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Abstract. Riesz decomposition theorem says that a superharmonic function is locally repre-

sented as the sum of a potential and a harmonic function. In this paper we introduce a generalized

Riesz kernel and study the boundary growth for its potential as an extension of Gardiner [3] in the

variable settings.

1. Introduction

In the N -dimensional Euclidean space R
N , we use the notation B(x, r) to denote

the open ball centered at x of radius r, whose boundary is written as S(x, r). Set
B = B(0, 1). The spherical mean of u over S(0, r) is defined by

M(u, r) =
1

|S(0, r)|

ˆ

S(0,r)

u(x) dS(x),

where |S(0, r)| = ωN−1r
N−1 with ωN−1 denoting the area of the unit sphere and dS

denotes the surface area measure on S(0, 1). It is known that if u is superharmonic in
B, then M(u, r) is nonincreasing. If u is superharmonic in B and lim

r→1
M(u, r) > −∞,

then u is represented as the sum of the Green potential and a harmonic function :

u(x) =

ˆ

B

G(x, y) dµ(y) + a harmonic function;

see Theorem 2.3 and Remark 2.4 below. For this, let us consider a generalized Riesz
kernel

Kα,m(x, y) =
1

(N − α)ωN−1
×



















Iα(x− y) when y ∈ B(0, 1/2),

Iα(x− y)−
m
∑

ℓ=0

(1− |y|2)ℓφα,ℓ(x, y
∗)

when y ∈ B \B(0, 1/2),

where Iα(x−y) = |x−y|α−N (0 < α < N) and m ≥ 0 (see Section 2 for the definition
of φα,ℓ(x, y

∗)).
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The Lq ( 1 ≤ q < ∞) mean over the spherical surface S(0, r) for a function u is
defined by

Sq(u, r) =

(

1

|S(0, r)|

ˆ

S(0,r)

|u(x)|q dS(x)
)1/q

=

(

1

ωN−1

ˆ

S(0,1)

|u(rσ)|q dS(σ)
)1/q

.

Our starting point is a result by Gardiner [3, Theorem 2] which states that when
(N − 3)/(N − 1) < 1/q ≤ (N − 2)/(N − 1) and q ≥ 1,

lim inf
r→1−

(1− r)N−1−(N−1)/qSq(Gµ, r) = 0

for a Green potential Gµ on the unit ball B. We refer the reader to [10] for the plane
case and [4, Sect. 5] for versions of Gardiner’s result for Riesz potentials. Moreover,
in [8], the first and the third authors studied the existence of boundary limits for
BLD (Beppo Levi and Deny) functions u on the unit ball B of RN satisfying

ˆ

B

|∇u(x)|p(1− |x|)γ dx < ∞,

where ∇ denotes the gradient, 1 < p < ∞ and −1 < γ < p − 1. More precisely, it
was shown that

lim inf
r→1−

(1− r)(N−p+γ)/p−(N−1)/qSq(u, r) = 0

when q > 0 and (N − p− 1)/(p(N − 1)) < 1/q < (N − p + γ)/(p(N − 1)).
Set

C(0, r) = B \B(0, r)

for 0 < r < 1. For m ≥ 0, denote by Mp(·),m,ω(B) the family of all functions
f ∈ L1

loc(B) such that

‖f‖Mp(·),m,ω(B) = sup
0<r<1

ω(1− r)‖f‖Lp(·),m(C(0,r)) < ∞

with a variable exponent p(·) (see Section 3). In connection with Gardiner’s result
[3] and [8, Theorem 1], our main aim in this paper is to discuss the weighted limit:

lim inf
r→1−

(1− r)dω(1− r)pSq

(

|Kα,mf |p(r), r
)

for f ∈ Mp(·),m+1,ω(B), where the exponent d will be given later and

Kα,mf(x) =

ˆ

B

Kα,m(x, y)f(y) dy

(see Theorem 4.6 below). For Riesz potentials Kα,−1f(x) =
´

B
Iα(x − y)f(y) dy, we

refer to [6].
For further related results on spherical means, see e.g. [5], [7] and [9].

2. Generalized Riesz kernels

Throughout this paper, let C denote various positive constants independent of
the variables in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch for some
constant C > 0.

Write
|x− y|2 = |x− y∗ + ty∗|2 = |x− y∗|2(1 + s/|x− y∗|2),

where t = 1− |y|2, y∗ = y/|y|2 and s = t2|y∗|2 + 2t(x− y∗) · y∗. Note that

(1 + a+ b)γ =

∞
∑

j=0

(

γ
j

)

(a+ b)j =

∞
∑

j=0

j
∑

k=0

(

γ
j

)(

j
k

)

akbj−k.
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The double series converges absolutely when |a|+|b| < 1. Hence we have the following
lemma.

Lemma 2.1. [1, Lemma 2.1] Let x, y ∈ R
N and t ∈ R. If |t||y∗| < (

√
2− 1)|x−

y∗|, then

|x− y∗ + ty∗|α−N =

∞
∑

ℓ=0





∑

ℓ/2≤j≤ℓ

aℓ,j |x− y∗|α−N−2j(x · y∗ − |y∗|2)2j−ℓ|y∗|2(ℓ−j)



 tℓ

=
∞
∑

ℓ=0

φα,ℓ(x, y
∗)tℓ,

where

φα,ℓ(x, y
∗) =

∑

ℓ/2≤j≤ℓ

aℓ,j|x− y∗|α−N−2j(x · y∗ − |y∗|2)2j−ℓ|y∗|2(ℓ−j)

and

aℓ,j =

(

(α−N)/2
j

)(

j
ℓ− j

)

22j−ℓ.

In what follows, let m ≥ 0. Now let us define

Kα,m(x, y) = c(α,N)×



















|x− y|α−N when y ∈ B(0, 1/2),

|x− y|α−N −
m
∑

ℓ=0

(1− |y|2)ℓφα,ℓ(x, y
∗)

when y ∈ B \B(0, 1/2),

where c(α,N) = 1/((N − α)ωN−1).

Lemma 2.2. (cf. [1, Lemma 2.2])

(1) For y ∈ B and N > 2, ∆K2,m(·, y) = δy on B;

(2) there exists a constant C > 0 such that

|Kα,m(x, y)| ≤ C|x− y|α−N

for all x, y ∈ B;

(3) there exists a constant C > 0 such that

|Kα,m(x, y)| ≤ C|x− y|α−N−m−1(1− |y|)m+1

for all x, y ∈ B.

Proof. First we show assertion (1). Consider Fα(t) = |x− y∗ + ty∗|α−N . Then

φ2,ℓ(x, y
∗) = F

(ℓ)
2 (0)/ℓ!,

so that φ2,ℓ(·, y∗) is harmonic in B. Thus (1) follows.
Next we show assertion (2). We may assume y ∈ B \B(0, 1/2). Note that

|φα,ℓ(x, y
∗)| ≤

∑

ℓ/2≤j≤ℓ

|aℓ,j||x− y∗|α−N−2j |x · y∗ − |y∗|2|2j−ℓ|y∗|2(ℓ−j)

=
∑

ℓ/2≤j≤ℓ

|aℓ,j||x− y∗|α−N−2j |x · y∗/|y∗| − |y∗||2j−ℓ|y∗|ℓ

= C|x− y∗|α−N−ℓ|y∗|ℓ,
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so that

|φα,ℓ(x, y
∗)|(1− |y|2)ℓ ≤ C|x− y∗|α−N−ℓ|y∗|ℓ(1− |y|2)ℓ ≤ C|x− y∗|α−N

since
|x− y∗|
1− |y| ≥ |y∗| − |x|

1− |y| ≥ |y∗| − 1

1− |y| = |y∗|.

Hence we obtain

|Kα,m(x, y)| ≤ C
(

|x− y|α−N + |x− y∗|α−N
)

≤ C|x− y|α−N

since

|x− y∗| > |y||x− y∗| = |x||x∗ − y| =
(

|x− y|2 + (1− |x|2)(1− |y|2)
)1/2

> |x− y|.
Finally, we show assertion (3). If 1− |y|2 ≥ |x− y|/4, then

|Kα,m(x, y)| ≤ C|x− y|α−N ≤ C|x− y|α−N−m−1(1− |y|)m+1.

Hence we show the case 1−|y|2 < |x− y|/4 and 1/2 ≤ |y| < 1. By Taylor’s theorem,
one can find 0 < θ < 1 such that

Kα,m(x, y) =
1

(N − α)σN(m+ 1)!
F (m+1)
α (θ(1− |y|2))(1− |y|2)m+1.

Set

G(S) = (1 + S)(α−N)/2,

S = S(t) =
2t(x− y∗) · y∗

|x− y∗|2 +
t2|y∗|2

|x− y∗|2
and

H(t) = G(S(t)).

Then we see by induction on m that H(m+1)(t) is of the form

H(m+1)(t) =
∑

0≤ℓ≤(m+1)/2

cm;ℓG
(m+1−ℓ)(S(t))

(

S(1)(t)
)m+1−2ℓ (

S(2)(t)
)ℓ
,

where cm;ℓ are constants. Here note that in case 0 ≤ t ≤ 1− |y|2 ≤ |x− y|/4,
|x− y| ≤ |x− y∗| ≤ |x− y|+ |y − y∗| ≤ 3|x− y|/2,

|x− y∗ + ty∗| ≥ |x− y∗| − t|y∗| ≥ |x− y|/2
and hence

−8

9
≤ (|x− y|/2)2 − |x− y∗|2

|x− y∗|2 ≤ S(t) ≤ 0.

Thus

|S(1)(t)| ≤ 2|y∗|
|x− y∗| +

2(1− |y|2)|y∗|2
|x− y∗|2 ≤ C|x− y|−1

and

|H(m+1)(t)| ≤ C
∑

0≤ℓ≤(m+1)/2

|x− y|−(m+1−2ℓ)|x− y|−2ℓ ≤ C|x− y|−(m+1)

when 1− |y|2 < |x− y|/4 and 1/2 ≤ |y| < 1. Now we obtain

|Kα,m(x, y)| ≤ C|x− y∗|α−N
∣

∣H(m+1)(θ(1− |y|2))
∣

∣ (1− |y|2)m+1

≤ C|x− y|(α−N)−(m+1)(1− |y|2)m+1,

which proves the result. �
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For reader’s convenience we show Riesz decomposition theorem in the following.

Theorem 2.3. [1, Theorem 5.5] Let u be superharmonic in B.

(1) If

lim
r→1

M(u, r) > −∞,

then

u(x) =

ˆ

B

K2,0(x, y) dµ(y) + h(x),

where h is harmonic in B.

(2) If

lim inf
r→1

(1− r)aM(u, r) > −∞
for some a > 0, then

u(x) =

ˆ

B

K2,m(x, y) dµ(y) + h0(x),

where h0 is harmonic in B and m is an integer greater than a.

Remark 2.4. Note that

K2,0(x, y) = G(x, y) + (|y|2−N − 1)|x− y∗|2−N .

If u is superharmonic in B and

lim
r→1

M(u, r) > −∞,

then

u(x) =

ˆ

B

G(x, y) dµ(y) + v(x) =

ˆ

B

K2,0(x, y) dµ(y) + h(x),

where v and h are harmonic in B.

3. Variable exponent on the unit ball

Let p(·) be a variable exponent on B such that

(p1) 1 ≤ p− ≡ infx∈B p(x) ≤ supx∈B p(x) ≡ p+ < ∞;

(p2) |p(x)− p(y)| ≤ cB
log(e/||x| − |y||) for x, y ∈ B with a constant cB > 0.

By (p2), we see that p(·) is uniformly continuous on B and a radial function on B.
Thus we have

(p3) there exists a constant p ≥ 1 such that

|p(x)− p| ≤ cB
log(e/(1− |x|)) for x ∈ B.

For simplicity, we set p(r) = p(x) with r = |x|. A typical example of p(·) is of the
form

p(x) = p+
c

log(e/(1− |x|))
as in [2].

Let Ω be a measurable set in B. For m ≥ 0, the variable exponent Lebesgue
spaces

Lp(·),m(Ω) =

{

f ∈ L1
loc(Ω) ;

ˆ

Ω

((1− |y|)m|f(y)|)p(y) dy < ∞
}
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is a Banach space with respect to the norm

‖f‖Lp(·),m(Ω) = inf

{

λ > 0 ;

ˆ

Ω

(

(1− |y|)m|f(y)|
λ

)p(y)

dy ≤ 1

}

.

Further we consider a weight ω such that

(ω1) ω(r) > 0 for 0 < r ≤ 1;
(ω2) ω is almost decreasing in (0, 1], that is, there is a constant C > 0 such that

ω(t) ≤ Cω(s) when 0 < s < t ≤ 1;

(ω3) ω is doubling on (0, 1].

Throughout this paper, we always assume that ω satisfies all of (ω1)–(ω3). We
see that ω(r) = r−ν(log(e + r−1))τ is almost decreasing when ν > 0 and τ ∈ R. Set

C(0, r) = B \B(0, r)

for 0 < r < 1. For m ≥ 0, denote by Mp(·),m,ω(B) the family of all functions
f ∈ L1

loc(B) such that

‖f‖Mp(·),m,ω(B) = sup
0<r<1

ω(1− r)‖f‖Lp(·),m(C(0,r)) < ∞.

Let us begin with the following elementary estimates for spherical means.

Lemma 3.1. [6, Lemma 2.1] Let 0 < a < 1 and c1 be positive constants. If

y ∈ B and 1/2 < t < min{1, c1|y|}, then there exists a constant C > 0 such that
ˆ

S(0,1)

|tσ − y|a−N dS(σ) ≤ C|t− |y||a−1.

For later use, we need a version of Lemma 3.1 when a > 1.

Lemma 3.2. [6, Lemma 2.2] Let 1 < a < N and c1 be positive constants. If

y ∈ B and 1/2 < t < min{1, c1|y|}, then there exists a constant C > 0 such that
ˆ

{σ∈S(0,1): |tσ−y|<1−t}

|tσ − y|a−N dS(σ) ≤ C(1− t)a−1.

Set

I =
1

|B(x, t)|

ˆ

B(x,t)∩B

|f(y)| dy

and

J =

(

1

|B(x, t)|

ˆ

B(x,t)∩B

|f(y)|p(y) dy
)1/p(x)

,

where |B(x, t)| denotes the volume of balls B(x, t). Then I is estimated by J as
follows.

Lemma 3.3. [6, Lemma 2.4] Let γ > 0. If J ≤ β1t
−β2 for some constants

β1, β2 > 0, then there exists a constant C > 0 such that

I ≤ C (tγ + J)

for all x ∈ B, 0 < t < 1 and f ∈ L1
loc(B), where a constant C depends only on β1, β2,

γ and c1.

Finally it is convenient to see the following estimates.

Lemma 3.4. [6, Lemma 2.5] For 1/2 < r < 1,

ω(1− r)p(r) ∼ ω(1− r)p, (1− r)p(r) ∼ (1− r)p.
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4. Spherical means near the boundary

In what follows we prepare several estimates for Riesz potentials of functions in
Mp(·),m+1,ω(B). For this purpose, write

Kα,mf(x) =

ˆ

B(x,(1−|x|)/2)

Kα,m(x, y)f(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2): 1−|y|≤1−|x|}

Kα,m(x, y)f(y) dy

+

ˆ

{y∈B\B(x,(1−|x|)/2): 1−|y|>1−|x|}

Kα,m(x, y)f(y) dy

= K1(x) +K2(x) +K3(x).

We first give an estimate for K1(x). For this note by Lemma 2.2 (2)

|K1(x)| ≤ C

ˆ

B(x,(1−|x|)/2)

|x− y|α−Nf(y) dy.

Set

A(0, r) = B(0, r + (1− r)/2) \B(0, r − (1− r)/2)

for 1/2 < r < 1.

Lemma 4.1. Let 1 ≤ q < ∞.

(1) Let β > 0. Suppose

(N − 1)/q ≤ N − αp.

Then, for ε > 0, there exist constants C > 0 and 1/2 < r1 < 1 such that

Sq

(

|K1|p(r), r
)

≤ Cω(1− r)−p

{

(1− r)β + (1− r)ε(2p−1)−(m+1)p

×
ˆ

A(0,r)

|r − |y||αp(r)−ε(2p(r)−1)−N+(N−1)/q
(

ω(1− |y|)(1− |y|)m+1f(y)
)p(y)

dy

}

for all r1 < r < 1 and nonnegative measurable functions f on B with

‖f‖Mp(·),m+1,ω(B) ≤ 1.
(2) Suppose

(N − 1)/q > N − αp.

Then there exist constants C > 0 and 1/2 < r1 < 1 such that

Sq

(

|K1|p(r), r
)

≤ C(1− r)(α−m−1)p−N+(N−1)/qω(1− r)−p

for all r1 < r < 1 and nonnegative measurable functions f on B with

‖f‖Mp(·),m+1,ω(B) ≤ 1.

Proof. Let f be a nonnegative measurable function on B with ‖f‖Mp(·),m+1,ω(B) ≤
1 and let 1/2 < r = |x| < 1. First we show the assertion (1). Let β > 0 and let ε > 0
such that

(N − 1)/q < N − αp+ ε(2p− 1).
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We have

|K1(x)| ≤ C

ˆ

B(x,(1−r)/2)

|x− y|α−Nf(y) dy

≤ C

ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

f(y) dy

)

tα−1 dt

≤ C(1− r)ε
ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

tα−2εf(y) dy

)

tε−1 dt

since B(x, (1− r)/2) ⊂ A(0, r). Take 1/2 < r1 < 1 such that

C1,p = sup
r1<r<1

{αp(r)− ε(2p(r)− 1)−N + (N − 1)/q} < 0.

Letting s = r − (1− r)/2, we see that
ˆ

A(0,r)

(ω(1− r)(1− |y|)m+1f(y))p(y) dy

≤
ˆ

C(0,s)

(

ω(2(1− s)/3)(1− |y|)m+1f(y)
)p(y)

dy

≤ C

ˆ

C(0,s)

(

ω(1− s)(1− |y|)m+1f(y)
)p(y)

dy ≤ C,

so that

(4.1)

ˆ

A(0,r)

(ω(1− r)(1− |y|)m+1f(y))p(y) dy ≤ C.

Note here from (4.1) that
(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

(ω(1− r)(1− |y|)m+1f(y))p(y) dy

)1/p(r)

≤ Ct−N/p−

for 0 < t < 1.
Take γ > 0 such that

γ > max
{

ε(2− 1/p+)− α, β/p− α+m+ 1
}

.

By Jensen’s inequality and Lemmas 3.3 and 3.4, we have
(

ω(1− r)(1− r)−2ε|K1(x)|
)p(r)

≤ C

(

ω(1− r)(1− r)−ε−m−1

×
ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

tα−2ε(1− |y|)m+1f(y) dy

)

tε−1 dt

)p(r)

≤ C(1− r)−ε−(m+1)p

×
ˆ 1−r

0

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

tα−2εω(1− r)(1− |y|)m+1f(y) dy

)p(r)

tε−1 dt

= C(1− r)−ε−(m+1)p

×
ˆ 1−r

0

t(α−2ε)p(r)

(

1

|B(x, t)|

ˆ

B(x,t)∩A(0,r)

ω(1− r)(1− |y|)m+1f(y) dy

)p(r)

tε−1 dt
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≤ C(1− r)−ε−(m+1)p

{
ˆ 1−r

0

tαp(r)−ε(2p(r)−1)+γp(r)−1 dt

+

ˆ 1−r

0

t(α−2ε)p(r)−N

(
ˆ

B(x,t)∩A(0,r)

(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

)

tε−1 dt

}

≤ C

{

(1− r)(α−m−1+γ)p−2εp + (1− r)−ε−(m+1)p

×
ˆ 1−r

0

t(α−2ε)p(r)−N

(
ˆ

B(x,t)∩A(0,r)

(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

)

tε−1 dt

}

≤ C

{

(1− r)β−2εp

+ (1− r)−ε−(m+1)p

ˆ

A(0,r)

|x− y|αp(r)−ε(2p(r)−1)−N
(

ω(1− |y|)(1− |y|)m+1f(y)
)p(y)

dy

}

for r1 < r < 1, since

αp(r)− ε(2p(r)− 1)−N < −(N − 1)/q + C1,p < 0

for r1 < r < 1. Then Minkowski’s inequality and Lemma 3.1 yield

Sq

(

|K1|p(r), r
)

≤ Cω(1− r)−p

{

(1− r)β + (1− r)ε(2p−1)−(m+1)p

×
ˆ

A(0,r)

Sq(| · −y|αp(r)−ε(2p(r)−1)−N , r)
(

ω(1− |y|)(1− |y|)m+1f(y)
)p(y)

dy

}

≤ Cω(1− r)−p

{

(1− r)β + (1− r)ε(2p−1)−(m+1)p

×
ˆ

A(0,r)

|r − |y||αp(r)−ε(2p(r)−1)−N+(N−1)/q
(

ω(1− |y|)(1− |y|)m+1f(y)
)p(y)

dy

}

for r1 < r < 1, since r ∼ |y| on A(0, r) and

αp(r)− ε(2p(r)− 1)−N + (N − 1)/q ≤ C1,p < 0

for r1 < r < 1. Thus assertion (1) is proved.
Next we shall show assertion (2). Let ε > 0 such that

(N − 1)/q > N − αp+ ε(p− 1) > 0.

Take 1/2 < r1 < 1 such that

inf
r1<r<1

{αp(r)− ε(p(r)− 1)−N + (N − 1)/q} > 0,

sup
r1<r<1

{αp(r)− ε(p(r)− 1)−N} < 0

and γ > 0 such that

γ > ε(1− 1/p+)− α.
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As in the above considerations, we obtain by Lemma 3.2

Sq

(

(

ω(1− r)(1− r)−ε|K1|
)p(r)

, r
)

≤ C(1− r)−ε−(m+1)p

{

(1− r)αp−ε(p−1)+γp

+

ˆ

A(0,r)

Sq(| · −y|αp(r)−ε(p(r)−1)−NχB(y,(1−r)/2), r)
(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

}

≤ C(1− r)−ε−(m+1)p

{

(1− r)αp−ε(p−1)+γp

+ (1− r)αp−ε(p−1)−N+(N−1)/q

ˆ

C(0,r−(1−r)/2)

(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

}

≤ C(1− r)(α−m−1−ε)p−N+(N−1)/q

for r1 < r < 1. Thus assertion (2) is proved. �

Let d(·) be a valuable exponent on [0, 1) such that

(d1) 0 < inft∈[0,1) d(t) ≤ supt∈[0,1) d(t) < 1;
(d2) there exists a positive constant 0 < d < 1 such that

|d(t)− d| ≤ cd
log(e/(1− t))

for 0 < t < 1

with a constant cd > 0.

Set

G(t) = (1− t)d
ˆ

A(0,t)

|t− |y||−d(t)g(y) dy

for a nonnegative measurable function g.
To complete the estimate for K1, we use the following result.

Lemma 4.2. [7, Lemma 2.7] Let M > 0. If sup
0<t<1

ˆ

A(0,t)

g(y) dy ≤ M , then there

exists a constant C > 0 such that

inf
1−2−j+1<t<1−2−j

G(t) < CM for each positive integer j.

Next we treat K2(x). For this note from Lemma 2.2 (3) that

|K2(x)| ≤ C

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|≤1−|x|}

|x− y|α−N−m−1(1− |y|)m+1f(y) dy.

Lemma 4.3. Let 1 ≤ q < ∞, and suppose

(N − 1)/q < N − (α−m− 1)p.

Then there exists a constant C > 0 such that

Sq

(

|K2|p(r), r
)

≤ C(1− r)(α−m−1)p−N+(N−1)/qω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with ‖f‖Mp(·),m+1,ω(B)

≤ 1.

Proof. Let f be a nonnegative measurable function on B with ‖f‖Mp(·),m+1,ω(B) ≤
1 and let 1/2 < r = |x| < 1. Let ε > 0 such that

(N − 1)/q < N − (α−m− 1)p− ε(p− 1).
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We have by Lemma 2.2 (3)

|K2(x)| ≤ C

ˆ

{y∈B\B(x,(1−|x|)/2): 1−|y|≤1−|x|}

|x− y|α−N−m−1(1− |y|)m+1f(y) dy

≤ C

ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

f2,x(y) dy

)

tα−m−2 dt

≤ C

ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα−m−1+εf2,x(y) dy

)

t−ε−1 dt,

where f2,x(y) = (1−|y|)m+1f(y)χE2,x(y) with E2,x = {y ∈ B\B(x, (1−r)/2) : 1−|y| ≤
1− r} and χE is the characteristic function of E.

Note from (p3) that

tp(r) = tptp(r)−p ≤ Ctpt−cB/ log(e/(1−r)) ≤ Ctp(1− r)−cB/ log(e/(1−r)) ≤ Ctp

and
tp(r) ≥ CtptcB/ log(e/(1−r)) ≥ Ctp(1− r)cB/ log(e/(1−r)) ≥ Ctp

for (1− r)/2 < t < 2. Since
ˆ

B(x,t)

(ω(1− r)f2,x(y))
p(y) dy ≤

ˆ

C(0,r)

(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy ≤ C

by the fact that E2,x ⊂ C(0, r), we have
(

1

|B(x, t)|

ˆ

B(x,t)

(ω(1− r)f2,x(y))
p(y) dy

)1/p(r)

≤ Ct−N/p−

for (1 − r)/2 < t < 2. We have by Jensen’s inequality and Lemma 3.3 with γ >
−ε(1− 1/p)− α +m+ 1

(ω(1− r)(1− r)ε|K2(x)|)p(r)

≤ C(1− r)ε
ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα−m−1+εω(1− r)f2,x(y) dy

)p(r)

t−ε−1 dt

≤ C(1− r)ε
{

1 +

ˆ 2

(1−r)/2

t(α−m−1+ε)p

(

1

|B(x, t)|

ˆ

B(x,t)

(ω(1− r)f2,x(y))
p(y) dy

)

t−ε−1dt

}

≤ C(1− r)ε
{

1 +

ˆ

B

|x− y|(α−m−1)p+ε(p−1)−N (ω(1− r)f2,x(y))
p(y) dy

}

for 1/2 < r < 1, since
ˆ 2

(1−r)/2

t(α−m−1)p+ε(p−1)+γp−1dt ≤ C

and
(α−m− 1)p+ ε(p− 1)−N < −(N − 1)/q < 0.

By Lemma 3.1, we see that
ˆ

{σ∈S(0,1): |tσ−y|>(1−t)/2}

|tσ − y|a−N dS(σ)

≤
ˆ

{σ∈S(0,1): |tσ−y|>(1−t)/2}

(C|(1 + (1− t))σ − y|)a−N dS(σ)

≤ C|(1 + (1− t))− |y||a−1 ≤ C|1− t|a−1
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for 1/2 < t < 1 and 1/2 < |y| < 1, when a < 1. Hence Minkowski’s inequality yields

Sq

(

(ω(1− r)(1− r)ε|K2|)p(r) , r
)

≤ C(1− r)ε

×
{

1 +

ˆ

B

Sq(| · −y|(α−m−1)p+ε(p−1)−NχE2,x(y), r)
(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

}

≤ C(1− r)ε

×
{

1 + (1− r)(α−m−1)p+ε(p−1)−N+(N−1)/q

ˆ

C(0,r)

(

ω(1− r)(1− |y|)m+1f(y)
)p(y)

dy

}

≤ C(1− r)(α−m−1+ε)p−N+(N−1)/q

for 1/2 < r < 1, since

(α−m− 1)p+ ε(p− 1)−N + (N − 1)/q < 0.

Thus the assertion is proved. �

Finally we treat K3(x). Note from Lemma 2.2 (3) that

|K3(x)| ≤ C

ˆ

{y∈B\B(x,(1−|x|)/2):1−|y|>1−|x|}

|x− y|α−N−m−1(1− |y|)m+1f(y) dy.

Lemma 4.4. Let 1 ≤ q < ∞, and suppose

(ω4) t(α−m−1)p+ε0−N+(N−1)/qω(t)−p is almost decreasing on (0, 1] for some ε0 > 0.

Then there exists a constant C > 0 such that

Sq

(

|K3|p(r), r
)

≤ C(1− r)(α−m−1)p−N+(N−1)/qω(1− r)−p

for all 1/2 < r < 1 and nonnegative measurable functions f on B with ‖f‖Mp(·),m+1,ω(B)

≤ 1.

Remark 4.5. If (ω4) holds, then

(α−m− 1)p−N + (N − 1)/q < 0.

Proof of Lemma 4.4. Let f be a nonnegative measurable function on B with
‖f‖Mp(·),m+1,ω(B) ≤ 1 and let 1/2 < r = |x| < 1. Note that tp(r) ∼ tp for c(1 − r) <
t < 2.

Let ε > 0 and ε(p−1) < ε0. Note from (ω4) that t(α−m−1)p+ε(p−1)−N+(N−1)/qω(t)−p

is almost decreasing on (0, 1] and

(N − 1)/q < N − (α−m− 1)p− ε(p− 1).

We see that
ˆ

B(0,1/4)

|x− y|α−N−m−1(1− |y|)m+1f(y) dy ≤ C

ˆ

B(0,1/4)

(1− |y|)m+1f(y) dy ≤ C

since ‖f‖Lp(·),m+1(B) ≤ ω(1)−1 ≤ C. As in the proof of Lemma 4.3, we have

|K3(x)| ≤ C

{

1 +

ˆ

B

|x− y|α−N−m−1f3,x(y) dy

}

≤ C

{

1 +

ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

f3,x(y) dy

)

tα−m−2 dt

}

≤ C

{

1 +

ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα−m−1+εf3,x(y) dy

)

t−ε−1 dt

}

,
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where f3,x(y) = (1− |y|)m+1f(y)χE3,x(y) with

E3,x = {y ∈ B \ (B(0, 1/4) ∪ B(x, (1− r)/2)) : 1− |y| > 1− r}.
Since ‖f‖Lp(·),m+1(B) ≤ C, we have

(

1

|B(x, t)|

ˆ

B(x,t)

f3,x(y)
p(y) dy

)1/p(r)

≤ Ct−N/p−

for (1− r)/2 < t < 2. Since r ∼ |y| for y ∈ B \B(0, 1/4), in the same way as in the
proof of Lemma 4.3, we see that

((1− r)ε|K3(x)|)p(r)

≤ C

{

(1− r)ε
(

1 +

ˆ 2

(1−r)/2

(

1

|B(x, t)|

ˆ

B(x,t)

tα−m−1+εf3,x(y) dy

)

t−ε−1 dt

)}p(r)

≤ C(1− r)ε
{

1 +

ˆ

B

|x− y|(α−m−1)p+ε(p−1)−Nf3,x(y)
p(y) dy

}

for 1/2 < r < 1, so that

Sq

(

((1− r)ε|K3|)p(r) , r
)

≤ C(1− r)ε
(

1 +

ˆ

B

Sq(| · −y|(α−m−1)p+ε(p−1)−NχE3,x(y), r)f3,x(y)
p(y) dy

)

≤ C(1− r)ε
(

1 +

ˆ

B(0,r)

(1− |y|)(α−m−1)p+ε(p−1)−N+(N−1)/qf3,x(y)
p(y) dy

)

for 1/2 < r < 1. Let j0 be the smallest integer such that r ≤ 1 − 2−j0−1. Note here
that

ˆ

B(0,r)

(1− |y|)(α−m−1)p+ε(p−1)−N+(N−1)/qf3,x(y)
p(y) dy

≤
j0
∑

j=0

ˆ

B(0,1−2−j−1)\B(0,1−2−j )

(1− |y|)(α−m−1)p+ε(p−1)−N+(N−1)/qf3,x(y)
p(y) dy

≤ C

j0
∑

j=0

2−j((α−m−1)p+ε(p−1)−N+(N−1)/q)

ˆ

B(0,1−2−j−1)\B(0,1−2−j )

f3,x(y)
p(y) dy

≤ C

j0
∑

j=0

2−j((α−m−1)p+ε(p−1)−N+(N−1)/q)ω(2−j)−p

≤ C(1− r)(α−m−1)p+ε(p−1)−N+(N−1)/qω(1− r)−p

for 1/2 < r < 1 by (ω4), which gives the assertion. �

We are now ready to show our main result.

Theorem 4.6. Let 1 ≤ q < ∞. Suppose (ω4) holds for some ε0 > 0.

(1) If

N − αp− 1 < (N − 1)/q ≤ N − αp,

then there exists a constant C > 0 such that

lim inf
r→1−

(1− r)N−(α−m−1)p−(N−1)/qω(1− r)pSq

(

|Kα,mf |p(r), r
)

≤ C

for all nonnegative measurable functions f with ‖f‖Mp(·),m+1,ω(B) ≤ 1.
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(2) If

N − αp < (N − 1)/q < N − (α−m− 1)p,

then there exist constants C > 0 and 1/2 < r0 < 1 such that

Sq

(

|Kα,mf |p(r), r
)

≤ C(1− r)(α−m−1)p−N+(N−1)/qω(1− r)−p

for all r0 < r < 1 and nonnegative measurable functions f with ‖f‖Mp(·),m+1,ω(B)

≤ 1.

Proof. Let f be a nonnegative measurable function with ‖f‖Mp(·),m+1,ω(B) ≤ 1.
For x ∈ B, write

Kα,mf(x) = K1(x) +K2(x) +K3(x)

as before.
We first show assertion (1). Let ε > 0 such that

N − αp− 1 + ε(2p− 1) < (N − 1)/q < N − αp+ ε(2p− 1) < N − αp+ (m+ 1)p.

Set

d = −αp + ε(2p− 1) +N − (N − 1)/q

and

d(r) = −αp(r) + ε(2p(r)− 1) +N − (N − 1)/q.

Take 1/2 < r0 < 1 such that r0 ≥ r1, infr0<r<1 d(r) > 0 and supr0<r<1 d(r) < 1,
where r1 is a constant appeared in Lemma 4.1. Let r0 < r < 1 and β > 0. First note
by Lemma 4.3 that

(1− r)N−(α−m−1)p−(N−1)/qω(1− r)pSq

(

|K2|p(r), r
)

≤ C.

By Lemma 4.4, we have

(1− r)N−(α−m−1)p−(N−1)/qω(1− r)pSq

(

|K3|p(r), r
)

≤ C.

Finally, we obtain by Lemma 4.1 (1)

Sq

(

|K1|p(r), r
)

≤ Cω(1− r)−p

{

(1− r)β + (1− r)ε(2p−1)−(m+1)p

ˆ

A(0,r)

|r − |y||−d(r)g(y) dy

}

,

where g(y) = (ω(1− |y|)(1− |y|)m+1f(y))p(y).
Note here that

ˆ

A(r)

g(y) dy ≤ Cω(1− r)p
ˆ

A(r)

((1− |y|)m+1f(y))p(y) dy ≤ C.

Therefore

(1− r)N−(α−m−1)p−(N−1)/qω(1− r)pSq

(

|K1|p(r), r
)

≤ C

{

(1− r)N−(α−m−1)p−(N−1)/q+β + (1− r)d
ˆ

A(0,r)

|r − |y||−d(r)g(y) dy

}

.

In view of Lemma 4.2, we can find a sequence {rj} of positive numbers and a positive
integer j0 such that rj0 ≥ r0, 1− 2−j+1 < rj < 1− 2−j and

sup
j≥j0

(1− rj)
N−(α−m−1)p−(N−1)/qω(1− rj)

pSq

(

|K1|p(rj), rj
)

≤ C,

which proves assertion (1).
Assertion (2) is obtained by Lemmas 4.1 (2), 4.3 and 4.4 . �
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Setting Mp(·),m+1,ω(B) = Mp,m+1,ν(B) when p(x) = p and ω(r) = r−ν with ν ≥ 0,
we obtain the following corollary.

Corollary 4.7. Let 1 ≤ p ≤ q < ∞.

(1) If
1

q
<

N − (α+ ν −m− 1)p

p(N − 1)

and
N − αp− 1

p(N − 1)
<

1

q
≤ N − αp

p(N − 1)
,

then there exists a constant C > 0 such that

lim inf
r→1−

(1− r)N/p−α−ν+m+1−(N−1)/qSq (|Kα,mf |, r) ≤ C

for all nonnegative measurable functions f with ‖f‖Mp,m+1,ν(B) ≤ 1.
(2) If

N − αp

p(N − 1)
<

1

q
<

N − (α + ν −m− 1)p

p(N − 1)
,

then there exists a constant C > 0 such that

lim sup
r→1−

(1− r)N/p−α−ν+m+1−(N−1)/qSq (|Kα,mf |, r) ≤ C

for all nonnegative measurable functions f with ‖f‖Mp,m+1,ν(B) ≤ 1.

Remark 4.8. In Theorem 4.6 (1), “ lim inf” can not be replaced by “ lim sup”.
For this purpose, we first note from the proof of Lemma 2.2 (2) that

Kα,m(x, y) ≥ C|x− y|α−N − C|x− y∗|α−N .

Hence, if 0 < ε < 1 is small enough, then

Kα,m(x, y) ≥ 2−1|x− y|α−N when |x− y| < ε(1− |x|)
since 1− |x| ≤ |x− y∗|.

Let p > 1 and 1 ≤ q < ∞ satisfy

1

q
<

N − αp

p(N − 1)

and take a ∈ R such that

α +
N − 1

q
< a ≤ N

p
.

Let rj = 2−j for each positive integer j and γ > 0. Consider the function

f(y) =

∞
∑

j=1

(j−γrj)
−aχBj

,

where a < m+ 1 +N/p, Bj = B((1− rj)e, j
−γrj+1) and e = (1, 0, . . . , 0), and set

u(x) =

ˆ

Kα,m(x, y)f(y) dy.

Then, for 0 < r < 1, we have by a ≤ N/p
ˆ

C(0,r)

{

(1− |y|)m+1f(y)
}p

dy ≤ C
∞
∑

j=j0

r
(m+1)p
j (j−γrj)

−ap+N

≤ C(1− r)(m+1−a)p+N (log(e/(1− r))−γ(−ap+N),
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where 1−r < 2−j0 ≤ 2(1−r), so that f ∈ Mp,m+1,ν(B) with ν = (m+1−a)+N/p > 0.
For x ∈ Bj with |x| = 1− rj , we have by Lemma 2.2 (2) and α < a < N

u(x) ≥ C

ˆ

Bj

|x− y|α−Nf(y) dy − C

ˆ

B\Bj

|x− y|α−Nf(y) dy

≥ C(j−γrj)
−a+α − C

∑

k 6=j

|rj − rk|α−N(k−γrk)
N−a

≥ C(j−γrj)
−a+α − C

∑

k<j

rα−N
k (k−γrk)

N−a − C
∑

k>j

rα−N
j (k−γrk)

N−a

≥ C(j−γrj)
−a+α − Crα−N

j (j−γrj)
N−a − Crα−N

j (j−γrj)
N−a ≥ C(j−γrj)

−a+α

when j is large enough, so that

Sq(u, 1− rj) ≥ C

(

1

|S(0, 1− rj)|

ˆ

S(0,1−rj)∩Bj

(j−γrj)
(−a+α)q dS(x)

)1/q

≥ C(j−γrj)
−a+α+(N−1)/q

for large j. This gives

r
N/p−(α+ν−m−1)−(N−1)/q
j Sq(u, 1− rj) = r

−(α−a)−(N−1)/q
j Sq(u, 1− rj)

≥ Cjγ(a−α−(N−1)/q)

for large j. Hence if α+ (N − 1)/q < a ≤ N/p, then

lim sup
r→1

(1− r)N/p−(α+ν−m−1)−(N−1)/qSq(u, r) = ∞,

as required.
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