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Abstract. In this paper, we study the absolutely continuous characterization of Sobolev

functions on compact and connected 1-dimensional metric spaces X . We generalize the definition

of absolutely continuous functions to such spaces and prove the equivalence between the absolutely

continuous functions and Newtonian Sobolev functions. We also show that a compact and 1-

Ahlfors regular metric space X supports a p-Poincaré inequality for 1 ≤ p ≤ ∞ if and only if

X is quasiconvex. As a result, the absolutely continuous functions are equivalent to the Sobolev

functions defined via several different approaches.

1. Introduction

On the real line, the absolutely continuous function u on a compact interval [a, b]
is defined in the following way: for all ǫ > 0, there exists a δ > 0 such that for any
finite collection of pairwise disjoint subintervals [ai, bi] ⊂ [a, b],

∑

i

|u(bi)− u(ai)| < ǫ

provided that
∑

i |bi − ai| < δ. We denote the absolutely continuous functions on
[a, b] by AC([a, b]). An absolutely continuous function f ∈ AC([a, b]) is differentiable
almost everywhere. Furthermore, if the derivative f ′ is p-integrable, this function f
belongs to the Sobolev space W 1,p([a, b]). On the other hand, every Sobolev func-
tion in W 1,p([a, b]) has an absolutely continuous representative. Upon choosing such
a representative, we can identify a Sobolev function u ∈ W 1,p([a, b]) with an ab-
solutely continuous function in AC([a, b]) with p-integrable derivative [5]. In this
work, we extend the definition of absolutely continuous functions to some general
one-dimensional metric spaces and study the connection between these absolutely
continuous functions and Sobolev functions.

There are many extensions of the definitions of absolutely continuous functions to
general settings and some results on the connections between the absolutely contin-
uous functions and Sobolev functions. Malý [14] introduces a class of “n-absolutely
continuous functions” in Rn and proves that absolute continuity implies continu-
ity, weak differentiability with gradient in Ln and some other results. Kauhanen,
Koskela and Malý [12, Theorem A] show that functions u ∈ W 1,1

loc (Ω) whose weak
partial derivatives belong to the Lorentz space Ln,1(Ω) have n-absolutely continuous
representatives in a domain Ω ⊂ Rn. Romanov [15, Theorem 2] generalizes this
result to a locally s-Ahlfors regular metric space X for 1 ≤ p < s. He shows if u is
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a Poincaré Sobolev function [8] and the corresponding “Poincaré gradient” g belongs
to the Lorentz space Ls,1(X), then u has an s-absolutely continuous representative.

In a compact and connected metric space X with finite 1-dimensional Hausdorff
measure, a classical result [1, Theorem 4.4.7] states that every two points can be
joined by the shortest curve. By curve, we mean a continuous mapping γ : [a, b] →
X. The arc-length parametrization of this shortest curve is injective. We call the
curves without self intersections simple curves. The above results guarantees there
are sufficient simple curves in a compact, connected metric space X with finite 1-
dimensional Hausdorff measure. We define the absolutely continuous functions on
such spaces as follows.

Definition 1.1. Let (X, d,H1) be a compact and connected metric measure
space with H1(X) < ∞. A function u : X → R is absolutely continuous if for any
ǫ > 0, there is a positive number δ such that

∑

i

|u ◦ γi(ℓi)− u ◦ γi(0)| < ǫ,

for any countable collection of pairwise disjoint arc-length parametrized simple curves
γi : [0, ℓi] → X with total length

∑
i ℓi < δ.

Remark 1.1. We denote the above class of absolutely continuous functions on
X by AC(X). Let X = [a, b], it is easy to verify this definition coincides with the
classical definition. It is also clear that the absolutely continuous functions defined
above are uniformly continuous when X is quasiconvex.

Remark 1.2. Let ui = u ◦ γi and Varℓi0 (ui) denote the total variation of ui on
the interval [0, ℓi] defined as

Varℓi0 (ui) = sup
{ n−1∑

k=1

|u ◦ γi(tk)− u ◦ γi(tk+1)| | 0 ≤ t1 < · · · < tn ≤ ℓi

}
.

For simplicity, we write Var(ui) = Varℓi0 (ui). We can divide each simple curve In
Definition 1.1 into smaller pieces and add the oscillation on the sub-curves. In this
way, we can replace

∑
i |u ◦ γi(ℓi)− u ◦ γi(0)| in the definition by

∑
i Var(ui) and get

an equivalent characterization.

If u ∈ AC([a, b]), the pointwise derivative u′ exists almost everywhere and u′ ∈
L1([a, b]). Likewise, if u ∈ AC(X), we prove that there exists an upper gradient
associated to u and this upper gradient belongs to L1(X).

Theorem 1.1. Let (X, d,H1) be a compact and connected metric measure space

with H1(X) < ∞. If u ∈ AC(X), then there is an upper gradient g ∈ L1(X) for u,

that is, for any rectifiable curve γ : [a, b] → X, we have

|u(γ(a))− u(γ(b))| ≤

ˆ

γ

g.

The construction of the upper gradient g can be roughly described as follows:
the one-dimensional space X in the assumption can be decomposed as a countable
collection of the images of pariwise disjoint simple curves γi : [0, ℓi] → X and a null
set. On each simple curve piece, the definition that u ∈ AC(X) guarantees the
absolute continuity of u ◦ γi and the existence of the pointwise derivative (u ◦ γi)

′(t)
for almost everywhere t ∈ [0, ℓi]. Then the upper gradient g(x) can be defined as
(u◦γi)

′(t) with t = γ−1
i (x) up to a set of measure zero. To verify that this function g
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is a upper gradient for u requires a careful comparison between the integral of g along
an arbitrary curve γ : [a, b] → X and a integral of the pointwise derivative (u ◦ γ0)

′

over [0, ℓ0], where γ0 : [0, ℓ0] → X is the shortest curve connecting γ(a) and γ(b).
There are different approaches to extend the classical theory of Sobolev functions

to metric measure spaces [2, 6, 8, 17]. In this work, we mainly employ the definition
introduced by Shanmugalingam [17] and denote it by N1,p(X). For an absolutely
continuous function u ∈ AC(X), if the upper gradient g associated to u (defined
explicitly in the proof of Theorem 1.1) is p-integrable, we write u ∈ ACp(X). By
definition, it follows that ACp(X) ∩ Lp(X) ⊂ N1,p(X). On the other hand, we can
verify that all Sobolev functions in N1,p(X) belong to the class ACp(X) in our setting
X. Thus, we get the following result.

Theorem 1.2. Let 1 ≤ p < ∞ and (X, d,H1) be a compact, connected metric

measure space with H1(X) < ∞. Then u ∈ N1,p(X) if and only if u ∈ ACp(X) and

u ∈ Lp(X). In other words,

N1,p(X) = ACp(X) ∩ Lp(X).

Remark 1.3. The upper gradient g we find in Theorem 1.1 is the least upper
gradient of u ∈ N1,p(X), that is, if ρ ∈ Lp(X) is an upper gradient of u ∈ N1,p(X),
then g(x) ≤ ρ(x) holds almost everywhere. This follows from the construction of g
described above and Lemma 3.1. More details can be found in the proof of Theo-
rem 1.2.

The notion of an abstract Poincaré inequality on metric measure spaces was
introduced by Heinonen and Koskela [10]. Metric measure spaces that are dou-
bling and support an abstract Poincaré inequality provide a good structure to study
the first-order analysis. In some spaces, a pure geometric characterization of the
Poincaré condition is possible. For example, Durand-Cartagena, Jaramillo and Shan-
mugalingam [3] show a connected complete doubling metric measure space supports
a ∞-Poincaré inequality if and only if it is thick quasiconvex. In Q-Ahlfors regular
spaces with Q > 1, they also obtain a characterization of p-Poincaré condition for
p > Q − 1 in terms of a quantitative estimate of the p-modulus of the family of
all quasiconvex curves [4]. In our settings, we prove that for each compact and 1-
Ahlfors regular space, supporting a p-Poincaré inequality for 1 ≤ p ≤ ∞ is equivalent
to being quasiconvex.

Theorem 1.3. Let (X, d,H1) be a compact 1-Ahlfors regular metric measure

space. Then it supports p-Poincaré inequality for 1 ≤ p ≤ ∞ if and only if X is

quasiconvex.

Let X be a complete metric space equipped with a doubling measure and 1 ≤
q < p. If X supports a q-Poincaré inequality, the Sobolev spaces N1,p(X) defined by
upper gradients, the Sobolev spaces P 1,p(X) defined by Poincaré inequalities, and the
Sobolev spaces M1,p(X) defined by a pointwise inequality using maximal functions
all coincide [7, Theorem 11.3]. Consequently, we obtain the following corollary.

Corollary 1.4. Let (X, d,H1) be a compact, quasiconvex, 1-Ahlfors regular met-

ric measure space and 1 < p < ∞. Then

ACp(X) ∩ Lp(X) = N1,p(X) = P 1,p(X) = M1,p(X).

This paper is organized in the following way. In Section 2, we review several
basic definitions and some well-known results. In Section 3, we prove Theorem 1.1
and Theorem 1.2. In Section 4, we prove Theorem 1.3 and Corollary 1.4 follows.
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2. Definitions and notations

In this section, we will give some basic definitions and notations, as well as a list
of several known results. Most of the results in this section can be found in [11].

2.1. s-Ahlfors regular space and doubling space.

Definition 2.1. We say that a space (X, d, µ) is s-Ahlfors regular if there is a
fixed constant C, such that

C−1rs ≤ µ(B(x, r)) ≤ Crs,

where x ∈ X and 0 < r < diam(X).

If X is s-Ahlfors regular with respect to µ, we can replace µ by the Hausdorff
measure Hs without losing essential information [9, Exercise 8.11].

We say that µ is a doubling measure if there is a fixed constant C > 0 such that
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for each x ∈ X and all r > 0. If X is equipped with a
doubling measure µ, we call X is a doubling space.

2.2. Upper gradients and Newtonian Sobolev spaces N
1,p(X). Recti-

fiable curve always admits an arc-length parametrization. Let γ : [a, b] → X be a
rectifiable curve and g : γ([a, b]) → [0,∞] be a Borel measure function, we define

ˆ

γ

g :=

ˆ ℓ

0

g(γ̃(t)) dt,

where γ̃ : [0, ℓ] → X is the arc-length parametrization of γ.

Definition 2.2. Let u : X → R be a Borel function. We say that a Borel
function g : X → [0,∞] is an upper gradient of u if

|u(γ(a))− u(γ(b))| ≤

ˆ

γ

g

for every rectifiable curve γ : [a, b] → X.

Let 1 ≤ p < ∞, Ñ1,p(X, d, µ) is the class of all Lp-integrable functions on X

for which there exists a p-integrable upper gradient. For each u ∈ Ñ1,p(X, d, µ) we
associate a seminorm

‖u‖
Ñ1,p(X,d,µ) = ‖u‖Lp + inf

g
‖g‖Lp,

where the infimum is taken over all upper gradients of u.

Definition 2.3. We define an equivalence relation in Ñ1,p(X, d, µ) by u ∼ v if
‖u− v‖Ñ1,p(X,d,µ) = 0. Then the space N1,p(X, d, µ) is defined as the quotient space

Ñ1,p(X, d, µ)/ ∼ and it is a Banach space equipped with the norm

‖u‖N1,p = ‖u‖
Ñ1,p.
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2.3. Poincaré Sobolev spaces P
1,p(X) and Hajłasz Sobolev spaces

M
1,p(X).

Definition 2.4. Fix σ ≥ 1 and 0 < p < ∞. We say that a pair (u, g), u ∈ L1(X),
0 ≤ g ∈ Lp(X) satisfies the p-Poincaré inequality if the following inequality holds:

 

B

|u− uB|dµ ≤ r

(
 

σB

gpdµ

) 1

p

on every ball B of radius r and σB ⊂ X.
In this paper, we call g in the above inequality the “Poincaré gradient” for u.

The class of u ∈ Lp(X) for which there exists 0 ≤ g ∈ Lp(X) so that the pair (u, g)
satisfies the p-Poincaré inequality will be denoted by P 1,p

σ (X) and

P 1,p(X) =
⋃

σ≥1

P 1,p
σ (X).

Definition 2.5. For 0 < p < ∞ we define M1,p(X) to be the set of all functions
u ∈ Lp(X) for which there exists g ≥ 0 such that

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) µ-a.e.

Denote by D(u) the class of all nonnegative Borel functions g that satisfy the above
inequality. Thus u ∈ M1,p(X) if and only if u ∈ Lp(X) and D(u) ∩ Lp(X) 6= ∅. The
space M1,p(X) is linear and we equip it with the norm

||u||M1,p = ||u||Lp + inf
g∈D(u)

||g||Lp,

for 1 ≤ p < ∞.

2.4. Spaces supporting a Poincaré inequality. Recall that uB stands for
an integral average, that is, uB = 1

µ(B)

´

B
u dµ. A metric measure space (X, d, µ)

supporting Poincaré inequality is defined in the following way.

Definition 2.6. Let p ≥ 1. A metric measure space (X, d, µ) is said to support
a p-Poincaré inequality if there exists constants C > 0 and λ ≥ 1 such that for all
measurable functions, the following holds for every pair of functions u : X → R and
g → [0,∞] where u is measurable, and g is an upper gradient for u:

 

B

|u− uB| dµ ≤ C diamB

(
 

λB

gp dµ

) 1

p

,

on every ball B.

A metric space X is quasiconvex if every two points can be joined by a curve
with length comparable to the distance of these two points. If X is complete, dou-
bling and supports a p-Poincaré inequality for p ≥ 1, then X is quasiconvex [2,
Theorem 17.1.][8, Proposition 4.4].

The following theorem can be found in [7, Theorem 11.3].

Theorem 2.1. Let (X, d, µ) be a complete metric space equipped with a dou-

bling measure. If 1 < p < ∞ and the space supports the q-Poincaré inequality for

some 1 ≤ q < p, then

N1,p(X) = P 1,p(X) = M1,p(X).

2.5. Area Formula. We need the following generalization of the Euclidean
Area Formula to the case of Lipschitz maps f from the Euclidean space Rn into a
metric space X. The proof can be found in [13, Corollary 8].
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Theorem 2.2. Let f : Rn → X be Lipschitz. Then
ˆ

Rn

g(x)Jn(mdfx) dx =

ˆ

X

∑

x∈f−1(y)

g(x) dHn(y)

for any Borel function g : Rn → [0,∞] and
ˆ

A

g(f(x))Jn(mdfx) dx =

ˆ

X

g(y)H0(A ∩ f−1(y)) dHn(y)

for A ⊂ Rn is measurable and any Borel function g : X → [0,∞].

We apply the above theorem to an injective, arc-length parametrized curve. Let
f = γ and γ : [0, ℓ] → X. In this case, J1(mdfx) equals to the metric derivative
defined as

|γ̇|(t) = lim
h→0

d(γ(t+ h), γ(t))

|h|
,

and |γ̇|(t) = 1 almost everywhere for t ∈ [0, ℓ]. Let Γ = γ([0, ℓ]) and g : X → [0,∞]
be a Borel function. It follows from Theorem 2.2 that

ˆ ℓ

0

g(γ(s)) ds =

ˆ

Γ

g(y) dH1(y).

This implies that H1(Γ) = ℓ for an injective, arc-length parametrized curve. If
N ⊂ X and H1(N) = 0, the above Area Formula also shows that H1(γ−1(N)) = 0.

2.6. Rectifiability of 1-dimensional connected spaces. We list several
important results about the parametrization of compact and connected 1-dimensional
metric spaces. The first result is proved by Schul [16, Lemma 2.3] and gives a global
Lipschitz parametrization of finite 1-dimensional compact, connected metric spaces.

Lemma 2.3. Let K ⊂ X be a compact connected set of finite H1 measure.

Then there is a Lipschitz function γ : [0, 1] → K such that Image(γ) = K and

‖γ‖Lip ≤ 32H1(K). Moreover, if K is 1-Ahlfors-regular, then

R

C
≤ H1(γ−1(B(x,R))) ≤ CR ∀x ∈ K, 0 < R ≤ diam(K),

where C is a constant depending only on the 1-Ahlfors-regularity constant of the set

K.

The proofs of the following two classical results can be found in [1, Theorem 4.4.7,
Theorem 4.4.8].

Theorem 2.4. (First Rectifiability Theorem) If E is complete and C ⊂ E is a

closed connected set such that H1(C) < ∞, then C is compact and connected by

rectifiable curves.

Actually, we can replace the rectifiable curve joining any two points x, y by geo-
desic, the shortest curve connecting x, y in C in the above theorem [7, Theorem 3.9].

Theorem 2.5. (Second Rectifiability Theorem) If E is complete, C ⊂ E is

closed and connected, and H1(C) < ∞, then there exist countably many arc-length

parametrized simple curves γi : [0, ℓi] → C such that

H1(C \
∞⋃

i=1

γi([0, ℓi])) = 0.
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We briefly describe the construction of this parametrization. Since C is compact,
we can choose x, y ∈ C such that

d(x, y) = diam (C).

By First Rectifiability Theorem (Theorem 2.4), we can join x, y by an arc-length
parametrized geodesic γ0 : [0, ℓ0] → C and we denote the range of this curve as Γ0.
Suppose that we have already constructed Γ0, · · · ,Γk with the following properties:

(1) Γi ⊂ C, i = 0, · · · , k;
(3) Each curve γi : [0, ℓi] → C with Γi = γi([0, ℓi]) is an arc-length parametrized

geodesic;
(2) Each intersection Γi ∩

⋃
j<i Γj consists of a single point, for i = 1, · · · , k.

Let

dk = sup
x∈C

d
(
x,

k⋃

i=0

Γi

)
.

If dk = 0, then C =
⋃k

i=0 Γi and we are done. If dk > 0 for all k, by compactness
we can choose xk ∈ C and yk ∈ ∪k

i=0Γi such that d(xk, yk) = dk. Connect xk

and yk with an arc-length parametrized geodesic γk+1 such that γk+1(0) = xk and
γk+1(ℓk+1) = yk+1. Let

t̃ = inf

{
t ∈ [0, ℓk+1] | γk+1(t) ∈

k⋃

i=0

Γi

}

and define Γk+1 = γk+1([0, t̃]). We get that Γk+1 ⊂ X is an arc-length parametrized

geodesic and the intersection of Γk+1 and
⋃k

i=0 Γi consists of one single point γk+1(t̃).
We can continue this construction. Since

⋃∞
i=0 Γi may not be closed, we may have

X \
∞⋃

i=0

Γi 6= ∅.

We omit the proof for H1(X \
⋃∞

i=0 Γi) = 0.

Remark 2.1. From the above construction, if two curves intersect with each
other, the intersection point must be the endpoint of one of them. Thus, if we
remove the endpoints of these curves, they are pairwise disjoint.

Remark 2.2. Since we choose γi to be geodesic in each step, for any two points
x, y ∈ Γi, γi is the shortest curve joining x and y in C.

3. Characterization of Sobolev functions by absolute continuity

3.1. Absolutely continuous functions belong to N
1,1(X).

Proof of Theorem 1.1. By Second Rectifiability Theorem (Theorem 2.5), we
know that there is a countable collection of simple curves in X and a set N1 with
H1(N1) = 0 such that

X =
∞⋃

i=1

γi((0, ℓi)) ∪N1.

We denote the range of γi by Γi = γi(0, ℓi) and denote u ◦ γi by ui. The intersection
of Γi and Γj is empty for i 6= j. If u ∈ AC(X), then ui ∈ AC((0, ℓi)). Thus, u′

i(t)
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exists almost everywhere for t ∈ (0, ℓi). Moreover, we have

ui(ℓi)− ui(0) =

ˆ ℓi

0

u′
i(s) ds,

and

Var(ui) =

ˆ ℓi

0

|u′
i(s)| ds.

We denote the collection of points x ∈
⋃∞

i=1 Γi such that u′
i(γ

−1
i (x)) does not exist as

N2, and let N0 = N1 ∪ N2. It is clear that H1(N0) = 0. Then we define a function
g : X → R as follows,

(1) g(x) =

{
|u′

i(γ
−1
i (x))| if x ∈ X \N0,

∞ if x ∈ N0.

This function g is integrable on X. In fact, by the decomposition of X, we have
ˆ

X

g dH1 =

ˆ

X\N1

g dH1 =
∑

i

ˆ

Γi

g dH1.

Apply Area Formula to each arc-length parametrized simple curve Γi, it follows

∑

i

ˆ

Γi

g dH1 =
∑

i

ˆ ℓi

0

g(γi(s)) ds.

Since the L1(γ−1
i (N2)) = 0 and by definition of the function g, we get

ˆ

X

g dH1 =
∑

i

ˆ ℓi

0

g(γi(s)) ds =
∑

i

ˆ ℓi

0

|u′
i(s)| ds =

∑

i

Var(ui).

Since γi is injective and H1(X) < ∞, it implies that
∑

i

ℓγi =
∑

i

H1(Γi) ≤ H1(X) < ∞.

For any ǫ > 0, there exists a natural number n0 such that
∑∞

i=n0+1 ℓγi < ǫ. By
Definition 1.1, it implies that

∑∞
i=n0+1Var(ui) can be sufficiently small. Thus,

ˆ

X

g dH1 =
∑

i

Var(ui) =

n0∑

i=1

Var(ui) +

∞∑

i=n0+1

Var(ui) < ∞.

We next prove that g is an upper gradient for the function u ∈ AC(X), that is,
for any rectifiable curve γ : [a, b] → X, we have

|u(γ(a))− u(γ(b))| ≤

ˆ

γ

g ds.

Let γ : [a, b] → X be a rectifiable curve and Γ = γ([a, b]). Since Γ is compact,
connected and H1(Γ) < ∞, there exists a shortest curve joining γ(a) and γ(b) in Γ.
We denote the arc-length parametrization of this injective curve by γ0 : [0, ℓ] → Γ
with

(2) γ0(0) = γ(a) and γ0(ℓ) = γ(b).

Let Γ0 = γ0([0, ℓ]). It follows from Area Formula that

(3)

ˆ

γ0

g ds =

ˆ ℓ

0

g(γ0(s)) ds =

ˆ

Γ0

g(x) dH1 ≤

ˆ

Γ

g(x) dH1 ≤

ˆ

γ

g ds.
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Since u ∈ AC(X), it follows that u0 = u ◦ γ0 ∈ AC([0, ℓ]) and u′
0 exists almost

everywhere. Let I = {i ∈ N : H1(Γ0∩Γi) 6= 0}. Then Γ0 is the union of
⋃

i∈I(Γ0∩Γi)
and a null set.

Let i ∈ I and x ∈ Γi ∩ Γ0 such that u′
0(γ

−1
0 (x)), u′

i(γ
−1
i (x)) both exist and

t = γ−1
0 (x) is a density point of γ−1

0 (Γi ∩ Γ0). By definition,

|u′
0(t)| = lim

h→0

|u0(t+ h)− u0(t)|

|h|
= lim

h→0

|u(γ0(t + h))− u(γ0(t))|

|h|
.

Since t is a density point in the measurable set γ−1
0 (Γi ∩ Γ0), we can take a sequence

of nonzero number {hk}
∞
k=1 such that t+ hk ∈ γ−1

0 (Γi ∩ Γ0) and limk→∞ hk = 0. We
denote γi(s) = γ0(t) and γi(sk) = γ0(t + hk). By Remark 2.2, the curve γi is the
shortest curve joining γi(s) and γi(sk). Since γ0 and γi are both parametrized by
arc-length, it follows that

|s− sk| = ℓγi(s,sk) ≤ ℓγ0(t,t+hk) = |hk|.

This implies that

|u′
0(t)| = lim

k→∞

|u(γ0(t+ hk))− u(γ0(t))|

|hk|

≤ lim
k→∞

|u(γi(sk))− u(γi(s))|

|sk − s|
= |u′

i(s)|.

Thus,

|u′
0(t)| ≤ |u′

i(s)| = |u′
i(γ

−1
i (γ0(t)))| = g(γ0(t))

holds almost everywhere for t ∈ [0, ℓ]. In fact, Area Formula guarantees H1(γ−1
0 (N)) =

H1(N) = 0 for any null set N ⊂ X. It follows that

(4) |u0(ℓ)− u0(0)| ≤

ˆ ℓ

0

|u′
0(t)| dt ≤

ˆ ℓ

0

g(γ0(t)) dt =

ˆ

γ0

g ds.

Combining inequalities (2), (3), (4), we get

|u(γ(a))− u(γ(b))| = |u(γ0(0))− u(γ0(ℓ))| = |u0(0)− u0(ℓ)| ≤

ˆ

γ0

g ds ≤

ˆ

γ

g ds.

Thus, we verify that g ∈ L1(X) is an upper gradient of u and the proof is complete.
�

3.2. Sobolev functions in N
1,p are absolutely continuous. To conclude

the proof of Theorem 1.2, we need the following lemma [11, Proposition 6.3.3].

Lemma 3.1. Let u : X → R be a function and γ : [0, ℓ] → X be an arc-length

parametrized rectifiable curve in X. Assume that ρ : X → [0,∞] is a Borel function

such that ρ is integrable on γ and the pair (u, ρ) satisfies the upper gradient inequality

on γ and each of its compact subcurves. Then u ◦ γ is absolutely continuous and the

inequality

|(u ◦ γ)′(t)| ≤ (ρ ◦ γ)(t),

holds for almost every t ∈ [0, ℓ].

Proof of Theorem 1.2. If u ∈ AC(X) ∩ L1(X), then Theorem 1.1 implies that
u ∈ N1,1(X). If we further assume that u ∈ ACp(X), that is, the upper gradient g
defined in (1) belongs to Lp(X). It follows that u ∈ N1,p(X) and

ACp(X) ∩ Lp(X) ⊂ N1,p(X).
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On the other hand, if u ∈ N1,p(X), and ρ is a p-integrable upper gradient of u. For
any arc-length parametrized simple rectifiable curves γ : [0, ℓ] → X, ρ is integrable
along γ and H1(Γ) = ℓ by Area Formula. Since (u, ρ) satisfies the following upper
gradient inequality

|u(γ(ℓ))− u(γ(0))| ≤

ˆ ℓ

0

ρ(γ(s)) ds =

ˆ

Γ

ρ(y) dH1(y),

the absolute continuity of integral implies immediately that u ∈ AC(X).
Moreover, the upper gradient g defined in (1) is the least upper gradient for

u ∈ N1,p(X). Let γi be the simple curves constructed in the Second Rectifiability
Theorem. Lemma 3.1 implies that

|u′
i(t)| = |(u ◦ γi)

′(t)| ≤ (ρ ◦ γi)(t).

For almost every point x ∈ X, the above inequality implies that

g(x) = |u′
i(γ

−1
i (x))| ≤ ρ(x).

The upper gradient g defined in (1) is bounded by a p-integrable function ρ almost
everywhere in X. It implies that g ∈ Lp(X) and u ∈ ACp(X). Thus, we get

N1,p(X) ⊂ ACp(X) ∩ Lp(X).

The proof of Theorem 1.2 is complete. �

Note the proofs of the above two theorems also work in the case p = ∞.

4. Space supporting Poincaré inequality

Proof of Theorem 1.3. Since every complete and doubling metric measure space
that supports a p-Poincaré inequality for p ≥ 1 is quasiconvex [8, Proposition 4.4]
[11, Theorem 8.3.2], the necessity part of the theorem is clear.

On the other hand, by Hölder’s inequality, when the compact 1-Ahlfors regular
metric space is quasiconvex, it suffices to show that X supports a 1-Poincaré in-
equality. Let B(O, r) ⊂ X be an arbitrary ball in X and x, y ∈ B. There exists a
shortest rectifiable curve connecting x and y [7, Theorem 3.9]. We denote the arc-
length parametrization of this shortest curve by γ : [0, ℓ] → X such that γ(0) = x
and γ(ℓ) = y. At the same time, X being quasiconvex guarantees that there is a
curve γ̃(x, y) joining x and y with length ℓγ̃(x,y) such that

ℓ ≤ ℓγ̃(x,y) ≤ Cd(x, y).

Let u be a Borel function and g be an upper gradient of u. Then

(5) |u(x)− u(y)| ≤

ˆ ℓ

0

g(γ(s)) ds.

Denote Γ = γ([0, ℓ]) and λ = 3C, where C is the quasiconvexity constant of X. We
next verify that the whole curve Γ ⊂ B(O, λr). By triangle inequality, d(z, O) ≤
d(z, x) + d(x,O). Let ℓγ(x,z) denote the length of the shortest curve joining x and z.
We have d(z, x) ≤ ℓγ(x,z) ≤ ℓ. Thus,

d(z, O) ≤ ℓ+ d(x,O) ≤ ℓγ̃(x,y) + r ≤ λr.

The fact that Γ ⊂ B(O, λr) implies that

(6)

ˆ ℓ

0

g(γ(s)) ds =

ˆ

Γ

g(y) dH1 ≤

ˆ

λB

g(y) dH1.
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Finally, combining (5) and (6), we get

(7)
|u(x)− uB| ≤

 

B

|u(x)− u(y)| dH1 ≤

 

B

ˆ ℓ

0

g(γ(s)) ds dH1

≤

 

B

ˆ

λB

g(x) dH1dH1 = H1(λB)

 

λB

g dH1.

Since X is 1-Ahlfors regular, it follows that
 

B

|u(x)− uB| dH
1 ≤ C diam(B)

 

λB

g dH1. �

Finally, combining Theorem 1.2, Theorem 1.3 and Theorem 2.1, we get Corol-
lary 1.4.

References

[1] Ambrosio, L., and P. Tilli: Topics on analysis in metric spaces. - Oxford Lecture Ser. Math.
Appl. 25, Oxford Univ. Press, Oxford, 2004.

[2] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. - Geom. Funct.
Anal. 9:3, 1999, 428–517.

[3] Durand-Cartagena, E., J. Jaramillo, and N. Shanmugalingam: The ∞-Poincaré in-
equality in metric measure spaces. - Michigan Math. J. 61:1, 2012, 63–85.

[4] Durand-Cartagena, E., J. Jaramillo, and N. Shanmugalingam: Geometric character-
izations of p-Poincaré inequalities in the metric setting. - Publ. Mat. 60:1, 2016, 81–111.

[5] Evans, L.C., and R. F. Gariepy: Measure theory and fine properties of functions. - Stud.
Adv. Math., CRC Press, Boca Raton, FL, 1992.

[6] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. - Potential Anal. 5:4, 1996, 403–415.

[7] Hajłasz, P.: Sobolev spaces on metric-measure spaces. - In: Heat kernels and analysis on
manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math. 338, 2003, 173–218.

[8] Hajłasz, P., and P. Koskela: Sobolev met Poincaré. - Mem. Amer. Math. Soc. 145:688,
2000.

[9] Heinonen, J.: Lectures on analysis on metric spaces. - Universitext, Springer-Verlag, New
York, 2001.

[10] Heinonen, J., and P. Koskela: Quasiconformal maps in metric spaces with controlled ge-
ometry. - Acta Math. 181:1, 1998, 1–61.

[11] Heinonen, J., P. Koskela, N. Shanmugalingam, and J. T. Tyson: - Sobolev spaces on
metric measure spaces: An approach based on upper gradients. - Cambridge Univ. Press, 2015.

[12] Kauhanen, J., P. Koskela, and J. Malý: On functions with derivatives in a Lorentz space.
- Manuscripta Math. 100:1, 1999, 87–101.

[13] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff
measure. - Proc. Amer. Math. Soc. 121:1, 1994, 113–123.

[14] Malý, J.: Absolutely continuous functions of several variables. - J. Math. Anal. Appl. 231:2,
1999, 492–508.

[15] Romanov, A. S.: On the absolute continuity of Sobolev-type functions on metric spaces. -
Sibirsk. Mat. Zh. 49:5, 2008, 1147–1156.

[16] Schul, R.: Ahlfors-regular curves in metric spaces. - Ann. Acad. Sci. Fenn. Math. 32:2, 2007,
437–460.

[17] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure
spaces. - Rev. Mat. Iberoamericana 16:2, 2000, 243–279.

Received 5 January 2018 • Accepted 13 August 2018


