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Abstract. For all k, n ≥ 1, we construct a biLipschitz embedding of S
n into the jet space

Carnot group Jk(Rn) that does not admit a Lipschitz extension to B
n+1. Let f : Bn → R be a

smooth, positive function with kth-order derivatives that are approximately linear near ∂Bn. The

embedding is given by taking the jet of f on the upper hemisphere and the jet of −f on the lower

hemisphere, where we view S
n as two copies of Bn. To prove the lack of a Lipschitz extension, we

apply a factorization result of Wenger and Young for n = 1 and modify an argument of Rigot and

Wenger for n ≥ 2.

1. Introduction

The existence of extensions that preserve regularity is a topic that permeates
mathematics, especially in topology and analysis. In topology, one has the famous
Tietze Extension Theorem. In differential geometry, while one cannot smoothly
extend any smooth function defined on a subset of a manifold, one may if the subset
is assumed to be closed (see for instance [15, Lemma 2.27]). An essential result of
functional analysis in the same vein is the Hahn–Banach Theorem from functional
analysis. These three results all confirm the existence of extensions that preserve
the “right” regularity based on the context. Indeed, one can preserve continuity for
normal topological spaces, smoothness for manifolds, and boundedness for Banach
spaces. For Carnot groups, the lack of a linear structure combined with Rademacher’s
Theorem and Pansu’s generalization suggest that Lipschitz is the “right” form of
regularity to consider. In this paper, we will be interested in Lipschitz extensions of
mappings into Carnot groups.

The well-known McShane–Whitney Extension Theorem states that every Lip-
schitz function defined on a subset of a metric space can be wholly extended in a
Lipschitz fashion, while preserving the Lipschitz constant (see for instance [7, Chapter
4]). If one allows for a larger Lipschitz constant, one can replace R with Rn. With the
finite-dimensional vector space case well-understood, other metric spaces have been
considered as targets. Lipschitz extension results have been shown for mappings
into Banach spaces and spaces of bounded curvature (see for instance [9, 10, 14] and
[12, 13, 19], respectively). Over the past decade, the problem for Carnot groups has
drawn considerable attention, primarily for the Heisenberg groups and, more gener-
ally, jet space Carnot groups [5, 6, 18, 21, 22]. In this paper, we will be interested in
considering the problem for the latter class.
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In 2010, Rigot and Wenger proved that there exists a Lipschitz mapping from Sn

to Jk(Rn) that cannot be extended in a Lipschitz way to Bn+1 [18, Theorem 1.2].
For their proof, they actually construct a Lipschitz mapping f : ∂[0, 1]n+1 → Jk(Rn)
that does not admit a Lipschitz extension to [0, 1]n+1. Their mapping f is constant
on each line {x} × [0, 1], x ∈ ∂[0, 1]n, and, in particular, is not biLipschitz. In this
paper, we provide an explicit construction of a biLipschitz embedding of Sn into
Jk(Rn) that cannot be Lipschitz extended to Bn+1.

Theorem 1.1. For all k, n ≥ 1, there exists a biLipschitz embedding φ : Sn →
Jk(Rn) that does not admit a Lipschitz extension φ̃ : Bn+1 → Jk(Rn).

We remark that the theorem’s statement would be false if we replaced Sn with a
lower dimensional sphere. Wenger and Young proved that every biLipschitz embed-
ding of Sm into Jk(Rn), m < n, can be extended to Bm+1 in a Lipschitz fashion [21,
Theorem 1.1].

BiLipschitz embeddings of spheres into Carnot groups have been used to prove
the nondensity of Lipschitz mappings in Sobolev spaces. In 2009, Balogh and Fässler
provided an example of a horizontal embedding φ : Sn → Hn that does not admit a
Lipschitz extension φ̃ : Bn+1 → Hn [1, Theorem 1]. Their example consisted of the
Legendrian lift of a Lagrangian map f : Sn → R2n. Dejarnette, Hajłasz, Lukyanenko,
and Tyson then proved in 2014 that every horizontal embedding φ : Sn → Hn does
not admit a Lipschitz extension to Bn+1 [5, Proposition 4.7]. The last authors used
such an embedding to prove that the collection of Lipschitz mappings Lip(Bn+1,Hn)
is not dense in the Sobolev space W 1,p(Bn+1,Hn) for n ≤ p < n + 1 [5, Proposi-
tion 1.3]. Hajłasz, Schikorra, and Tyson have also horizontal embedding to prove the
non-density of Lipschitz mappings in Heisenberg group-valued Sobolev spaces [6, The-
orem 1.9]. Theorem 1.1 is a step towards proving the following non-approximation
result for Jk(Rn):

Conjecture 1.2. Lipschitz mappings Lip(Bn+1, Jk(Rn)) are not dense in W 1,p

(Bn+1, Jk(Rn)), when n ≤ p < n+ 1.

All smooth horizontal embeddings of Sn into Hn are biLipschitz [5, Theorem 3.1].
The difficulty of proving that our embedding φ : Sn → Jk(Rn) is biLipschitz will stem
from the fact that it is not smooth along the equator of Sn. In fact, φ will not even
be differentiable at these points. Fortunately, φ will be horizontal when restricted to
the lower and upper hemispheres, which will imply that our embedding is biLipschitz
when restricted to either of these halves. Still, the lack of differentiability begs the
following question:

Question 1.3. For n ≥ 2, does there exist a smooth, horizontal embedding
ψ : Sn →֒ Jk(Rn) that does not admit a Lipschitz extension to Bn+1?

In Section 2, we review the structure of jet space Carnot groups and state nota-
tion. In Section 3, we prove Theorem 1.1 for n = 1 and observe that πLip

m (Jk(R)) = 0
for all m ≥ 2 and k ≥ 1. In Section 4, we generalize the construction and prove our
main theorem for n ≥ 2. We treat the case n = 1 separately because in this case, the
function f serving as the body of the embedding is an explicit polynomial and there
are no mixed partial derivatives to deal with. Also, the proof that the embedding
lacks a Lipschitz extension will be simpler.
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2. Background

2.1. Carnot groups as metric spaces. A Lie algebra g is said to admit an
r-step stratification if

g = g1 ⊕ · · · ⊕ gr,

where g1 ⊂ g is a subspace, gj+1 = [gj , g1] for j = 1, . . . , r − 1, and [gr, g] = 0. We
call g1 the horizontal layer of g. A Carnot group is a connected, simply connected,
nilpotent Lie group with stratified Lie algebra. We say that a Carnot group is step
r if its Lie algebra is step r.

A Carnot group may be identified (isomorphically) with a Euclidean space equip-
ped with an operation via coordinates of the first or second kind (see Section 2 of
[11] for more detail). Henceforth, we will consider Carnot groups of the form (Rn, ⋆).

Let {X1, . . . , Xm1} be a left-invariant frame for Lie(Rn, ⋆). The horizontal bundle
H(Rn, ⋆) is defined fiberwise by

Hp(R
n, ⋆) := span{X1

p , . . . , X
m1

p }.

A path γ : [a, b] → (Rn, ⋆) is said to be horizontal if it is absolutely continuous as
a map into Rn and satisfies γ′(t) ∈ Hγ(t)(R

n, ⋆) for a.e. t ∈ [a, b]. The length of a
horizontal path γ : [a, b] → (Rn, ⋆) is defined by

l(γ) :=

ˆ b

a

|γ′(t)|H dt,

where | · |H is induced by declaring {X1
p , . . . , X

m1

p } to be orthonormal.
Chow proved that every Carnot group is horizontally path-connected [4]. Hence,

we may define a Carnot–Carathéodory metric on (Rn, ⋆) by

dcc(p, q) := inf
γ : [a,b]→(Rn,⋆)

{l(γ) : γ is horizontal, γ(a) = p, γ(b) = q}.

This forms a left-invariant, geodesic metric that is one-homogeneous with respect
to the group’s dilations. We will postpone discussion of these dilations to when we
discuss jet space Carnot groups.

It is natural to wonder how the Euclidean metric structure compares with the
metric structure induced by the CC-metric. Nagel, Stein, and Wainger proved the
remarkable fact that if (Rn, ⋆) is a step r Carnot group, then the identity map
id : Rn → (Rn, ⋆) is locally 1

r
-Hölder while the identity map id : (Rn, ⋆) → Rn is

locally Lipschitz [17, Proposition 1.1]. Not only does this imply that Rn and (Rn, ⋆)
share the same topology, it also allows one to estimate CC-distances between points
by their coordinates through the Ball-Box Theorem. We will delay discussion of this
theorem until we discuss the metric structure of jet space Carnot groups.
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2.2. Jet spaces as Carnot groups. We now recall the notation of jet space
Carnot groups, following Section 3 of [20]. Fix k, n ≥ 1. Given x0 ∈ Rn and
f ∈ Ck(Rn), the kth-order Taylor polynomial of f at x0 is given by

T k
x0
(f) =

k
∑

j=0

∑

I∈I(j)

∂If(x0)

I!
(x− x0)

I ,

where I(j) denotes the set of j-indices (i1, . . . , in) (i1+ · · ·+ in = j). For a convenient
shorthand, we write Ĩ(j) := I(0) ∪ · · · ∪ I(j), the set of all indices of length at most

j.
Given x0 ∈ Rn, we can define an equivalence relation ∼x0

on Ck(Rn) by f ∼x0
g

if T k
x0
(f) = T k

x0
(g). We call [f ]∼x0

the k-jet of f at x0 and denote it by jkx0
(f). We

then define the jet space Jk(Rn) by

Jk(Rn) :=
⋃

x0∈Rn

Ck(Rn)/∼x0
.

Define

p : Jk(Rn) → Rn, p(jkx0
(f)) = x0

and

uI : J
k(Rn) → R, uI(j

k
x0
(f)) := ∂If(x0)

for I ∈ Ĩ(k). We have a global chart

ψ : Jk(Rn) → Rn ×Rd(n,k) ×Rd(n,k−1) × · · · ×Rd(n,0)

given by ψ = (p, u(k)), where

u(k) := {uI : I ∈ Ĩ(k)}.

Here, d(n, j) =
(

n+j−1
j

)

denotes the number of distinct j-indices over n coordinates.

For all f ∈ Ck(Rn) and I ∈ Ĩ(k − 1),

d(∂If) =
n

∑

j=1

∂I+ejf · dxj.

This motivates us to define the 1-forms

ωI := duI −
n

∑

j=1

uI+ej dx
j , I ∈ Ĩ(k − 1)

to serve as contact forms for Jk(Rn) (see Section 3.2 of [20] for more detail). The
horizontal bundle of Jk(Rn) is defined by

HJk(Rn) :=
⋂

I∈Ĩ(k−1)

kerωI .

A global frame for HJk(Rn) is given by
{

X
(k)
j : j = 1, . . . , n

}

∪

{

∂

∂uI
: I ∈ I(k)

}

,

where

X
(k)
j :=

∂

∂xj
+

∑

I∈Ĩ(k−1)

uI+ej

∂

∂uI
, j = 1, . . . , n.
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We can extend this to a global frame of TJk(Rn) by including ∂
∂uI

for I ∈ Ĩ(k − 1).

With respect to the group operation on Jk(Rn) (to be defined soon), this frame is
left-invariant.

The nontrivial commutator relations are given by
[

∂

∂uI+ej

, X
(k)
j

]

=
∂

∂uI
, I ∈ Ĩ(k − 1).

Thus, Lie(Jk(Rn)) admits a (k + 1)-step stratification

Lie(Jk(Rn)) = HJk(Rn)⊕

〈

∂

∂uI
: I ∈ I(k − 1)

〉

⊕ · · · ⊕

〈

∂

∂u0

〉

.

One defines a group operation on Jk(Rn) by

(x, u(k))⊙ (y, v(k)) = (x+ y, uv(k)),

where

uvI := vI +
∑

I≤J

uJ
yJ−I

(J − I)!
, I ∈ Ĩ(k).

Here, we say I ≤ J if Ir ≤ Jr for all r = 1, . . . , n.
We will now make jet spaces more grounded by explicitly writing out the Carnot

group structure of the model filiform jet spaces Jk(R). The k-jet of f ∈ Ck(R) at a
point x0 is given by

jkx0
(f) = (x0, f

(k)(x0), . . . , f(x0)).

The horizontal bundle HJk(R) is defined by the contact forms

ωj := duj − uj+1 dx, j = 0, . . . , k − 1,

and is framed by the left-invariant vector fields X(k) := ∂
∂x

+ uk
∂

∂uk−1
+ · · · + u1

∂
∂u0

and ∂
∂uk

. A (k + 1)-step stratification of Lie(Jk(R)) is given by

Lie(Jk(R)) :=

〈

X(k),
∂

∂uk

〉

⊕

〈

∂

∂uk−1

〉

⊕ · · · ⊕

〈

∂

∂u0

〉

.

The group operation on Jk(R) is given by

(x, uk, . . . , u0)⊙ (y, vk, . . . , v0) = (z, wk, . . . , w0),

where z = x+ y, wk = uk + vk, and

ws = us + vs +
k

∑

j=s+1

uj
yj−s

(j − s)!
, s = 0, . . . , k − 1.

Despite the much simpler appearance of Jk(R) relative to that of Jk(Rn), n ≥ 2,
valuable intuition and methods can often be built up in the model filiform case, which
can later be employed for higher dimensions.

2.3. Jet space Carnot groups as metric spaces. We expound on Subsec-
tion 2.1 for the special case of jet space Carnot groups. For ǫ > 0, define the dilation

δǫ : J
k(Rn) → Jk(Rn) by

x(δǫj
k
x0
(f)) = ǫx0

and

uI(δǫj
k
x0
(f)) := ǫk+1−|I|∂If(x0), I ∈ Ĩ(k).
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In the special case n = 1, these dilations take the form

δǫ(x, uk, uk−1, . . . , u0) = (ǫx, ǫuk, ǫ
2uk−1, . . . , ǫ

k+1u0).

As noted before, the CC-metric is one-homogeneous with respect to these dilations:

dcc(δǫj
k
x0
(f), δǫj

k
y0
(g)) = ǫ · dcc(j

k
x0
(f), jy0(g)).

The result of Nagel, Stein, and Wainger [17] allows us to estimate distances in
jet spaces from the algebraic structure.

Theorem 2.1. (Ball-Box Theorem for jet space Carnot groups) Fix k, n ≥ 1.
For ǫ > 0 and p ∈ Jk(Rn), define

Box(ǫ) := [−ǫ, ǫ]n+d(n,k) ×

k+1
∏

j=2

[−ǫj , ǫj]d(n,k+1−j)

and
Bcc(p, ǫ) := {q ∈ Jk(Rn) : dcc(p, q) ≤ ǫ}.

There exists C > 0 such that for all ǫ > 0 and p ∈ Jk(Rn),

Bcc(p, ǫ/C) ⊆ p⊙ Box(ǫ) ⊆ Bcc(p, Cǫ).

From the Ball-Box Theorem, we obtain an important corollary which will serve
as our most important tool for showing that our embeddings are biLipschitz.

Corollary 2.2. Fix k, n ≥ 2. There exists C > 0 such that for all (x, u(k)) ∈
Jk(Rn),

1

C
· dcc(0, (x, u

(k))) ≤ max{|x|, |uI |
1/(k+1−|I|) : I ∈ Ĩ(k)} ≤ C · dcc(0, (x, u

(k))).

We will also need an observation from Rigot and Wenger [18]. This will be key to
constructing Lipschitz mappings from spheres into jet spaces. As it is so important,
and for the purposes of keeping this paper more self-contained, we will conclude this
section by going over its proof.

Proposition 2.3. [18, pages 4–5] Fix f ∈ Ck+1(Rn). For all x, y ∈ Rn,

dcc(j
k
x(f), j

k
y (f)) ≤ sup

t∈[0,1]



1 +
∑

I∈I(k)

n
∑

j=1

(∂I+ejf(x+ t(y − x))2





1/2

||y − x||.

In particular, jk(f) : Rn → Jk(Rn) is locally Lipschitz.

Proof. For f ∈ Ck+1(Rn), the jet map jk(f) is C1 and horizontal with

∂xj
(jkx(f)) = X

(k)
j (jkx(f)) +

∑

I∈I(k)
∂I+ejf(x) ·

∂

∂uI
.

For x, y ∈ Rn, define γ : [0, 1] → Rn, γ(t) := x+ t(y−x), to be the straight line path
connecting x to y. The chain rule implies jk(f) ◦ γ is a horizontal path connecting
jkx(f) to jky (f). Hence, by the definition of the CC-metric,

dcc(j
k
x(f), j

k
y (f)) ≤ sup

t∈[0,1]



1 +
∑

I∈I(k)

n
∑

j=1

(∂I+ejf(x+ t(y − x))2





1/2

||y − x||.

As f ∈ Ck+1(Rn), ∂I+ejf is bounded on compact sets for each I ∈ I(k) and j =

1, . . . , n. It follows that the restriction of jk(f) to each compact set is Lipschitz. �
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3. Embedding of the circle into J
k(R)

We begin this section by constructing a biLipschitz embedding of S1 into Jk(R).
The main idea of the proof is to view S1 as two copies of the interval [0, π] and then
apply Proposition 2.3 to a function with a kth-derivative that is approximately linear
near 0 and π.

3.1. BiLipschitz embedding S1
→֒ J

k(R).

Definition 3.1. Fix k ≥ 1. Define the polynomial fk : R → R by fk(θ) :=
θk+1(π − θ)k+1.

As fk is smooth on R, Proposition 2.3 implies that jk(fk) : [0, π] → Jk(R) is
Lipschitz. In addition, as

jkθ (fk)
−1 ⊙ jkη (fk) = (η − θ, f

(k)
k (η)− f

(k)
k (θ), . . .),

Corollary 2.2 and left-invariance of dcc imply

|η − θ| . dcc(0, j
k
θ (fk)

−1 ⊙ jkη (fk)) = dcc(j
k
θ (fk), j

k
η (fk)).

Here, we write . to denote that the left quantity is bounded above by the right
quantity up to a positive factor depending only on k.

We have proven

Lemma 3.2. The map jk(fk) : [0, π] → Jk(R) is biLipschitz.

Gluing together two copies of [0, π] at the endpoints, we can construct a contin-
uous map of S1 into Jk(R).

Definition 3.3. Define φ : S1 → Jk(R) by

φ(eiθ) :=

{

jkθ (fk) if 0 ≤ θ ≤ π,

jk2π−θ(−fk) if π ≤ θ ≤ 2π.

This map is well-defined because f
(j)
k (0) = f

(j)
k (π) = 0 for j = 0, . . . , k. A more

intuitive expression of φ (which matches the original definition) is φ(eiθ) = jkθ (fk)
and φ(e−iθ) = jkθ (−fk) for 0 ≤ θ ≤ π. In this subsection, we will prove:

Theorem 3.4. The map φ : S1 → Jk(R) is a biLipschitz embedding.

Denote the upper and lower semicircles by S1
+ := {eiθ : 0 ≤ θ ≤ π} and S1

− :=
{eiθ : π ≤ θ ≤ 2π}, respectively. As eiθ : [0, π] → S1

+ and e−iθ : [0, π] → S1
− are

biLipschitz, the restrictions φ|S1
+

and φ|S1
−

are biLipschitz. It remains to prove that

dcc(φ(e
iθ), φ(eiη)) ≈ dS1(eiθ, eiη) for eiθ ∈ S1

+, e
iη ∈ S1

−.

By dS1 , we mean the geodesic path metric on S1. We write A ≈ B to denote that
there exists a single constant C such that

1

C
· A ≤ B ≤ C · A,

for all relevant choices of A and B. We will use this notation throughout this paper.

Note that since we are merely showing maps are biLipschitz and not caring about
the actual Lipschitz constants, we can allow for positive constant factors in our
comparisons.

Proving that φ is Lipschitz follows easily from the triangle inequality combined
with the fact that φ is biLipschitz when restricted to the upper and lower semicircles.
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Indeed, if the geodesic connecting eiθ ∈ S1
+ to eiη ∈ S1

− passes through ei0, then

dcc(φ(e
iθ), φ(eiη)) ≤ dcc(φ(e

iθ), φ(ei0)) + dcc(φ(e
i0), φ(eiη))

≈ dS1(eiθ, ei0) + dS1(ei0, eiη) = dS1(eiθ, eiη).

The same reasoning works if the geodesic passes through eiπ. We have shown

Proposition 3.5. φ : S1 → Jk(R) is Lipschitz.

We are now halfway towards proving that φ is biLipschitz.

Definition 3.6. A map g : X → Y between metric spaces is said to be co-

Lipschitz if there exists a constant C > 0 such that

dY (g(x1), g(x2)) ≥
1

C
· dX(x1, x2) for all x1, x2 ∈ X.

If a map is co-Lipschitz, we say it has the co-Lipschitz property.

It remains to show that φ is co-Lipschitz. Before we prove this, we will observe
that the kth derivative of fk is approximately linear near 0 and near π. This behavior
was the primary reason for our choice of fk.

Lemma 3.7. There exists a constant 0 < ǫ < 1 such that

f
(k)
k (θ) ≥

πk+1(k + 1)!

2
· θ if 0 ≤ θ ≤ ǫ

and










f
(k)
k (θ) ≥ πk+1(k+1)!

2
· (π − θ) if π − ǫ ≤ θ ≤ π and k is even

f
(k)
k (θ) ≤ −πk+1(k+1)!

2
· (π − θ) if π − ǫ ≤ θ ≤ π and k is odd.

Proof. By induction,

f
(k)
k (θ) = (k + 1)!θ(π − θ)k+1 + θ2p(θ)

and
f
(k)
k (θ) = (k + 1)!(−1)kθk+1(π − θ) + (π − θ)2q(θ),

for some polynomials p, q. This implies

lim
θ→0

f
(k)
k (θ)

θ
= lim

θ→π

(−1)kf
(k)
k (θ)

π − θ
= (k + 1)! · πk+1.

The lemma follows. �

We can now finish the proof of Theorem 3.4, proving that φ is biLipschitz.

Proof of Theorem 3.4. We proved in Proposition 3.5 that φ is Lipschitz. It
remains to show φ is co-Lipschitz, i.e., that there exists a constant C > 0 such that

dcc(φ(e
iθ), φ(e−iη)) ≥

1

C
· dS1(eiθ, e−iη)

for all eiθ ∈ S1
+ and e−iη ∈ S1

−.
Let 0 < ǫ < 1 be the constant from Lemma 3.7. To prove the co-Lipschitz

property, it suffices to consider three arrangements of pairs of points eiθ ∈ S1
+ and

e−iη ∈ S1
−, where 0 ≤ θ, η ≤ π:

(i) 0 ≤ θ, η ≤ ǫ, or π − ǫ ≤ θ, η ≤ π (points are close to each other and the
x-axis).

(ii) ǫ ≤ θ ≤ π − ǫ or ǫ ≤ η ≤ π − ǫ (one of the points is far from the x-axis).



BiLipschitz embeddings of spheres into jet space Carnot groups not admitting Lipschitz extensions 269

(iii) |θ − η| ≥ π − 2ǫ (arguments are far from each other).

(Readers should convince themselves that these cases handle all possible pairs of a
point on the upper semicircle and a point on the lower semicircle.)

Case (i): Fix 0 ≤ θ, η ≤ ǫ. By Corollary 2.2 and Lemma 3.7,

dcc(φ(e
iθ), φ(e−iη)) = dcc(j

k
θ (fk), j

k
η (−fk)) & |f

(k)
k (θ) + f

(k)
k (η)|

≥
(k + 1)!

2
· (θ + η) =

(k + 1)!

2
· dS1(eiθ, e−iη).

A similar calculation shows

dcc(φ(e
iθ), φ(e−iη)) &

(k + 1)!

2
· (2π − θ − η) =

(k + 1)!

2
· dS1(eiθ, eiη)

for π − ǫ ≤ θ, η ≤ π. This handles case (i).
Case (ii): Suppose ǫ ≤ θ ≤ π − ǫ and 0 ≤ η ≤ π. Then fk(θ) > 0 while

−fk(η) ≤ 0. Hence, jkθ (fk) 6= jkη (−fk), so that

0 < dcc(j
k
θ (fk), j

k
η (−fk)) = dcc(φ(e

iθ), φ(e−iη)).

This implies that the restriction of dcc on the compact set

{φ(eiθ) : ǫ ≤ θ ≤ π − θ} × {φ(e−iη) : 0 ≤ η ≤ π}

is strictly positive. By the Extreme Value Theorem, there must exist δ1 > 0 such
that

dcc(φ(e
iθ), φ(e−iη)) > δ1

whenever ǫ ≤ θ ≤ π − ǫ and 0 ≤ η ≤ π. By the same argument, there also exists
δ2 > 0 such that

dcc(φ(e
iθ), φ(e−iη)) > δ2

whenever 0 ≤ θ ≤ π and ǫ ≤ η ≤ π − ǫ. As S1 is bounded, this handles case (ii).
Case (iii): This case is handled in the same way as case (ii) was. We need only

observe that {(eiθ, e−iη) ∈ S1
+ × S1

− : |θ − η| ≥ π − 2ǫ, 0 ≤ θ, η ≤ π} is compact and
jkθ (fk) 6= jkη (−fk) whenever θ 6= η.

This concludes the proof that φ is co-Lipschitz, hence biLipschitz. �

3.2. The embedding does not admit a Lipschitz extension and π
Lip
m

(Jk

(R)) = 0. In this section, we will prove that the embedding from Theorem 3.4 does
not admit a Lipschitz extension. The author originally proved this by modifying an
argument of Hajłasz, Schikorra and Tyson for H1 [6]. Then a reviewer provided a
much simpler, clearer proof. The author wants to reiterate his appreciation to the
reviewer for this. We will also prove that each of the Lipschitz homotopy groups
of Jk(R) is trivial. These proofs will rely on a result of Wenger and Young [22,
Theorem 5], which states in particular that every Lipschitz map from B2 to Jk(R)
factors through a metric tree.

In [22], Wenger and Young prove that every Lipschitz mapping from Sm, m ≥ 2,
to H1 factors through a metric tree. A metric tree (or R-tree) is a geodesic metric
space for which every geodesic triangle is isometric to a tripod, or equivalently, is 0-
hyperbolic in the sense of Gromov. Metric trees are CAT(κ) spaces for all κ ≤ 0 and
are uniquely geodesic (see Proposition 1.4(1) and Example 1.15(5) of Chapter II.1
in [2]). We note that in his book on the more general Λ-trees [3], Chiswell defines
metric trees in a manner equivalent to as above (see Lemmata 2.1.6 and 2.4.13 of
[3]). For a much greater discussion on metric trees, we refer the reader to this book
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[3]. The first property of metric trees below is usually cited without proof while the
second was stated without proof in [22]. We will provide justification here.

Lemma 3.8. For every metric tree (Z, d), its completion (Ẑ, d̂) is a metric tree
and is Lipschitz contractible.

Proof. Let (Z, d) be a metric tree. Chiswell proved that the completion of a

metric tree (Ẑ, d̂) is still a metric tree [3, Theorem 2.4.14] (we note that this result
is usually attributed to Imrich at [8], but the author was unable to track down
this work). Then since metric trees are CAT(κ) spaces for all κ ≤ 0, a version of
Kirszbraun’s theorem proven by Lang and Schroeder [13, Theorem B] implies that

(Ẑ, d̂) is Lipschitz contractible. �

A metric space X is quasi-convex if there exists a constant C such that every two
points x, y ∈ X can be connected by a path of length at most Cd(x, y). For example,
each sphere Sn is quasi-convex. In 2014, Wenger and Young proved a factorization
result for mappings into purely 2-unrectifiable spaces.

Theorem 3.9. [22, Theorem 5] Let X be a quasi-convex metric space with

πLip
1 (X) = 0. Let furthermore Y be a purely 2-unrectifiable metric space. Then

every Lipschitz map from X to Y factors through a metric tree. That is, there exist
a metric tree Z and Lipschitz maps ϕ : X → Z and ψ : Z → Y such that f = ψ ◦ ϕ.

Wenger and Young used this result to prove that πLip
m (H1) = 0 for all m ≥ 2 [22,

Corollary 4]. We can easily modify their proof to prove the triviality of πLip
m (Jk(R))

for m ≥ 2. We only include a proof to help keep this paper self-contained. We note
that Lipschitz homotopy groups πLip

m (Jk(R)) are defined in the same way as typical
homotopy groups are, except the maps and homotopies are required to be Lipschitz
(see Section 4 of [5] for a greater discussion).

Corollary 3.10. For m ≥ 2 and k ≥ 1, πLip
m (Jk(R)) = 0.

Proof. Fix m ≥ 2 and k ≥ 1. Suppose f : Sm → Jk(R) is Lipschitz. By
a theorem of Magnani, Jk(R) is purely 2-unrectifiable [16, Theorem 1.1]. Hence,
by Theorem 3.9, there exist a metric tree Z and Lipschitz maps ϕ : Sm → Z and
ψ : Z → Jk(R) such that f = ψ ◦ ϕ. Lemma 3.8 combined with the fact that Jk(R)
is complete imply that we may assume Z is complete. Furthermore, by Lemma 3.8,
there exists a Lipschitz homotopy h : Z× [0, 1] → Z of the identity map to a constant
map. Then α : Sm× [0, 1] → Jk(R) defined by α(x, t) = (ψ ◦h)(ϕ(x), t) is a Lipschitz
homotopy of f to a constant map. �

Proof of Theorem 1.1 for n = 1. Suppose, for contradiction, that the biLip-
schitz embedding φ : S1 → Jk(R) from Theorem 3.4 admits a Lipschitz extension

φ̃ : B2 → Jk(R). Since Jk(R) is purely 2-unrectifiable, Wenger and Young’s result

(Theorem 3.9) implies that φ̃, and hence φ, factors through a metric tree. How-
ever, any two topological embeddings of [0, 1] into a metric tree that share common
endpoints must have the same image. This leads to a contradiction that φ is injec-
tive. �

4. Embedding of sphere into J
k(Rn)

In this section, we will prove our main theorem, Theorem 1.1, for n ≥ 2. We
begin by stating the section’s assumptions and notation. We will assume n ≥ 2.
Whenever we write |x|, we will mean the norm of x ∈ Rn with respect to the
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standard Euclidean metric. On the other hand, when we are calculating distances
between points and write ρ(·, ·), we will be referring to the Manhattan metric on
Euclidean space. Explicitly, for x, y ∈ Rn,

ρ(x, y) :=
n

∑

i=1

|xi − yi|.

In Proposition 4.7, we will use the geodesic path metric on Sn and denote it by
dSn(·, ·). Of course, there are no problems switching between these three metrics
since they are all equivalent (see Theorem 3.1 of [5] for equivalence of path metric
and Euclidean metric).

4.1. Construction of biLipschitz embedding Sn
→֒ J

k(Rn). For the
case n = 1, we implicitly used that the exponential eiθ : [0, π] → S1 is biLipschitz.
This allowed us to view the upper and lower semicircles as copies of [0, π]. We
then employed a smooth function fk : [0, π] → R to define our biLipschitz map
φ : S1 → Jk(R). We will follow a similar strategy in higher dimensions.

We begin with some notation.

Definition 4.1. Define the upper hemisphere

Sn
+ := {(x, t) ∈ Rn+1 = Rn ×R : |x|2 + t2 = 1, t ≥ 0}

and the lower hemisphere

Sn
− := {(x, t) ∈ Rn+1 = Rn ×R : |x|2 + t2 = 1, t ≤ 0}.

Note Sn = Sn
+ ∪ Sn

− with Sn
+ ∩ Sn

− = Sn−1 × {0}. I will later refer to this last
set as the equator of Sn. Our first step will be to determine how to lift the n-ball
to the upper hemisphere in a biLipschitz way. We will accomplish this via polar
coordinates.

Proposition 4.2. The map L : Bn → Sn
+ defined by

L(θ · x) = (x · sin(πθ/2), cos(πθ/2)), θ ∈ [0, 1], x ∈ Sn−1

is well-defined and biLipschitz.

Proof. It isn’t hard to see that L is well-defined. Via a rotation, it suffices to
assume we have two points (η, 0), θ · (x, y) ∈ Bn, where 0 < η ≤ 1, 0 ≤ θ ≤ η, and
(x, y) ∈ Sn−1 ⊂ R×Rn−1.

First note

ρBn((η, 0), θ · (x, y)) = (η − θx) + θ
n

∑

i=2

|yi|

(recall we are using the Manhattan metric). We have (with justification below)

ρSn
+

(

(sin
πη

2
, 0, cos

πη

2
), (x sin

πθ

2
, y sin

πθ

2
, cos

πθ

2
)

)

=

(

sin
πη

2
− x sin

πθ

2

)

+ sin

(

πθ

2

) n
∑

i=2

|yi|+

(

cos
πθ

2
− cos

πη

2

)

=

(

sin
πη

2
− sin

πθ

2

)

+ sin

(

πθ

2

)

(1− x) + sin

(

πθ

2

) n
∑

i=2

|yi|+

(

cos
πθ

2
− cos

πη

2

)

≈ |eiπη/2 − eiπθ/2|+θ(1− x) + θ

n
∑

i=2

|yi| ≈ (η − θx)+θ

n
∑

i=2

|yi| = ρBn((η, 0), θ · (x, y)).
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For the first approximation above, we used the fact that the Manhattan metric and
standard Euclidean metric are uniformly equivalent. We also used that sin θ ≈ θ
on [0, π/2]. For the second approximation, we used that the Euclidean metric and
geodesic path metric are uniformly equivalent on the upper half circle. �

Recalling the strategy used to embed a circle, we now find a smooth function on
Rn to serve as the “body of our jet”. For the circle, the main difficulty was finding a
positive function fk that satisfied

f
(k)
k (θ) ≈ θ = ρS1(eiθ, ei0) for θ near 0

and similar behavior for θ near π. For general n, the natural choice would be f(x) :=
(1− |x|)k+1. However, f has a singularity at 0. Fortunately, we only need f to equal
(1− |x|)k+1 near the boundary of Bn. We encapsulate the necessary conditions of f
in the following lemma.

Lemma 4.3. There exists a smooth function f : Rn → R satisfying:

(a) f(x) = (1− |x|)k+1 for 1
2
≤ |x| ≤ 3

2
; and

(b) f(x) > 0 for |x| < 1.

Proof. Choose a smooth function α : Rn → [0, 1] satisfying α = 1 on {x : 1
2
≤

|x| ≤ 3
2
} and α = 0 on {x : |x| ≤ 1

4
}. Then α(x) · (1 − |x|)k+1 satisfies property (a).

To satisfy (b) as well, we merely need to add a smooth, non-negative function that
is zero on {x : 1

2
≤ |x| ≤ 3

2
} and is positive where α = 0 in Bn. But 1 − α clearly

satisfies these conditions. Hence, f : Rn → R defined by

f(x) := α(x) · (1− |x|)k+1 + (1− α(x))

works. �

Definition 4.4. Let f : Rn → R be a function satisfying properties (a) and (b)
of Lemma 4.3. We define φ : Sn → Jk(Rn) by

φ(x sin(πθ/2), t) :=

{

jkθ·x(f) if x ∈ Sn−1, 0 ≤ θ ≤ 1, t ≥ 0,

jkθ·x(−f) if x ∈ Sn−1, 0 ≤ θ ≤ 1, t ≤ 0.

Observe that φ is well-defined since ∂If(x) = 0 whenever |x| = 1 and |I| ≤ k.
We will prove:

Theorem 4.5. The map φ : Sn → Jk(Rn) is a biLipschitz embedding.

As in the circle case, proving that φ is Lipschitz is easier than proving that φ is
co-Lipschitz (see Definition 3.6), so we will do the former first. Before this, we need
to prove that φ is biLipschitz when restricted to the upper and lower hemispheres.

Lemma 4.6. The restrictions φ|Sn
+

and φ|Sn
−

are biLipschitz.

Proof. By Proposition 2.3 and the Ball-Box Theorem, jk(f) : Bn → Jk(Rn) is
biLipschitz. Let L : Bn → Sn

+ be the biLipschitz map defined in Proposition 4.2.
Then the restriction φ|Sn

+
= jk(f) ◦L−1 is biLipschitz. As the reflection R : Sn → Sn

given by (x, t) 7→ (x,−t), x ∈ Bn−1, t ∈ R is an isometry, the restriction φ|Sn
−

=

φ|Sn
+
◦R is also biLipschitz. �

It remains to consider the application of φ to points on opposite halves of Sn.
More precisely, we need to prove

dcc(j
k
η·x(f), j

k
θ·y(−f)) ≈ ρSn((x sin(πη/2), cos(πη/2)), (y sin(πθ/2),− cos(πθ/2)))
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for x, y ∈ Sn−1, 0 ≤ η, θ ≤ 1. Proving that φ is Lipschitz will be proven in the same
way here as it was for n = 1 (see Proposition 3.5).

Proposition 4.7. φ : Sn → Jk(Rn) is Lipschitz.

Proof. It remains to prove

dcc(j
k
η·x(f), j

k
θ·y(−f)) . ρSn((x sin(πη/2), cos(πη/2)), (y sin(πθ/2),− cos(πθ/2)))

for x, y ∈ Sn−1 and 0 ≤ η, θ < 1.
Let (x sin(πη/2), cos(πη/2)) ∈ Sn

+, (y sin(πθ/2),− cos(πθ/2)) ∈ Sn
−, γ : [0, 1] →

Sn the geodesic connecting them, and r ∈ [0, 1] such that γ(r) is on the equator.
Note that jkz (f) = γ(r) = jkz (−f) if γ(r) = (z, 0). By Lemma 4.6,

dcc(j
k
η·x(f), j

k
θ·y(−f)) ≤ dcc(j

k
η·k(f), j

k
z (f)) + dcc(j

k
z (−f), j

k
θ·y(−f))

≈ ρSn((x sin(πη/2), cos(πη/2)), (z, 0)) + dSn((z, 0), (y sin(πθ/2),− sin(πη/2)))

≈ dSn((x sin(πη/2), cos(πη/2)), (z, 0)) + d̃Sn((z, 0), (y sin(πθ/2),− sin(πη/2)))

= dSn((x sin(πη/2), cos(πη/2)), (y sin(πθ/2),− cos(πθ/2)))

≈ ρSn((x sin(πη/2), cos(πη/2)), (y sin(πθ/2),− cos(πθ/2))),

where dSn denotes the geodesic path metric on Sn. �

It remains to prove that φ : Sn → Jk(Rn) is co-Lipschitz. As in the initial case
n = 1, we first need to prove that certain kth-order derivatives of (1 − |x|)k+1 are
approximately linear near the boundary of Bn.

Lemma 4.8. Let f : Rn → R be a smooth function satisfying properties (a)-(b)
of Lemma 4.3. There exist constants 0 < ǫ < 1

2
< C satisfying the following: For all

i = 1, . . . , n and x ∈ Rn satisfying 1− ǫ ≤ |x| ≤ 1 and |xi| >
1

4
√
n
, we have















1−|x|
C

≤ ∂kf
∂xk

i

(x) ≤ C(1− |x|) if k is even,
1−|x|
C

≤ ∂kf
∂xk

i

(x) ≤ C(1− |x|) if k is odd and xi < 0,
1−|x|
C

≤ −∂kf
∂xk

i

(x) ≤ C(1− |x|) if k is odd and xi > 0.

Proof. Fix i = 1, . . . , n. By condition (a), f(x) = (1 − |x|)k+1 for 1
2
< |x| < 3

2
.

We have
∂f

∂xi
(x) = (1− |x|)k ·

−(k + 1)xi
√

x21 + · · ·+ x2n
for

1

2
< |x| <

3

2
.

By induction, there exists a smooth function gi : {x ∈ Rn : 1
2
≤ |x| ≤ 3

2
} → R such

that
∂kf

∂xki
(x) = (1− |x|) ·

(−1)k(k + 1)!xki

(x21 + · · ·+ x2n)
k
2

+ (1− |x|)2gi(x)

for 1
2
< |x| < 3

2
. Restricting to x with |xi| ≥

1
4
√
n
, the second term becomes relatively

neglible as |x| → 1. The lemma follows. �

We can now prove that φ : Sn → Jk(Rn) is co-Lipschitz, hence biLipschitz by
Proposition 4.7.

Proof of Theorem 4.5. It remains to prove that φ is co-Lipschitz, i.e., that exists
a constant D such that

dcc(j
k
η·x(f), j

k
θ·y(−f)) ≥

1

D
· ρSn((x sin(πη/2), s), (y sin(πθ/2),−t)).
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for all points (x sin(πη/2), s), (y sin(πθ/2),−t) ∈ Sn with x, y ∈ Sn−1, s, t > 0, and
0 ≤ η, θ ≤ 1. Let ǫ, C be the constants from Lemma 4.8. Consider the following
three properties:

(A) η ≥ 1− ǫ.
(B) θ ≥ 1− ǫ.
(C) |η · x− θ · y| ≤ 1

4
√
n
.

First suppose that at least one of properties (A)-(C) is not satisfied. None of the
pairs in the compact sets

• {(φ(x sin(πη/2), s), φ(y sin(πθ/2),−t)) ∈ Sn×Sn : s, t ≥ 0, 1−ǫ ≤ η ≤ 1, 0 ≤
θ ≤ 1};

• {(φ(x sin(πη/2), s), φ(y sin(πθ/2),−t)) ∈ Sn×Sn : s, t ≥ 0, 1−ǫ ≤ θ ≤ 1, 0 ≤
η ≤ 1};

• {(φ(x sin(πη/2), s), φ(y sin(πθ/2),−t)) ∈ Sn × Sn : s, t ≥ 0, 0 ≤ θ, η ≤ 1, |η ·
x− θ · y| ≥ 1

4
√
n
}

are of the form (x, x) for x ∈ Sn. By the Extreme Value Theorem, it follows that
there exists δ > 0 such that

dcc(z1, z2) > δ

for each pair (z1, z2) in the above compact sets.
Now suppose that properties (A)–(C) are satisfied. By Proposition 4.2,

ρSn((x sin(πη/2), s), (y sin(πθ/2), t)) = ρSn(L(η · x), L(θ · y)) ≈ |η · x− θ · y|.

In particular,

|x sin(πη/2)− y sin(πθ/2)| . |η · x− θ · y|.

As p(jkη·x(f)
−1 ⊙ jkθ·y(−f)) = θ · y − η · x, we then have

ρBn(x sin(πη/2), y sin(πθ/2)) ≈ |x sin(πη/2)− y sin(πθ/2)|

. dcc(j
k
η·x(f), j

k
θ·y(−f))

(4.1)

by Corollary 2.2.
As

ρSn((x sin(πη/2), s), (y sin(πθ/2),−t)) = ρBn(x sin(πη/2), y sin(πθ/2)) + |s+ t|,

it remains to bound |s+ t| from above by (a multiple of) dcc(j
k
η·x(f), j

k
θ·y(−f)). Note

s = cos(πη/2) and t = cos(πθ/2). Via the Taylor series expansion of cosine at π/2,

cos ν = π/2− ν +O((π/2− ν)3) as ν → π/2.

It follows that

cos
πν

2
.
π

2
(1− ν) for 1− ǫ ≤ ν ≤ 1.

Since |η ·x| ≥ 1
2
, we must have η · |xi| ≥

1
2
√
n

for some i. Since |η ·x−θ · y| ≤ 1
4
√
n
,

we must have θ · yi ≥
1

4
√
n

if xi > 0 and θ · yi ≤ − 1
4
√
n

if xi < 0. Since 1− ǫ ≤ η, θ ≤ 1,

Lemma 4.8 shows that
∣

∣

∣

∣

∂kf

∂xki
(η · x) +

∂kf

∂xki
(θ · y)

∣

∣

∣

∣

≥
1

C
· (1− η) +

1

C
· (1− θ)

&
2

πC

(

cos
πη

2
+ cos

πθ

2

)

=
2

πC
(s+ t).
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Let J be the the k-index with ji = k and jl = 0 for l 6= i. By Corollary 2.2,

dcc(j
k
η·x(f), j

k
θ·y(−f)) & uJ(j

k
η·x(f)

−1 ⊙ jkθ·y(−f))

=

∣

∣

∣

∣

∂kf

∂xki
(η · x) +

∂kf

∂xki
(θ · y)

∣

∣

∣

∣

&
2

πC
(s+ t).

From (4.1), we may conclude

dcc(j
k
η·x(f), j

k
θ·y(−f)) & ρSn((x sin(πη/2), s), (y sin(πθ/2),−t)). �

4.2. The embedding does not admit a Lipschitz extension. In this
subsection, we will finish the proof of Theorem 1.1. For the aid of the reader, we
outline the remaining steps of the proof:

Step 1: Define the cylinder Cn+1 := Bn × [1, 1] and construct a Lipschitz map
P : Cn+1 → Bn+1.

Step 2: We define the map λ that shrinks [−1, 1]n onto Bn by scaling line segments
passing through the origin. Show that λ is invertible and Lipschitz. Then define
Λ: [−1, 1]n+1 → Cn+1 by Λ(x, t) = (λ(x), t).

Step 3: Make sure that f satisfies an integral condition, which may require
slightly modifying f .

Step 4: Suppose that φ admitted a Lipschitz extension φ̃ and consider the Lips-
chitz constants of dilates of φ̃ ◦ P ◦ Λ to arrive at a contradiction.

We first define a Lipschitz map that maps the cylinder Cn+1 := Bn× [−1, 1] onto
Bn+1. For some intuition, this map projects Sn−1× [−1, 1] onto Sn−1×{0} and fixes
{0}n × [−1, 1].

Definition 4.9. Define P : Cn+1 → Bn+1 by

P (θ · x, t) := (x sin(πθ/2), t cos(πθ/2)),

where x ∈ Sn−1, θ ∈ [0, 1], and −1 ≤ t ≤ 1.

Lemma 4.10. The map P : Cn+1 → Bn+1 is Lipschitz.

Proof. Via a rotation, it suffices to prove

ρBn+1((sin(πη/2), 0, t cos(πη/2)), (x sin(πθ/2), y sin(πθ/2), s cos(πθ/2)))

. |(η, 0, t)− (θx, θ · y, s)|,

or equivalently
∣

∣

∣

∣

sin(πη/2)− x sin(πθ/2)

∣

∣

∣

∣

+ |y sin(πθ/2)|+ |t cos(πη/2)− s cos(πθ/2)|

. ρBn((η, 0), (θx, θ · y)) + |t− s|,

where −1 ≤ x ≤ 1, (x, y) ∈ Sn−1, 0 ≤ θ ≤ η, 0 < η, and −1 ≤ s, t ≤ 1.
From the estimates performed in the proof of Proposition 4.2,

∣

∣

∣

∣

sin(πη/2)− x sin(πθ/2)

∣

∣

∣

∣

+ sin

(

πθ

2

) n
∑

i=2

|yi| . ρBn((η, 0), θ · (x, y))
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and

|t cos(πη/2)− s cos(πθ/2)| ≤ |t cos(πη/2)− s cos(πη/2)|+ |s cos(πη/2)− s cos(πθ/2)|

≤ |t− s|+ | cos(πη/2)− cos(πθ/2)|

. |t− s|+ ρBn((η, 0), θ · (x, y)).

It follows that P is Lipschitz. �

We now consider the invertible map that shrinks [−1, 1]n+1 to Bn+1 by scaling
lines passing through the origin.

Definition 4.11. For i = 1, . . . , n, define

Si := {x ∈ [−1, 1]n : |xi| ≥ |xj| for all j 6= i}.

Define λ : [−1, 1]n → Bn by

λ(x) :=

{

|xi|
|x| · x if x ∈ Si \ {0},

0 if x = 0.

Note that [−1, 1]n is the union of the Si. Also each Si is the disjoint union of two
convex sets, the subset of x with xi ≥ 0 and the subset with xi ≤ 0.

We now show that λ is biLipschitz.

Proposition 4.12. The map λ is invertible with λ−1 : Bn → [−1, 1]n given by

λ−1(u) =

{

|u|
|ui| · u if u 6= 0 and |ui| ≥ |uj| for all j 6= i,

0 if u = 0.

Moreover, λ is biLipschitz with

1

3(n+ 1)
|x− y| ≤ |λ(x)− λ(y)| ≤ 3|x− y|, x, y ∈ [−1, 1]n+1.

Proof. We leave it to the reader to confirm that λ is invertible with its inverse
having the form as in the statement.

We show that λ is Lipschitz. Consider the case x, y ∈ Si for some common i. If
y = 0 or x = 0, then

|λ(x)− λ(y)| ≤ |x− y|.

If x, y 6= 0 are given with |x| ≤ |y|,

|λ(x)− λ(y)| ≤

∣

∣

∣

∣

|xi|

|x|
· x−

|yi|

|y|
x

∣

∣

∣

∣

+

∣

∣

∣

∣

|yi|

|y|
x−

|yi|

|y|
· y

∣

∣

∣

∣

≤

∣

∣

∣

∣

|xi|

|y|
· (|y| − |x|) +

|x|

|y|
· |xi| −

|x|

|y|
· |yi|

∣

∣

∣

∣

+ |x− y|

≤
|xi|

|y|
· |y − x|+

|x|

|y|
· |xi − yi|+ |x− y| ≤ 3|x− y|.

For general x, y ∈ [−1, 1]n, let γ : [0, 1] → [−1, 1]n be the straight line path
connecting x to y. Fix a partition 0 = t0 < t1 < . . . < tm = 1 such that each
restriction γ|[tj ,tj+1] is contained in some Sij . This is possible because each Si is the
disjoint union of two convex sets. Then

|λ(x)− λ(y)| ≤
m−1
∑

i=0

|λ(γ(ti+1))− λ(γ(ti))| ≤
m−1
∑

i=0

3|γ(ti+1)− γ(ti)| = 3|x− y|.

This proves that λ is 3-Lipschitz. The proof that λ−1 is 1
3n

-Lipschitz is similar. �
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This enables us to define a map that stretches Cn+1 horizontally to [−1, 1]n+1 via
λ. Note that this map will be biLipschitz since λ is.

Definition 4.13. Define Λ: [−1, 1]n+1 → Cn+1 = Bn × [−1, 1] by Λ(x, t) =
(λ(x), t).

We take a moment to note that why we choose to use P ◦Λ to map a cube onto
Bn+1. Note that P ◦ Λ maps the boundary of [−1, 1]n+1 onto the boundary of Bn+1.
This will set us up to replicate Rigot and Wenger’s proof of Theorem 1.2 in [18] for
the lack of a Lipschitz extension. We could have used spherical coordinates to map
a cube onto Bn+1, but that would have been more delicate since one would not have
the “mapping of boundaries”.

The trickiest part of this proof will be ensuring that the smooth mapping f : Rn →
R serving as the “body” of the embedding satisfies a nonzero integral condition. Be-
fore, we need to define integrals of Lipschitz forms on cubes and on the boundaries
of cubes.

Definition 4.14. Let g1, . . . , gn+1 : [−1, 1]n+1 → R be Lipschitz functions. We
define

ˆ

[−1,1]n+1

dg1 ∧ · · · ∧ dgn+1 :=

ˆ

[−1,1]n+1

det(∂xj
gi) dx1 · · · dxn+1

and
ˆ

∂[−1,1]n+1

g1dg2 ∧ · · · ∧ dgn+1

:=
n+1
∑

l=1

ˆ

[−1,1]n
ĝl,11 det(∂xj

ĝl,1i )i≥2
j 6=l

dx̂l −

ˆ

[0,1]n
ĝl,01 det(∂xj

ĝl,0i )i≥2
j 6=l

dx̂l,

where x̂l := (x1, . . . , xl−1, xl+1, . . . , xn+1) ∈ Rn and ĝl,mi (x̂l) := gi(x1, . . . , xl−1, m,
xl+1, . . . , xn+1) for m = −1, 1.

Rigot and Wenger’s proof in [18] relies on a version of Stokes’ Theorem for Lip-
schitz forms.

Lemma 4.15. [18, Lemma 3.3] For all Lipschitz functions g1, . . . , gn+1 : [−1, 1]n+1

→ R,
ˆ

[−1,1]n+1

dg1 ∧ · · · ∧ dgn+1 =

ˆ

∂[−1,1]n+1

g1dg2 ∧ · · · ∧ dgn+1.

For the next proof, it will be helpful (to avoid repetition) if we set up notation
for a function on ∂[−1, 1]n+1 obtained from a function on Rn.

Notation 4.16. For each smooth function g : Rn → R, define ḡ : ∂[−1, 1]n+1 →
R by

ḡ(x, t) =











g(λ(x)) if x ∈ [−1, 1]n and t = 1,

−g(λ(x)) if x ∈ [−1, 1]n and t = −1,

g(λ(x)) if x ∈ ∂[−1, 1]n and t ∈ (−1, 1).

Note that if g ≡ 0 on Sn−1, then ḡ admits the Lipschitz extension (x, t) 7→
tg(λ(x)) to [−1, 1]n+1.

We now state the extra property we need our function f to satisfy.

Proposition 4.17. There exists a smooth function f : Rn → R satisfying:

(a) f(x) = (1− |x|)k+1 for 1
2
≤ |x| ≤ 3

2
; and
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(b) f(x) > 0 for |x| < 1.
(c)
´

∂[−1,1]n+1 λ1dλ2 ∧ · · · ∧ dλn ∧ df̄ 6= 0, where λ1, . . . , λn are the components of

λ.

Proof. By Lemma 4.3, there exists a smooth function f : Rn → R satisfying
properties (a) and (b). If

´

∂[−1,1]n+1 λ1dλ2 ∧ · · · ∧ dλn ∧ df̄ 6= 0, then f works, so

assume otherwise.
Suppose β is a smooth function supported in a cube inside {x ∈ S1 : x1 > 0, |x| <

1
2
} (recall S1 = {x ∈ [−1, 1]n : |x1| ≥ |xj | for all j > 1}). By linearity,

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ d(f + β)

=

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ df +

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ dβ

=

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ dβ.

Thus if we show the last integral is nonzero, then f + β will work.
As β̄ ≡ 0 on ∂[−1, 1]n × [−1, 1],

´

∂[−1,1]n×[−1,1]
λ1dλ2∧ · · ·∧ dλn∧ dβ = 0. We can

simplify
ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ dβ = 2

ˆ

[−1,1]n
λ1dλ2 ∧ · · · ∧ dλn ∧ d(β ◦ λ).

Note that λ−1 is smooth on int(S1) ∩Bn, where int(S1) is the interior of S1. Hence,

2

ˆ

[−1,1]n
λ1dλ2 ∧ · · · ∧ dλn ∧ d(β ◦ λ) = 2

ˆ

{x∈int(S1):x1>0}
λ∗(u1du2 ∧ · · · ∧ dun ∧ dβ) dx

= 2(−1)n+1

ˆ

{u∈int(S1)∩Bn : u1>0}
u1
∂β

∂u1
· J(λ−1) du,

where we used that β is supported in {u ∈ int(S1)∩Bn : u1 > 0} for the first equality
and change of coordinates for the second equality. Integrating by parts,
ˆ

{u∈int(S1)∩Bn : u1>0}
u1
∂β

∂u1
· J(λ−1) du = −

ˆ

{u∈int(S1)∩Bn:u1>0}

∂(u1 · J(λ
−1))

∂u1
· β du.

It remains to define β carefully to ensure that the last integral is nonzero.
For u ∈ int(S1) with u1 > 0 and |u| < 1, one can calculate

∂λ−1

∂u1
(u) = −

1

u21
· |u|u+

1

u1
·

(

u1
|u|

· u+ |u| · e1

)

and
∂λ−1

∂ui
(u) =

1

u1
·

(

ui
|u|

· u+ |u| · ei

)

, i = 2, . . . , n.

In particular, ∂λ−1

∂uj
(u1, 0, . . . , 0) = ej for j = 1, . . . , n and 0 < u1 < 1

2
. Since

J(λ−1)(u1, 0, . . . , 0) = 1 for 0 < u1 <
1
2
,

∂(u1 · J(λ
−1))

∂u1
(1/4, 0, . . . , 0) = 1.

By smoothness, there exists a cube C ⊂ {u ∈ S1 : |u| <
1
2
} centered at (1/4, 0, . . . , 0)

on which ∂(u1·J(λ−1))
∂u1

> 0. If β : Rn → [0, 1] is supported on C and β(1/4, 0, . . . , 0) =
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1, then
ˆ

∂[−1,1]n+1

λ1dλ2∧· · ·∧dλn∧dβ = 2(−1)n
ˆ

{u∈int(S1)∩Bn : u1>0}

∂(u1 · J(λ
−1))

∂u1
·β du 6= 0

as desired and f + β works. �

Let d0 be the Riemannian metric distance arising from defining an inner prod-
uct on Lie(Jk(Rn)) that makes the layer of the stratification orthogonal. Define
ι : (Jk(Rn), dcc) → (Jk(Rn), d0) to be the identity map, which is 1-Lipschitz. With
the extra integral condition on f , we can prove that the corresponding embedding of
Sn into Jk(Rn) does not admit a Lipschitz extension.

Proof of Theorem 1.1. Fix a smooth function f : Rn → R satisfying properties
(a)-(c) of Proposition 4.17, and let φ : Sn → Jk(Rn) be the corresponding biLipschitz
embedding (see Definition 4.4 and Theorem 4.5).

Suppose, for contradiction, that φ admits a Lipschitz extension φ̃ : Bn+1 →
Jk(Rn). Let λ equal the Lipschitz constant Lip(F ) of the Lipschitz map F := φ̃◦P ◦Λ.
We show that for all M > 0,

(4.2) M1+ k
n+1

∣

∣

∣

∣

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ df̄

∣

∣

∣

∣

1/(n+1)

≤ Lip(ι ◦ δM ◦ F ) ≤Mλ.

Letting M → ∞, we will arrive at a contradiction.
The right inequality is clear since δM is M-Lipschitz and ι is 1-Lipschitz.
For the other inequality, let hi denote the xi-coordinate of F for i = 1, . . . , n and

hn+1 the u0-coordinate of ι ◦ δM ◦ F . For (x, t) ∈ ∂[−1, 1]n+1, hi(x, t) = Mλi(x) for
i = 1, . . . , n and hn+1(x, t) =Mk+1f̄(x). This implies

(4.3)

ˆ

∂[−1,1]n+1

h1dh2 ∧ · · · ∧ dhn+1 =Mn+k+1

ˆ

∂[−1,1]n+1

λ1dλ2 ∧ · · · ∧ dλn ∧ df̄ 6= 0.

By Lemma 4.15,
ˆ

∂[−1,1]n+1

h1dh2 ∧ · · · ∧ dhn+1 =

ˆ

[−1,1]n+1

dh1 ∧ dh2 ∧ · · · ∧ dhn+1.

Define the (n+ 1)-form ω := dx1 ∧ · · · ∧ dxn ∧ du0 on Jk(Rn). By Lemma 3.2 of
[18],

|ωp(v1, · · · , vn+1)| ≤ 1

for all p ∈ Jk(Rn) and v1, . . . , vn+1 ∈ TpJ
k(Rn) with ||vi||g0 ≤ 1. We have

∣

∣

∣

∣

ˆ

[−1,1]n+1

dh1 ∧ dh2 ∧ · · · ∧ dhn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

[−1,1]n+1

(ι ◦ δM ◦ F )∗ω

∣

∣

∣

∣

≤ Lip(ι ◦ δM ◦ F )n+1.

The left inequality of (4.2) follows from (4.3). We may conclude that φ does not
admit a Lipschitz extension to Bn+1. �

References

[1] Balogh, Z.M., and K. S. Fässler: Rectifiability and Lipschitz extensions into the Heisenberg
group. - Math. Z. 263:3, 2009, 673–683.

[2] Bridson, M.R., and A. Haefliger: Metric spaces of non-positive curvature. - Grundlehren
Math. Wiss. 319, 1999.

[3] Chiswell, I.: Introduction to Λ-trees. - World Sci. Publ. Co., Inc., River Edge, NJ, 2001.



280 Derek Jung

[4] Chow, W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung.
- Math. Ann. 117, 98–105, 1939.

[5] Dejarnette, N., P. Hajłasz, A. Lukyanenko, and J. T. Tyson: On the lack of density
of Lipschitz mappings in Sobolev spaces with Heisenberg target. - Conform. Geom. Dyn. 18,
2014, 119–156.

[6] Hajłasz, P., A. Schikorra, and J. T. Tyson: Homotopy groups of spheres and Lipschitz
homotopy groups of Heisenberg groups. - Geom. Funct. Anal. 24:1, 2014, 245–268.

[7] Heinonen, J., P. Koskela, N. Shanmugalingam, and J. T. Tyson: Sobolev spaces on
metric measure spaces. An approach based on upper gradients. - New Math. Monogr. 27,
Cambridge Univ. Press, Cambridge, 2015.

[8] Imrich, W.: On metric properties of tree-like spaces. - In: Contributions to graph theory and
its applications (Internat. Colloq., Oberhof, 1977), Tech. Hochschule Ilmenau, Ilmenau, 1977,
129–156 (in German).

[9] Johnson, W.B., and J. Lindenstrauss: Extensions of Lipschitz mappings into a Hilbert
space. - In: Conference in modern analysis and probability (New Haven, Conn., 1982), Con-
temp. Math. 26, Amer. Math. Soc., Providence, RI, 1984, 189–206.

[10] Johnson, W.B., J. Lindenstrauss, and G. Schechtman: Extensions of Lipschitz maps
into Banach spaces. - Israel J. Math. 54:2, 1986, 129–138.

[11] Jung, D.: A variant of Gromov’s problem on Hölder equivalence of Carnot groups. - J. Math.
Anal. Appl. 456:1, 2017, 251–273.

[12] Lang, U., and T. Schlichenmaier: Nagata dimension, quasisymmetric embeddings, and
Lipschitz extensions. - Int. Math. Res. Not. IMRN 2005:58, 2005, 3625–3655.

[13] Lang, U., and V. Schroeder: Kirszbraun’s theorem and metric spaces of bounded curvature.
- Geom. Funct. Anal. 7:3, 1997, 535–560.

[14] Lee, J. R., and A. Naor: Extending Lipschitz functions via random metric partitions. -
Invent. Math. 160:1, 2005, 59–95.

[15] Lee, J.M.: Introduction to smooth manifolds. - Grad. Texts in Math. 218, Springer, New
York, second edition, 2013.

[16] Magnani, V.: Unrectifiability and rigidity in stratified groups. - Arch. Math. (Basel) 83:6,
2004, 568–576.

[17] Nagel, A., E.M. Stein, and S. Wainger: Balls and metrics defined by vector fields. I. Basic
properties. - Acta Math. 155:1-2, 1985, 103–147.

[18] Rigot, S., and S. Wenger: Lipschitz non-extension theorems into jet space Carnot groups.
- Int. Math. Res. Not. IMRN 2010:18, 2010, 3633–3648.

[19] Valentine, F.A.: Contractions in non-Euclidean spaces. - Bull. Amer. Math. Soc. 50, 1944,
710–713.

[20] Warhurst, B.: Jet spaces as nonrigid Carnot groups. - J. Lie Theory 15:1, 2005, 341–356.

[21] Wenger, S., and R. Young: Lipschitz extensions into jet space Carnot groups. - Math. Res.
Lett. 17:6, 2010, 1137–1149.

[22] Wenger, S., and R. Young: Lipschitz homotopy groups of the Heisenberg groups. - Geom.
Funct. Anal. 24:1, 2014, 387–402.

Received 19 December 2017 • Accepted 13 August 2018


