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Abstract. The operator norm of Bergman projections Pα from L
∞(Bn) to the Bloch space

was found in [4]. In the same paper the authors made a conjecture on the norms of Pα with respect

to M-invariant gradient norm. In this paper we prove their conjecture.

1. Introduction

1.1. Bergman projection. Let B
n denote the unit ball in C

n, n ≥ 1 and let
be dvα the measure given by

dvα(z) = cα
(
1− |z|2

)α
dv(z),

where dv(z) is the Lebesgue measure on B
n and

(1) cα =
Γ(n + α+ 1)

Γ(α + 1)πn

is a normalizing constant i.e. vα(B
n) = 1. We will also use the symbol vn for the

n−dimensional Lebesgue measure at places where dimensions must be distinguished.
For α > −1 the Bergman projection operator is given by

Pαf(z) = cα

ˆ

Bn

Kα(z, w)f(w) dvα(w), f ∈ Lp(Bn), 1 < p ≤ ∞,

where

Kα(z, w) =
1

(1− 〈z, w〉)n+α+1
, z, w ∈ B

n.

Here 〈z, w〉 stands for scalar product given by z1w1 + z2w2 + · · ·+ znwn. These
projections are among the most important operators in theory of analytic function
spaces. In [3], Forelli and Rudin proved that Pα is bounded as operator from Lp(Bn)
to Bergman space of all p-integrable analytic functions on B

n if and only if α > 1
p
−1.

They also found the exact operator norm in cases p = 1 and p = 2. Mateljević and
Pavlović extended these result for 0 < p < 1, see [11].

The problem of finding the exact value of the operator norm of Pα on Lp spaces
turned out to be quite difficult, even for P = P0. In [18], Zhu obtained asymptotically
sharp two sided norm estimates , while Dostanić in [2] gave the following estimate:

1

2
csc

π

p
≤ ‖P‖p ≤ π csc

π

p
,

for 1 < p < ∞. Liu improved these estimates in [7], for the unit ball Bn. Also, papers
[8] and [9] give the estimates for the Bergman projection in the Siegel upper-half space
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and for the weighted Bergman projections in the unit disk. In recent years, there has
been increasing interest in studying projections of this type in various spaces. See
also [6, 16, 10].

Here, we investigate the operator norm of Pα : L
∞ → B with M-invariant gradi-

ent. In [1] or [17], for n = 1, the reader can find proof of boundedness and surjectivity
of Pα from L∞ to B. In [14] and [15], Peralla found the exact value of the norm ‖P‖
in D, while [4] contains a generalization of this result to Pα and B

n.
In [4], the authors (Kalaj and Marković) also have settled the problem of finding

the exact value of ‖Pα‖L∞(Bn)→B(Bn) with a different norm on B. They obtained
the two-sided estimate and conjectured that the norm is equal to the estimate from
above. Using a new technique, we will obtain the appropriate series expansion of
certain elliptic integral considered in [4] and the exact norm as the maximum of that
series. We hope that technique can be used for a variety of similar extremal problems.

Also, let us say that the paper [5] consider Bergman projections on Bloch space
with the family of seminorms and norms inhereted from Besov spaces. This is a
generalization of [4] and can be of some good motivation for some future work on
this topic.

Let us, first, recall that the Bloch space consists of functions f analytic in B
n for

which the following semi-norm is finite:

‖f‖β := sup
|z|<1

(1− |z|2)|∇f(z)|,

where

∇f(z) =

(
∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)
.

But, we can also define the semi-norm invariant with respect to the group Aut(Bn).

For analytic f , the invariant gradient ∇̃f(z) is defined by:

∇̃f(z) = ∇(f ◦ ϕz)(0),

where ϕz is an automorphism of the unit ball for which ϕz(0) = z. We have

|∇̃(f ◦ ϕ)| = |(∇̃f) ◦ ϕ)|,

exactly what we want. Then the Bloch space can be described also as the space of
all holomorphic functions f for which

‖f‖
β̃
:= sup

|z|<1

|∇̃f(z)| < ∞.

Now, we can equip B with the norm ‖f‖B̃ := |f(0)|+ ‖f‖
β̃
.

1.2. Statement of the problem. In order to formulate the problem and the
known result, we define the following function of one real variable t ∈ [0, π

2
]:

l(t) = (n + α+ 1)

ˆ

Bn

|(1− w1) cos t + w2 sin t|
|w1 − 1|n+α+1

dvα(w).

Kalaj and Marković in [4] proved:

Theorem 1. For α > −1, n > 1, we have

l
(π
2

)
=

π

2
l(0) =

π

2
Cα,
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where Cα = Γ(n+α+2)

Γ2(n+α

2
+1)

. For the β̃-semi-norm of the Bergman projection Pα we have

C̃α := ‖Pα‖β̃ = max
0≤t≤π

2

l(t),

and
π

2
Cα ≤ ‖Pα‖ ≤

√
π2 + 4

2
Cα.

They also conjectured that

‖Pα‖β̃ =
π

2
Cα.

From these facts we can conclude that it is enough to prove that l(t) attains its
maximum in t = π

2
. We will prove that this conjecture is true. This is contained in

the following theorem.

Theorem 2. For α > −1 and n ≥ 2, we have

‖Pα‖β̃ =
π

2

Γ(n+ α + 2)

Γ2(n+α
2

+ 1)

and
π

2

Γ(n + α + 2)

Γ2(n+α
2

+ 1)
≤ ‖Pα‖B̃ ≤ 1 +

π

2

Γ(n+ α + 2)

Γ2(n+α
2

+ 1)
.

Moreover, we have the following representation for function l in terms of hypergeo-

metric series:

l(t) =
πΓ(n+ α + 2)

2Γ2(n+α
2

+ 1)
· 2F1

(
1

2
,−1

2
; 1; cos2 t

)

and l(t) is increasing in t ∈ [0, π
2
].

In the next section we give some preliminary facts which we need for the proof.

1.3. Beta and hypergeometric functions. Here we recall some properties of
hypergeometric functions. They are defined by

2F1(a, b; c; z) =
+∞∑

k=0

(a)k(b)k
(c)k

zk

k!
.

It converges for all |z| < 1, and, for Re(c−a− b) > 0 also for z = 1. Here (a)k stands
for Pochhammer symbol a(a+ 1) . . . (a+ k − 1), and a is not negative integer.

We will use the next theorem due to Gauss:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Also, we use the following Euler transformation

2F1(a, b; c; z) = (1− z)c−a−b · 2F1(c− a, c− b; c; z).

Beta function is defined as

B(α, β) =

ˆ 1

0

tα−1(1− t)β−1 dt.

The identity

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

connects Beta function with Gamma function and we will exploit this relation later.
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2. Proof of the Theorem 2

Let us recall the integral representation of the constant Cα. We start from the
expression

L(ξt) := cα

ˆ

Bn

|〈w − e1, ξt〉|(1− |w|2)α

|1− 〈w, e1〉|n+α+1 dvn(w)

= cα

ˆ

Bn

|(1− w1) cos t+ w2 sin t|
|1− w1|n+α+1 (1− |w|2)α dvn(w)

where ξt = e1 cos t + e2 sin t, t ∈ [0, π
2
] and cα is given in (1).

Let us fix t ∈ [0, π
2
]. Changing coordinates with Atw = z, where At is a real n×n

orthogonal matrix 


cos t sin t 0 · · · 0

− sin t cos t 0 · · · ...
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1




such that Atξt = e1, we obtain

L(ξt) = cα

ˆ

Bn

|〈Atw − Ate1, e1〉|(1− |w|2)α

|1− 〈Atw,Ate1〉|n+α+1 dvn(w)

= cα

ˆ

Bn

|〈z −Ate1, e1〉|(1− |z|2)α

|1− 〈z, Ate1〉|n+α+1 dvn(z).

Since Ate1 =
(
cos t,− sin t, 0, . . . , 0

)
, we have:

L(ξt) = cα

ˆ

Bn

|z1 − cos t|(1− |z|2)α

|1− z1 cos t + z2 sin t|n+α+1 dvn(z)

= cα

ˆ

Bn

|z1 − cos t|(1− |z|2)α

|1− z1 cos t− z2 sin t|n+α+1 dvn(z).

Now, as in [12], we use Fubini’s theorem:

L(ξt) = cα

ˆ

Bn

|z1 − cos t|(1− |z1|2 − |z2|2 − |z′|2)α

|1− z1 cos t− z2 sin t|n+α+1 dvn(z)

= cα

ˆ

B2

|z1 − cos t|J(z1, z2) dv2(z1, z2)
|1− z1 cos t− z2 sin t|n+α+1

where

J(z1, z2) =

ˆ

√
1−|z1|

2−|z2|
2
Bn−2

(1− |z1|2 − |z2|2 − |z′|2)α dvn−2(z
′);

here z = (z1, z2, z
′), z′ ∈ C

n−2.

We make a substitution z′ = λw, λ =
√
1− |z1|2 − |z2|2, in the expression for

J(z1, z2) , which gives
ˆ

λBn−2

(λ2 − |z′|2)α dvn−2(z
′) = λ2α+2n−4

ˆ

Bn−2

(1− |w|2)α dvn−2(w).
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We easily find
´

Bn−2(1− |w|2)α dvn−2(w) = kα = πn−2 Γ(α+1)
Γ(α+n−1)

, so

L(ξt) = cαkαI(cos t, sin t),

where

I(cos t, sin t) =

ˆ

B2

|z1 − cos t|(1− |z1|2 − |z2|2)n+α−2

|1− z1 cos t− z2 sin t|n+α+1 dv2(z1, z2).

Now, the proof of Theorem 2 is reduced to proving monotonicity of I(cos t, sin t) as
a function of 0 ≤ t ≤ π

2
.

Again, Fubini’s theorem gives us

I(cos t, sin t) =

ˆ

D

|z1 − cos t| dv(z1)
ˆ

√
1−|z1|

2
D

(1− |z1|2 − |z2|2)n+α−2

|1− z1 cos t− z2 sin t|n+α+1 dv(z2).

Next, we make substitution z2 =
√

1− |z1|2ρeiθ, 0 ≤ ρ < 1, θ ∈ [0, 2π]:

ˆ

√
1−|z1|

2
D

(1− |z1|2 − |z2|2)n+α−2

|1− z1 cos t− z2 sin t|n+α+1 dv(z2)

=

ˆ 1

0

dρ

ˆ 2π

0

(1− |z1|2)n+α−2(1− ρ2)n+α−2
ρ(1− |z1|2)

|1− z1 cos t−
√

1− |z1|2ρ sin teiθ|n+α+1
dθ

= (1− |z1|2)n+α−1

ˆ 1

0

ρ(1− ρ2)n+α−2Φ(z1, ρ, t) dρ,

where Φ(z1, ρ, t) =
´ 2π

0
dθ

|1−z1 cos t−
√

1−|z1|
2ρ sin teiθ |n+α+1

.

Next, we use Parseval’s identity and Taylor’s expansion of (1− z)−
n+α+1

2 :

Φ(z1, ρ, t) =

ˆ 2π

0

dθ

|1− z1 cos t−
√

1− |z1|2ρ sin teiθ|n+α+1

=
1

|1− z1 cos t|n+α+1

ˆ 2π

0

dθ
∣∣∣∣1−

√
1−|z1|

2ρ sin t

1−z1 cos t
eiθ

∣∣∣∣
n+α+1

=
2π

|1− z1 cos t|n+α+1

+∞∑

k=0

(
n+α+1

2
+ k − 1

k

)2
(1− |z1|2)kρ2k sin2k t

|1− z1 cos t|2k
.

To use the above series expansion, we have to explain why
∣∣∣∣

√
1− |z1|2ρ sin t
1− z1 cos t

∣∣∣∣ ≤ ρ < 1.

In fact, from the Cauchy–Schwarz inequality, we have

√
1− |z1|2 sin t + |z1| cos t ≤

√
(
√

1− |z1|2)2 + |z1|2
√

sin2 t+ cos2 t = 1

and hence √
1− |z1|2 sin t ≤ 1− |z1| cos t.

Triangle inequality gives

1− |z1| cos t ≤ |1− z1 cos t|.
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The last two inequalities imply
∣∣∣∣

√
1− |z1|2 sin t
1− z1 cos t

∣∣∣∣ ≤ 1,

therefore, for 0 ≤ ρ < 1,
∣∣∣∣

√
1− |z1|2ρ sin t
1− z1 cos t

∣∣∣∣ ≤ ρ < 1.

Therefore, from the last expansion we have
ˆ

√
1−|z1|

2
D

(1− |z1|2 − |z2|2)n+α−2

|1− z1 cos t− z2 sin t|n+α+1 dv(z2)

= 2π

+∞∑

k=0

(
n+α+1

2
+ k − 1

k

)2
(1− |z1|2)k+n+α−1 sin2k t

|1− z1 cos t|2k+n+α+1
·
ˆ 1

0

ρ2k+1(1− ρ2)n+α−2
dρ

= π

+∞∑

k=0

(
n+α+1

2
+ k − 1

k

)2
(1− |z1|2)k+n+α−1 sin2k t

|1− z1 cos t|2k+n+α+1
B(k + 1, n+ α− 1),

and hence

I(cos t, sin t) =π

+∞∑

k=0

B(k + 1, n+ α− 1)

(
n+α+1

2
+ k − 1

k

)2
sin2k t

·
ˆ

D

|z1 − cos t|(1− |z1|2)k+n+α−1

|1− z1 cos t|2k+n+α+1
dv(z1).

We calculate these integrals by changing coordinates with z1 = cos t−ζ

1−ζcos t
= cos t−ζ

1−ζ cos t

(since cos t ∈ R). Here, we assume t > 0. Then, we have

ζ =
cos t− z1

1− z1 cos t
, JR =

(1− cos2 t)2

|1− ζ cos t|4
.

Also, we need the following identities

1− z1 cos t = 1− cos−ζ

1− ζ cos t
cos t =

1− cos2 t

1− ζ cos t

and

1− |z1|2 =
(1− cos2 t)(1− |ζ |2)

|1− ζ cos t|2
.

Using the above substitution, we get
ˆ

D

|z1 − cos t|(1− |z1|2)k+n+α−1

|1− z1 cos t|2k+n+α+1
dv(z1)

=

ˆ

D

|ζ |(1− cos2 t)k+n+α−1(1− |ζ |2)k+n+α−1

|1− ζ cos t|2k+2n+2α−2

|1− ζ cos t|2k+n+α

(1− cos2 t)2k+n+α

(1− cos2 t)2

|1− ζ cos t|4
dv(ζ)

= (1− cos2 t)1−k

ˆ

D

|ζ |(1− |ζ |2)k+n+α−1

|1− ζ cos t|n+α+2 dv(ζ).

Passing to the polar coordinates, we have
ˆ

D

|ζ |(1− |ζ |2)k+n+α−1

|1− ζ cos t|n+α+2 dv(ζ) =

ˆ 1

0

r2(1− r2)k+n+α−1
dr

ˆ 2π

0

dϕ

|1− r cos teiϕ|n+α+2 ,
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and then, again, by Parseval’s identity

ˆ 2π

0

dϕ

|1− reiϕ cos t|n+α+2 = 2π
+∞∑

m=0

(
n+α+2

2
+m− 1

m

)2
r2m cos2m t,

thus

ˆ

D

|ζ |(1− |ζ |2)k+n+α−1

|1− ζ cos t|n+α+2 dv(ζ)

= 2π
∞∑

m=0

(
n+α+2

2
+m− 1

m

)2
cos2m t

ˆ 1

0

r2m+2(1− r2)k+n+α−1
dr

= π

∞∑

m=0

(
n+α+2

2
+m− 1

m

)2
cos2m tB(m+ 3

2
, k + n + α).

This gives

I(cos t, sin t) = π2
+∞∑

k=0

(
n+α+1

2
+ k − 1

k

)2
B(k + 1, n+ α− 1) sin2k t

·
∞∑

m=0

(
n+α+2

2
+m− 1

m

)2
B(m+ 3

2
, k + n+ α) cos2m t(1− cos2 t)1−k

.

Since (1− cos2 t)1−k sin2k t = 1− cos2 t, we conclude

I(cos t, sin t) = π2(1− cos2 t)
+∞∑

k,m=0

(
n+α+1

2
+ k − 1

k

)2(n+α+2
2

+m− 1

m

)2

· B(k + 1, n+ α− 1)B(m+ 3
2
, k + n+ α) cos2m t.

(2)

Now, we consider the function φ defined as

φ(x) = (1− x)
+∞∑

k,m=0

(
n+α+1

2
+ k − 1

k

)2(n+α+2
2

+m− 1

m

)2
B(k + 1, n+ α− 1)

· B(m+ 3
2
, k + n + α)xm,

for 0 ≤ x < 1 (because of condition 0 ≤ cos t < 1!). Using B(α, β) = Γ(α)Γ(β)
Γ(α+β)

we have

φ(x) = Γ(n + α− 1)(1− x)
+∞∑

k,m=0

(
n+α+1

2
+ k − 1

k

)2(n+α+2
2

+m− 1

m

)2

· k! Γ(m+ 3
2
)

Γ(k + n+ α +m+ 3
2
)
xm.
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Let us sum, over k, the terms which depend on k,

+∞∑

k=0

(
n+α+1

2
+ k − 1

k

)2
k!

Γ(k + n + α +m+ 3
2
)

=

+∞∑

k=0

(
n+α+1

2
+ k − 1

)2 · · · · ·
(
n+α+1

2
+ 1
)2(n+α+1

2

)2

k! Γ(k +m+ n + α+ 3
2
)

=

+∞∑

k=0

(
n+α+1

2

)
k

(
n+α+1

2

)
k

k!
(
n+ k + α+m+ 1

2

)
· · · · ·

(
n+ α +m+ 3

2

)
Γ(n+ α +m+ 3

2
)

=
1

Γ(n+ α +m+ 3
2
)

+∞∑

k=0

1

k!

(
n+α+1

2

)
k

(
n+α+1

2

)
k(

n+ α +m+ 3
2

)
k

.

We recognize that the last sum is 2F1(
n+α+1

2
, n+α+1

2
;n+α+m+ 3

2
; 1), and by Gauss’s

theorem this is equal to

Γ(n+ α +m+ 3
2
)Γ(m+ 1

2
)

Γ2(m+ 1 + n+α
2
)

.

Hence, the double sum in (2) is equal to

+∞∑

m=0

(
n+α+2

2
+m− 1

m

)2
Γ(m+ 3

2
)Γ(m+ 1

2
)

Γ2(m+ 1 + n+α
2
)
xm.

Note that
(

n+α+2
2

+m− 1

m

)2
=

1

(m!)2
(
n+α+2

2
+m−1

)2 · · · · ·
(
n+α+2

2

)2
=

1

(m!)2
Γ2(n+α+2

2
+m)

Γ2(n+α+2
2

)
,

and hence

φ(x) =
Γ(n + α− 1)

Γ2(n+α
2

+ 1)
(1− x)

+∞∑

m=0

Γ(m+ 1
2
)Γ(m+ 3

2
)

(m!)2
xm, 0 ≤ x < 1.

Let us denote

am =
Γ(m+ 1

2
)Γ(m+ 3

2
)

(m!)2
.

It is easily verified that am is strictly decreasing in m ≥ 0:

am+1

am
=

Γ(m+ 3
2
)Γ(m+ 5

2
)(m!)2

Γ(m+ 1
2
)Γ(m+ 3

2
)
(
(m+ 1)!

)2 =
(m+ 1

2
)(m+ 3

2
)

(m+ 1)2
< 1.

In particular, am ≤ a0. Then, we may conclude

(1− x)
+∞∑

m=0

amx
m ≤ (1− x)a0

+∞∑

m=0

xm = a0,

that is φ(x) ≤ φ(0). Moreover, φ(x) is decreasing, since we can write it in the
following form

φ(x) =
Γ(n+ α + 1)

Γ2(n+α
2

+ 1)

(
a0 +

+∞∑

m=1

(am − am−1)x
m

)
.

This is the crux of the proof of our Theorem.
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So, the best constant is C̃α = (1 + n+ α)cαkαπ
2 Γ(α+n−1)

Γ2(n+α

2
+1)

Γ(1
2
)Γ(3

2
), i.e.

C̃α =
π

2

Γ(α + n+ 2)

Γ2(n+α
2

+ 1)
.

According to [4], for ξ = (1, 0, 0 . . . , 0) we have l(0) = 2
π
C̃α. This can be also obtained

from the above series by letting x tends to 1.
Finally, all these computations give us

l(t) = (1 + n + α)cαkαπ
2Γ(α + n− 1)

Γ2(α+n
2

+ 1)
sin2 t

+∞∑

m=0

Γ(m+ 1
2
)Γ(m+ 3

2
)

(m!)2
cos2m t

=
Γ(n + α+ 2)

Γ2(n+α
2

+ 1)
sin2 t

+∞∑

m=0

Γ(m+ 1
2
)Γ(m+ 3

2
)

(m!)2
cos2m t, 0 < t ≤ π

2
,

and l(t) is increasing in t ∈ [0, π
2
]. (Because φ(x) is decreasing and l(t) = φ(cos2 t).)

Using the definition od Pochhammer symbol (a)k, hypergeometric functions and
Euler transformation from subsection 1.3 we get

l(t) =
πΓ(n + α+ 2)

2Γ2(n+α
2

+ 1)
· 2F1(

1

2
,−1

2
; 1; cos2 t).

The proof of the second part of our Theorem easily follows from its first part and
the inequality

‖Pα‖β̃ ≤ ‖Pα‖B̃ ≤ 1 + ‖Pα‖β̃.
This concludes the proof of Theorem 2.

Let us say that the function l(t) also can be expressed as Γ(n+α+2)

Γ2(n+α

2
+1)

E(cos t), where

E is the complete elliptic integral of the second kind.
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