t^{\alpha-m-1+\varepsilon} f_{2,x}(y) \, dy \right) t^{-\varepsilon-1} \, dt, \end{aligned}$$

where $f_{2,x}(y) = (1-|y|)^{m+1} f(y) \chi_{E_{2,x}}(y)$ with $E_{2,x} = \{y \in \mathbf{B} \setminus B(x, (1-r)/2) \colon 1-|y| \le 1-r\}$ and χ_E is the characteristic function of E.

Note from (p3) that

$$t^{p(r)} = t^p t^{p(r)-p} \le C t^p t^{-c_{\mathbf{B}}/\log(e/(1-r))} \le C t^p (1-r)^{-c_{\mathbf{B}}/\log(e/(1-r))} \le C t^p$$

and

$$t^{p(r)} \ge C t^p t^{c_{\mathbf{B}}/\log(e/(1-r))} \ge C t^p (1-r)^{c_{\mathbf{B}}/\log(e/(1-r))} \ge C t^p$$

for (1 - r)/2 < t < 2. Since

$$\int_{B(x,t)} (\omega(1-r)f_{2,x}(y))^{p(y)} \, dy \le \int_{C(0,r)} \left(\omega(1-r)(1-|y|)^{m+1}f(y) \right)^{p(y)} \, dy \le C$$

by the fact that $E_{2,x} \subset C(0,r)$, we have

$$\left(\frac{1}{|B(x,t)|} \int_{B(x,t)} \left(\omega(1-r)f_{2,x}(y)\right)^{p(y)} dy\right)^{1/p(r)} \le Ct^{-N/p^{-1}}$$

for (1-r)/2 < t < 2. We have by Jensen's inequality and Lemma 3.3 with $\gamma > -\varepsilon(1-1/p) - \alpha + m + 1$

$$\begin{aligned} &(\omega(1-r)(1-r)^{\varepsilon}|K_{2}(x)|)^{p(r)} \\ &\leq C(1-r)^{\varepsilon} \int_{(1-r)/2}^{2} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)} t^{\alpha-m-1+\varepsilon} \omega(1-r) f_{2,x}(y) \, dy\right)^{p(r)} t^{-\varepsilon-1} \, dt \\ &\leq C(1-r)^{\varepsilon} \bigg\{ 1 + \int_{(1-r)/2}^{2} t^{(\alpha-m-1+\varepsilon)p} \left(\frac{1}{|B(x,t)|} \int_{B(x,t)} (\omega(1-r) f_{2,x}(y))^{p(y)} \, dy\right) t^{-\varepsilon-1} dt \bigg\} \\ &\leq C(1-r)^{\varepsilon} \bigg\{ 1 + \int_{\mathbf{B}} |x-y|^{(\alpha-m-1)p+\varepsilon(p-1)-N} \left(\omega(1-r) f_{2,x}(y)\right)^{p(y)} \, dy \bigg\} \end{aligned}$$

for 1/2 < r < 1, since

$$\int_{(1-r)/2}^{2} t^{(\alpha-m-1)p+\varepsilon(p-1)+\gamma p-1} dt \le C$$

and

$$(\alpha - m - 1)p + \varepsilon(p - 1) - N < -(N - 1)/q < 0.$$

By Lemma 3.1, we see that

$$\begin{split} &\int_{\{\sigma \in S(0,1): |t\sigma - y| > (1-t)/2\}} |t\sigma - y|^{a-N} dS(\sigma) \\ &\leq \int_{\{\sigma \in S(0,1): |t\sigma - y| > (1-t)/2\}} (C|(1+(1-t))\sigma - y|)^{a-N} dS(\sigma) \\ &\leq C|(1+(1-t)) - |y||^{a-1} \leq C|1-t|^{a-1} \end{split}$$

for 1/2 < t < 1 and 1/2 < |y| < 1, when a < 1. Hence Minkowski's inequality yields $S_q \left((\omega(1-r)(1-r)^{\varepsilon}|K_2|)^{p(r)}, r \right)$ $\leq C(1-r)^{\varepsilon}$ $\times \left\{ 1 + \int_{\mathbf{B}} S_q (|\cdot-y|^{(\alpha-m-1)p+\varepsilon(p-1)-N} \chi_{E_{2,x}}(y), r) \left(\omega(1-r)(1-|y|)^{m+1} f(y) \right)^{p(y)} dy \right\}$ $\leq C(1-r)^{\varepsilon}$ $\times \left\{ 1 + (1-r)^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q} \int_{C(0,r)} \left(\omega(1-r)(1-|y|)^{m+1} f(y) \right)^{p(y)} dy \right\}$ $\leq C(1-r)^{(\alpha-m-1+\varepsilon)p-N+(N-1)/q}$

for 1/2 < r < 1, since

$$(\alpha - m - 1)p + \varepsilon(p - 1) - N + (N - 1)/q < 0.$$

Thus the assertion is proved.

Finally we treat $K_3(x)$. Note from Lemma 2.2 (3) that

$$|K_3(x)| \le C \int_{\{y \in \mathbf{B} \setminus B(x, (1-|x|)/2): 1-|y| > 1-|x|\}}^{\infty} |x-y|^{\alpha-N-m-1} (1-|y|)^{m+1} f(y) \, dy.$$

Lemma 4.4. Let $1 \le q < \infty$, and suppose

($\omega 4$) $t^{(\alpha-m-1)p+\varepsilon_0-N+(N-1)/q}\omega(t)^{-p}$ is almost decreasing on (0,1] for some $\varepsilon_0 > 0$. Then there exists a constant C > 0 such that

$$S_q(|K_3|^{p(r)},r) \le C(1-r)^{(\alpha-m-1)p-N+(N-1)/q}\omega(1-r)^{-p}$$

for all 1/2 < r < 1 and nonnegative measurable functions f on \mathbf{B} with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$.

Remark 4.5. If $(\omega 4)$ holds, then

$$(\alpha - m - 1)p - N + (N - 1)/q < 0.$$

Proof of Lemma 4.4. Let f be a nonnegative measurable function on **B** with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$ and let 1/2 < r = |x| < 1. Note that $t^{p(r)} \sim t^p$ for c(1-r) < t < 2.

Let $\varepsilon > 0$ and $\varepsilon(p-1) < \varepsilon_0$. Note from ($\omega 4$) that $t^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q}\omega(t)^{-p}$ is almost decreasing on (0, 1] and

$$(N-1)/q < N - (\alpha - m - 1)p - \varepsilon(p - 1).$$

We see that

$$\int_{B(0,1/4)} |x-y|^{\alpha-N-m-1} (1-|y|)^{m+1} f(y) \, dy \le C \int_{B(0,1/4)} (1-|y|)^{m+1} f(y) \, dy \le C$$

since $||f||_{L^{p(\cdot),m+1}(\mathbf{B})} \leq \omega(1)^{-1} \leq C$. As in the proof of Lemma 4.3, we have

$$\begin{aligned} |K_{3}(x)| &\leq C \left\{ 1 + \int_{\mathbf{B}} |x - y|^{\alpha - N - m - 1} f_{3,x}(y) \, dy \right\} \\ &\leq C \left\{ 1 + \int_{(1 - r)/2}^{2} \left(\frac{1}{|B(x, t)|} \int_{B(x, t)} f_{3,x}(y) \, dy \right) t^{\alpha - m - 2} \, dt \right\} \\ &\leq C \left\{ 1 + \int_{(1 - r)/2}^{2} \left(\frac{1}{|B(x, t)|} \int_{B(x, t)} t^{\alpha - m - 1 + \varepsilon} f_{3,x}(y) \, dy \right) t^{-\varepsilon - 1} \, dt \right\}, \end{aligned}$$

where
$$f_{3,x}(y) = (1 - |y|)^{m+1} f(y) \chi_{E_{3,x}}(y)$$
 with
 $E_{3,x} = \{y \in \mathbf{B} \setminus (B(0, 1/4) \cup B(x, (1 - r)/2)) \colon 1 - |y| > 1 - r\}.$

Since $||f||_{L^{p(\cdot),m+1}(\mathbf{B})} \leq C$, we have

$$\left(\frac{1}{|B(x,t)|} \int_{B(x,t)} f_{3,x}(y)^{p(y)} \, dy\right)^{1/p(r)} \le Ct^{-N/p^{-1}}$$

for (1-r)/2 < t < 2. Since $r \sim |y|$ for $y \in \mathbf{B} \setminus B(0, 1/4)$, in the same way as in the proof of Lemma 4.3, we see that

$$\begin{aligned} &\left((1-r)^{\varepsilon}|K_{3}(x)|\right)^{p(r)} \\ &\leq C\left\{\left(1-r\right)^{\varepsilon}\left(1+\int_{(1-r)/2}^{2}\left(\frac{1}{|B(x,t)|}\int_{B(x,t)}t^{\alpha-m-1+\varepsilon}f_{3,x}(y)\,dy\right)t^{-\varepsilon-1}\,dt\right)\right\}^{p(r)} \\ &\leq C(1-r)^{\varepsilon}\left\{1+\int_{\mathbf{B}}|x-y|^{(\alpha-m-1)p+\varepsilon(p-1)-N}f_{3,x}(y)^{p(y)}\,dy\right\} \end{aligned}$$

for 1/2 < r < 1, so that

$$S_{q}\left(\left((1-r)^{\varepsilon}|K_{3}|\right)^{p(r)},r\right)$$

$$\leq C(1-r)^{\varepsilon}\left(1+\int_{\mathbf{B}}S_{q}(|\cdot-y|^{(\alpha-m-1)p+\varepsilon(p-1)-N}\chi_{E_{3,x}}(y),r)f_{3,x}(y)^{p(y)}\,dy\right)$$

$$\leq C(1-r)^{\varepsilon}\left(1+\int_{B(0,r)}(1-|y|)^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q}f_{3,x}(y)^{p(y)}\,dy\right)$$

for 1/2 < r < 1. Let j_0 be the smallest integer such that $r \leq 1 - 2^{-j_0-1}$. Note here that

$$\begin{split} &\int_{B(0,r)} (1-|y|)^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q} f_{3,x}(y)^{p(y)} \, dy \\ &\leq \sum_{j=0}^{j_0} \int_{B(0,1-2^{-j-1})\setminus B(0,1-2^{-j})} (1-|y|)^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q} f_{3,x}(y)^{p(y)} \, dy \\ &\leq C \sum_{j=0}^{j_0} 2^{-j((\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q)} \int_{B(0,1-2^{-j-1})\setminus B(0,1-2^{-j})} f_{3,x}(y)^{p(y)} \, dy \\ &\leq C \sum_{j=0}^{j_0} 2^{-j((\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q)} \omega(2^{-j})^{-p} \\ &\leq C(1-r)^{(\alpha-m-1)p+\varepsilon(p-1)-N+(N-1)/q} \omega(1-r)^{-p} \end{split}$$

for 1/2 < r < 1 by $(\omega 4)$, which gives the assertion.

We are now ready to show our main result.

Theorem 4.6. Let $1 \le q < \infty$. Suppose ($\omega 4$) holds for some $\varepsilon_0 > 0$. (1) If $N - \alpha p - 1 < (N - 1)/q \le N - \alpha p,$

then there exists a constant
$$C > 0$$
 such that

$$\liminf_{r \to 1^{-}} (1-r)^{N-(\alpha-m-1)p-(N-1)/q} \omega (1-r)^p S_q \left(|K_{\alpha,m}f|^{p(r)}, r \right) \le C$$

for all nonnegative measurable functions f with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$.

137

(2) If

$$N - \alpha p < (N - 1)/q < N - (\alpha - m - 1)p,$$

then there exist constants C > 0 and $1/2 < r_0 < 1$ such that

$$S_q\left(|K_{\alpha,m}f|^{p(r)},r\right) \le C(1-r)^{(\alpha-m-1)p-N+(N-1)/q}\omega(1-r)^{-p}$$

for all $r_0 < r < 1$ and nonnegative measurable functions f with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})}$ $\leq 1.$

Proof. Let f be a nonnegative measurable function with $||f||_{M^{p(\cdot),m+1,\omega}(\mathbf{B})} \leq 1$. For $x \in \mathbf{B}$, write V(x) = V(x) + V(x) + V(x)

$$K_{\alpha,m}f(x) = K_1(x) + K_2(x) + K_3(x)$$

as before.

We first show assertion (1). Let $\varepsilon > 0$ such that

$$N - \alpha p - 1 + \varepsilon(2p - 1) < (N - 1)/q < N - \alpha p + \varepsilon(2p - 1) < N - \alpha p + (m + 1)p.$$

Set

Set

$$d = -\alpha p + \varepsilon (2p - 1) + N - (N - 1)/q$$

and

$$d(r) = -\alpha p(r) + \varepsilon (2p(r) - 1) + N - (N - 1)/q.$$

Take $1/2 < r_0 < 1$ such that $r_0 \ge r_1$, $\inf_{r_0 < r < 1} d(r) > 0$ and $\sup_{r_0 < r < 1} d(r) < 1$, where r_1 is a constant appeared in Lemma 4.1. Let $r_0 < r < 1$ and $\beta > 0$. First note by Lemma 4.3 that

$$(1-r)^{N-(\alpha-m-1)p-(N-1)/q}\omega(1-r)^p S_q\left(|K_2|^{p(r)},r\right) \le C$$

By Lemma 4.4, we have

$$(1-r)^{N-(\alpha-m-1)p-(N-1)/q}\omega(1-r)^p S_q\left(|K_3|^{p(r)},r\right) \le C$$

Finally, we obtain by Lemma 4.1(1)

$$S_q\left(|K_1|^{p(r)}, r\right) \le C\omega(1-r)^{-p} \left\{ (1-r)^{\beta} + (1-r)^{\varepsilon(2p-1)-(m+1)p} \int_{A(0,r)} |r-|y||^{-d(r)} g(y) \, dy \right\},\$$

where $g(y) = (\omega(1 - |y|)(1 - |y|)^{m+1}f(y))^{p(y)}$.

Note here that

$$\int_{A(r)} g(y) \, dy \le C\omega (1-r)^p \int_{A(r)} ((1-|y|)^{m+1} f(y))^{p(y)} \, dy \le C.$$

Therefore

$$(1-r)^{N-(\alpha-m-1)p-(N-1)/q}\omega(1-r)^p S_q\left(|K_1|^{p(r)},r\right)$$

$$\leq C\left\{(1-r)^{N-(\alpha-m-1)p-(N-1)/q+\beta} + (1-r)^d \int_{A(0,r)} |r-|y||^{-d(r)}g(y)\,dy\right\}.$$

In view of Lemma 4.2, we can find a sequence $\{r_j\}$ of positive numbers and a positive integer j_0 such that $r_{j_0} \ge r_0$, $1 - 2^{-j+1} < r_j < 1 - 2^{-j}$ and

$$\sup_{j \ge j_0} (1 - r_j)^{N - (\alpha - m - 1)p - (N - 1)/q} \omega (1 - r_j)^p S_q \left(|K_1|^{p(r_j)}, r_j \right) \le C,$$

which proves assertion (1).

Assertion (2) is obtained by Lemmas 4.1 (2), 4.3 and 4.4.

Setting $M^{p(\cdot),m+1,\omega}(\mathbf{B}) = M^{p,m+1,\nu}(\mathbf{B})$ when p(x) = p and $\omega(r) = r^{-\nu}$ with $\nu \ge 0$, we obtain the following corollary.

Corollary 4.7. Let $1 \le p \le q < \infty$. (1) If

$$\frac{1}{q} < \frac{N-(\alpha+\nu-m-1)p}{p(N-1)}$$

and

$$\frac{N-\alpha p-1}{p(N-1)} < \frac{1}{q} \le \frac{N-\alpha p}{p(N-1)}$$

then there exists a constant C > 0 such that

$$\liminf_{r \to 1^{-}} (1-r)^{N/p - \alpha - \nu + m + 1 - (N-1)/q} S_q(|K_{\alpha,m}f|, r) \le C$$

for all nonnegative measurable functions f with $||f||_{M^{p,m+1,\nu}(\mathbf{B})} \leq 1$. (2) If

$$\frac{N - \alpha p}{p(N-1)} < \frac{1}{q} < \frac{N - (\alpha + \nu - m - 1)p}{p(N-1)},$$

then there exists a constant C > 0 such that

$$\limsup_{r \to 1-} (1-r)^{N/p - \alpha - \nu + m + 1 - (N-1)/q} S_q(|K_{\alpha,m}f|, r) \le C$$

for all nonnegative measurable functions f with $||f||_{M^{p,m+1,\nu}(\mathbf{B})} \leq 1$.

Remark 4.8. In Theorem 4.6 (1), "lim inf" can not be replaced by "lim sup". For this purpose, we first note from the proof of Lemma 2.2 (2) that

$$K_{\alpha,m}(x,y) \ge C|x-y|^{\alpha-N} - C|x-y^*|^{\alpha-N}.$$

Hence, if $0 < \varepsilon < 1$ is small enough, then

$$K_{\alpha,m}(x,y) \ge 2^{-1}|x-y|^{\alpha-N}$$
 when $|x-y| < \varepsilon(1-|x|)$

since $1 - |x| \le |x - y^*|$.

Let p > 1 and $1 \le q < \infty$ satisfy

$$\frac{1}{q} < \frac{N - \alpha p}{p(N - 1)}$$

and take $a \in \mathbf{R}$ such that

$$\alpha + \frac{N-1}{q} < a \leq \frac{N}{p}$$

Let $r_j = 2^{-j}$ for each positive integer j and $\gamma > 0$. Consider the function

$$f(y) = \sum_{j=1}^{\infty} (j^{-\gamma} r_j)^{-a} \chi_{B_j},$$

where a < m + 1 + N/p, $B_j = B((1 - r_j)\mathbf{e}, j^{-\gamma}r_{j+1})$ and $\mathbf{e} = (1, 0, \dots, 0)$, and set

$$u(x) = \int K_{\alpha,m}(x,y)f(y) \, dy$$

Then, for 0 < r < 1, we have by $a \le N/p$

$$\begin{split} \int_{C(0,r)} \left\{ (1-|y|)^{m+1} f(y) \right\}^p \, dy &\leq C \sum_{j=j_0}^{\infty} r_j^{(m+1)p} (j^{-\gamma} r_j)^{-ap+N} \\ &\leq C (1-r)^{(m+1-a)p+N} (\log(e/(1-r))^{-\gamma(-ap+N)}, \end{split}$$

where $1-r < 2^{-j_0} \le 2(1-r)$, so that $f \in M^{p,m+1,\nu}(\mathbf{B})$ with $\nu = (m+1-a)+N/p > 0$. For $x \in B_j$ with $|x| = 1 - r_j$, we have by Lemma 2.2 (2) and $\alpha < a < N$

$$\begin{aligned} u(x) &\geq C \int_{B_j} |x - y|^{\alpha - N} f(y) \, dy - C \int_{\mathbf{B} \setminus B_j} |x - y|^{\alpha - N} f(y) \, dy \\ &\geq C (j^{-\gamma} r_j)^{-a + \alpha} - C \sum_{k \neq j} |r_j - r_k|^{\alpha - N} (k^{-\gamma} r_k)^{N - a} \\ &\geq C (j^{-\gamma} r_j)^{-a + \alpha} - C \sum_{k < j} r_k^{\alpha - N} (k^{-\gamma} r_k)^{N - a} - C \sum_{k > j} r_j^{\alpha - N} (k^{-\gamma} r_k)^{N - a} \\ &\geq C (j^{-\gamma} r_j)^{-a + \alpha} - C r_j^{\alpha - N} (j^{-\gamma} r_j)^{N - a} - C r_j^{\alpha - N} (j^{-\gamma} r_j)^{N - a} \geq C (j^{-\gamma} r_j)^{-a + \alpha} - C r_j^{\alpha - N} (j^{-\gamma} r_j)^{N - a} - C r_j^{\alpha - N} (j^{-\gamma} r_j)^{N - a} \end{aligned}$$

when j is large enough, so that

$$S_q(u, 1 - r_j) \ge C \left(\frac{1}{|S(0, 1 - r_j)|} \int_{S(0, 1 - r_j) \cap B_j} (j^{-\gamma} r_j)^{(-a + \alpha)q} \, dS(x) \right)^{1/q}$$
$$\ge C (j^{-\gamma} r_j)^{-a + \alpha + (N-1)/q}$$

for large j. This gives

$$r_j^{N/p - (\alpha + \nu - m - 1) - (N - 1)/q} S_q(u, 1 - r_j) = r_j^{-(\alpha - a) - (N - 1)/q} S_q(u, 1 - r_j)$$

$$\ge C j^{\gamma(a - \alpha - (N - 1)/q)}$$

for large j. Hence if $\alpha + (N-1)/q < a \leq N/p$, then $\limsup_{r \to 1} (1-r)^{N/p - (\alpha + \nu - m - 1) - (N-1)/q} S_q(u, r) = \infty,$

as required.

References

- FUTAMURA, T., K. KITAURA, and Y. MIZUTA: Riesz decomposition for superbiharmonic functions in the unit ball. - Hokkaido Math. J. 4, 2009, 683–700.
- [2] FUTAMURA, T., and Y. MIZUTA: Maximal functions for Lebesgue spaces with variable exponent approaching 1. - Hiroshima Math. J. 36, 2006, 23–28.
- [3] GARDINER, S. J.: Growth properties of pth means of potentials in the unit ball. Proc. Amer. Math. Soc. 103, 1988, 861–869.
- [4] MIZUTA, Y.: Continuity properties of potentials and Beppo-Levi-Deny functions. Hiroshima Math. J. 23, 1993, 79–153.
- [5] MIZUTA, Y.: Potential theory in Euclidean spaces. Gakkōtosyo, Tokyo, 1996.
- [6] MIZUTA, Y., T. OHNO, and T. SHIMOMURA: Growth properties for Riesz potentials of functions in weighted variable $L^{p(\cdot)}$ spaces. - Nonlinear Anal. 162, 2017, 49–75.
- [7] MIZUTA, Y., T. OHNO, and T. SHIMOMURA: Growth properties of potentials in central Morrey–Orlicz spaces on the unit ball. - Ann. Acad. Sci. Fenn. Math. 43:1, 2018, 21–46.
- [8] MIZUTA, Y., and T. SHIMOMURA: Boundary limits of spherical means for BLD and monotone BLD functions in the unit ball. - Ann. Acad. Sci. Fenn. Math. 24:1, 1999, 45–60.
- [9] SHIMOMURA, T.: Growth properties of hyperplane integrals of Sobolev functions in a half space. - Osaka J. Math. 38, 2001, 759–773.
- [10] STOLL, M.: Boundary limits of subharmonic functions in the unit disc. Proc. Amer. Math. Soc. 93, 1985, 567–568.

Received 26 April 2018 • Accepted 24 July 2018