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Abstract. We prove an inequality which quantifies the idea that a holomorphic self-map of

the disc that perturbs two points is close to the identity function.

1. Introduction

The principal objective of this paper is to prove the following theorem, in which
D denotes the open unit disc in the complex plane with hyperbolic metric ρ.

Theorem 1.1. Suppose that f is a holomorphic self-map of D and a, b, z ∈ D,

with a 6= b. Then

ρ(f(z), z) ≤ K
(

ρ(f(a), a) + ρ(f(b), b)
)

,

where

K =
exp (ρ(z, a) + ρ(a, b) + ρ(b, z))

ρ(a, b)
.

A somewhat similar result was obtained for Möbius transformations acting on
the extended complex plane, using the chordal metric, in [4].

A strength of Theorem 1.1 is that the constant K is independent of the function f .
As a consequence, we can use the theorem to prove quantitative versions of existing
results about holomorphic maps close to the identity function. For instance, it is
known that if (fn) is a sequence of holomorphic self-maps of D such that fn(a) → a
and fn(b) → b, for two distinct points a and b, then (fn) converges locally uniformly
on D to the identity function. This can be proven by a normal families argument
(see, for example, [5, Theorem 2.4.2]), but such an argument does not give an explicit
rate of convergence. In contrast, Theorem 1.1 provides a rate of convergence, which
allows us to make stronger statements; for example, the theorem tells us that if the
sum

∑

ρ(fn(z), z) converges for z = a, b, then in fact it converges for any z ∈ D.
If we fix two distinct points a and b in D, then Theorem 1.1 (and the inequality

ρ(z, b) ≤ ρ(z, a) + ρ(a, b)) show us that there is a constant k depending only on a
and b for which

(1.1) ρ(f(z), z) ≤ ke2ρ(z,a)
(

ρ(f(a), a) + ρ(f(b), b)
)

,

for all z ∈ D and all holomorphic self-maps f of D. We now describe an example to
show that the expression e2ρ(z,a) in this inequality cannot be reduced significantly.

For this example, we switch from D to the right half-plane model of the hyperbolic
plane, denoted by K, and consider holomorphic self-maps of K. We continue to
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denote the hyperbolic metric by ρ, on K as on D, and we make use of the formula
ρ(u, v) = log(v/u), for points u and v on the positive real axis, with u < v.

Let a = 1 and b = 2. Let fn(w) = w+1/n2 and zn = 1/n, for n = 1, 2, . . . . Then
eρ(zn,a) = n, and

ρ(fn(zn), zn) ∼
1

n
, ρ(fn(a), a) ∼

1

n2

(where, for two positive sequences (xn) and (yn), we write xn ∼ yn to mean that
there is a positive constant λ such that xn/λ < yn < λxn, for n = 1, 2, . . .). So

ρ(fn(zn), zn)

ρ(fn(a), a)
∼ eρ(zn,a).

That is, the quotient of the distortion of fn at zn by the distortion of fn at a grows
exponentially with the hyperbolic distance between zn and a. This examples indicates
that the expression e2ρ(z,a) in inequality (1.1) cannot be made any smaller than eρ(z,a).

The proof of Theorem 1.1 uses the fact that any holomorphic self-map of D

contracts the hyperbolic metric on D, in the sense that if f is such a map, then
ρ(f(z), f(w)) ≤ ρ(z, w), for all z, w ∈ C, by the Schwarz–Pick lemma. We observe,
however, that the theorem fails for the class of contractions of D with the hyperbolic
metric, which is broader than the class of holomorphic self-maps of D. To see this,
consider the function f(w) = Rew, which contracts the hyperbolic metric on D.
Given any two distinct real numbers a and b in D, we have ρ(f(a), a) = ρ(f(b), b) = 0,
but ρ(f(z), z) is positive for nonreal points z, so the inequality in Theorem 1.1 fails.

To illuminate later work, we record the following minor generalisation of The-
orem 1.1. The statement of this result features a conformal automorphism of D,
which, by definition, is a bijective holomorphic map from D onto itself. Such maps
are hyperbolic isometries, and using this property we can immediately deduce the
result from Theorem 1.1.

Corollary 1.2. Suppose that f is a holomorphic self-map of D, h is a conformal

automorphism of D, and a, b, z ∈ D, with a 6= b. Then

ρ(f(z), h(z)) ≤ K
(

ρ(f(a), h(a)) + ρ(f(b), h(b))
)

,

where K = ρ(a, b)−1 exp(ρ(z, a) + ρ(a, b) + ρ(b, z)).

Theorem 1.1 and Corollary 1.2 could of course be stated with any simply con-
nected hyperbolic Riemann surface in place of D. Consider, now, a general hyperbolic
Riemann surface S. If S has a nonabelian fundamental group, then, in the space of
holomorphic self-maps of S (endowed with the topology of compact convergence),
the identity function is an isolated point [1, Theorem 1.2.19]. In this case one can
certainly obtain a result of a similar type to Theorem 1.1 for S, by using a normal
families argument (we omit the details), but it is of little consequence; the theorem
is only significant for families of functions that come arbitrarily close to the identity
function.

If S has an abelian fundamental group, and is not simply connected, then it must
be doubly connected; any such Riemann surface is conformally equivalent either to an
annulus Ar = {z : 1/r < |z| < r} (where r > 1) or to the punctured disc D∗ = D\{0}.
The conformal automorphisms of Ar are rotations, and rotations composed with the
map z 7−→ 1/z. The remaining holomorphic self-maps of Ar are all homotopic in the
family of continuous self-maps of Ar to constant maps [3, Corollary 13.7], and the
set of these maps does not contain the identity function in its closure. Thus there
is no worthwhile analogue of Theorem 1.1 for annuli either, since any sequence of
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holomorphic self-maps of Ar that converges to the identity function must eventually
consist of rotations, and their geometry is straightforward.

The punctured disc D∗ is different, however, because there are plenty of nontrivial
holomorphic self-maps of D

∗ in any neighbourhood of the identity function. To
consider these maps, we use the universal covering map π : H −→ D

∗ given by
π(ζ) = e2πiζ , where H is the upper half-plane. We use H for the universal covering
space rather than D because doing so gives a simpler covering map (and H is also
marginally easier to work with than K).

Any holomorphic self-map f of D∗ lifts to a holomorphic self-map f̃ of H with
π ◦ f̃ = f ◦ π. This map f̃ satisfies f̃(ζ + 1) = ζ + m, for all ζ ∈ H and some
nonnegative integer m. The integer m is called the degree of f , and it is denoted by
deg(f). It can also be defined using the formula

deg(f) =
1

2πi

ˆ

γ

f ′(z)

f(z)
dz,

where γ(t) = 1
2
e2πit (t ∈ [0, 1]). Since deg is a continuous function, the set of

holomorphic self-maps of D∗ of degree m, for any nonnegative integer m, is a closed
set. The identity function belongs to the set of maps of degree 1. For more on the
degree, see [3, Section 13].

The origin is a removable singularity for any holomorphic self-map f of D∗, and
if deg(f) > 0, then the origin is fixed by f . It is reasonable, therefore, to expect to
obtain a one-point inequality for self-maps of D∗ of positive degree akin to the earlier
two-point inequalities. The next theorem is of this type; it is similar to Corollary 1.2,
but the conformal automorphism of D is replaced by a holomorphic self-covering map
of D∗. Such a map has the form h(z) = eiθzm, where θ ∈ R and m ∈ N. In this
theorem, λ∗(z) = −1/(|z| log |z|) is the Riemannian density on D

∗ that gives rise to
the hyperbolic metric ρ∗ on D

∗.

Theorem 1.3. Suppose that f is a holomorphic self-map of D∗, h is a holomor-

phic self-covering map of D∗, and deg(f) = deg(h) > 0. Suppose also that a, z ∈ D
∗.

Then

ρ∗(f(z), h(z)) ≤ L3ρ∗(f(a), h(a)),

where L = 8λ∗(a) exp ρ∗(z, a).

When h is the identity function and deg(f) = 1, we obtain a one-point inequality
comparable with Theorem 1.1.

Corollary 1.4. Suppose that f is a holomorphic self-map of D∗ with deg(f) = 1
and a, z ∈ D

∗. Then

ρ∗(f(z), z) ≤ L3ρ∗(f(a), a),

where L = 8λ∗(a) exp ρ∗(z, a).

Acknowledgements. The authors thank the referee for insightful suggestions; in
particular, for directing us to a version of the one-point inequality for covering maps.

2. Holomorphic maps with a fixed point

In this section we prove the following theorem, which is a version of our main
result, Theorem 1.1, for holomorphic self-maps of the disc with a fixed point.
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Theorem 2.1. Suppose that a, b, z ∈ D, with a 6= b, and f is a holomorphic

self-map of D that fixes b. Then

ρ(f(z), z) ≤ Mρ(f(a), a),

where

M =
exp(ρ(a, z) + ρ(z, b))

4 sinh 1
2
ρ(a, b)

.

It suffices to prove this theorem when b = 0, as can be seen by conjugating f
by a conformal automorphism of D that takes b to 0. So let us assume, henceforth,
that b = 0. We can also assume that z 6= 0, because, for b = 0, the inequality clearly
holds when z = 0.

We recall two formulas for the hyperbolic metric on D (see [3, page 15]), which
state that, for u, v ∈ D,

(2.1) sinh 1
2
ρ(u, v) =

|u− v|
√

(1− |u|2)(1− |v|2)
, cosh 1

2
ρ(u, v) =

|1− uv|
√

(1− |u|2)(1− |v|2)
.

The equations in the next lemma are merely special cases of these formulas, with
v = 0.

Lemma 2.2. If u ∈ D, then

(1) sinh 1
2
ρ(u, 0) =

|u|
√

1− |u|2
,

(2) cosh 1
2
ρ(u, 0) =

1
√

1− |u|2
.

We can use the equations in this lemma to replace the square-root terms from
the left-hand formula from (2.1) in two ways, to give two more formulas involving
the hyperbolic metric, presented in the following lemma.

Lemma 2.3. If u, v ∈ D, then

(1) |u− v| = sinh 1
2
ρ(u, v)

cosh 1
2
ρ(u, 0) cosh 1

2
ρ(v, 0)

,

(2)
|u− v|
|u| =

sinh 1
2
ρ(u, v)

sinh 1
2
ρ(u, 0) cosh 1

2
ρ(v, 0)

.

We will apply Lemmas 2.2 and 2.3 repeatedly, so it is handy to define

s(u, v) = sinh 1
2
ρ(u, v) and c(u, v) = cosh 1

2
ρ(u, v).

Let us proceed with the proof of Theorem 2.1. We can assume that f is not a
conformal automorphism of D fixing the origin (a Euclidean rotation) because such
maps are limits of sequences of holomorphic maps that are not conformal automor-
phisms (in the topology of compact convergence), and the inequality is preserved on
taking this type of limit.

We define

g(w) =

{

f(w)/w, w 6= 0,

f ′(0), w = 0.

Since |f(w)| < |w| for w 6= 0, by Schwarz’s lemma, we see that g is also a holomorphic
map from D to itself.
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Recall that a, z ∈ D \ {0}. Then |1− g(z)| ≤ |1− g(a)|+ |g(a)− g(z)|. That is,

|z − f(z)|
|z| ≤ |a− f(a)|

|a| + |g(a)− g(z)|.

Applying Lemma 2.3 to this inequality, we obtain

s(f(z), z)

s(z, 0)c(f(z), 0)
≤ s(f(a), a)

s(a, 0)c(f(a), 0)
+

s(g(a), g(z))

c(g(a), 0)c(g(z), 0)
.

Since c(f(z), 0) ≤ c(z, 0), by the Schwarz–Pick lemma, and c(f(a), 0) > 1, we can
rearrange this inequality to give

(2.2) s(f(z), z) ≤ s(z, 0)c(z, 0)

(

s(f(a), a)

s(a, 0)
+

s(g(a), g(z))

c(g(a), 0)c(g(z), 0)

)

.

Next, observe that ρ(g(z), 0) > |ρ(g(a), 0)− ρ(g(a), g(z))|, so, since cosh is an even
function,

c(g(z), 0) > c(g(a), 0)c(g(a), g(z))− s(g(a), 0)s(g(a), g(z)).

Multiplying both sides by c(g(a), 0) and then applying the equations c(g(a), 0)2 =
1/(1 − |g(a)|2) and s(g(a), 0)c(g(a), 0) = |g(a)|/(1 − |g(a)|2) (from Lemma 2.2), we
see that

c(g(z), 0)c(g(a), 0) > c(g(a), 0)2c(g(a), g(z))− s(g(a), 0)c(g(a), 0)s(g(a), g(z))

=
c(g(a), g(z))− |g(a)|s(g(a), g(z))

1− |g(a)|2

>
c(g(a), g(z))− |g(a)|s(g(a), g(z))

1 + |g(a)|
|a|

|a− f(a)|

=
c(g(a), g(z))− |g(a)|s(g(a), g(z))

1 + |g(a)|
s(a, 0)c(f(a), 0)

s(f(a), a)
,

where, in the last line, we have applied Lemma 2.32 again. Rearranging this, we find
that

1

c(g(z), 0)c(g(a), 0)
≤ 1 + |g(a)|

c(g(a), g(z))− |g(a)|s(g(a), g(z)) ×
s(f(a), a)

s(a, 0)
.

We now combine this inequality with (2.2) to give

(2.3) s(f(z), z) ≤ s(z, 0)c(z, 0)

s(a, 0)

(

1 +
(1 + |g(a)|)s(g(a), g(z))

c(g(a), g(z))− |g(a)|s(g(a), g(z))

)

s(f(a), a).

The part in large brackets is equal to

c(g(a), g(z)) + s(g(a), g(z))

c(g(a), g(z))− |g(a)|s(g(a), g(z)) ≤
c(g(a), g(z)) + s(g(a), g(z))

c(g(a), g(z))− s(g(a), g(z))
≤ eρ(a,z),

where, for the last inequality, we applied the Schwarz–Pick lemma to g. Since
s(z, 0)c(z, 0) = 1

2
sinh ρ(z, 0) ≤ 1

4
eρ(z,0), we see that (2.3) reduces to

(2.4) s(f(z), z) ≤ eρ(a,z)+ρ(z,0)

4s(a, 0)
s(f(a), a).

To finish, observe that Theorem 2.1 is clearly true if ρ(f(z), z) < ρ(f(a), a), because
M > 1. Assume then that ρ(f(z), z) > ρ(f(a), a). The function x 7−→ sinh x/x is
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increasing for x > 0, as one can prove by differentiating it, so

sinh 1
2
ρ(f(z), z)

1
2
ρ(f(z), z)

>
sinh 1

2
ρ(f(a), a)

1
2
ρ(f(a), a)

.

Hence
ρ(f(z), z)

ρ(f(a), a)
≤ s(f(z), z)

s(f(a), a)
.

This inequality, together with (2.4), give the inequality of Theorem 2.1, completing
the proof.

3. Holomorphic maps of the disc

This section proves the main result, Theorem 1.1. In the following preliminary
lemma, we refer to a conformal automorphism of D that is a hyperbolic Möbius trans-
formation as a hyperbolic automorphism. Its axis is the hyperbolic line connecting
its two fixed points.

Lemma 3.1. Let c be a point that lies on the axis of a hyperbolic automorphism

h of D. Then

ρ(w, h(w)) ≤ eρ(w,c)ρ(c, h(c)),

for all w ∈ D.

Proof. Let γ be the axis of h. By [2, Theorem 7.35.1], we have

sinh 1
2
ρ(w, h(w)) = cosh ρ(w, γ) sinh 1

2
ρ(c, h(c)),

for c ∈ γ and w ∈ D. Now, as we mentioned earlier, the function x 7−→ sinh x/x is
increasing for x > 0, and ρ(c, h(c)) ≤ ρ(w, h(w)), so

ρ(w, h(w))

ρ(c, h(c))
≤ sinh 1

2
ρ(w, h(w))

sinh 1
2
ρ(c, h(c))

= cosh ρ(w, γ) ≤ eρ(w,γ).

The result then follows from the inequality ρ(w, γ) ≤ ρ(w, c). �

Now we prove Theorem 1.1. Suppose, then, that f is a holomorphic self-map of
D and that a, b and z are points in D, with a 6= b. If f does not fix b, then there is a
unique hyperbolic line γ through b and f(b). Let h be the hyperbolic automorphism
of D with axis γ that satisfies hf(b) = b. If f fixes b, then we define h to be the
identity function. So, applying Theorem 2.1 to hf , we see that

ρ(hf(z), z) ≤ Mρ(hf(a), a), where M =
eρ(a,z)+ρ(z,b)

4 sinh 1
2
ρ(a, b)

.

Hence

ρ(f(z), z) ≤ ρ(f(z), hf(z)) + ρ(hf(z), z)

≤ ρ(f(z), hf(z)) +Mρ(hf(a), a)

≤ ρ(f(z), hf(z)) +Mρ(f(a), hf(a)) +Mρ(f(a), a).

Next, for u ∈ D, Lemma 3.1 (with w = f(u) and c = f(b)) tells us that if f(b) 6= b,
then

ρ(f(u), hf(u)) ≤ eρ(f(u),f(b))ρ(f(b), hf(b)) ≤ eρ(u,b)ρ(f(b), b),
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using the Schwarz–Pick lemma for the final inequality. Clearly, this inequality also
holds if f(b) = b. Since eρ(a,b) > 4 sinh 1

2
ρ(a, b), we see that

ρ(f(z), z) ≤ eρ(z,b)ρ(f(b), b) +Meρ(a,b)ρ(f(b), b) +Mρ(f(a), a)

≤ (eρ(z,b) +Meρ(a,b))(ρ(f(a), a) + ρ(f(b), b))

≤ eρ(a,z)+ρ(a,b)+ρ(z,b)

2 sinh 1
2
ρ(a, b)

(ρ(f(a), a) + ρ(f(b), b)).(3.1)

Theorem 1.1 can be deduced from (3.1), since sinh x > x for all x > 0. However, we
highlight the slightly stronger inequality of (3.1) for use later.

4. Holomorphic maps of the punctured disc

It remains to prove Theorem 1.3, and this final section is dedicated to that one
task. Recall that λ∗(z) = −1/(|z| log |z|) is the density for the hyperbolic metric on
the punctured unit disc. We use the following trivial estimates.

Lemma 4.1. If z ∈ D
∗, then

(1) λ∗(z) > e,
(2) λ∗(z) > − log |z|,
(3) λ∗(z) > − 1

log |z| .

Let us suppose, as stated in Theorem 1.3, that f is a holomorphic self-map of D∗,
h is a holomorphic self-covering map of D∗, and deg(f) and deg(h) are both equal
to some positive integer m. By post-composing f and h with a suitable rotation of
D

∗ about 0 (a hyperbolic isometry of D∗) we can assume that h(z) = zm.
Suppose that a, z ∈ D

∗. Let π : H −→ D
∗ be the universal covering map π(ζ) =

e2πiζ . We denote the hyperbolic metric on H by ρ. Let ã be any point in H such
that π(ã) = a. Since

ρ∗(z, a) = inf{ρ(ζ, ã) : ζ ∈ H and π(ζ) = z},
we can choose z̃ ∈ H such that π(z̃) = z and ρ(z̃, ã) = ρ∗(z, a).

We now lift the map f to a holomorphic map f̃ : H −→ H with π ◦ f̃ = f ◦ π.
The map f̃ satisfies f̃(ζ+1) = f̃(ζ)+m, for all ζ ∈ H, since f has degree m. We also

lift the map h to the holomorphic map h̃(ζ) = mζ , which is a hyperbolic isometry

of H. Observe that π(f̃(ã)) = f(a) and π(h̃(ã)) = h(a). By replacing f̃ with a map

that is the composition of f̃ followed by a suitable integer translation (also a lift of

f), we can assume that ρ(f̃(ã), h̃(ã)) = ρ∗(f(a), h(a)).
Next we apply the slightly stronger version of Theorem 1.1 given by inequality

(3.1) to the function h̃−1 ◦ f̃ and the points ã, ã+ 1 and z̃. We obtain

ρ(h̃−1 ◦ f̃(z̃), z̃) ≤ K
(

ρ(h̃−1 ◦ f̃(ã), ã) + ρ(h̃−1 ◦ f̃(ã + 1), ã+ 1)
)

,

where K = eρ(z̃,ã)+ρ(ã,ã+1)+ρ(ã+1,z̃)/(2 sinh 1
2
ρ(ã, ã + 1)). Since h̃ is a hyperbolic isom-

etry of H, we see that

ρ(f̃(z̃), h̃(z̃)) ≤ K
(

ρ(f̃(ã), h̃(ã)) + ρ(f̃(ã+ 1), h̃(ã+ 1))
)

= K
(

ρ(f̃(ã), h̃(ã)) + ρ(f̃(ã) +m, h̃(ã) +m)
)

= 2Kρ(f̃(ã), h̃(ã)).
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Now

K =
exp (ρ(z̃, ã) + ρ(ã, ã+ 1) + ρ(ã + 1, z̃))

2 sinh 1
2
ρ(ã, ã+ 1)

≤ exp (2ρ(z̃, ã) + 2ρ(ã, ã+ 1))

2 sinh 1
2
ρ(ã, ã+ 1)

≤ 2e2ρ(z̃,ã)
cosh2 ρ(ã, ã+ 1)

sinh 1
2
ρ(ã, ã+ 1)

.

We can write this expression in Euclidean terms by using the following standard
formulas for the hyperbolic metric on H, taken from [3, Theorem 7.4]:

cosh ρ(u, v) = 1 +
|u− v|2

2 Imu Im v
, sinh 1

2
ρ(u, v) =

|u− v|
2
√
Im u Im v

,

where u, v ∈ H. Thus

K ≤ 2e2ρ(z̃,ã)
(1 + 1

2
(Im ã)−2)2

1
2
(Im ã)−1

= e2ρ(z̃,ã)(4 Im ã + 4(Im ã)−1 + (Im ã)−3).

Now e2πiã = a, so e−2π Im ã = |a|. Hence Im ã = −(log |a|)/(2π), and we can apply
Lemma 4.1 to deduce that Im ã ≤ λ∗(a)/(2π) and (Im ã)−1 ≤ 2πλ∗(a). Since λ∗(a) >
e, we obtain

4 Im ã+ 4(Im ã)−1 + (Im ã)−3 ≤ (1 + 8π)λ∗(a) + (2π)3λ∗(a)3 ≤ 252λ∗(a)3.

Therefore
ρ(f̃(z̃), h̃(z̃)) ≤ 504λ∗(a)3e2ρ(z̃,ã)ρ(f̃(ã), h̃(ã)).

The proof of Theorem 1.3 is complete on observing that

ρ∗(f(z), h(z)) ≤ ρ(f̃(z̃), h̃(z̃)), ρ∗(f(a), h(a)) = ρ(f̃(ã), h̃(ã)) and ρ∗(z, a) = ρ(z̃, ã).
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