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Abstract. The purpose of this paper is to investigate the asymptotical dynamics of solu-
tions for a non-autonomous stochastic evolution equations driven by a non-local integro-differential
operator LK defined by

LKu(x) = P.V.

ˆ

RN

(u(x)− u(y))K(x− y) dy, x ∈ R
N ,

where K : RN \ {0} → (0,+∞) is the kernel of LK which satisfies the general fractional-type

condition of order s. It is showed that the (2p−2)-truncation of solutions on a finite integral interval

vanishes if the initial time goes to negative infinite and the eigenvalue of LK is large enough. By

means of this truncation estimate and the spectrum splitting technique, the flattening condition

of solutions is proved in the fractional-type Sobolev space Xs
0
, under a weak assumption on the

non-autonomous term. Then, the regular dynamics of the cocycle associated with this problem

are demonstrated, namely, that the pullback attractor established in L2(O) is actually compact,

measurable and attracting in the fractional-type space Xs
0

for any s ∈ (0, 1) and N > 2s. As a

typical example, we derive the random dynamics for the problem driven by the fractional Laplacian

(−∆)s.

1. Introduction

In recent years, a huge volume of literature focus on the problems involving the
fractional and non-local operators, since such type of operators arise from a diverse
scientific fields, such as fluid mechanics, biology, finance, optimization, quantum
theory and etc. For a survey of this topic, the reader is referred to [7, 20].

Let O ⊂ RN be an open and bounded domain with Lipschitz boundary. In
this article, we are interested in the asymptotical dynamics (in the form of pullback
attractor) of solutions of the non-autonomous stochastic general integro-differential
equation on O:

du

dt
+ LKu = F (t, x, u) + g(t, x) + φ(x)Ẇ (t), t > τ, x ∈ O,(1.1)

with the homogeneous Dirichlet boundary condition

u(t, x) = 0, t > τ, x ∈ RN \ O,(1.2)

and the initial condition

u(τ, x) = uτ , x ∈ O,(1.3)
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where τ ∈ R, g ∈ L2
loc(R, L

2(O)). Throughout this paper, W (t) is a two-sided real-
valued Brownian motion defined on a probability space, F : R × O × R → R is
a continuous function, φ is a given function on RN satisfying some conditions as
specified in the latter section, and LK is the non-local integro-differential operator of
order s suggested in [24] and defined as follows:

LKu(x) = P.V.

ˆ

RN

(u(x)− u(y))K(x− y) dy

= lim
εց0

ˆ

RN\Bε(x)

(u(x)− u(y))K(x− y) dy, x ∈ RN ,(1.4)

where Bε(x) is a ball in RN centred at x with radius ε, P.V. means the principal value
of the integral, and the kernel K : RN \ {0} → (0,+∞) is a measurable function
satisfying

mK ∈ L1(RN), where m(x) = min{1, x2},(1.5)

K(x) = K(−x) for any x ∈ RN \ {0},(1.6)

and there exists θ > 0 such that

K(x) > θ|x|−(N+2s) for any x ∈ RN \ {0},(1.7)

where s ∈ (0, 1) and N > 2s. Condition (1.6) is assumed for sake of simplicity and
it can be easily removed (cf. [26]).

We emphasize that the Dirichlet datum u = 0 in (1.2) is given in RN \O instead
of simply u = 0 on the boundary ∂O, which is consistent with the non-local character
of the integro-differential operator LK , see the interpretation as in [24, 26, 25].

A typical example for K is the singular kernel K(x) = |x|−(N+2s). In this case,
LKu = (−∆)su is called the fractional Lapalcian operator. Up to a normalization
factor, this operator is defined as

(−∆)su(x) = P.V.

ˆ

RN

u(x)− u(y)

|x− y|n+2s
dy = lim

εց0

ˆ

RN\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy, x ∈ RN .(1.8)

Then, the general no-local integro-differential equation (1.1) is reduced to the follow-
ing usual fractional Laplacian equation:

du

dt
+ (−∆)su = F (t, x, u) + g(t, x) + φ(x)Ẇ (t),(1.9)

where s ∈ (0, 1), N > 2s.
We can list a large volume of literature about the equations involving such frac-

tional Lapalcian, see e.g. [9, 12, 20, 21, 22, 35] and the references therein, where the
existence of solutions was extensively investigated. However, so far as we know, the
asymptotic behavior of solutions for evolution equations with non-local fractional
operator are not well studied. Even in the random case, there are only a few publi-
cations [13, 17, 19, 18, 29] in this aspect, where the authors discussed the existence
of random attractor for stochastic fractional reaction-diffusion equations like (1.9)
and the fractional complex Ginzburg–Landau equations, respectively. To the best of
our knowledge, there is no literature to discuss the long-time dynamical behavior for
the stochastic model involving the general non-local operator defined by (1.4). Just
as mentioned in [26], it is quite interesting to consider more general operators than
the fractional Laplacian, since in the applications, other type of non-local operators
naturally arise.
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In this paper, we investigate the asymptotical dynamics and prove that the non-
autonomous general model (1.1)–(1.3) has a unique pullback attractor in L2(O) for
all s ∈ (0, 1) and N > 2s, see Theorem 4.5. We show that the (2p − 2)-truncation
of solutions on a finite integral interval vanishes if the initial time goes to negative
infinite and the eigenvalue of LK is large enough. The spectrum of the non-local
operator LK is employed by a spectrum splitting approach to obtain the flattening
condition of solutions. Then the asymptotically regular dynamics of the model (1.1)–
(1.3) is demonstrated by a pullback attractor derived in a fractional Sobolev space
Xs

0 for all s ∈ (0, 1) and N > 2s, see Theorem 5.7. As a typical example, we derive
the random dynamics of the fractional reaction-diffusion equations driven by the
fractional Laplacian (−∆)s. Thus the results presented here are new even in the
fractional Laplacian case.

We remark that a non-local integro-differential equation containing a kernel dif-
ferent from (1.5) and (1.7) was considered in [8], where the symbolic dynamics was
fist studied in a fractional operator setting.

2. Preliminary results and notations

In this paper, we consider the general integro-differential equation (1.1). For this,
the usual fractional Sobolev space Hs(RN) or Hs(O) (cf. [7]) is not enough. We will
work in a functional analytical setting. To this purpose, we present some preliminary
results and the fractional-type Sobolev spaces related to the kernel K(.), which will
be used in the paper.

2.1. The fractional-type Sobolev space with kernel K(.). Let s ∈ (0, 1).
Define

(2.1) 2∗s =
2N

N − 2s
, if N > 2s,

which plays the role of a fractional critical Sobolev exponent (cf. [7]). It is clear that
2 < 2∗s =

2N
N−2s

< 2N
N−2

= 2∗, where the later is the integer critical Sobolev exponent.

Let Xs be the linear space of Lebesgue measurable functions form RN to R such
that the restriction to O of any function u in Xs belongs to L2(O) and

ˆ

Q

|u(x)− u(y)|2K(x− y) dx dy < +∞,(2.2)

where Q = R2N \ Oc ×Oc with Oc = RN \ O. We note that Q % O ×O in general.
The space Xs is equipped with the norm defined as

‖u‖2Xs , ‖u‖2L2(O) +

ˆ

Q

|u(x)− u(y)|2K(x− y) dx dy.(2.3)

It is easy to say that ‖.‖Xs defined by (2.3) is a norm on Xs (see [24]) which is
equivalent to the following version

‖u‖Xs , ‖u‖L2(O) +
(

ˆ

Q

|u(x)− u(y)|2K(x− y) dx dy
)

1

2

.

Define

Xs
0 , {u ∈ Xs : u = 0 a.e. in RN \ O}.(2.4)

In terms of the condition (1.5), we have C2
0(O) ⊂ Xs

0 (cf. [20, Lemma 1.20]) and
consequently Xs

0 and Xs are nonempty. The space Xs
0 is equipped with the norm
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defined as

‖u‖2Xs
0
,

ˆ

Q

|u(x)− u(y)|2K(x− y) dx dy

=

ˆ

R2N

|u(x)− u(y)|2K(x− y) dx dy, u ∈ Xs
0 .(2.5)

For u ∈ Xs
0 , the integral on the state space Q can be extended to R2N as in [25,

Lemma 5,b)]. Moreover, (Xs
0 , ‖.‖Xs

0
) is a Hilbert space with the inner product

(u, v)Xs
0
, (LKu, v) ,

ˆ

Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy,(2.6)

and the norm given by (2.5) is equivalent to the usual one defined by (2.3) (cf. [24,
Lemma 7]). We also give the usual fractional Sobolev space Hs(O) endowed with
the so-called Gagliardo norm

‖u‖2Hs(O) , ‖u‖2L2(O) +

ˆ

O×O

|u(x)− u(y)|2

|(x− y|N+2s
dx dy.(2.7)

For further detailed information on the fractional Sobolev spaces Hs(O) and Hs(RN)
for s ∈ (0, 1), the reader is referred to [7] and the references therein.

We remark that, even in the model case in which k(x) = |x|−(N+2s), the norms in
(2.3) and (2.7) are not identical nor equivalent, because O ×O is strictly contained
in Q. This makes the usual fractional Sobolev space approach not sufficient for
studying the problem (1.1)–(1.3), especially for the regularity of the solutions [24].
For this, we need the following non-local functional analytic results which formulates
the embedding of the space Xs

0 into the usual Lebesgue spaces. They are adapted
from Lemma 7-9 in [26].

Lemma 2.1. [26] Let s ∈ (0, 1), N > 2s,O be an open and bounded domain of
RN and K : RN \ {0} → (0,∞) be a measurable function satisfying the conditions
(1.5)–(1.7). Then the following assertions hold true:

(i) Xs
0 ⊂ Hs(RN) and in addition, there exist a positive constant c(θ) depending

on ϑ (which is given in (1.7) and c(θ,N, s,O) depending on θ,N, s and O
such that for any u ∈ Xs

0 ,

‖u‖Hs(O) 6 ‖u‖Hs(RN ) 6 c(θ)‖u‖Xs 6 c(θ,N, s,O)‖u‖Xs
0
;

(ii) Let k(x) = |x|−(N+2s). Then Xs
0 = {u ∈ Hs(RN) : u = 0 a.e. in RN \ O};

(iii) The embedding Xs
0 →֒ Lq(O) is continuous for any q ∈ [2, 2∗s];

(iv) If O has a Lipschitz boundary, then the embedding Xs
0 →֒ Lq(O) is compact

whenever q ∈ [2, 2∗s).

Remark 1. The compact embedding is closely related to the regularity of the
boundary of state space O. As in [26], the Lipschitz boundary in Lemma 2.1 (iv)
can be weakened to the continuous boundary, based on [10, Theorem 6]. A simple
example of domain with continuous boundary is the ball in RN and its complement.

2.2. The eigenvalues and eigenfunctions of the non-local operator LK.

For our purpose, we need to consider the following eigenvalue problem

(2.8)

{

LK = λu, in O;

u = 0, in RN \ O,
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where s ∈ (0, 1), N > 2s, O is an open and bounded domain of RN and K satisfies
(1.5)–1.7). More precisely, the problem (2.8) is understood in the weak framework,
which is rephrased as the following eigenvalue problem: Finding u ∈ Xs

0 , such that

(2.9)

ˆ

R2N

(u(x)− u(y)(h(x)− h(y))K(x− y) dx dy = λ

ˆ

O

u(x)h(x) dx, ∀ h ∈ Xs
0 .

The following results, which are adapted from [25], are concerning with the eigen-
value and the corresponding eigenfunction of the problem (2.8 ) (in fact, of its weak
version (2.9)).

Lemma 2.2. ([25]) Let s ∈ (0, 1), N > 2s,O be an open and bounded domain
of RN and K : RN \{0} → (0,∞) be a measurable function satisfying the conditions
(1.5)–(1.7). Then the following assertions hold true:

(i) The first eigenvalue can be characterized as follows

λ1 = min
u∈Xs

0
\{0}

´

R2N |u(x)− u(y)|2K(x− y) dx dy
´

O
|u(x)|2dx

.

Moreover, there exists a non-negative eigenfunction e1 ∈ Xs
0 corresponding

to λ1 with ‖e1‖L2(O) = 1, such that

λ1 =

ˆ

R2N

|e1(x)− e1(y)|
2K(x− y) dx dy.

(ii) The problem (2.9) has a family of eigenfunctions {ej}j∈N such that {ej}j∈N
is an orthonormal basis of L2(O) and an orthonormal basis of Xs

0 , and the
corresponding eigenvalues {λj}j∈N satisfies

0 < λ1 6 λ2 6 . . . 6 λj → ∞, as j → ∞.

Moreover, each eigenvalue λj has finite multiplicity.

Moreover, for any j ∈ N, the eigenvalues can be characterized as follows:

λk+1 = min
u∈Pk+1\{0}

´

R2N |u(x)− u(y)|2K(x− y) dx dy
´

O
|u(x)|2 dx

,

where Pk+1 = {u ∈ Xs
0 : 〈u, ej〉Xs

0
= 0, ∀j = 1, 2, . . . , k}. In addition, for any k ∈ N,

there exists a non-negative eigenfunction ek+1 ∈ Pk+1 corresponding to the eigenvalue
λk+1 with ‖ek+1‖L2(O) = 1, such that

(2.10) λk+1 =

ˆ

R2N

|ek+1(x)− ek+1(y)|
2K(x− y) dx dy.

Throughout this paper, we assume that s ∈ (0, 1) and N > 2s.

2.3. Pullback attractor for random cocycle. In this section, we present
the notion of pullback attractor and its existence result for the random cocycle. The
reader is referred to [1, 3, 5, 4, 23, 28, 27] for more details.

Let (X, dX) be a Polish spaces (completely separable metric space) with the σ-
algebras B(X) of Borel subsets. Let (Ω,F , P ) be a probability space on which there is
a (B(R)×F ,F)-measurable mapping ϑt : R×Ω → Ω such that ϑ0 = I, ϑt+τ = ϑt◦ϑτ
and ϑtP = P for all t, τ ∈ R. The quadruple (Ω,F , P, {ϑt}t∈R) is called a metric (or
measurable) dynamical system (briefly, MDS ϑ).

Let R+ = {t ∈ R : t > 0} and 2X be the collection of all subsets of X.
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Definition 2.3. Let D : R × Ω → 2X\∅; D : (τ, ω) → D(τ, ω) ∈ 2X be a set-
valued mapping. We say D : (τ, ω) → D(τ, ω) is measurable with respect to F
(briefly, measurable) in X if for every fixed x ∈ X and τ ∈ R, the mapping

ω → dX(x,D(τ, ω)) = inf
z∈D(τ,ω)

dX(x, z)

is (F ,B(R))-measurable. If D is measurable, then the family of its images D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} is also called a random set. If for every fixed τ ∈ R
and ω ∈ Ω, the image D(τ, ω) is closed (resp. compact) in X, then the family
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} is called a closed (resp. compact) random set in X.

Definition 2.4. A family of single-valued mappings ϕ : R+ × R × Ω × X →
X, (t, τ, ω, x) 7→ ϕ(t, q, ω, x) is called a random cocycle on X over an MDS ϑ if for all
s, t ∈ R+, τ ∈ R and ω ∈ Ω, the following statements are satisfied:

• ϕ(., τ, ., .) : R+ × Ω×X → X is (B(R+)×F × B(X),B(X))-measurable;
• ϕ(0, τ, ω, .) is the identity on X;
• ϕ(t+ s, τ, ω, .) = ϕ(t, τ + s, ϑsω, ϕ(s, τ, ω, .)).

A random cocycle ϕ is said to be continuous in X if the mapping ϕ(t, τ, ω, .) : X → X

is continuous for each t ∈ R+, τ ∈ R and ω ∈ Ω.

Let D a collection of some families of nonempty subsets of X, parameterized by
the time τ and the sample ω such that D = {D = {∅ 6= D(τ, ω) ∈ 2X : τ ∈ R, ω ∈
Ω}}.

Definition 2.5. Let K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then K is called a D-
pullback absorbing set of the cocycle ϕ over an MDS ϑ in X if for every τ ∈ R, ω ∈ Ω
and D ∈ D , there exists an absorbing time T = T (τ, ω,D) > 0 such that

ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)) ⊆ K(τ, ω) for all t > T.

Furthermore, if K is a random set, then K is called a D-pullback random absorbing
set in X.

Definition 2.6. A family of sets A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called
a D-pullback attractor for the cocycle ϕ over an MDS ϑ in X if the next three
statements hold:

• A is a compact random set in X;
• A is invariant, that is, for every τ ∈ R and ω ∈ Ω, ϕ(t, τ, ω,A(τ, ω)) =
A(τ + t, ϑtω), ∀ t > 0;

• A is attracting in X, namely, for every τ ∈ R and ω ∈ Ω and D ∈ D,

lim
t→∞

dist(ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)),A(τ, ω)) = 0,

where dist is the Hausdorff semi-metric in 2X with dist(A,B) = supx∈A infy∈B
d(x, y) for A,B ∈ 2X .

If in addition, ϕ(t, τ, ω, .) maps X into Y (Y is another Polish space) for every t >

0, τ ∈ R and ω ∈ Ω, and the following conditions are satisfied:

• A is a compact random set in Y ;
• A is attracting in Y , namely, for every τ ∈ R and ω ∈ Ω and D ∈ D,

lim
t→∞

distY (ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)),A(τ, ω)) = 0,

then the family A is called a D-pullback (X, Y ) attractor (briefly,a D-pullback
attractor in Y ).
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We note that the attracting in Definition 2.6 is called pullback attraction, which
implies the forward attraction in probability:

lim
t→∞

dist(ϕ(t, τ, ω,D(τ, ω)),A(τ + t, ϑtω)) = 0.

As for the attractor with forward attraction of point-wise convergence, the reader is
referred to [6, 15, 16].

Definition 2.7. The cocycle ϕ over an MDS ϑ is said to be D-pullback asymp-
totically compact in X if for every τ ∈ R, ω ∈ Ω, the sequence

{ϕ(tn, τ − tn, ϑ−tnω, xn)}
∞
n=1 is precompact in X,

whenever tn → ∞ and xn ∈ D(τ − tn, ϑ−tnω) with D ∈ D.
If in addition, ϕ(t, τ, ω, .) maps X into Y for every t > 0, τ ∈ R and ω ∈ Ω, and

the sequence

{ϕ(tn, τ − tn, ϑ−tnω, xn)}
∞
n=1 is precompact in Y,

whenever tn → ∞ and xn ∈ D(τ−tn, ϑ−tnω) with D ∈ D, then ϕ is called D-pullback
asymptotically compact from X to Y .

The following existence result for a pullback attractor for a continuous ran-
dom cocycle can be founded in [28, 27]. For the existence of pullback attractor
in the regular space, we may refer to [34]. We first recall that the a collection D

of some families of non-empty subsets of X is called inclusion closed if whenever
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with D′(τ, ω) ⊂ D(τ, ω) for each τ ∈ R and
ω ∈ Ω, then the family = D′ = {D′(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Note that the
inclusion closed collection D is also called for short an IC system which was first
introduced in [11].

Theorem 2.8. [34] Suppose ϕ is a continuous random cocycle on X over an
MDS ϑ. Let the collection D be inclusion closed and Y be another Polish space.
Assume that

(i) ϕ has a closed D-pullback random absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D in X;

(ii) ϕ is D-pullback asymptotically compact in X.

Then the random cocycle ϕ admits a unique D-pullback attractor A = {A(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D, where

A(τ, ω) =
⋂

s>0

⋃

t>s

ϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
X

.

If in addition, ϕ(t, τ, ω, .) maps X into Y for every t > 0, τ ∈ R and ω ∈ Ω, and
ϕ is D-pullback asymptotically compact from X to Y , then the family A is also a
D-pullback attractor in Y .

If the target space is a uniformly convex Banach space, such as the Sobolev spaces,
the asymptotical compactness is equivalent to the flattening condition. Precisely we
have

Theorem 2.9. [14] Suppose that X is a uniformly convex Banach space, then
ϕ is D-pullback asymptotically compact X if and only if ϕ satisfies the D-flattening
condition: For every τ ∈ R, ω ∈ Ω and D ∈ D, there exist T = T (τ, ω,D, ε) > 0 and
a finite dimensional space X1 of X such that for a bounded projector P : X → X1,

P (ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)) is bounded in X,
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and

‖(I − P )(ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω))‖X 6 ε,

for all t > T .

3. Random cocycle for the stochastic non-local

integro-differential equation

In what follows, we consider the classic Wiener probability space (Ω,F , P ), where
Ω = {ω ∈ C(R,R) : ω(0) = 0} with the compact-open topology, F is its Borel σ-
algebra, P is the Wiener measure on (Ω,F). Then the Brownian motion is identified
as W (t) = W (t, ω) = ω(t). Define a mapping ϑt : Ω × R → Ω such that ϑtω(.) =
ω(t + .) − ω(t), ∀ t ∈ R. Then the quadruple form (Ω,F , P, {ϑt}t∈R) is a metric
dynamical system (cf. [1]).

In this section, we will show the existence of random cocycle for the non-autonomous
non-local equations on O, driven by an additive noise,

du

dt
+ LKu = F (t, x, u) + g(t, x) + φ(x)Ẇ (t), t > τ, τ ∈ R,(3.1)

with the homogeneous boundary condition

u(t, x) = 0, t > τ, x ∈ RN \ O,(3.2)

and the initial condition

u(τ, x) = uτ , x ∈ O,(3.3)

where τ ∈ R, g ∈ L2
loc(R, L

2(O)) and LK is the non-local operator with the kernel
K satisfying (1.5)–(1.7). The nonlinear function F is continuous on R × O × R
satisfying the following conditions: For all t, u ∈ R and x ∈ O,

F (t, x, u)u 6 −α|u|p + ψ1(t, x),(3.4)

|F (t, x, u)| 6 ψ2(t, x)|u|
p−1 + ψ3(t, x),(3.5)

∂F

∂u
(t, x, u) 6 ψ4(t, x),(3.6)

where p > 2, ψ2, ψ4 ∈ L∞(O × R), ψ1 ∈ L1
loc
(R, L1(O)) ∩ L

p

2

loc
(R, L

p

2 (O)), ψ3 ∈
L2

loc
(R, L2(O)). The noise coefficient is a deterministic function on O with

φ ∈ Xs
0 ∩ L

∞(O), LKφ ∈ L2(O).(3.7)

Then by the interpolation inequality, we immediately have φ ∈ Lr(O) for any 2 6 r 6
∞. For the non-autonomous terms g, ψ1 and ψ3, we impose the following integrability
condition: For every τ ∈ R,

ˆ τ

−∞

eλ1r
(

‖g(r, .)‖2 + ‖ψ1(r, .)‖1 + ‖ψ1(r, .)‖
p

2
p

2

+ ‖ψ3(r, .)‖
2
)

dr < +∞,(3.8)

where λ1 is the first eigenvalue of the non-local operator LK .
Thanks to the Brownian motion W (t) is not differentiable for all most every

t ∈ R, the stochastic equation needs to be transformed into an equation with random
coefficient, usually by an Ornstein–Uhlenbeck process over (Ω, P,F , {ϑt}t∈R), which
is a stationary process

y(t, ω) = y(ϑtω) = −

ˆ 0

−∞

eξϑtω(ξ) dξ, t ∈ R,(3.9)
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satisfying the stochastic differential equation:

dy(ϑtω) + y(ϑtω) dt = dW (t).

Moreover, for any s, t ∈ R,

y(t, ϑsω) = y(t+ s, ω), P-a.s.

Note that there exists the exceptional set which may be a priori depending on t, s.
Indeed, we suppose that y has a continuous modification. Once this modification
is chosen, the exceptional set is independent of t. On the other hand, it is known
from [1, 5, 4, 11] that there exits a ϑt-invariant set Ω̃ ⊆ Ω of full measure such that
the random variable |y(ω)| is tempered and y(ϑtω) is continuous in t for every fixed
ω ∈ Ω̃, and in addition, by Proposition 4.3.3 in [1], there exists a tempered variable
̺(ω) > 0 such that

|y(ω)|2 + |y(ω)|p + |y(ω)|2p−2 6 ̺(ω),(3.10)

where ̺(ω) satisfies, for all ω ∈ Ω̃,

̺(ϑtω) 6 ̺(ω)e
λ1
2
|t|, t ∈ R,(3.11)

where λ1 is the first eigenvalue of the non-local operator LK . Then it follows from
(3.10)–(3.11) that, for all ω ∈ Ω̃,

|y(ϑtω)|
2 + |y(ϑtω)|

p + |y(ϑtω)|
2p−2 6 ̺(ω)e

λ1
2
|t|, t ∈ R.(3.12)

In what follows, all arguments are understood to hold on this Ω̃, but for the sake of
simplicity we write Ω̃ as Ω.

Set z(ϑtω) = φ(x)y(ϑtω) and write v(t) = u(t) − z(ϑtω), where u(t) is the
solution to the equations (3.1)–(3.3). Note that the non-local operator LK is linear,
namely, LKv(x) = LKu(x) − LKz(ϑtω). Then the stochastic equations (3.1)–(3.3)
are transformed into a deterministic one with a parameter ω, namely, v(t) satisfies

dv

dt
+ LKv(x) = F (t, x, v + z(ϑtω)) + g(t, x) + z(ϑtω)−LKz(ϑtω),(3.13)

with the homogeneous boundary condition

v(t, x) = 0, t > τ, x ∈ RN \ O,(3.14)

and the initial condition

v(τ, x) = vτ = uτ − z(ϑτω), x ∈ O.(3.15)

By a Galerkin method, similar to [29], one can prove that if F satisfies (3.4)–
(3.6), then in the case of a bounded domain with Dirichlet boundary condition, for
every ω ∈ Ω and τ ∈ R, and for vτ ∈ L2, the problem (3.13)–(3.15) possesses a
unique solution v(., τ, ω, vτ) ∈ C([τ,∞), L2(O)) ∩ L2((τ, T ), Xs

0) ∩ L
p((τ, T ), Lp(O))

with v(τ, τ, ω, vτ) = vτ for all T > τ . Furthermore, this solution operator v is
continuous from L2(O) to L2(O) in vτ and measurable in ω. Let u(t, τ, ω, uτ) =
v(t, τ, ω, vτ)+ z(ϑtω). Then formally the process u is the continuous and measurable
solution of the problem (3.1)–(3.3) in L2(O).

Given t ∈ R+, τ ∈ R, ω ∈ Ω and uτ ∈ L2(O), define

ϕ(t, τ, ω, uτ) = u(t+ τ, τ, ϑ−τω, uτ) = v(t+ τ, τ, ϑ−τω, vτ ) + z(ϑtω),(3.16)

where uτ = vτ + z(ω). Then the random cocycle ϕ(t, τ, ., uτ) is (F ,B(L2(O)))-
measurable, and in addition the mapping ϕ(t, τ, ω, .) : L2(O) → L2(O) is continuous
with respect to the initial datum for every t ∈ R+, τ ∈ R and ω ∈ Ω. Hence, ϕ is



240 Wenqiang Zhao

a continuous random cocycle over the metric dynamical system (Ω,F , P, {ϑt}t∈R) in
L2(O).

From now on, we always suppose D is a collection of all families of non-empty
subsets D = {D(τ, ω) ⊂ L2(O) : τ ∈ R, ω ∈ Ω} such that for each τ ∈ R and ω ∈ Ω,

lim
t→∞

e−λ1t‖D(τ − t, ϑ−tω)‖
2 = 0,(3.17)

where ‖D‖ = sup{‖u‖ : u ∈ D} and λ1 is the first eigenvalue of the non-local operator
LK . Then it is obvious that D is inclusion closed.

Throughout this paper, we denote by (.,.) the inner product in L2, ‖.‖r the norm
of the space Lr, 1 6 r 6 ∞, and r = 2 by ‖.‖. In the subsequential discussions,
we use c to denote the generic positive constant which may depend on the constants
α, s, p, N, θ and ‖ψi‖∞, i = 2, 4.

4. Existence of pullback attractor in L
2(O)

In this section, we will derive some uniform estimates of the solutions of the
problem (3.1)–(3.3) when the initial datum belongs to D ∈ D and the time t is large
enough, which are needed to prove the existence of a D-pullback random absorbing
set and the pullback asymptotical compactness of ϕ defined by (3.16) in L2(O).

Lemma 4.1. Suppose that F satisfies (3.4)–(3.5) and D is defined by (3.17),
and in addition φ ∈ Lp(O) ∩ Xs

0 and (3.8) holds. Let τ ∈ R, ω ∈ Ω and D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with uτ−t ∈ D(τ − t, ϑ−tω). Then there exists a
constant T = T (τ, ω,D) > 1 such that for all t > T , the solution u of problem
(3.1)–(3.3) satisfies

‖u(σ, τ − t, ϑ−τω, uτ−t)‖
2 6 c(1 + C(τ, ω)), σ ∈ [τ − 1, τ ],(4.1)

and
ˆ τ

τ−t

eλ1(r−τ)(‖v(r)‖2Xs
0
+ ‖v(r)‖pp) dr 6 c(1 + C(τ, ω)),(4.2)

where c > 0 is a deterministic constant and

C(τ, ω) , ̺(ω) +

ˆ 0

−∞

eλ1r(‖g(r + τ, .)‖2 + ‖ψ1(r + τ, .)‖1 + ‖ψ3(r + τ, .)‖2) dr.

Proof. Using the test function v in (3.13), we obtain

1

2

d

dt
‖v‖2 +

ˆ

R2N

|v(x)− v(y)|2K(x− y) dx dy

=

ˆ

O

F (t, x, v + z(ϑtω))v dx+

ˆ

O

g(t, x)v dx+

ˆ

O

z(ϑtω)v dx

−

ˆ

R2N

y(ϑtω)(φ(x)− φ(y))(v(x)− v(y))K(x− y) dx dy.(4.3)

We now estimate every term on the right hand side of (4.3). First for the nonlinearity,
in view of (3.4) and (3.5), by using Young inequality repeatedly, we have

F (t, x, v + z(ϑtω))v = F (t, x, u)u− F (t, x, u)z(ϑtω)

6 −α|u|p + ψ1 + ψ2 |u|p−1|z(ϑtω)|+ ψ3|z(ϑtω)|
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6 −
1

2
α|u|p + ψ1 + 2p−1ψ

p
2 |z(ϑtω)|

p + ψ3|z(ϑtω)|

6 −
1

2p
α|v|p + (

1

2
α + 2p−1ψ

p
2)|z(ϑtω)|

p + |z(ϑtω)|
2 + ψ1 + |ψ3|

2,(4.4)

where we used the inequality |a+ b|r > 21−r|a|r − |b|r for any r > 1 in the first term
of the last inequality on the right hand side of (4.4). By (3.7), we deduce from (4.4)
that

ˆ

O

F (t, x, u)v dx

6 −
α

2p
‖v‖pp + c(|y(ϑtω)|

2 + |y(ϑtω)|
p) + ‖ψ1(t, .)‖1 + ‖ψ3(t, .)‖

2.(4.5)

On the other hand, by Young inequality, along with φ ∈ Xs
0 , we have

∣

∣

∣

ˆ

R2N

y(ϑtω)(φ(x)− φ(y))(v(x)− v(y))K(x− y) dx dy
∣

∣

∣

6
1

8

ˆ

R2N

|v(t)(x)− v(t)(y)|2K(x− y) dx dy

+ 2|y(ϑtω)|
2

ˆ

R2N

|φ(x)− φ(y)|2K(x− y) dx dy

6
1

8

ˆ

R2N

|v(t)(x)− v(t)(y)|2K(x− y) dx dy + c|y(ϑtω)|
2,(4.6)

where c = c(‖φ‖Xs
0
) > 0. In addition, by g ∈ L2

loc(R, L
2(O)), we infer that

∣

∣

∣

ˆ

O

g(t, x)v dx+

ˆ

O

z(ϑtω)v dx
∣

∣

∣
6
λ1

4
‖v‖2 + c‖g(t, .)‖2 + c|y(ϑtω)|

2,(4.7)

where λ1 is the first eigenvalue of the non-local operator LK and c = c(λ1, ‖φ‖). By
a combination of (4.5) and (4.6)–(4.7) into (4.3), it follows that

1

2

d

dt
‖v‖2 +

7

8

ˆ

R2N

|v(t)(x)− v(t)(y)|2K(x− y) dx dy +
α

2p
‖v‖pp

6
λ1

4
‖v‖2 + J(ϑtω) + ‖ψ1(t, .)‖1 + ‖ψ3(t, .)‖

2 + c‖g(t, .)‖2.(4.8)

Using Lemma 2.2 (i), we have

7

8

ˆ

R2N

|v(t)(x)− v(t)(y)|2K(x− y) dx dy

>
1

8

ˆ

R2N

|v(t)(x)− v(t)(y)|2K(x− y) dx dy +
6

8
λ1‖v‖

2

=
1

8
‖v‖Xs

0
+

3

4
λ1‖v‖

2.(4.9)

Consequently, by (4.8) and (4.9), we derive the energy inequality:

d

dt
‖v‖2 + λ1‖v‖

2 +
1

4
‖v‖2Xs

0
+

α

2p−1
‖v‖pp

6 J(ϑtω) + 2‖ψ1(t, .)‖1 + 2‖ψ3(t, .)‖
2 + 2c‖g(t, .)‖2,(4.10)
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where J(ϑtω) , c(|y(ϑtω)|
2+ |y(ϑtω)|

p) with c = c(α, p, ‖φ‖, ‖φ‖p, ‖φ‖Xs
0
). Using the

classic Gronwall lemma to (4.10) over the interval [τ − t, σ] with σ ∈ [τ − 1, τ ] and
t > 1, meanwhile, using ϑ−τω to replace ω, we deduce that

‖v(σ)‖2 +

ˆ σ

τ−t

eλ1(r−σ)(
1

4
‖v(r)‖2Xs

0
+

α

2p−1
‖v(r)‖pp) dr

6 eλ1

(

e−λ1t‖vτ−t‖
2 +

ˆ τ

τ−t

eλ1(r−τ)J(ϑr−τω) dr

+ c

ˆ τ

τ−t

eλ1(r−τ)(‖g(r, .)‖2 + ‖ψ1(r, .)‖1 + ‖ψ3(r, .)‖
2) dr

)

,(4.11)

where v(.) is the abbreviation of v(., τ − t, ϑ−τω, vτ−t) and c = c(λ1). By (3.12) we

have J(ϑr−τω) 6 e
λ1
2
|r−τ |̺(ω), and thereby we may rewrite (4.11) as the following

‖v(σ)‖2 +

ˆ σ

τ−t

eλ1(r−σ)(
1

4
‖v(r)‖2Xs

0
+

α

2p−1
‖v(r)‖pp) dr

6 eλ1

(

e−λ1t‖vτ−t‖
2 + ̺(ω)

ˆ τ

τ−t

e
1

2
λ1(r−τ) dr

+ c

ˆ τ

τ−t

eλ1(r−τ)(‖g(r, .)‖2 + ‖ψ1(r, .)‖1 + ‖ψ3(r, .)‖
2) dr

)

6 eλ1

(

2e−λ1t(‖uτ−t‖
2 + ‖φ‖2|z(ϑ−tω)|

2) +
2

λ1
̺(ω)

+ c

ˆ 0

−∞

eλ1r(‖g(r + τ, .)‖2 + ‖ψ1(r + τ, .)‖1 + ‖ψ3(r + τ, .)‖2) dr
)

.(4.12)

By noting that uτ−t ∈ D(τ − t, ϑ−tω) and |y(ω)| is tempered, we have

2e−λ1t(‖uτ−t‖
2 + ‖φ‖2|y(ϑ−tω)|

2) → 0,(4.13)

as t→ ∞. By (3.8), deduce that c
´ 0

−∞
eλ1r(‖g(r+ τ, .)‖2 + ‖ψ1(r + τ, .)‖1 + ‖ψ3(r+

τ, .)‖2) dr < ∞. Therefore, it follows from (4.12) and (4.13) that, for every fixed
τ ∈ R, ω ∈ Ω and all uτ−t ∈ D(τ − t, ϑ−tω), there exists a T = T (τ, ω,D) > 1 such
that for all t > T ,

‖v(σ)‖2 +

ˆ σ

τ−t

eλ1(r−σ)

(

1

4
‖v‖2Xs

0
+

α

2p−1
‖v(r)‖pp

)

dr

6 c(1 + ̺(ω) +

ˆ 0

−∞

eλ1r(‖g(r + τ, .)‖2 + ‖ψ1(r + τ, .)‖1

+ ‖ψ3(r + τ, .)‖2) dr) , c(1 + C(τ, ω)),(4.14)

where

C(τ, ω) , ̺(ω) +

ˆ 0

−∞

eλ1r(‖g(r + τ, .)‖2 + ‖ψ1(r + τ, .)‖1 + ‖ψ3(r + τ, .)‖2) dr <∞.

On the other hand, in view of u(t) = v(t) + z(ϑtω) and by (3.12) it follows that, for
σ ∈ [τ − 1, τ ],

‖u(σ)‖2 6 2‖v(σ)‖2 + 2‖φ‖2|y(ϑσ−τω)|
2 6 2‖v(σ)‖2 + 2‖φ‖2̺(ω)e

λ1
2
|σ−τ |

6 2‖v(σ)‖2 + 2‖φ‖2̺(ω)e
λ1
2 .(4.15)

Then the needed estimates are derived from (4.14) and (4.15). �



Asymptotical dynamics for non-autonomous stochastic equations driven by. . . 243

In order to prove the asymptotical compactness, we first prove a convergence re-
sult of the solutions to the problem (3.1)–(3.3) if the initial data sequence is uniformly
bounded in L2(O).

Lemma 4.2. Suppose that {xn}n∈N ⊂ L2(O) is an initial values sequence with
supn ‖xn‖ 6 M for some fixed M > 0. Let τ ∈ R and ω ∈ Ω. Then for almost
every σ ∈ [τ − 1, τ ], there exits a fixed point uσ ∈ L2(O) such that the sequence
{un(σ, τ − 1, ω, xn)}n∈N has a convergent subsequence with un(σ, τ − 1, ω, xn) → uσ
in L2(O), where un(σ, τ−1, ω, xn) is a solution to (3.1)–(3.3) corresponding the initial
value xn.

Proof. Given n ∈ N, let vn(t) be a solution to (3.13)-(3.15) corresponding the
initial datum xn − φz(ϑτ−1ω) at the initial time τ − 1. From (4.10), we have for any
t > τ − 1,

d

dt
‖vn(t)‖

2+
1

4
‖vn(t)‖

2
Xs

0
6 2J(ϑtω) + 2‖ψ1(t, .)‖1 + 2‖ψ3(t, .)‖

2 + c‖g(t, .)‖2.(4.16)

Integrate (4.16) from τ − 1 to σ for σ ∈ [τ − 1, τ ] to find that

‖vn(σ, τ − 1, ω, xn − φz(ϑτ−1ω))‖
2 +

1

4

ˆ τ

τ−1

‖vn(r, τ − 1, ω, xn − φz(ϑτ−1ω))‖
2
Xs

0
dr

6 2(‖xn‖
2 + ‖φ‖2|z(ϑτ−1ω)|

2) + c

ˆ τ

τ−1

(J(ϑrω)

+ ‖g(r, .)‖2 + ‖ψ1(r, .)‖1 + ‖ψ3(r, .)‖
2) dr.(4.17)

Consider that g ∈ L2
loc(R, L

2(O)), φ ∈ Xs
0 , J(ϑrω) is continuous in r ∈ R and

un(t) = vn(t) + z(ϑtω). Then we deduce from (4.17) that for every σ ∈ [τ − 1, τ ],

‖un(σ, τ − 1, ω, xn)‖
2 6 C0(τ, ω),(4.18)

and
ˆ τ

τ−1

‖un(r, τ − 1, ω, xn)‖
2
Xs

0
dr 6 C0(τ, ω),(4.19)

where C0(τ, ω) < ∞ is a positive random constant independent of n. According to
(4.18), we have that for every σ ∈ [τ−1, τ ], there exist uσ ∈ L2(O) and a subsequence
(which is not relabeled) by a diagonal process such that

un(σ, τ − 1, ω, xn)⇀ uσ weakly in L2(O).(4.20)

In view of (4.19) we infer that

un(., τ−1, ω, xn) is unformly bounded with respect to n in L2(τ−1, τ ;Xs
0).(4.21)

But by Lemma 2.1 (iv), the embedding of Xs
0 →֒ L2(O) is compact and therefore

from (4.21), there is a subsequence (not labeled again) by a diagonal process such
that

{un(., τ − 1, ω, xn)}
∞
n=1 strongly converges in L2(τ − 1, τ ;L2(O)).

This along with (4.20) implies that for all most every σ ∈ [τ − 1, τ ],

un(σ, τ − 1, ω, xn) → uσ strongly in L2(O),(4.22)

which proves our claim. �

Based on the above lemma and in conjunction with the cocycle property of ϕ and
the continuity of solutions, we can prove the asymptotical compactness of random
cocycle ϕ in L2(O).
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Lemma 4.3. Suppose that the nonlinearity F satisfies (3.4)–(3.6) and D is de-
fined by (3.17), in addition φ ∈ Lp(O) ∩ Xs

0 and (3.8) holds. Then the random
cocycle ϕ defined by (3.16) is D-pullback asymptotically compact in L2(O), namely,
for every τ ∈ R and ω ∈ Ω, the sequence {ϕ(tn, τ−tn, ϑ−tnω, u0,n)}

∞
n=1 is precompact

in L2(O) whenever tn → ∞ and u0,n ∈ D(τ − tn, ϑ−tnω) with D ∈ D.

Proof. Given τ ∈ R, ω ∈ Ω and u0,n ∈ D(τ − tn, ϑ−tnω). By Lemma 4.1, we have

‖u(τ − 1, τ − tn, ϑ−τω, u0,n)‖
2 6 c(1 + C(τ, ω)),(4.23)

when n is large enough. We now put xn = u(τ −1, τ − tn, ϑ−τω, u0,n) and then utilize
Lemma 4.2 to find that there is a certain real number σ ∈ [τ − 1, τ ], uσ ∈ L2(O) and
up to a subsequence (not relabeled again) such that

u(σ, τ − 1, ϑ−τω, u(τ − 1, τ − tn, ϑ−τω, u0,n)) → uσ strongly in L2(O).(4.24)

Then (4.24) implies that

u(σ, τ − tn, ϑ−τω, u0,n) → uσ strongly in L2(O).(4.25)

Noting that

u(τ, τ − tn, ϑ−τω, u0,n) = u(τ, σ, ϑ−τω, u(σ, τ − tn, ϑ−τω, u0,n)),

and in conjunction with the continuity of solution in L2(O) with respect to the initial
data, we deduce that, for this fixed σ ∈ [τ − 1, τ ],

u(τ, τ − tn, ϑ−τω, u0,n) → u(τ, σ, ϑ−τω, uσ) strongly in L2(O).(4.26)

Consider that ϕ(tn, τ − tn, ϑ−tnω, u0,n) = u(τ, τ − tn, ϑ−τω, u0,n) and consequently ϕ
is asymptotically compact in L2(O). �

We next prove the existence of D-pullback absorbing set for the random cocycle
ϕ defined by (3.16) in L2(O).

Lemma 4.4. Suppose that the nonlinearity F satisfies (3.4)-(3.6) and D is de-
fined by (3.17), in addition φ ∈ Lp(O) ∩Xs

0 and (3.8) holds. Define

K(τ, ω) = {u ∈ L2(O) : ‖u‖2 6 c(1 + C(τ, ω))}, τ ∈ R, ω ∈ Ω,(4.27)

where C(τ, ω) is the same as Lemma 4.1. Then the family K = {K(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D is a closed and measurable D-pullback absorbing set in L2(O) for the random
cocycle ϕ defined by (3.16).

Proof. First, by (3.8) and the tempered property of ̺(ω), it is clear that for
each τ ∈ R and ω ∈ Ω, limt→∞ e−λ1tC(τ − t, ϑ−tω) = 0. Then by (3.17), the family
K ∈ D. On the other hand, for any x ∈ L2(O) and a fixed τ ∈ R, we have

dL2(O)(x,K(τ, ω)) = inf
z∈K(τ,ω)

dL2(O)(x, z) = ‖x‖+ (c(1 + C(τ, ω))
1

2

is (F ,B(R))-measurable as a random variable. Then the set-valued mapping K de-
fined by (4.27) is a closed random absorbing set in L2(O) in the sense of Definition 2.3,
which completes the proof. �

By Lemma 4.3 and 4.4, we are at the point to present the existence of D-pullback
attractor for the problem (3.1)–(3.3) in L2(O).

Theorem 4.5. Let s ∈ (0, 1) and N > 2s. Suppose that the nonlinearity F

satisfies (3.4)–(3.6) and D is defined by (3.17), in addition φ ∈ Lp(O)∩Xs
0 and (3.8)

holds. Then the random cocycle ϕ defined by (3.16) admits a unique D-pullback
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attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} in L2(O), where the component A(τ, ω) is
defined as

A(τ, ω) ,
⋂

s>0

⋃

t>s

ϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω)).

Proof. By Lemma 4.3 and Lemma 4.4, we get immediately from the fist part of
Theorem 2.8 that A is a D-pullback attractor for ϕ in L2(O). �

Remark 2. If in particular, the kernel K(x) = |x|−(N+2s), then as a direct
consequence of Theorem 4.5, we get that the fractional Lapacian model (1.9) admits
a unique pullback attractor in L2(O). The reader is referred to [29] for the studying
of (1.9) with multiplicative noise.

5. Regular dynamics in X
s

0

In order to derive the regular dynamics of solutions to (3.1)–(3.3) in the regular
space Xs

0 , it suffices to check that the cocycle is asymptotically compact in Xs
0 . There

are in general two ways to attack the regular problems. One is to use the spectrum
splitting (cf. [13]) and truncation estimate method (cf. [31]), and another is to prove
the continuity of solutions with respect to the initial datum in the corresponding
space (cf. [32, 30, 33]). In this paper, we adapt the spectrum splitting and truncation
method to cope with the non-local fractional equation (1.1), by which one of the
crucial keys is to check the flattening condition. For this purpose, we need to prove
a series of a priori estimates of solutions.

For convenience, we present the following lemma which is repeatedly used in what
follows.

Lemma 5.1. [32] Let y, g and h be tree nonnegative and locally integrable func-
tions on R such that dy

dt
is also locally integrable and

dy(t)

dt
+ νy(t) + g(t) 6 h(t), t ∈ R

for some constant ν ∈ R+. Then

(i) for arbitrary r > 0 and τ ∈ R,

y(τ) 6
1

r

ˆ τ

τ−r

eν(t−τ)y(t) dt+

ˆ τ

τ−r

eν(t−τ)h(t) dt;

(ii) for arbitrary r, ǫ > 0 and σ ∈ [τ − r, τ ],

y(σ) +

ˆ τ

τ−r

eν(t−τ)g(t) dt

6
eνr + 1

ǫ

ˆ τ

τ−r−ǫ

eν(t−τ)y(t) dt+ (eνr + 2)

ˆ τ

τ−r−ǫ

eν(t−τ)h(t) dt.

In particular, this holds for ν = 0.

5.1. A priori estimates of solutions. We now begin with a priori L2p−2-
estimate of solutions on the intervals [τ − 2, τ ].

Lemma 5.2. Suppose that (3.4)–(3.8) and D is defined by (3.17). Let τ ∈
R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with uτ−t ∈ D(τ − t, ϑ−tω). Then
there exist constants M = M(τ, ω) > 0 and T = T (τ, ω,D) > 3 such that for all
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t > T , the solution u of problem (3.13)–(3.15) satisfies

‖v(σ, τ − t, ϑ−τω, vτ−t)‖
p
p 6M(τ, ω), σ ∈ [τ − 2, τ ],(5.1)

and
ˆ τ

τ−2

‖v(ξ, τ − t, ϑ−τω, vτ−t)‖
2p−2
2p−2 dξ 6M(τ, ω),(5.2)

where vτ−t = uτ−t − z(ϑ−tω) and M(τ, ω) is a constant depending α, p, λ1, ‖φ‖,

‖φ‖2p−2, ‖LKφ‖, ‖ψ2‖∞, C(τ, ω),
´ τ

τ−3
‖g(ξ, .)‖2 dξ,

´ τ

τ−3
‖ψ1(ξ, .)‖

p

2
p

2

dξ and
´ τ

τ−3
‖ψ3(ξ, .)‖

2 dξ.

Proof. By (3.13), using the test function |v|p−2v, we have

1

p

d

dt
‖v‖pp + (LKv, |v|

p−2v) =

ˆ

O

F (t, x, u)|v|p−2v dx+

ˆ

O

g(t, x)|v|p−2v dx

+

ˆ

O

z(ϑtω)|v|
p−2vdx− (LKz(ϑtω), |v|

p−2v),(5.3)

where we can easily obtain

(LKv, |v|
p−2v) =

ˆ

R2N

(v(x)− v(y))(|v(x)|p−2v(x)− |v(y)|p−2v(y))K(x− y) dx dy

> c(p)

ˆ

R2N

|v(x)− v(y)|pK(x− y) dx dy > 0,(5.4)

and
ˆ

O

g(t, x)|v|p−2v dx+

ˆ

O

z(ϑtω)|v|
p−2v dx

6
α

2p+2
‖v‖2p−2

2p−2 + c(‖g(t, .)‖2 + |y(ϑtω)|
2),(5.5)

where c = c(p, α, ‖φ‖). It remains to estimate the nonlinearity and the last term on
the right hand side of (5.3). From (4.4), we infer that

F (t, x, v + z(ϑtω))v 6 −
1

2p
α|v|p + c|z(ϑtω)|

p + ψ1 + ψ3|z(ϑtω)|,(5.6)

where c = c(α, p, ‖ψ2‖∞). By using Young inequality repeatedly, we deduce from
(5.6) that

ˆ

O

F (t, x, u)|v|p−2v dx 6 −
α

2p+1
‖v‖2p−2

2p−2 + c‖v‖pp + c|y(ϑtω)|
2p−2

+ c(‖ψ1(t, .)‖
p

2
p

2

+ ‖ψ3(t, .)‖
2),(5.7)

where c = c(α, p, ‖ψ2‖∞, ‖φ‖2p−2). Indeed, to derive the estimate of the last term in
(5.7), we used

ˆ

O

ψ3|z(ϑtω)||v|
p−2dx 6 ‖ψ3(t, .)‖

2 +

ˆ

O

|z(ϑtω)|
2|v|2p−4 dx

6 ‖ψ3(t, .)‖
2 +

α

2p+3
‖v‖2p−2

2p−2 + c‖z(ϑtω)‖
2p−2
2p−2.



Asymptotical dynamics for non-autonomous stochastic equations driven by. . . 247

On the other hand, by using Young inequality again we get that

(LKz(ϑtω), |v|
p−2v)

=

ˆ

R2N

y(ϑt)(φ(x)− φ(y))(|v(x)|p−2v(x)− |v(y)|p−2v(y))K(x− y) dx dy

=

ˆ

R2N

y(ϑtω)(φ(x)− φ(y))|v(x)|p−2v(x)K(x− y) dx dy

−

ˆ

R2N

y(ϑtω)(φ(x)− φ(y))|v(y)|p−2v(y)K(x− y) dx dy.(5.8)

Thanks to LKφ ∈ L2, by Hölder inequality, we have

ˆ

R2N

y(ϑtω)(φ(x)− φ(y))|v(x)|p−2v(x)K(x− y) dx dy

6
{

ˆ

RN

(

ˆ

RN

y(ϑtω)(φ(x)− φ(y))K(x− y) dy
)2

dx
}

1

2
(

ˆ

O

|v(x)|2p−2 dx
)

1

2

6
α

2p+3
‖v‖2p−2

2p−2 + c|y(ϑtω)|
2.(5.9)

Hence, it follows from (5.8) and 5.9) that

−(LKz(ϑtω), |v|
p−2v) 6

α

2p+2
‖v‖2p−2

2p−2 + c|y(ϑtω)|
2.(5.10)

Then combine (5.3)–(5.5), (5.7) and (5.10) to find

d

dt
‖v‖pp +

α

2p+2
‖v‖2p−2

2p−2 6 c1(‖v‖
p
p + ‖g(t, .)‖2 + ‖ψ1(t, .)‖

p

2
p

2

+ ‖ψ3(t, .)‖
2

+ |y(ϑtω)|
2p−2 + |y(ϑtω)|

2),(5.11)

where the letter c1 = c1(α, p, ‖φ‖, ‖φ‖2p−2, ‖LKφ‖, ‖ψ2‖∞). By employing Lem-
ma 5.1(ii) with ν = 0, r = 2 and ǫ = 1, along with ω replaced by ϑ−τω, it follows
that for σ ∈ [τ − 2, τ ],

‖v(σ, τ − t, ϑ−τω, vτ−t)‖
p
p +

α

2p+2

ˆ τ

τ−2

‖v(ξ)‖2p−2
2p−2 dξ

6 2

ˆ τ

τ−3

‖v(ξ, τ − t, ϑ−τω, vτ−t)‖
p
p dξ + 3c1

ˆ τ

τ−3

‖v(ξ, τ − t, ϑ−τω, vτ−t)‖
p
p dξ

+ 3c1

ˆ τ

τ−3

(

‖g(ξ, .)‖2 + ‖ψ1(ξ, .)‖
p

2
p

2

+ ‖ψ3(ξ, .)‖
2

+ |y(ϑξ−τω)|
2p−2 + |y(ϑξ−τω)|

2
)

dξ

6 c

ˆ τ

τ−3

‖v(ξ, τ − t, ϑ−τω, vτ−t)‖
p
p dξ

+ c

ˆ τ

τ−3

(

‖g(ξ, .)‖2 + ‖ψ1(ξ, .)‖
p

2
p

2

+ ‖ψ3(ξ, .)‖
2
)

dξ

+ c

ˆ 0

−3

(

|y(ϑξω)|
2p−2 + |y(ϑξω)|

2
)

dξ.(5.12)
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By the continuity of y(ϑtω), in conjunction with ψ1 ∈ L
p/2
loc

(R, Lp/2(O)) and g, ψ3 ∈
L2

loc
(R, L2(O)), it is clear that, for every τ ∈ R and ω ∈ Ω,

ˆ τ

τ−3

(‖g(ξ, .)‖2 + ‖ψ1(ξ, .)‖
p

2
p

2

+ ‖ψ3(ξ, .)‖
2) dξ

+

ˆ 0

−3

(|y(ϑξω)|
2p−2 + |y(ϑξω)|

2) dξ < +∞.(5.13)

On the other hand, by (4.2) in Lemma 4.1, there exists T = T (τ, ω,D) > 3, such
that for all t > T ,

ˆ τ

τ−3

‖v(ξ, τ − t, ϑ−τω, vτ−t)‖
p
p dξ 6 c(1 + C(τ, ω))(5.14)

Then the results are derived from (5.12)–(5.14). �

Remark 3. From Lemma 5.2, we find that if the initial time goes to the negative
infinite, the solution u of problem (3.1)–(3.3) belongs to L2p−2

loc
(R, L2p−2(O)), which

is crucial for us to prove the bound of solutions in the regular space Xs
0 .

The following is concerned with a priori estimate of solutions in the Hilbert space
Xs

0 . Note that the conditions on the nonlinear function F and the non-autonomous
terms g, ψ1 and ψ3 are not added.

Lemma 5.3. Suppose that (3.4)–(3.8) and D is defined by (3.17). Let τ ∈
R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with uτ−t ∈ D(τ − t, ϑ−tω). Then
there exist constants M = M(τ, ω) > 0 and T = T (τ, ω,D) > 3 such that for all
t > T , the solution u of problem (3.13)–(3.15) satisfies

‖v(σ, τ − t, ϑ−τω, vτ−t)‖
2
Xs

0
6M(τ, ω), σ ∈ [τ − 1, τ ],

where vτ−t = uτ−t − z(ϑ−tω) and M(τ, ω) > 0 is a constant depending α, p, λ1,

‖φ‖, ‖φ‖2p−2, ‖LKφ‖, ‖ψ2‖∞, C(τ, ω),
´ τ

τ−3
‖ψ3(ξ, .)‖

2 dξ,
´ τ

τ−3
‖ψ1(ξ, .)‖

p

2
p

2

dξ and
´ τ

τ−3
‖g(ξ, .)‖2 dξ.

Proof. Using the test function LKv in (3.13), we get

1

2

d

dt
‖v‖2Xs

0
+ ‖LKv‖

2 = (F (t, x, v + z(ϑtω)),LKv) + (g(t, x),LKv)

+ (z(ϑtω),LKv)− (LKz(ϑtω),LKv)

6
1

2
‖LKv‖

2 + c‖u‖2p−2
2p−2 + c‖ψ3(t, .)‖

2 + ‖g(t, .)‖2

+ c‖z(ϑtω)‖
2 + ‖LKz(ϑtω)‖

2,

which implies that

d

dt
‖v‖2Xs

0
6 c(‖v‖2p−2

2p−2 + ‖ψ3(t, .)‖
2 + ‖g(t, .)‖2 + |z(ϑtω)|

2 + |y(ϑtω)|
2p−2).

Utilizing Lemma 5.1(ii) with ν = 0, r = 1 and ǫ = 1, we show for σ ∈ [τ − 1, τ ],

‖v(σ, τ − t, ϑ−τω, vτ−t)‖
2
Xs

0

6 c

ˆ τ

τ−2

‖v(ξ)‖2p−2
2p−2 dξ + c

ˆ τ

τ−3

(‖ψ3(ξ, .)‖
2 + ‖g(ξ, .)‖2) dξ

+ c

ˆ τ

τ−3

(|z(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ + 2

ˆ τ

τ−2

‖v(ξ)‖2Xs
0
dξ.
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By (4.2) and (5.2), we know that there exist constants T = T (τ, ω,D) > 3 and
M1(τ, ω) > 1 such that for all t > T ,

´ τ

τ−2
‖v(ξ)‖2p−2

2p−2 dξ 6M1(τ, ω) and
´ τ

τ−2
‖v(ξ)‖2Xs

0
dξ 6M1(τ, ω), respectively. And by (3.12), we have

ˆ τ

τ−3

(|z(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ 6 ̺(ω)

ˆ τ

τ−3

e−
1

2
λ1(ξ−τ) dξ 6 2̺(ω)λ−1

1 eλ1 .

Notice that g, ψ3 ∈ L2
loc(R, L

2(O)). Then we conclude the proof. �

For τ ∈ R, ω ∈ Ω, given v be the solution of the problem (3.13)–(3.15). Set
h = h(τ, ω) > 1. Let (v − h)+ = max{v − h, 0} and (v + h)− = min{v + h, 0}. In
order to derive the flattening condition, we need the following crucial estimate which
shows that the (2p− 2)-truncation of solutions on a finite integral interval converges
to zero if the initial time goes to the negative infinite and the eigenvalue of LK is
large enough.

Lemma 5.4. Suppose that that (3.4)–(3.8) hold. Given τ ∈ R, ω ∈ Ω, D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with uτ−t ∈ D(τ − t, ϑ−tω). Then for any ε > 0,

there exist constants h̃ = h̃(τ, ω, ε) > 1, N = N(τ, ω, ε) ∈ N and T = T (τ, ω,D) > 3
such that the solution v to the problem (3.13)–(3.15) satisfies that for all t > T and
k > N ,

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

Õ

∣

∣

∣
v(ξ, τ − t, ϑ−τω, τ − t, vτ−t)

∣

∣

∣

2p−2

dx dξ 6 cε,(5.15)

where Õ = {x ∈ O : |v(ξ, τ − t, ϑ−τω, vτ−t)| > h̃, ξ ∈ [τ − 1, τ ]} and λk+1 is the
eigenvalue of non-local operator LK , c > 0 is a deterministic constant independent
of h̃, τ and ω, vτ−t = uτ−t − z(ϑ−tω) and p > 2.

Proof. It is clear that (5.15) holds true for p = 2, by means of (4.14). Without
loss of generality, we let p > 2 in what follows. Given τ ∈ R and ω ∈ Ω fixed, we first
replace ω by ϑ−τω in (3.13) to see that v = v(ξ) = v(ξ, τ−t, ϑ−τω, vτ−t), ξ ∈ [τ−1, τ ]
is a solution to the stochastic differential equation at the sample ϑ−τω with the initial
datum vτ−t at the initial time τ − t:

dv

dξ
+ LKv(x) = F (ξ, x, v + z(ϑξ−τω)) + g(ξ, x) + z(ϑξ−τω)− LKz(ϑξ−τω),(5.16)

with the initial datum vτ−t = uτ−t − z(ϑ−tω). For every τ ∈ R, ω ∈ Ω and all
ξ ∈ [−1, 0], let the large constant

h = h(τ, ω) > ℵ(ω) = sup
ξ∈[−1,0]

{‖φ‖∞|y(ϑξω)|},(5.17)

where ℵ(ω) is finite by the continuity of y(ϑξω) and φ ∈ L∞. Indeed, by (3.12), we

have |y(ϑξω)| 6
√

̺(ω)e
1

4
λ1 <∞, for any ξ ∈ [−1, 0].

Using the test function |(v− h)+|
p−2(v− h)+ = (v− h)p−1

+ in (5.16), we get that,
for every ξ ∈ [τ − 1, τ ],

1

p

d

dξ

ˆ

O

(v − h)p+dx+ (LKv(x), (v − h)p−1
+ ) =

ˆ

O

F (ξ, x, u)(v − h)p−1
+ dx

+

ˆ

O

(g(ξ, x) + z(ϑξ−τω))(v − h)p−1
+ ) dx− (LKz(ϑξ−τω), (v − h)p−1

+ ).(5.18)
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Recall from Lemma 6.3 in [2] that, for any d > 2, there exists a constant cN,d > 0
such that

(|x|d−2x− |y|d−2y).(x− y) > cN,d|x− y|d,(5.19)

where “.” is the inner product in RN .
We begin with the estimate of the second term on the left of (5.18). Indeed, we

have

(LKv(x), (v − h)p−1
+ )

=

ˆ

R2N

(v(x)− v(y))((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )K(x− y) dx dy.(5.20)

Let R2N = S1 ∪ S2 ∪ S3 ∪ S4, where

S1 , {(x, y) ∈ R2N : v(x) > h, v(y) > h, x, y ∈ RN};

S2 , {(x, y) ∈ R2N : v(x) 6 h, v(y) 6 h, x, y ∈ RN};

S3 , {(x, y) ∈ R2N : v(x) > h, v(y) 6 h, x, y ∈ RN};

S4 , {(x, y) ∈ R2N : v(x) 6 h, v(y) > h, x, y ∈ RN}.

Then by (5.19), it is clear that
ˆ

S1

(v(x)− v(y))((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )K(x− y) dx dy

=

ˆ

S1

((v(x)− h)+ − (v(y)− h)+)((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )

·K(x− y) dx dy

>

ˆ

S1

|(v(x)− h)+ − (v(y)− h)+|
pK(x− y) dx dy > 0.(5.21)

Since (v(x)− h)+ = (v(y)− h)+ = 0 on S2, then
ˆ

S2

(v(x)− v(y))((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )K(x− y) dx dy = 0.(5.22)

Noticing that (v(x) − v(y))((v(x)− h)p−1
+ − (v(y) − h)p−1

+ ) = ((v(x) − h) − (v(y)−
h))(v(x)− h)p−1

+ > 0 on S3, we have
ˆ

S3

(v(x)− v(y))((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )K(x− y) dx dy > 0,(5.23)

and similarly , we also have
ˆ

S4

(v(x)− v(y))((v(x)− h)p−1
+ − (v(y)− h)p−1

+ )K(x− y) dx dy > 0.(5.24)

From (5.20)–(5.24), we thereby obtain that

(LKv(x), (v − h)p−1
+ ) > 0.(5.25)

We then estimate the nonlinearity in (5.18). For convenience, we write Oh =
{x ∈ O : |v(ξ, τ − t, ϑ−τω, vτ−t)| > h} with ξ ∈ [τ − 1, τ ].

Thanks to v > h, in conjunction with (5.17), it follows that

u(ξ) = v(ξ) + z(ϑξ−τω) > v(ξ)− ℵ(ω) > v(ξ)− h > 0,
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for ξ ∈ [τ − 1, τ ], and consequently by (3.4), we have

F (ξ, x, u) 6 −αup−1 +
ψ1(x)

u
, x ∈ Oh.(5.26)

By the inequality |u|p−1 > 22−p|v|p−1 − |z(ϑξ−τω)|
p−1, the result (5.26) is rephrased

F (ξ, x, u) 6 −
α

2p−2
vp−1 + |z(ϑξ−τω)|

p−1 +
ψ1(x)

v − h
, x ∈ Oh.(5.27)

Note that

vp−1 > vp−2(v − h) > hp−2(v − h), x ∈ Oh.(5.28)

Then by a splitting of the term − α
2p−2 v

p−1 into two 1
2
-terms, with the one of them

using (5.28), we get

F (ξ, x, u) 6 −
α

2p−1
hp−2(v − h)+ −

α

2p−1
vp−1

+ |z(ϑξ−τω)|
p−1 +

ψ1(x)

(v − h)+
, x ∈ Oh,(5.29)

by which, the nonlinearity in (5.16) is estimated as
ˆ

O

F (ξ, x, u)(v − h)p−1
+ dx 6 −

α

2p−1
hp−2

ˆ

O

(v − h)p+ dx−
α

2p−1

ˆ

O

vp−1(v − h)p−1
+ dx

+

ˆ

O

|z(ϑξ−τω)|
p−1(v − h)p−1

+ dx+

ˆ

O

ψ1(x)(v − h)p−2
+ dx,(5.30)

where we note that

α

2p−1

ˆ

O

vp−1(v − h)p−1
+ dx >

α

2p−1

ˆ

O

(v − h)2p−2
+ dx,(5.31)

and by Young inequality and the condition φ ∈ L2p−2, we get
ˆ

O

|z(ϑξ−τω)|
p−1(v − h)p−1

+ dx

6
α

2p

ˆ

O

(v − h)2p−2
+ dx+ c‖φ‖2p−2

2p−2|y(ϑξ−τω)|
2p−2,(5.32)

and by the condition ψ1 ∈ L
p

2

loc
(R, L

p

2 ) and the assumption h > 1, we have
ˆ

O

ψ1(ξ, x)(v − h)p−2
+ dx 6

α

2p
hp−2

ˆ

O

(v − h)p+ dx+
( α

2p
hp−2

)− p−2

2

‖ψ1(ξ, .)‖
p

2
p

2

6
α

2p
hp−2

ˆ

O

(v − h)p+ dx+
( α

2p

)− p−2

2

‖ψ1(ξ, .)‖
p

2
p

2

,(5.33)

where c = c(p, α) independent of h, τ and ω. Combine (5.31)–(5.33) into the right
side of (5.30) to yield

ˆ

O

F (ξ, x, u)(v − h)p−1
+ dx 6 −

α

2p
hp−2

ˆ

O

(v − h)p+ dx−
α

2p

ˆ

O

(v − h)2p−2
+ dx

+ c(|y(ϑξ−τω)|
2p−2 + ‖ψ1(ξ, .)‖

p

2
p

2

),(5.34)

where c = c(α, p, ‖φ‖, ‖φ‖2p−2). This completes the estimate of the nonlinear term
in (5.18).
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The second term on the right hand side of (5.16) is bounded by
ˆ

RN

(g(ξ, x) + z(ϑξ−τω))(v(ξ)− h)p−1
+ dx

6
α

2p+2

ˆ

O

(v − h)2p−2
+ dx+ c‖g(ξ, .)‖2 + c|y(ϑξ−τω)|

2,(5.35)

where c = c(α, p, ‖φ‖) For the last term in (5.16), thanks to LKφ ∈ L2(O), we have

(LKz(ϑξ−τω), (v − h)p−1
+ ) =

ˆ

R2N

y(ϑξ−τω)(φ(x)− φ(y))((v(x)− h)p−1
+

− (v(y)− h)p−1
+ ))K(x− y) dx dy

=

ˆ

R2N

y(ϑξ−τω)(φ(x)− φ(y))(v(x)− h)p−1
+ K(x− y) dx dy

−

ˆ

R2N

y(ϑξ−τω)(φ(x)− φ(y))(v(y)− h)p−1
+ K(x− y) dx dy.(5.36)

By Hölder inequality,
ˆ

R2N

(y(ϑξ−τω)(φ(x)− φ(y))(v(x)− h)p−1
+ K(x− y) dx dy

6
{

ˆ

RN

(

ˆ

RN

y(ϑξ−τω)(φ(x)− φ(y))K(x− y) dy
)2

dx
}

1

2

·
{

ˆ

RN

(v(x)− h)2p−2
+ dx

}
1

2

6
α

2p+3

ˆ

O

(v − h)2p−2
+ dx+ c|y(ϑξ−τ)|

2‖LKφ‖
2,(5.37)

and for the second term in (5.36), we have a similar estimate. Then by (5.36) and
(5.37) we get

(LKz(ϑξ−τω), (v − h)p−1
+ ) 6

α

2p+2

ˆ

O

(v − h)2p−2
+ dx+ c|y(ϑξ−τ)|

2,(5.38)

where c = c(α, p, ‖LKφ‖).
Therefore, by a combination of (5.25), (5.34), (5.35) and (5.38) into (5.18), we

finally find that

d

dξ

ˆ

O

(v − h)p+ dx+ χ(h)

ˆ

O

(v − h)p+ +
α

2p+1

ˆ

O

(v − h)2p−2
+ dx

6 c(|y(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2 + ‖g(ξ, .)‖2 + ‖ψ1(ξ, .)‖
p

2
p

2

),(5.39)

where χ(h) = α
2p−1h

p−2 ↑ ∞ as h→ ∞, and the positive constant c is independent of
h. By employing Gronwall lemma over the interval [τ − 1, τ ], we deduce that

ˆ τ

τ−1

eχ(h)(ξ−τ)

ˆ

O

(v(ξ)− h)2p−2
+ dx dξ 6 ce−χ(h)‖v(τ − 1)‖pp

+ c

ˆ τ

τ−1

eχ(h)(ξ−τ)(|y(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ

+ c

ˆ τ

τ−1

eχ(h)(ξ−τ)(‖g(ξ, .)‖2 + ‖ψ1(ξ, .)‖
p

2
p

2

) dξ.(5.40)



Asymptotical dynamics for non-autonomous stochastic equations driven by. . . 253

By (5.1), there exists a constant T = T (τ, ω,D) > 3, such that for all t > T ,
‖v(ξ)‖pp 6M(τ, ω) for ξ ∈ [τ − 2, τ ], and thereby we have

ce−χ(h)‖v(τ − 1)‖pp 6 cM(τ, ω)e−χ(h) 6
ε

4
,(5.41)

for any h > h1 with h1 = h1(τ, ω, ε). By (3.12), we get

c

ˆ τ

τ−1

eχ(h)(ξ−τ)(|y(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ 6 c̺(ω)

ˆ τ

τ−1

e(χ(h)−
1

2
λ1)(ξ−τ) dξ

6
c̺(ω)

χ(h)− 1
2
λ1

6
ε

4
,(5.42)

for any h > h2 with some h2 = h2(τ, ω, ε). We next cope with the third term on the
right hand side of (5.40). Indeed, choosing M large enough such that χ(h) > λ1, and
taking ς ∈ (0, 1) small, we have
ˆ τ

τ−1

eχ(h)(ξ−τ)‖g(ξ, .)‖2 dξ =

ˆ τ−ς

τ−1

eχ(h)(ξ−τ)‖g(ξ, .)‖2dξ +

ˆ τ

τ−ς

eχ(h)(ξ−τ)‖g(ξ, .)‖2 dξ

= e−χ(h)τ

ˆ τ−ς

τ−1

e(χ(h)−λ1)ξeλ1ξ‖g(ξ, .)‖2 dξ +

ˆ τ

τ−ς

eχ(h)(ξ−τ)‖g(ξ, .)‖2 dξ

6 e−χ(h)ςeλ1(ς−τ)

ˆ τ

−∞

eλ1ξ‖g(ξ, .)‖2dξ +

ˆ τ

τ−ς

‖g(ξ, .)‖2 dξ.

By (3.8),
´ τ

−∞
eλ1ξ‖g(ξ, .)‖2 dξ is bounded, therefore we have

e−χ(h)ςeλ1(ς−τ)

ˆ τ

−∞

eλ1ξ‖g(ξ, .)‖2 dξ → 0

as h → ∞. On the other hand, since g ∈ L2
loc
(R, L2(O)), we can choose ς small

enough such that
´ τ

τ−ς
‖g(ξ, .)‖2 dξ → 0. Based on this analysis, we hence deduce

that

c

ˆ τ

τ−1

eχ(h)(ξ−τ)‖g(ξ, .)‖2 dξ 6
ε

8
,(5.43)

for any h > h3 with some h3 = h3(τ, ε) > λ1. By a similar argument, using (3.8) we
have

c

ˆ τ

τ−1

eχ(h)(ξ−τ)‖ψ1(ξ, .)‖
p

2
p

2

dξ 6
ε

8
,(5.44)

for any h > h4 with some h4 = h4(τ, ε) > λ1.
Put h0 = max{h1, h2, h3, h4} > λ1. By plugging (5.41)–(5.43) into (5.40), we

finally get that
ˆ τ

τ−1

eχ(h)(ξ−τ)

ˆ

O

(v(ξ)− h)2p−2
+ dx dξ 6 ε,(5.45)

for any h > h0. Note that the eigenvalue sequence {λk}k∈N of the operator LK is
increasing to the positive infinity. Then we can choose λk+1 > χ(h) > χ(h0) for any
k > N with some N = N(τ, ω, ε). Then (5.45) is rewritten as

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

Oh

(v(ξ)− h)2p−2
+ dx dξ 6 ε,(5.46)
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for any h > h0 and k > N . Noticing that v 6 2(v − h)+ for v > 2h, it follows from
(5.46) that

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

O2h

|v(ξ)|2p−2 dx dξ 6

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

Oh

(v(ξ)− h)2p−2
+ dx dξ

6 22p−2ε,(5.47)

where O2h , {x ∈ O : v(ξ, τ − t, ϑ−τω, vτ−t) > 2h} ⊆ Oh with ξ ∈ [τ − 1, τ ]. By a
whole parallel way, using the test function |(v + h)−|

p−2(v + h)−, we can show that

there exist h̃0 = h̃0(τ, ω, ε) > 1, T1 = T1(τ, ω,D) > 3 and N1 = N1(τ, ω, ε) ∈ N such

that for all h > h̃0, t > T1 and k > N1,
ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

O
−2h

|v(ξ)|2p−2 dx dξ 6 22p−2ε,(5.48)

where O−2h , {x ∈ O : v(ξ, τ − t, ϑ−τω, vτ−t) 6 −2h} with ξ ∈ [τ − 1, τ ]. Then the
proof is concluded by (5.47) and (5.48). �

Remark 4. The non-autonomous terms ψ1 and g have weaker assumptions

ψ1 ∈ L
p

2

loc
(R, L

p

2 (O)) and g ∈ L2(R, L2(O)) than ψ1 ∈ L∞(R, L
p

2 (O)) and g ∈
L∞(R, L2(O)) in [13]. On the other hand, the assumption that φ ∈ L∞(O) is sepa-
rately used in the process of deriving this truncation estimate of solutions which is
necessary to prove the flattening condition in what follows.

5.2. Spectrum splitting method and flattening condition. To obtain
the regularity of pullback attractor in Xs

0 , we need to prove the flattening condition
of the cocycle defined by (3.16) in Xs

0 , which is derived by the spectrum splitting
technique. Thanks to Lemma 2.2 (ii), the non-local operator LK has a family of
eigenvectors {ej}j∈N such that {ej}j∈N is an orthonormal basis of both L2(O) and
Xs

0 with ‖ej‖ = 1 for every j ∈ N, and the corresponding eigenvalues λj ↑ ∞ as
j → ∞. Thus for any v ∈ Xs

0 , we have v =
∑∞

j=1 cjej for some cj ∈ R, j ∈ N. Then
the non-local operator LK can be formulated as

LKv =

∞
∑

j=1

cjLKej =

∞
∑

j=1

cjλjej , v ∈ Xs
0 ,(5.49)

and therefore ‖LKv‖
2 =

∑∞
j=1(cjλj)

2. We make a direct sum decomposition of the
space Xs

0 by

Xs
0 = span{e1, e2, . . . , ek} ⊕

(

span{e1, e2, . . . , ek}
)⊥

= span{e1, e2, . . . , ek} ⊕Pk+1,

where Pk+1 = {u ∈ Xs
0 : (u, ej)Xs

0
= 0, ∀ j = 1, 2, . . . , k}. It is noted that the

orthogonal ⊥ is calculated with respect to the scalar product of Xs
0 which is defined

by (2.6). Thus, given any v ∈ Xs
0 , we write v = v1 + v2 with v2 ∈ Pk+1. Define a

project operator Pk by

Pk : X
s
0 → span{e1, e2, . . . , ek}.(5.50)

Then PkX
s
0 = span{e1, e2, . . . , ek} and (I − Pk)X

s
0 = Pk+1, and therefore, v =

v1 + v2 = Pkv + (I − Pk)v for any v ∈ Xs
0 , such that

v1 , Pkv =

k
∑

j=1

cjλjej , v2 , (I − Pk)v =

∞
∑

j=k+1

cjλjej .(5.51)
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The following lemma is concerned with the flattening condition of solutions.

Lemma 5.5. Let s ∈ (0, 1) and N > 2s. Suppose that (3.4)–(3.8) hold and D

is defined by (3.17). Let τ ∈ R, ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D with
uτ−t ∈ D(τ − t, ϑ−tω). Then for every ε > 0, there exist T = T (τ, ω,D, ε) > 3 and
N0 = N0(τ, ω, ε) ∈ N such that for all t > T and k > N0, the solution u of problem
(3.1)–(3.3) satisfies

‖(I − Pk)u(τ, τ − t, ϑ−τω, uτ−t)‖Xs
0
6 ε.

Proof. From (3.13), tested with LKv2, we obtain that
ˆ

R2N

(vt(x)− vt(y))(v2(x)− v2(y))K(x− y) dx dy + (LKv,LKv2)

=

ˆ

O

F (t, x, v + z(ϑtω))LKv2 dx+

ˆ

O

g(t, x)LKv2 dx

+

ˆ

O

z(ϑtω)LKv2 dx− (LKz(ϑtω),LKv2).(5.52)

By the ⊥ relation of v1 and v2 in Xs
0 , we deduce that

ˆ

R2N

(vt(x)− vt(y))(v2(x)− v2(y))K(x− y) dx dy =
1

2

d

dt
‖v2‖Xs

0
.(5.53)

Thanks to (5.51), we have

LKv2 =

∞
∑

j=k+1

cjλjej.

Then along with (5.49), it produces that

(LKv,LKv2) =

(

∞
∑

j=1

cjλjej ,

∞
∑

j=k+1

cjλjej

)

=

∞
∑

j=k+1

c2j (λj)
2 = ‖LKv2‖

2.(5.54)

By plugging (5.53) and (5.54) into (5.52), we obtain

1

2

d

dt
‖v2‖Xs

0
+ ‖LKv2‖

2 =

ˆ

O

F (t, x, v + z(ϑtω))LKv2 dx+

ˆ

O

g(t, x)LKv2 dx

+

ˆ

O

z(ϑtω)LKv2 dx− (LKz(ϑtω),LKv2).(5.55)

We now estimate every term on the right hand side of (5.55). For the nonlinearity
term, by (3.5) we get

ˆ

O

F (t, x, v + z(ϑtω))LKv2 dx 6
1

6
‖LKv2‖

2 +
3

2

ˆ

O

|F (t, x, v + z(ϑtω))|
2 dx

6
1

6
‖LKv2‖

2 + 3‖ψ2‖
2
∞

ˆ

O

|v + z(ϑtω))|
2p−2 dx+ 3‖ψ3(t, .)‖

2

6
1

6
‖LKv2‖

2 + c‖|v‖2p−2
2p−2 + c|y(ϑtω)|

2p−2 + c‖ψ3(t, .)‖
2.(5.56)

It is easy to calculate that
ˆ

O

g(t, x)LKv2 dx+

ˆ

O

z(ϑtω)LKv2 dx

6
1

6
‖LKv2‖

2 + c(‖g(t, .)‖2 + ‖φ‖2|y(ϑtω)|
2).(5.57)
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Since LKφ ∈ L2(O), then we have

−(LKz(ϑtω),LKv2) 6
1

6
‖LKv2‖

2 + c|y(ϑtω)|
2.(5.58)

Thus by a combination of (5.55)–(5.58), we find

d

dt
‖v2‖Xs

0
+ ‖LKv2‖

2 6 c(‖v‖2p−2
2p−2 + ‖ψ3(t, .)‖

2 + ‖g(t, .)‖2)

+ c(|y(ϑtω)|
2 + |y(ϑtω)|

2p−2),(5.59)

where c > 0 is a deterministic constant independent of k, τ and ω. Note that we have

‖LKv2‖
2 =

∞
∑

j=k+1

(cjλj)
2 > λk+1

∞
∑

j=k+1

c2jλj = λk+1‖v2‖
2
Xs

0
,(5.60)

since by the orthogonal property of ej in Xs
0 and ‖ej‖ = 1, we have

‖v2‖
2
Xs

0
=

ˆ

R2N

|v2(x)− v2(y)|
2K(x− y) dx dy

=

ˆ

R2N

∣

∣

∣

∞
∑

j=k+1

cjej(x)−
∞
∑

j=k+1

cjej(y)
∣

∣

∣

2

K(x− y) dx dy

=

∞
∑

j=k+1

c2j

ˆ

R2N

|ej(x)− ej(y)|
2K(x− y) dx dy

=

∞
∑

j=k+1

c2jλj (by (2.10)).

Therefore, combine (5.60) with (5.59) to yield

d

dt
‖v2‖Xs

0
+ λk+1‖v2‖

2
Xs

0
6 c(‖v‖2p−2

2p−2 + ‖ψ3(t, .)‖
2 + ‖g(t, .)‖2)

+ c(|y(ϑtω)|
2 + |y(ϑtω)|

2p−2).(5.61)

By Lemma 5.1 (i), we have

‖v2(τ, τ − t, ϑ−τω, vτ−t)‖Xs
0
6

ˆ τ

τ−1

eλk+1(ξ−τ)‖v2(ξ, τ − t, ϑ−τω, vτ−t)‖Xs
0
dξ

+ c

ˆ τ

τ−1

eλk+1(ξ−τ)‖v(ξ)‖2p−2
2p−2 dξ + c

ˆ τ

τ−1

eλk+1(ξ−τ)(‖ψ3(ξ, .)‖
2 + ‖g(ξ, .)‖2) dξ

+ c

ˆ τ

τ−1

eλk+1(ξ−τ)(|y(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ.(5.62)

Noticing that ‖v2‖Xs
0
6 ‖v‖Xs

0
, by Lemma 5.3, there exist positive constants M =

M(τ, ω) and T1 = T1(τ, ω,D) > 3 such that for all t > T1,
ˆ τ

τ−1

eλk+1(ξ−τ)‖v2(ξ, τ − t, ϑ−τω, vτ−t)‖Xs
0
dξ

6M(τ, ω)

ˆ τ

τ−1

eλk+1(ξ−τ) dξ 6M(τ, ω)λ−1
k+1.(5.63)
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For the second term on the right hand of (5.62), by a splitting of the state space O,
we have

c

ˆ τ

τ−1

eλk+1(ξ−τ)‖v(ξ)‖2p−2
2p−2 dξ = c

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

O

|v(ξ)|2p−2 dx dξ

=

(
ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

Õ

|v(ξ)|2p−2 dx dξ

+

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

O\Õ

|v(ξ)|2p−2 dx dξ

)

,(5.64)

where Õ = {x ∈ O : |v(s, τ − t, ϑ−τω, vτ−t)| > h̃}. Then by Lemma 5.4, there exist
constants T = T (τ, ω,D, ε) > T1 > 3 and N0 = N0(τ, ω, ε) ∈ N such that for all

t > T , k > N0 and a large h̃,

c

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

Õ

|v(ξ)|2p−2 dx dξ 6 cε.(5.65)

On the other hand, since
´

O\Õ
|v(ξ)|2p−2 dx 6 h̃2p−2mea(O \ Õ) , c <∞, then

c

ˆ τ

τ−1

eλk+1(ξ−τ)

ˆ

O\Õ

|v(ξ)|2p−2 dx dξ 6 c

ˆ τ

τ−1

eλk+1(ξ−τ) dξ 6 cλ−1
k+1.(5.66)

Thus incorporation (5.64)-(5.66), we get

c

ˆ τ

τ−1

eλk+1(ξ−τ)‖v(ξ)‖2p−2
2p−2 dξ 6 c(ε+ λ−1

k+1).(5.67)

For the third term of (5.62), by a same argument as (5.43) and (5.44), we may show

c

ˆ τ

τ−1

eλk+1(ξ−τ)(‖ψ3(ξ, .)‖
2 + ‖g(ξ, .)‖2) dξ 6 cε,(5.68)

for k large enough. For the last term of (5.62), by (3.12) we have

c

ˆ τ

τ−1

eλk+1(ξ−τ)(|y(ϑξ−τω)|
2 + |y(ϑξ−τω)|

2p−2) dξ

= c

ˆ 0

−1

eλk+1ξ(|y(ϑξω)|
2 + |y(ϑξω)|

2p−2) dξ

6 c̺(ω)

ˆ 0

−1

e(λk+1−
1

2
λ1)ξ dξ 6 c̺(ω)

(

λk+1 −
1

2
λ1

)−1

.(5.69)

Since λk+1 → ∞ as k → ∞, then by a combination of (5.62), (5.63) and (5.67)-(5.69),
there exist positive constants T = T (τ, ω,D, ε) > 3 and N0 = N0(τ, ω, ε) ∈ N such
that for all t > T and k > N0,

‖v2(τ, τ − t,ϑ−τω, vτ−t)‖
2
Xs

0
6 cε,(5.70)

where c > 0 is a constant independent of ε, τ and ω. Thanks to u2(τ) = v2(τ)+z2(ω),
by employing (5.60) and (3.10), in conjunction with (5.70), it follows that

‖u2(τ, τ − t, ϑ−τω, uτ−t)‖
2
Xs

0
6 ‖v2(τ, τ − t, ϑ−τω, vτ−t)‖

2
Xs

0
+ |y(ω)|2‖φ2‖

2
X2

0

6 cε+ ̺(ω)‖LKφ‖
2λ−1

k+1 6 cε,

when k is large enough, which implies the claims in the lemma. �

We are now ready to show that the cocycle ϕ satisfies the D-flattening condition
in the Hilbert space Xs

0 , which is a uniformly convex topological space.
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Lemma 5.6. Let s ∈ (0, 1) and N > 2s. Suppose that (3.4)–(3.8) hold and D

is defined by (3.17). Then the cocycle ϕ defined by (3.16) satisfies the D-flattening
condition in Xs

0 .

Proof. Given ε > 0 arbitrary small, Thanks to Lemma 5.5, for every τ ∈ R and
ω ∈ Ω, there exist positive constants T1 = T1(τ, ω,D, ε) > 3 and a large natural
number N0 such that, for all t > T1,

‖(I − PN0
)u(τ, τ − t, ϑ−τω, uτ−t)‖Xs

0
6 ε,(5.71)

where PN0
is defined by (5.50). On the other hand, by Lemma 5.3, there exist positive

constants T2 = T2(τ, ω,D, ε) > T1 and M(τ, ω) such that, for all t > T2,

‖u(τ, τ − t, ϑ−τω, uτ−t)‖Xs
0
6M(τ, ω).(5.72)

Put X1 = span{e1, e2, . . . , eN0
} where {ej}j∈N is the basis of Xs

0 . Then X1 has a
finite dimension N0 and the bounded projector PN0

: Xs
0 → X1. By the definition of

ϕ in (3.16), we have ϕ(t, τ − t, ϑ−tω, .) = u(τ, τ − t, ϑ−τω, .). Therefore in view of
(5.71) and (5.72), we get

‖(I − PN0
)ϕ(t, τ − t, ϑ−tω, uτ−t)‖Xs

0
6 ε, ‖PN0

ϕ(t, τ − t, ϑ−tω, uτ−t)‖Xs
0
6 M(τ, ω),

for all t > T2. This completes the proof. �

5.3. Pullback attractors in X
s

0
. According to Lemma 4.3, Lemma 4.4 and

Lemma 5.6, in conjunction with Theorem 2.8 and Theorem 2.9, we now obtain the
main result in this section.

Theorem 5.7. Let s ∈ (0, 1) and N > 2s. Suppose that (3.4)-(3.8) hold and D

is defined by (3.17). Then the random cocycle ϕ defined by (3.16) admits a unique
D-pullback attractor AXs

0
= {AXs

0
(τ, ω) : τ ∈ R, ω ∈ Ω} in Xs

0 , where AXs
0
(τ, ω) is

structured by

AXs
0
(τ, ω) ,

⋂

s>0

⋃

t>s

ϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
Xs

0

,

where the family K is the closed D-pullback random absorbing of ϕ in L2(O). In
addition, AXs

0
= A, where A is the D-pullback attractor of ϕ in L2(O) as in Theo-

rem 4.5.

Remark 5. Theorem 5.7 demonstrates that the general model (1.1)-(1.3) ad-
mits the smoothing dynamics, namely, the compactness and attracting properties of
pullback attractor obtained in L2(O) can be generalized to the regular space Xs

0 ,
despite of the random influence. To achieve this regular dynamics, it seems that the
noise coefficient φ ∈ L∞ is indispensable, which is intrinsically used in Lemma 5.4. In
recent literature [32, 30, 33], the author developed a method to surmount the condi-
tion φ ∈ L∞. We will discuss the pullback attractor for this equation on unbounded
domain driven by such type noise in the future.
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