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Abstract. We extend the Rodin’s formula for p-modulus of the family of curves in R
n to

arbitrary codimension. The proof relies on the formula for the p-modulus of family of level sets

of a submersion and an algebraic lemma relating Jacobi matrices of considered maps. We state

appropriate examples.

1. Introduction

The aim of this note is to extend to any codimension the Rodin’s formula for
2-modulus of family of curves [9] and its generalization to any p > 1 obtained recently
by Brakalova, Markina and Vasil’ev [3]. We rely on the formula for the p-modulus
and the extremal function for the family of surfaces given by the level sets of a
submersion [7]. The key observation is the relation between appropriate jacobians.
This is purely algebraic fact. We conclude by stating appropriate examples.

Let us introduce the necessary notions and give an outline of the approach for
codimension n− 1 case.

1.1. Fuglede p-modulus. The p-modulus, introduced by Fuglede in [6], is a
powerful tool in geometric measure theory, especially in the context of quasiconformal
maps, weak upper gradients, harmonicity on metric measure spaces, etc.

Consider a family Σ of measures on a measure space (X,m) such that each m-
measurable function is µ-measurable for all µ ∈ Σ. Then, we say that a non-negative
m-measurable f is admissible if

(1.1)

ˆ

X

f dµ ≥ 1 for all µ ∈ Σ.

We write f ∈ adm(Σ). By the p-modulus of Σ (with respect to m), where p > 1 is
fixed, we mean a number

(1.2) modp(Σ) = inf
f∈adm(Σ)

ˆ

X

f p dm.

If adm(Σ) is empty we put modp(Σ) = ∞. It can be shown that the assignment
Σ → modp(Σ) is an outer measure on the space of measures whose σ-algebras contain
σ-algebra of m. Moreover, we say that an admissible function fΣ is extremal if
modp(Σ) =

´

X
f
p
Σ dm. It is an easy consequence of properties of p-modulus [6], that

up to a subfamily of p-modulus zero, there is unique extremal function.
In our opinion, the key features of this notion are the following:
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• for a family of k-dimensional surfaces, or more precisely, the Hausdorff mea-
sures associated to them, the p-modulus is conformal invariant provided
n = kp,

• if n-modulus of family Σ of curves is non-zero, then it is nonzero under
quasi-conformal deformation of R

n. More precisely, if f : Ω → Ω′ is a K-
quasiconformal map, then

1

K
modn(f(Σ)) ≤ modn(Σ) ≤ Kmodn(f(Σ)),

• if f is p-integrable with respect to m, then, up to a subfamily of zero p-
modulus, f is integrable with respect to any measure in Σ,

• if (fn) is a sequence, which converges in Lp(X,m) to f0, then, up to a subse-
quence and a family of p-modulus equal zero, (fn) converges to f0 in L1(X, µ)
for µ ∈ Σ.

1.2. Alternative approach to Rodin’s formula. The second fact stated in
the above list found many applications in the study of geometry of quasi-conformal
maps (for example, see [1]). In fact it can be considered as a definition of quasi-
conformality. Thus it desirable to be able to calculate n-modulus of families of
curves and, in particular, 2-modulus for plane curves. Such formula was obtained by
Rodin [9].

Theorem 1.1. (Rodin [9]) Let f : [0, 1] × [0, b] → Q ⊂ R
2 be a smooth orien-

tation preserving homeomorphism such that its jacobian Jf is strictly positive. Let
Γ0 be a family of vertical lines in [0, 1]× [0, b] and denote by Γ the family of curves
being the images of these lines with respect to f . Then the extremal function fΓ for
the 2-modulus of Γ equals

(1.3) fΓ(z) =
1

l(x)

(

|ċx|

Jf

)

◦ f−1(z), f(x, t) = z,

where cx(t) = f(x, t), dot denotes the derivative with respect to t and

(1.4) l(x) =

ˆ b

0

|ċx|
2

Jf
dt.

Moreover, the 2-modulus of Γ equals

mod2(Γ) =

ˆ 1

0

1

l(x)
dx.

Let us rewrite formulae (1.3) and (1.4) in a slightly different form, which will be
more adequate for further considerations. Firstly, notice that

(1.5) l(x) =

ˆ

cx

|ċx|

Jf
◦ f−1 dH1

cx
,

where H1
cx

is a volume element for cx (the 1-dimensional Hausdorff measure on cx).

Denoting l(x) by
̂( |ċx|
Jf

)

, i.e., the integral along a curve cx, formula (1.3) takes the

form

(1.6) fΓ(z) =
1

̂( |ċx|
Jf

)

(

|ċx|

Jf

)

◦ f−1(z).
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From this representation, it is clear, that the integral of the extremal function fΓ on
any curve from the family Γ equals one (see also [5] for more general approach). Let

us now concentrate on the quantity |ċx|
Jf

. Put

F (z) = x where f(x, t) = z.

In other words, F = π ◦ f−1, where π : [0, 1]× [0, b] → [0, 1] is a projection onto the
first factor, π(x, t) = x. Then F is a submersion with the fibers being the curves cx
in Γ, F (cx(t)) = x. Differentiating this relation we have

〈∇F,Dxf〉 = 1 and 〈∇F,Dyf〉 = 0,

where Dxf and Dyf denote differentials of f with respect to x and y, respectively,
and 〈u, v〉 = u1v1 + u2v2, u = (u1, u2), v = (v1, v2), is a standard inner product in
R

2. The key relation

(1.7)
|ċx|

Jf
= |∇F | ◦ f

follows by the following simple algebraic fact applied to A = Df and v = (∇F ) ◦ f .

Lemma 1.2. Let A ∈ GL(2,R) and let v be any non-zero vector in R
2. Denote

the columns of A by u and w. Assuming 〈v, u〉 = 1 and 〈v, w〉 = 0 we have

|w| = | detA||v|.

Proof. Conditions 〈v, u〉 = 1 and 〈v, w〉 = 0 define a system of two linear equa-
tions with the unknown vector v. It has a unique solution, which is a first row of the
inverse matrix A−1, i.e.

v =
1

detA
(w2,−w1), where w = (w1, w2).

Hence |v| = 1
|detA|

|w|, which is a required relation. �

Applying (1.7), conditions (1.5) and (1.6) are equivalent to

l(x) =

ˆ

cx

|∇F | dH1
cx

= |̂∇F | and fΓ(z) =
1

|̂∇F |
∇F ◦ f−1(z),

respectively, but this is just the formula for the extremal function for the p-modulus
of family of curves given by a submersion [7] (see also the following section).

In the case of arbitrary p > 1 and arbitrary dimension n we have the result by
Brakalova, Markina and Vasil’ev [3].

Theorem 1.3. (Rodin’s generalized formula [3]) Let f belong to the Sobolev
space W 1,p(U,Rn) with positive jacobian Jf for almost all points in U , where U is a
connected neighborhood of a product D× [a, b] and D is compact in R

n−1. Let Γ be
a family of curves {cx}x∈D in Ω = f(U), where cx(t) = f(x, t). Then the extremal
function for the p-modulus of Γ is given by the formula

fΓ(z) =
1

l(x)

(

|ċx|

Jf

)q−1

◦ f−1(z), z = f(x, t) ∈ Ω,

where

l(x) =

ˆ b

a

(

|ċx|

Jf

)q

Jf dt.
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(q is conjugate to p, i.e., 1
p
+ 1

q
= 1). Moreover, the p-modulus of Γ equals

modp(Γ) =

ˆ

D

l(x)1−p dx.

In this case homeomorphism f maps straight lines parametrized by some compact
set D. The version stated here slightly differs from the original stated in [3], where
the authors consider f ◦u instead of f , u being C1-smooth diffeomorphism defining a
condenser (see the following sections for more details). Such approach was probably
chosen by the authors of [3] in order to compute modulus of families of curves and
its diffeomorphic images.

1.3. Statement of the result. In this article, we generalize Theorem 1.3 to
arbitrary codimension. We rely on the formula for the p-modulus of a family of
level sets of a submersion proved (in the smooth category) in [7]. We could consider
the approach analogous to the one used in [3], where the authors apply the result
of Badger [2] for the extremal function. However, we want to keep the article as
elementary as possible and, additionally, give an alternative proof of known results.
Since, we are not mainly interested in the p-modulus of families of separating plates
of condenser or joining these plates and we focus on the general formula for the p-
modulus, we consider parametrizations (as usual) defined on open domains. Clearly,
it is easy to rewrite the main formula for compact sets, just taking the parametrization
defined on some (open) neighborhood.

Let us state the main result of the paper.

Theorem 1.4. Let U and V be two domains in R
n−m and R

m, respectively.
Let f : U × V → Ω be C1-smooth diffeomorphism onto Ω ⊂ R

n. Denote by Σ the
family of m-dimensional surfaces σx, x ∈ U , being the images of V with respect to
f , σx = f(x, V ). Then the extremal function for the p-modulus of Σ is the following

(1.8) fΣ(z) =
1

l(x)

(

|Jyf |

|Jf |

)q−1

◦ f−1(z), z = f(x, y),

where

(1.9) l(x) =

ˆ

V

(

|Jyf |

|Jf |

)q

Jf dy.

Moreover, the p-modulus of Σ equals

(1.10) modp(Σ) =

ˆ

U

l(x)1−p dx.

Let us explain the notation used in the theorem above. The jacobian |Jyf | is the
jacobian of a map V ∋ y 7→ f(x, y) with fixed x ∈ U . Recall, that the jacobian here
is a square root of sum of second powers of determinants of maximal minors of the
differential.

In our approach, we assume C1-smoothness of f . Less restrictive conditions were
assumed in [3], namely, that f is in the Sobolev class W 1,p with finite distortion. We
comment on this in the last section.

Throughout the paper p and q are conjugate coefficients, i.e., 1
p
+ 1

q
= 1.

2. Rodin’s formula in any codimension

2.1. Necessary facts. Let us recall the co-area formula and the formula for the
extremal function for the p-modulus of a family of level sets of a submersion. Let F
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be a C1-diffeomorphism of a domain Ω ⊂ R
n onto U ⊂ R

m. Denote by σx the level
set F−1(x) and let Hm

σx
be m-dimensional Hausdorff measure on σx. The following is

a well-known fact.

Theorem 2.1. (Co-area formula) For any integrable function g on Ω the follow-
ing formula holds

ˆ

Ω

g(z)|JF (z)| dz =

ˆ

U

ˆ

σx

g(z) dHm
σx
(z) dx,

Denote by Σ a family of level sets σx, x ∈ U , or, more precisely, the family of
m-Hausdorff measures on these level sets. Then the following fact holds [7] (see also
[5]).

Theorem 2.2. (Modulus of level sets) Assume modp(Σ) > 0. Then, the ex-
tremal function and the p-modulus of Σ are given, respectively, by

fΣ =
|JF |

q−1

̂|JF |q−1 ◦ F
and modp(Σ) =

ˆ

U

(

̂|JF |q−1
)1−p

dx.

In the statement of the above theorem f̂ denotes the integral of non-negative
function f on the level sets of F , i.e.,

f̂(x) =

ˆ

σx

f(z) dHm
σx
(z), x ∈ U.

In order to keep the article self contained we recall the proof of Theorem 2.2.

Proof. Clearly, the integral of fΣ on any level set equals 1,

f̂Σ =
̂|JF |q−1

̂|JF |q−1
◦ F = 1.

Thus fΣ is admissible for the p-modulus of Σ. By Hölder inequality, for any admissible
f , we have

1 ≥

ˆ

σx

f dHm
σx

=

ˆ

σx

f

|JF |
1

p

|JF |
1

p dHm
σx

≤

(
ˆ

σx

f p

|JF |
dHm

σx

)
1

p
(
ˆ

σx

|JF |
q
p dHm

σx

)
1

q

.

Thus
ˆ

σx

f p

|JF |
dHm

σx
≥

(
ˆ

σx

|JF |
q−1 dHm

σx

)1−p

.

By the co-area formula (Theorem 2.1) we get
ˆ

Ω

f p dz =

ˆ

U

ˆ

σx

f p

|JF |
dHm

σx
dy ≥

ˆ

U

̂|JF |q−1
1−p

dx

=

ˆ

U

ˆ

σx

|JF |
q−1

̂|JF |q−1
p dH

m
σx
dx =

ˆ

Ω

|JF |
q

̂|JF |q−1
p dz =

ˆ

Ω

f
p
Σ dz.

Thus fΣ is extremal and the formula for modp(Σ) holds. �

2.2. An algebraic lemma. In this subsection we will prove the key algebraic
fact, that will be used in the proof of the main theorem of the article. It is necessary
for the relation between jacobians of appropriate mappings.

Denote by M(n,m) the space of matrices consisting of n rows and m columns.
For a matrix A ∈ M(n,m) denote by |A|2 a sum of determinants of all maximal rank
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minors. In particular, if A ∈ M(n, n), then |A| = detA and if A ∈ M(n,m) with
n > m, then |A|2 = det(A⊤A).

The following lemma is a generalization of Lemma 1.2 to arbitrary dimension. We
could try to adapt the proof to this case by applying successively Laplace expansion,
however, it requires a lot of computations. We present, in our opinion, more elegant
and brief proof.

Lemma 2.3. Let A ∈ GL(n,R) and B ∈ M(n − m,n). If B · A = (In−m 0),
then

|A′| = |A||B|,

where A′ is made of last m columns of A.

Proof. Split matrix A in the following way A = (A0A
′), where A0 ∈ M(n, n−m).

The assumption is equivalent to saying that BA0 = In−m and BA′ = 0. Consider a
matrix of the form X = (B⊤A′) ∈ M(n, n). The subspaces spanned by first n−m

and last m columns of X are, by assumption, orthogonal. Thus

(2.1) |X| = |B⊤||A′| = |B||A′|.

Let us consider the matrix A⊤X ∈ M(n, n). We can express it, by the assumption,
in the following form

A⊤X = (A⊤B⊤A⊤A′) = ((BA)⊤A⊤A′) =

(

In−m A⊤
0 A

′

0 (A′)⊤A′

)

.

Hence, |A||X| = |(A′)⊤A′| = |A′|2. This, together with (2.1), implies |A||B| =
|A′|. �

2.3. Proof of Rodin’s formula in any codimension. Let F : Ω → U be
of the form F = π ◦ f−1, where π : U × V → U is a projection on U . Then F is a
submersion with jacobian JF . Differentiating the condition F ◦ f = π we get

(DF ◦ f) ·Df = (In−m 0).

Applying Lemma 2.3 to A = Df and B = DF ◦ f (then A′ = Dyf), we get

|Jyf | = |Jf |(|JF | ◦ f).

Thus the formula for l(x) takes the form

l(x) =

ˆ

U

(

|Jyf |

|Jf |

)q−1

|Jyf | dx =

ˆ

σx

|JF |
q−1 dHm

σx
= ̂|JF |q−1(x).

Thus, by Theorem 2.2 we have

fΣ(z) =
1

l(x)

(

|Jyf |

|Jf |

)q−1

◦ f−1(z), f(x, y) = z,

and modp(Σ) =
´

U
l(x)1−p dx.

3. Some Applications

In this section we give some applications of obtained formulae (1.8) and (1.10).
We consider generalizations of examples studied in [3] except for the case of conjugate
submersions (Example 3.4 below).
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Example 3.1. (Generalized condenser) In this example, we will discus the for-
mula obtained in [3] for a curve (or surface) family in a condenser defined by some
function u. Namely, let u : U ×V → R

n be a C1-diffeomorphism, where U and V are
domains in R

n−m and R
m, respectively. Denote by Σ0 the family of allm-dimensional

surfaces Sx, x ∈ U , in R
n of the form Sx = {u(x, y) | y ∈ V }. Moreover, let f be

a C1-diffeomorphism of u(U × V ) and let Σ = f(Σ0), meaning that Σ is a family of
surfaces σx = f(Sx). Applying Theorem 1.4 to the map u ◦ f we get the following
formulae for the extremal function and the p-modulus of Σ.

Corollary 3.2. The extremal function fΣ and the p-modulus modp(Σ) of the
family Σ are given, respectively, by

fΣ(z) =
1

l(x)

(

|Iyf |

|If |

)q−1

◦ f−1(z), z = (f ◦ u)(x, y), modp(Σ0) =

ˆ

U

l(x)1−p dx,

where If = Jf◦u = (Jf ◦ u)Ju and

l(x) =

ˆ

V

(

|Iyf |

|If |

)q

|If | dz.

Example 3.3. (Parallel surfaces) Consider a product U×V , where U and V are
domains in R

n−m and R
m, respectively. Denote by Σ the family of surfaces of the

form {x}×V , x ∈ U . Family Σ is defined by the identity map f = id on U×V . Thus
by Theorem 1.4 the extremal function fΣ and the p-modulus of Σ are, respectively,

fΣ = Hm(V )−1 and modp(Σ) = Hn−m(U)Hm(V )1−p.

In particular, the extremal function is constant. Analogously, considering a family T
of ‘horizontal’ surfaces U × {y}, y ∈ V , we have

fT = Hn−m(U)−1 and modp(T ) = Hn−m(U)1−qHm(V ).

In particular,

(3.1) modp(Σ)
1

pmodq(T )
1

q = 1.

In the example below we force the condition (3.1) by requiring a relation on
restricted jacobians of f .

Example 3.4 (Conjugate submersions). In [4] the authors, generalizing the no-
tion of conformality, introduced, so called, conjugate submersions. These define two
orthogonal foliations such that the product of p- and q-modulus of them equals one.
Treated together they define a diffeomorphism from the manifold to the product of
two manifolds. Namely, we say that two mappings ϕ : M → R and ψ : M → S

between Riemannian manifolds are (p, q)-conjugate if (ϕ, ψ) : M → R×S is a diffeo-
morphism, distributions kerDϕ and kerDψ are orthogonal and, finally, |Jϕ|

p = |Jψ|
q.

Let us reverse this approach (with slight modifications including switching coef-
ficients p and q), by considering a (global) parametrization of a domain by a product
of two domains. Consider a C1-diffeomorphism f : U × V → Ω, where U and V are
domains in R

n−m and R
m, respectively, and Ω is a domain in R

n. Fix two conjugate
coefficients (p, q). We say that f is (p, q)-conformal if

|Jxf |
p

|Jf |p
=

|Jyf |
q

|Jf |q
and Dxf ⊥ Dyf.
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The second condition means that tangent spaces to f(U, y) and f(x, V ) are orthogonal
for any (x, y). It implies Jxf J

y
f = Jf . Thus, by the first condition we have

(3.2) |Jyf |
p = |Jxf |

q = |Jf |.

We use above condition as a definition of a (p, q)-map.
Assume, therefore, that f is a (p, q)-map. Denote by Σ and T the families of m

and (m− n)-dimensional surfaces defined by

Σ = {σx = f(x, V )}x∈U , T = {τy = f(U, y)}y∈V ,

respectively. By (3.2) we have lΣ(x) = Hm(V ) and lT (y) = Hn−m(U). Thus by
Theorem 1.4

modp(Σ) = Hn−m(U)Hm(V )1−p, modq(T ) = Hm(V )Hn−m(U)1−q.

In particular, modp(Σ)
1

pmodq(T )
1

q = 1.

Example 3.5. (General shear transformation) Consider parallel ’surfaces’ form
the Example 3.3 (family Σ) and let f : Rn → R

n be a general shear transformation:

f(x, y) = (x+ By, y), x ∈ R
m, y ∈ R

n−m,

where B ∈ M(n, n−m). In matrix notation, f is a linear transformation defined by a

matrix Mf =

(

Im B

0 In−m

)

. We will compute the p-modulus of Σ′ = f(Σ). Clearly,

If = detMf = 1 and |Iyf | = (det(B⊤B + In−m))
1

2 . Thus, applying Corollary 3.2 to
the family Σ′ = f(Σ), we have

fΣ′ = Hm(V )−1(det(B⊤B + In−m))
− 1

2

and

modp(Σ
′) = Hn−m(U)Hm(V )1−p(det(B⊤B + In−m))

− p

2 ,

since l = Hm(V ) det
q

2 (B⊤B + In−m).

4. Final remarks

In this section we comment on possible weakest conditions which can be imposed
on f in Theorem 1.4. In [3], in the case of curve family, the authors assume that f
is in Sobolev class W 1,p. Then f is ACLp and, hence, for Hn−1-almost all x ∈ D,
the derivative ∂f

∂t
exists (t is a parameter for curves in the considered family). In

the analogous situation but for ’hypersurface’ family, the authors of [3] assume the
parametrization of surfaces is C1-smooth and they deform the surface family by a
W 1,p-homeomorphism with finite distortion. This allows to deduce that the inverse
map f−1 is W 1,1 with finite distortion. In the formula for a p-modulus of this family,
the gradient of submersion defining the hypersurfaces is used, while for a map f the
only information needed is the jacobian Jf . The authors rely on area and coarea
formulea in the possible weakest forms (see [8]).

We feel that the case of C1-smoothness in not so restrictive, although, probably,
may be slightly weakened.
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