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Abstract. The problem of prescribing Gaussian curvature on Riemann surface with conical
singularities is considered. Let (3, 8) be a closed Riemann surface with a divisor 8, and Ky = K+,
where K : ¥ — R is a Holder continuous function satisfying maxs, K = 0, K # 0, and A € R.. If the
Euler characteristic x(X, 8) is negative, then by a variational method, it is proved that there exists
a constant A* > 0 such that for any A < 0, there is a unique conformal metric with the Gaussian
curvature Ky; for any A\, 0 < A < A*, there are at least two conformal metrics having K its
Gaussian curvature; for A = \*, there is at least one conformal metric with the Gaussian curvature
K«; for any A > \*, there is no certain conformal metric having K its Gaussian curvature. This
result is an analog of that of Ding and Liu [16], partly resembles that of Borer, Galimberti and
Struwe [5], and generalizes that of Troyanov [28] in the negative case.

1. Introduction

The problem of prescribing Gaussian curvature on smooth Riemann surfaces
was proposed in [21]. Let (X,g) be a closed smooth Riemann surface, x(X) be
its topological Euler characteristic, and x: X — R be its Gaussian curvature. If
g = €**g with a smooth function u, then the Gaussian curvature of (3, §) satisfies
k= e *(k + Ayu), where A, denotes the Laplace-Beltrami operator with respect
to the metric g. A natural question is whether for any smooth function K: ¥ — R,
there is a smooth function u such that the metric e**g has K its Gaussian curvature.
Clearly this is equivalent to solve the elliptic equation

(1) Aju+k—Ke®™=0 on X.

The Gauss—Bonnet formula leads to

/ Ke* dv, = / kdv, = 2mx(2).

Note that the solvability of (1) is closely related to the sign of x(X). If x(X) > 0,
then ¥ is either the projective space RP? or the 2-sphere S2. In the case of RP?,
it was shown by Moser [24] that the equation (1) has a solution u, provided that
K € C°(S?) satisfies supy, K > 0 and K(p) = K(—p) for all p € S?2. While the
problem on S? is much more complicated and known as the Nirenberg problem, see
for examples [21, 6, 7, 8, 9]. If x(3) = 0, the problem has been completely solved by
Kazdan-Warner [21]. While if x(X) < 0, the problem was studied by Kazdan and
Warner [21] via the method of upper and lower solutions. They proved that if K <0
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and K # 0, then (1) has a unique solution. Later, Ding and Liu [16] considered the
case that K changes sign. Precisely, replacing K by K + A in (1) with K <0, K # 0,
and A € R, they obtained the following conclusion by using a method of upper and
lower solutions and a variational method: there exists a A* > 0 such that if A <0,
then (1) has a unique solution; if 0 < A < A*, then (1) has at least two solutions; if
A = A", then (1) has at least one solution; if A > A\*, then (1) has no solution. We
refer to Aubin and Bismuth [3, 4], who gave sufficient conditions relating to A and
infy, K for solving equation (1) with K+ A. Recently, using a monotonicity technique
due to Struwe [26, 27|, Borer, Galimberti, and Struwe [5] partly reproved the above
results and obtained additional estimates for certain sequence of solutions that allow
them to characterize their bubbling behavior. Further analysis in this direction has
been done by Galimberti [18], del Pino and Romén [15].

The problem of prescribing Gaussian curvature can also be proposed on surfaces
with conical singularities. Let > be a closed Riemann surface, py,...,ps be points of
> and 64, ...,60, be positive numbers. Denote

X =2mx(X) + Z(GZ — 27).

Then it was proved by Troyanov [28| that if 0 < ¥ < min{4m, 264, ...,260,}, then any
smooth function on ¥, which is positive at some point is the Gaussian curvature of a
conformal metric having at p; a conical singularity of angle 6;; if Y = 0, then a smooth
nonconstant function K: ¥ — R is the Gaussian curvature of a conformal metric
having at p; a conical singularity of angle 6; if and only if fz K dp < 0, where dp is
the area element of the original singular metric; if ¥ < 0, then any smooth negative
function on ¥ is the Gaussian curvature of a unique conformal metric having at
p; a conical singularity of angle #;. As in the smooth Riemann surface case, the
prescribing Gaussian curvature problem on the 2-sphere with conical singularity is
most delicate. The case ¢ = 2 was studied by Chen and Li [10, 11]. While the case
¢ > 3 was considered by Eremenko [17], Malchiodi and Ruiz 23], Chen and Lin [12],
De Marchis and Lopez-Soriano [14], and others.

In this paper, we focus on the negative case, namely ¥ < 0. Precisely we shall
prove an analog of the result of Ding and Liu [16|, and thereby part of results of Borer,
Galimberti, and Struwe [5]. Though we still use the variational method, which had
been employed by Ding and Liu, we have to overcome difficulties in the presence
of conical singularities. In particular, we have to establish the strong maximum
principle, which is essential for the method of upper and lower solutions in our setting.

The remaining part of this paper is organized as follows: In Section 2, we give
some notations for surfaces with conical singularities and state our main results; In
Section 3, the maximum principle for the Laplace-Beltrami operator and the Palais—
Smale condition for certain functional are discussed; In Section 4, following the lines
of [16, 5|, we prove our main theorem.

2. Notations and main results

Let us briefly recall some geometric concepts from Troyanov [28]. In general, a
closed Riemann surface ¥ is defined to be a topological space with an atlas {¢;: U; —
C}, where if U; N U; # @, then the coordinate transformation ¢; o gb]_l is conformal,
i.e., holomorphic or anti-holomorphic. Two such atlases define the same structure on
3} if their union is still such an atlas. A divisor on a Riemann surface is a formal sum

g = Zle Bipi, where p; € ¥ and §; > —1,i=1,...,¢. The set supp 8 = {p1,...,pe}
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is the support of 5, and the number |5| = Zle B; is the degree of the divisor. A
conformal metric g on ¥ is said to represent the divisor 8 if ¢ € C?*(Z \ suppf3)

verifying that if z; is a coordinate defined in a neighborhood U; of p;, then there is
some u; € C*(U; \ {p:}) N C°(U; \ {pi}) such that

(2) g = ez — zi(pi) || dzi ).

Under this setting, g is said to have a conical singularity of order ; or angle 6, =
27(B; + 1) at p;, i = 1,..., L. The Euler characteristic of (3, ) is defined by

X(5,8) = x(E) + 18],

where y(X) is the topological Euler characteristic of ¥, and |5| = Zle B; is the
degree of 8. Let k: X\ supp S — R be the Gaussian curvature of g. If x can be
extended to a Holder continuous function on ¥, then it was shown by Troyanov [28§]
that a Gauss-Bonnet formula holds:

3) /E vy = 27x(5, ).

where dv, denotes the Riemannian volume element with respect to the conical metric
g.

Let (X, ) be a closed Riemann surface with a divisor § = Zle Bipi, and the
metric g represents [ with 5; > —1,4=1,... . It follows from (2) that there exists
a smooth Riemannian metric gy such that

(4) 9 = pgo;
where p > 0on X, p € C2_(X\supp ), and p € L"(X) for some r > 1. Let Wh2(%, g)
be the completion of C*°(X) under the norm

1/2
lullyr gy — ( / <\vgu|2+u2>dvg) ,

where V, denotes the gradient operator with respect to the metric g. It was observed
by Troyanov in [28] that W'2(X, g) = W12(3, go). As a consequence, by the Sobolev
embedding theorem for smooth Riemann surface (X, go) and the Holder inequality,
one has

() WH(8, g) = L*(2,9), Vp>1.
We now state the following:

Theorem 1. Let (3, 3) be a closed Riemann surface with a divisor 8 = S_t_, Bipi.
Suppose that the Euler characteristic x(3, ) < 0, K: ¥ — R is a Holder continuous
function, maxy K = 0 and K # 0. Let Ky = K+ X, A € R. Assume that a conformal
metric g represents 3. Let k: 3\ supp f — R be the Gaussian curvature of g, and k
can be extended to a Holder continuous function on Y. Then there exists a constant
A* > 0 such that

(i) when A < 0, there exists a unique conformal metric on ¥ with Gaussian
curvature K, representing the divisor [3;

(ii) when 0 < XA < \*, there exist at least two conformal metrics on ¥ with the
same Gaussian curvature K, representing the divisor 3;

(iii) when A\ = \*, there exists at least one conformal metric on ¥ with Gaussian
curvature Ky, representing the divisor [3; (iv) when A\ > \*, there is no
function u € WH3(Z,g) N C*(X \ supp B) N C°(X) such that e*'g has the
Gaussian curvature K.
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Since the metric g has the Gaussian curvature x, and the metric g, = ¢?“g has
the Gaussian curvature K, = K + \. A standard calculation shows

(6) Aju+rk— Ky =0 on %\ suppf.
Note that if u € W2(X, g) is a distributional solution of the equation
(7) Aju+k—Kye* =0 on %,

we have by elliptic estimates u € C?(X \ supp 8) N C°(X), and thus (6) holds. Hence,
in order to prove Theorem 1, it suffices to show the following:

Theorem 2. Under the same assumptions as in Theorem 1, there exists a \* > 0
such that

(i) if A <0, then (7) has a unique distributional solution;

(i) if 0 < A < \*, then (7) has at least two distributional solutions;
(iii) if A = X\*, then (7) has at least one distributional solution;
(iv) if A > X\*, then (7) has no distributional solution.

For the proof of Theorem 2, we follow closely Ding and Liu [16] by employing a
variational method. In particular we use the upper and lower solutions principle and
the strong maximum principle. In the remaining part of this paper, (X, ¢) will always
denote a conical singular Riemann surface given in Theorem 1; we do not distinguish
sequence and subsequence; moreover we often denote various constants by the same
C, even in the same line.

3. Preliminary analysis

In this section, we prove maximum principle, Palais—Smale condition, upper and
lower solutions principle, which will be used later. Compared with the smooth Rie-
mann surface case, all the above mentioned things need to be re-established since the
metric g has conical singularities.

3.1. Maximum principle. We first have a weak maximum principle by inte-
gration by parts, namely

Lemma 3. (Weak maximum principle) For any constant ¢ > 0, ifu € WH2(%, g)
NCY(X) satisfies Ayu + cu > 0 in the distributional sense, then u > 0 on X.

Proof. Denote v~ = min{u,0}. Testing the equation Aju+ cu > 0 by u~, one
has

/E(Wgu—ﬁ + ) du, < 0,

This leads to v~ =0 on X. O

Moreover, using the Moser iteration (see for example Theorems 8.17 and 8.18 in
[19]), we obtain the following strong maximum principle.

Lemma 4. (Strong maximum principle) Let u € W12(X, g) NC°(X) satisfy that
u > 0 on ¥, and that for some positive constant ¢, Aju+cu > 0 in the distributional

sense. If there exists a point xy € ¥ such that u(xy) = 0, then there holds u = 0 on
3.

Proof. Step 1. If v € W'2(Z, g) N C°(X) satisfies v > 0 on X, and
(8) Agv—cv <0
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in the distributional sense, where c is a positive constant, then there exists some
constant C' depending only on (3, g) such that

9) [v]|eo(sy < Clv]|22(5,9)-

Now we use the Moser iteration to prove (9). For any p > 2, testing (8) by vP~!
and integrating by parts, we have

2
2 cp
/E|V91)2\2dvg S m/z’l]pdvg.

Hence ||v? lwizem,g) < Cpllvz | 22(s,g) for some constant C'. Then the Sobolev embed-
ding (5) leads to [|v% |11y < Cpllv3|lL2(sy), which is equivalent to ||| r2n(s ) <

C%p%HUHLp(z,g). Taking p = p, = 2%, k = 1,2, ..., we have
2

10) Mol < CFp ol < OZ2 7250 o,
< Clvllrzs.g)-
Letting k& — oo in (10), we conclude (9).
Step 2. Let u € WH2(X, g) N C°(X) be a nonnegative distributional solution of
(11) Agu+cu >0,
where c is a positive constant. Then there exists some constant C' such that

(12) |ull2(m,g) < Ci%fu.

Without loss of generality, we assume u > ¢ > 0, otherwise we can replace u by
u+ €. We claim that that u~! is a distributional solution of Aju™" — cu™ < 0. To
see it, we recall that g = pgo, where p: ¥ — R is a positive function, p € L4(X) for
some ¢ > 1, and g is a smooth Riemannian metric. Then for any ¢ € W12(X, go)
with ¢ > 0, we calculate

/2 (Vgu_lvgqb — cu‘lqb) dvy, = /Z (Vgou_lvgoqb — cpu_lqb) dvg,
= = [ (T 0u72) 4 200V i+ ™)

b}
< / (Vaut¥ o (6172) + cpu(u~)) doy,

- / (VyuVy(du™®) + cu(du™?)) dv,.

This together with (11) confirms our claim. Now we have by Step 1,

Slép u < Cllu M2 g,

which implies that

-1 ~1/2 1/2
infu>C (/ u? dvg) =C (/ u? dvg/ u? dvg) </ u? dvg) :
2 > s 2 s

Thus, to prove (12), it suffices to show that there exists some constant C' such that

(13) /u_2 dvg/ u? dv, < C.
s s
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Let w = logu — ~, where v = m fz log u dv,. We shall prove that

(14) / vl dv, < C,
)
which implies
/ e?(r~logw) dv, < C, / e2(logu=) dvy, < C.
by by

This immediately leads to (13).

We are only left to prove (14). Testing the equation (11) by u~*

, we have
/(Vgu_lvgu +¢)dv, > 0.
b
It follows that
(15) / V,wdv, < C.
b
Note that [, wdv, = 0. In view of (15), we conclude from the Poincaré inequality
that
(16) [wllwrzs,g < C.
Recall that the metric g represents the divisor 5 = Zle Bip; with 8; > —1, 1 =
1,...,¢. Denote b = min{1,1+4 /5, ..., 14+ 5;}. Then the Trudinger—-Moser inequality

for surfaces with conical singularities [28] together with (16) implies that

2

L2 et
ol wh2(s,9) f[wll
(17) / 2wl dv, < / e Whiz9) dvg, < C'/ e W@ dy, < C.
> 5 5

Thus (14) holds and the proof of Step 2 terminates.
One can easily see that the conclusion of the lemma follows from (12). O

It is remarkable that only subcritical Trudinger—-Moser inequality was employed
in (17). Such inequalities are important tools in geometry and analysis. For more
details, we refer the reader to recent works [1, 22, 25, 29, 30, 13, 20] and the references
therein.

3.2. Palais—Smale condition. For any A € R, we define a functional E):
Wh(3,9) = R by
(18) Ex\(u) = /(|Vgu\2 + 2ku — Kye*") dv,,
b
where x: ¥ — R is the Gaussian curvature of g, K, = K + A is defined as in
Theorem 1.

Lemma 5. (Palais-Smale condition) Suppose that ¥} = {z € ¥: K) < 0} is
nonempty for some \ € R. Then E) satisfies the (PS). condition for all c € R, i.e.,
if u; is a sequence of functions in W2(%, g) such that E\(u;) — ¢ and dE)(u;) — 0,
then there exists some ug € Wh(3, g) satistying u; — ug in WH(%, g).

Proof. Let (u;) be a function sequence such that E)(u;) — ¢ and dEy(u;) — 0,
or equivalently

(19) /(\Vguj|2 + 2ku; — Kxe®) dv, = ¢ + 0;(1),
>

(20) /E(Vgujvgw + ki — Kne®p) dvg = 0j(1)|[@llwragng), Ve € WH(S,9),
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where 0;(1) — 0 as j — oo.

Note that supp 5 = {p1, ..., pe} is a set of finite points. X \ supp  must contain
a domain (2 such that the closure of €2 is also contained in X3 \ supp 8. In view of
(4), there would exist two positive constants C; and Cy depending only on 2 such
that

Cigo < g < Chg0 on K.

Denote u; = max{u;,0}. Based on an argument of Ding and Liu ([16], Lemma 2),
where a mistake was corrected by Borer, Galimberti and Struwe (|5], Appendix), for

another domain €2 CC €, there exists a positive constant C' depending only on Cf,
Cy and disty (€2, 092) such that

(21) / (IVgul [ +uf?) dv, < C.
Q/

Taking ¢ =1 in (20), one has

/ Kye* dv, — / kdv, = 0;(1).

> >

This together with the Gauss-Bonnet formula (3) gives

(22) / Kye®™ dv, = 21x(3, B) + 0;(1).
s

Inserting (22) into (19), we conclude
(23) /(|Vguj|2 + 2ku;) dvy = ¢ + 2x (2, B) + 0;(1).
2

We now claim that u; is bounded in L*(%, g). Suppose not, there holds ||u;|r2(s )
— 00. We set v; = u;/||uj||12(x 4)- Note that

/ /@# dv, = 0j(1).
by ||uj||L2(27g)

This together with (23) tells us that

(24) Lﬁ%mwwzwm.

Hence v; is bounded in W2(X, g) and (24) leads to v; — v in WH%(X, g) for some
constant 7. Since ||v;]|r2(s,9) = 1, we have v # 0. It follows from (23) that

(25) /Em)j dvy < 0,(1).

Letting j — oo in (25), we obtain 27y (3, 8)y < 0 by using the Gauss—Bonnet
formula (3). Since x(X,5) < 0 and v # 0, we have v > 0. On the other hand, we
conclude by (21) that

L0907 P ) oy = 030,

which results in v = 0. This contradicts v > 0 and confirms our claim.

Since u; is bounded in L*(X, g), we have by (23) that u; is bounded in W2(X, g).
Up to a subsequence, we can assume u; converges to ug weakly in Wh%(3, g), strongly
in L5(%, g) for any s > 1. A Trudinger—Moser inequality for surfaces with conical
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singularities [28] implies that e** is bounded in L*(%, g) for any s > 1. Hence €%
converges to e* in L*(3, g) for any s > 1. This together with (20) induces

/ |V u;|? dv, = /(—K/Uo + Kye*™ug) dvg + 0j(1) = / |V yuo|? dv, + 0;(1).
2 2 2
This implies that u; — ug in WH2(X, g). O

3.3. Upper and lower solutions principle. Let f: ¥ x R — R be a smooth
function. We call u € W2(Z, g) N C*(X \ supp 3) N C°(32) an upper (lower) solution
to the elliptic equation
(26) Agu+ f(z,u) =0,
if u satisfies Aju + f(x,u) > (<) 0 in the distributional sense on 3 and point-wisely
in ¥\ supp f.

Lemma 6. (Upper and lower solutions principle) Suppose that 1, ¢ € WH2(X, g)Nn
C?(X \ supp B) N C°(X) are upper and lower solutions to (26) respectively, and that

¢ <1 on Y. Then (26) has a solution u € W2(%, g) N C*(X \ supp 8) N C°(X) with
v <u<1on .

Proof. We follow the lines of Kazdan and Warner [21]. Let A be a constant such
that —A < ¢ < ¥ < A. Since X is closed, one finds a sufficiently large constant ¢
such that G(x,t) = ct+ f(x,t) is increasing in t € [—A, A] for any fixed 2 € X. Define
an elliptic operator Lu = Aju+ cu for u € W'2(%, g)NC? (S \ supp 8) NC°(X). Now
we define

Yo = ¥, SOJ = L_l(G('r7 gpj—l))7 vj Z 1
wo = wv % = L_1<G('r7wj—1))7 vj Z 1.
Here L7': L*(X, g) — W2(3, g) is well defined due to the Lax—Milgram theorem.

This together with the definition of upper and lower solutions and the monotonicity
of G(z,t) with respect to t leads to

Lo < Loy = G(z,¢) < G(x,9) = Lpy < Lap.
Then the weak maximum principle (Lemma 3) implies that
o <1 <ty <
By induction, we have
PSSy <Y<y, J=120

Clearly we can assume that ¢, converges to u; and 1; converges to uy point-wisely.
By elliptic estimates, one concludes that the above convergence is in C2 (X \supp 5)N
C°(X). Moreover, v = u; or usy is a distributional solution to Lv = G(z,v). O

4. Proof of Theorem 2

In this section, we prove Theorem 2 by using variational method.
4.1. Unique solution in the case A < 0.

Proof of (i) of Theorem 2. Assume maxy K = 0 and K # 0. If A < 0, this has
been proved by Troyanov ([28], Theorem 1). We now consider the general case A < 0.
Let E) be the functional defined as in (18), where K = K + .

Claim 1. E, is strict convex on WH2(%, g).
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It suffices to prove that for any u € W12(3, g), there exists some constant C' > 0
such that

(27) d*Ex(u)(h, h) > C||blfyrem, Yhe WH(Z, g).

Suppose not. There would be a function u € W1?(3, g) and a function sequence
(hj) € W'(Z, g) such that ||hjl|wrzsy = 1 for all j and d*E\(u)(h;, hj) — 0
as j — oo. One may assume up to a subsequence, h; converges to h., weakly in
W12(%, g), strongly in LP(X, g) for any p > 1, and almost everywhere in 3. Since

2\ (u)(hy, hy) = 2 / (Vb2 — 266202 d,
>

and Ky < 0, we conclude [, |Vyh;|*dv, — 0 and [, Kxe**h3 dv, — 0, which leads
to ho = Cp for some constant Cy, and further

cs / Kye*" dv, = / Kye®h2_ dv, = lim KAeQUhﬁ dv, = 0.
b 2

Jj—o0 >
Clearly [, Kxe*" dvy < 0, and thus Cy = 0. This contradicts
el = im s = 1.

Hence (27) holds.
Claim 2. FE, is coercive.

Since for any e > 0, there exists a constant C'(e) such that [, ku dvy < 5”“”%{/1»2(2,9)

+ C(¢), it suffices to find some constant C' > 0 such that for all u € W2(%, g), there
holds

(28) (@WM“KMWMEWW%WW

Suppose not. There would exist a sequence of functions (u;) satisfying

/E(|Vgujl2 +u3) dvg =1, /E(|Vguj|2 — Kxe®i) dvg = 0;(1).

It follows that up to a subsequence, u; converges to u* weakly in W?(3, g) and
strongly in LP(X, g) for any p > 1. One easily see that

0< /(|Vgu*|2 — Kxe®™ ) dv, < lim [ (|Vgu,|* — Kxe®) dv, = 0,
pX J7oo s

which is impossible. Hence (28) holds.

In view of Claims 1 and 2, a direct method of variation shows inf,cp1.2(5 4) Ex(u)
can be attained by some uy € W12(X, g) and uy is the unique critical point of E\. [

4.2. Existence of A*. When A = 0, the equation (7) becomes
(29) Aju+rk—Ke®™=0 on X.

Let u be a solution of (29). The linearized equation of (29) at u reads Ajv—2Ke* v =
0, which has a unique solution v = 0. By the implicit theorem, there is a sufficiently
small s > 0 such that for any A € (0, s), the equation (7) has a solution. Define

(30) A* = sup {s: the equation (7) has a solution for any A € (0,s)}.
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One can see that \* < —miny, K. For otherwise K, > 0 for some A < A\*. Integrating
(7), we obtain

0>2mx(X,8) = /

b
which is impossible. In conclusion, we have 0 < \* < —minyg K. Further analysis
(Subsection 4.4, Claim 2) implies that A\* < —ming K.

4.3. Multiplicity of solutions for 0 < A < A*.

Proof of (ii) of Theorem 2. Fix A, 0 < A < A*. We shall seek two different
solutions of (7), one is a strict local minimum of the functional E), the other is of
the mountain-pass type. The proof will be divided into several steps below.

Kdvg = / Kye* dvg > 0,
b

Step 1. Existence of upper and lower solutions.

Take A\; with A < A\; < A*. Let uy, € WH3(Z, ¢g) N C*(Z \ supp 8) N C°(X) be a
solution of (7) at A;. Set ©» = uy,. One can see that 1 is a strict upper solution of
(7), namely

(31) Ay + K — Kye?” > 0.
Clearly the equation
1
2 An=— —_— d
(32) o7 K+ Vol, (%) /Zli Vg

has a distributional solution € W12(3, g) NC?(X \ supp 8) NC°(X). Let ¢ = n—s,
where s is a positive constant. Obviously ¢ < ¢ on X for sufficiently large s. Since
Js kdvg = 2mx (3, B) < 0, we have

1 —2s
(33) Ay + k — Kye* = Vol (%) /Zmdvg — K)\e™% <0,

provided that s is chosen sufficiently large. Thus ¢ is a strict lower solution of (7).

Step 2. The first solution of (7) can be chosen as a strict local minimum of E).

Let fi(x,t) = ct — k + Kye*'. Fix a sufficiently large positive constant ¢ such
that fy(z,t) is increasing in t € [—A, A], where A is a constant such that —A < ¢ <
¢ < A. Let Fy(x,u) = [} fa(z,t)dt. It is easy to see that

E,\(u):/\Vgu|2dvg+c/u2dvg—2/F,\(:c,u)dvg—/K,\dvg.
b b b b
Define a function

) falz,(x))  when t > (x),
Kz, t) = q falw, ) when p(z) <t < ¥(z),
falz, o(x))  when t < p(x),

and a functional
Ey(u) = /(|Vgu|2 + cu?) dv, — 2/ Ex(x,u) dv, — / K\ dvy,
o M N

where F)(x,t) = fg fa(x, s)ds. Obviously Ej is bounded from below on W2(%, g).
Denote

A

= inf FE .
“ uEI/I/'III’l?(E,g) )\(U)
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Taking a function sequence (u;) C W42(X, g) such that Ey(u;) — a as j — co. It
follows that u; is bounded in W'2(3%, g), and thus up to a subesequence the Sobolev
embedding and the Trudinger-Moser inequality lead to u; converges to some wy
weakly in W12(X, g), strongly in LI(3, g) for any ¢ > 1, almost everywhere in X,
and €24 converges to e2** in L'(X, g). Hence E,(uy) < a. Then by the definition of
a, we conclude

E)\(UA) = uevvilr,gf(gg) E,\(u)

As a consequence u, satisfies the Euler-Lagrange equation

(34) Aguy + cuy = faz, uy)

in the distributional sense. By elliptic estimates, one has uy € C?(X\supp 8)NCY(%).
Noting that f(x,t) is increasing with respect to t € [—A, A], we have
Agp(x) + cp(x) < filw, o(x) < falw, un(@)) < filz,¥(2) < Agh(x) + cip(x)

in the distributional sense. In view of (31), (33) and (34), one concludes by the strong
maximum principle (Lemma 4) that

(35) o(x) < uy(z) <(z), Vrel.

Obviously Ej (u) = Ej(u) for all u € Wh2(Z, g) with ¢ < u < 1. For any h € C'(%),
we define a function ((t) = E(uy + th), t € R. In view of (35), there holds ¢ <
uy + th < ¢ and thus E)(uy + th) = Ex(uy + th), provided that |¢| is sufficiently
small. Since u, is a minimum of E\ on W'2(%, g), we have ¢'(0) = dEj(uy)(h) = 0
and ¢”(0) = d*E)(uy)(h, h) > 0. Therefore we have

(36) / (VuaV,h + kh — Kxe® h) dv, = 0, Vh € CH(S),
b
(37) /(|vgh\2 — 2K\ h2) dv, > 0, Vh e CL(S).
Y

Since C'(X) is dense in WH%(X, g), (36) and (37) still hold for all h € W2(X, g).
We further prove that there exists a positive constant C' such that

(39) PEA(w) (1 1) > Cllhlnas,y,  Th € WH2(E,g).

For the proof of (38), we adapt an argument of Borer, Galimberti, and Struwe ([5],
Section 2). Since d?E\(uy)(h,h) > 0 for all h € WH2(3, g), we have

A= inf  d®E\(w\)(h,h) > 0.
||h||wl,2(2,g):
Suppose A = 0. We claim that there exists some h with [|A|w125,4 = 1 such
that d>Ey(ux)(h,h) = 0. To see this, we let h; satisfy |hj|lwrzs, = 1 and
d?*E\(uy)(hj,h;) — 0 as j — oo. Up to a subsequence, we can assume h; con-
verges to some h weakly in W12(3, g), strongly in L(%, g) for all ¢ > 1, and almost
everywhere in Y. It follows that

lim [ |V, h)*dv, = / 2K, e*" h? dv, < / |V | dv,.
s s s

J—00

This leads to h; — h in WH?(3, g) as j — 00, and confirms our claim. Moreover,
since the functional v — d?E)(uy)(v,v) attains its minimum at v = h, it follows
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that d?E)(uy)(h,w) = 0 for all w € WH%(3, g); that is, h is a weak solution of the
equation

(39) Ayh = 2K\e* P,

Note that h is not a constant. For otherwise (39) yields

0>2mx(%,8) = / Kye*™* dv, = 0,
>
which is impossible. Multiplying (39) by h®, we get
& Ex(ux)(h, b, h, h) = —16 / K bt dv, = —24 / 12|V 12 dv, < 0.
> >

Now we expand E) around uy. Since d*Ey(uy + th)(h,h) attains its minimum at
t =0, we have d®E\(uy)(h, h, h) = 0, which together with the facts dEj(uy) = 0 and
d>Ey(uy)(h, h) = 0 leads to

(40) E)\(U)\ + Eh) = E)\(U)\) + g—jld4E)\(U)\)(h, h, h, h) + 0(65) < E)\(U)\)

for small € > 0. Applying elliptic estimates to (39), we have h € C°(X). Then there
exists €9 > 0 such that if 0 < € < €y, then ¢ < uy + eh <1 on X, and thus by (40),

EA'A(U)\ + Eh) = E)\(UA + Eh) < EA('U)\) = EA'A(U)\),

contradicting the fact that u, is the minimum of Ey. Therefore A > 0 and (38) follows
immediately. As a consequence, u, is a strict local minimum of £\ on W13(%, g).

Step 3. The second solution of (7) can be achieved by a mountain pass theorem.

Let uy be as in Step 2. Since u, is a strict local minimum of Ey on Wh2(% g),
there would exist a sufficiently small » > 0 such that
(41) inf E,\(u) > E)\(U)\)
||u_uA||W1,2(z;,g):7"
Moreover, a calculation of Ding and Liu ([16], Page 1061) shows for any A > 0, E,
has no lower bound on W'%(3, g). In particular, there exists some v € W2(3, g)
verifying that

(42) E)\(U) < E)\(U)\), ||U — U)\HW1,2(279) > .
Combining (41), (42) and Lemma 5, we obtain by using the mountain-pass theorem
due to Ambrosetti and Rabinowitz [2] that the mini-max value

= mij E
¢S R A

is a critical value of E\, where I' = {y € C([0,1], W'%(2, 9)): v(0) = uy, (1) = v}.

Equivalently there exists some u* € WH2(X, g) satisfying Ey(u) = ¢ and dE)(u?) =

0. Thus u* is a solution of the equation (7) and u* # uy. Finally, elliptic estimates

imply that u* € C?(X \ supp ) N C°(X). O
4.4. Solvability of (7) at A*.

Proof of (iii) of Theorem 2. For any A\, 0 < A < A\*, we let uy be the local
minimum of F) obtained in the previous subsection. In particular, uy is a solution

of (7) and

/(|vg¢|2 — 2K e®¢?) dv, >0, VYo € WH(X, g).
b
The remaining part of the proof will be divided into several claims as below.
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Claim 1. There exists some constant C' such that uy > —C on X uniformly in
A€ (0,A%).

To see this, we let n satisfy (32) and ps = n — s for s > 0. The analog of (33)
reads

Ayps + K — Ke* <0

with s chosen sufficiently large, say s > so. Equivalently ¢, is a lower solution of
(7) at A = 0, provided that s > so. Clearly ¢; is also a strict lower solution of (7)
at A € (0, \*) for any s > sg. We now prove that uy > @g,, and consequently claim
1 holds. Suppose not, by varying s € [sg,00), we find that for some s there holds
uy > s on X, and uy(zg) = @s(xo) for some xy € X. Then the strong maximum
principle (Lemma 4) implies that uy = ¢, on 3, which is impossible.

Claim 2. Let X}, = {x € ¥: K)«(x) < 0}. Then X}, # @.

Suppose Ky > 0. Let § = ¢*g be a metric with constant Gaussian curvature
—1, where v is a solution of Ajv + K + €?” = 0. In view of (i) of Theorem 2, such a
function v uniquely exists. Let wy = uy — v. Noting that A, = e*”Az, we have

AgUJ)\ —1- f()ﬁzwA =0.
Multiplying the above equation by e~?“» and integrating by parts, one has

/ Ky dvg = — / e dug — 2/ |Vawy[2e "> dvz < 0.
s s s

/KA*dUﬁZ lim/KAdvgﬁo.
» A= A* »

This together with K- > 0 leads to K+ = 0, which contradicts the assumption that
K« is not a constant.

Hence

Claim 3. Let Q and Q' are two domains in ¥ such that ' CC Q CC X3, \supp S.
Then uf is bounded in W2(Y', g) with respect to A € (0, \*).

Note that K: ¥ — R is Holder continuous. If A € (0, \*), then
sup K <sup K« < —e¢
Q Q

for some € > 0 depending only on K, A* and 2. Similar to the proof of (21), we
conclude Claim 3.

Claim 4. The equation (7) is solvable at \*.

Having Claims 1-3 in hand and arguing as Ding and Liu did in the proof of ([16],
(¢) of the main theorem), we conclude that both €*** and uy are bounded in L%(3, g)
for all ¢ > 1. By elliptic estimates, we have up to a subsequence, u) converges to
some u in W2(X, g), where u is a solution of

Agu + K — K)\*€2u =0.
By elliptic estimates, u € C*(X \ supp 8) N C°(X). This gives the desired result. [
4.5. The equation (7) has no distributional solution when A > A*.

Proof of (iv) of Theorem 2. Suppose (7) has a solution wuy, at some A\; > A*.
Then for any A, 0 < A < Ay, uy, is an upper solution of (7). Similar to (33), we can
easily construct a lower solution ¢ of (7) such that ¢ < wy,. In view of the upper
and lower solutions principle (Lemma 6), there would exist a solution of (7), which
contradicts (30). O
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