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Abstract. The object of this paper is to study the powered Bohr radius ρp, p ∈ (1, 2), of

analytic functions f(z) =
∑

∞

k=0
akz

k defined on the unit disk |z| < 1 and such that |f(z)| < 1

for |z| < 1. More precisely, if Mf
p (r) =

∑

∞

k=0
|ak|prk, then we show that Mf

p (r) ≤ 1 for r ≤ rp

where rρ is the powered Bohr radius for conformal automorphisms of the unit disk. This answers

the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our

approach is also stated, including an asymptotically sharp form of one of the results of Djakov and

Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings

in |z| < 1. Finally, we conclude by stating the Bohr radius for the class of Bieberbach–Eilenberg

functions.

1. Preliminaries and main results

Let B denote the class of analytic functions f defined on the unit disk D :=
{z ∈ C : |z| < 1}, with the power series expansion f(z) =

∑

∞

k=0 akz
k and such that

|f(z)| < 1 for z ∈ D. Then the classical Bohr’s inequality states that there is a
constant ρ such that

Mf (r) :=

∞
∑

k=0

|ak|rk ≤ 1 for all r = |z| ≤ ρ

and the value ρ = 1/3 is optimal. The number ρ = 1/3, known as Bohr’s radius, was
originally obtained in 1914 by Bohr [6] with ρ = 1/6, but subsequently later, Wiener,
Riesz and Schur, independently established the sharp inequality for r = |z| ≤ 1/3.
This little article of Bohr generates intensive research activities even after a century
of its appearance. We refer to the recent survey article on this topic [4] and the
references therein. Multidimensional generalizations of this result were obtained by
Boas and Khavinson [5] by establishing upper and lower bounds for the Bohr radius
of the unit polydisk D

n. Aizenberg [2, 3] extended the concept of Bohr radius in
several different directions for further studies in this topic. In 2000, Djakov and
Ramanujan [10] investigated the same phenomenon from different point of view. For
f ∈ B and a fixed p > 0, we consider the powered Bohr sum Mf

p (r) defined by

Mf
p (r) =

∞
∑

k=0

|ak|prk.
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Observe that for p = 1, Mf
p (r) reduces to the classical Bohr sum defined as above by

Mf (r). The best possible constant ρp for which

Mf
p (r) ≤ 1 for all r ≤ ρp

is called the (powered) Bohr radius for the family B.
We now introduce

Mp(r) := sup
f∈B

Mf
p (r)

and

rp := sup

{

r : ap +
r(1− a2)p

1− rap
≤ 1, 0 ≤ a < 1

}

= inf
a∈[0,1)

1− ap

ap(1− ap) + (1− a2)p
.

Let us first proceed to recall the following results.

Theorem A. [10, Theorem 3] For each p ∈ (1, 2] and f(z) =
∑

∞

k=0 akz
k belongs

to B, we have Mf
p (r) ≤ 1 for r ≤ Tp, where

mp ≤ Tp ≤ rp.

Here rp is as above,

mp :=
p

(21/(2−p) + p1/(2−p))
2−p for 1 < p < 2,

and m2 := limp→2mp = 1.

Theorem B. [10, Theorem 2] For each p ∈ (0, 2),

Mp(r) ≍
(

1

1− r

)1−p/2

.

Our first aim is to investigate the problem posed by Djakov and Ramanujan [10]
about the Bohr radius for Mf

p (r). Their question is the following.

Problem 1. [10, Question 1, p. 71] What is the exact value of the (powered)
Bohr radius ρp, p ∈ (1, 2)? Is it true that ρp = rp?

Using the method of proofs of our recent approach from [12, 13], we solve this
problem affirmatively in the following form.

Theorem 1. If f(z) =
∑

∞

k=0 akz
k belongs to B and 0 < p ≤ 2, then

Mp(r) = max
a∈[0,1]

{

ap +
r(1− a2)p

1− rap

}

, 0 ≤ r ≤ 2p/2−1,

and

Mp(r) <

(

1

1− r2/(2−p)

)1−p/2

, 2p/2−1 < r < 1.

Proofs of Theorem 1 and a couple of its corollaries will be given in Section 2.
Let us remark that Mp(r) = 1 for p ≥ 2 and r < 1. So, the interesting case is to

consider the problem only for p ∈ (1, 2).
One may ask about the second inequality of Theorem 1: how close it to be sharp?

To get an answer to this question we will use a Bombieri–Bourgain estimate [8] which
reads as follows: for a given ε > 0, there exists a positive constant C(ε) > 0, such
that

M1(ρ) ≥
1

√

1− ρ2
− C(ε)

(

log
1

1− ρ

)(3/2)+ε

, ρ ≥ 1/
√
2.
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The Hölder inequality implies that

Mf
1 (r

1/(2−p)) =

∞
∑

k=0

|ak|rk/pr(2k(p−1))/(p(2−p))

≤
(

∞
∑

k=0

|ak|prk
)1/p( ∞

∑

k=0

r2k/(2−p)

)1−1/p

=
(

Mf
p (r)

)1/p 1

(1− r2/(2−p))(p−1)/p

so that

Mf
p (r) ≥

(

1√
1− r2/(2−p)

− C(ε)

(

log
1

1− r1/(2−p)

)3/2+ε
)p

(1− r2/(2−p))p−1

for 2p/2−1 < r < 1; or equivalently

Mf
p (r) ≥

(

1

1− r2/(2−p)

)1−p/2

− C1(ε)(1− r2/(2−p))(p−1)/2

(

log
1

1− r1/(2−p)

)3/2+ε

.

This estimate together with the second estimate of Theorem 1 implies that

Mp(r)−
(

1

1− r2/(2−p)

)1−p/2

→ 0 as r → 1−

for 1 < p < 2 while we do not know whether this fact is true for p = 1. Also the
last estimate can be considered as an asymptotically sharp form of Theorem B in the
case p > 1.

Corollary 1. Let p ∈ (1, 2). Then Mp(r) = 1 for r ≤ rp.

In [16, Corollary 2.8], Paulsen et al. showed that if f ∈ B, then for r ∈ [0, 1),

(1) Mf
1 (r) ≤ m(r) = inf{M(r), 1/

√
1− r2}

where

M(r) = sup

{

t + (1− t2)
r

1− r
: 0 ≤ t ≤ 1

}

=







1 for 0 ≤ r ≤ 1/3,
4r2 + (1− r)2

4r(1− r)
for 1/3 < r < 1.

In 2002, Paulsen et al. [16] raised a question whether the inequality (1) is sharp for
any r with 1/3 < r < 1. However, in 1962 this has been answered by Bombieri [7]
who determined the exact value of this constant for r in the range 1/3 ≤ r ≤ 1/

√
2.

This constant is

m(r) =
3−

√

8(1− r2)

r
.

Further results on this and related topics can be found in [10, 16]. On the other hand,
it is worth mentioning that the answer to the above question is indeed a consequence
of Theorem 1 and so, we state it as a corollary.

Corollary 2. We have the following sharp estimate:

M1(r) =
1

r
(3−

√

8(1− r2)) for r ∈
[

1

3
,
1√
2

]

.

Finally, we recall the following corollary which was proved in [13] and so we omit
the proof.
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Corollary 3. Let p ∈ N and 0 ≤ m ≤ p, f(z) =
∑

∞

k=0 apk+mz
pk+m be analytic

in D and |f(z)| < 1 in D. Then
∞
∑

k=0

|apk+m|rpk+m ≤ 1 for r ≤ rp,m,

where rp,m is the maximal positive root of the equation

−6rp−m + r2(p−m) + 8r2p + 1 = 0.

The extremal function has the form zm(zp − a)/(1− azp), where

a =

(

1−
√

1− rp,m2p

√
2

)

1

rp,mp
.

Our next result concerns sense-preserving harmonic mappings defined on the
unit disk. Recall that the family H of complex-valued harmonic functions f = h+ g
defined on the unit disk D and its univalent subfamilies are investigated in details.
Here h and g are analytic on D with the form

h(z) =
∞
∑

k=0

akz
k and g(z) =

∞
∑

k=1

bkz
k

so that the Jacobian of f is given by Jf = |fz|2 − |fz|2 = |h′|2 − |g′|2. We say that
the locally univalent harmonic mapping f is sense-preserving if Jf (z) > 0 in D. We
call ω(z) = g′(z)/h′(z) the complex dilatation of f = h+ g. Lewy’s theorem implies
that every harmonic function f on D is locally one-to-one and sense-preserving on
D if and only if |ω(z)| < 1 for z ∈ D. See [9, 11] for detailed discussion on the class
of univalent harmonic mappings and its geometric subclasses.

Theorem 2. Suppose that f(z) = h(z) + g(z) =
∑

∞

k=0 akz
k +

∑

∞

k=1 bkz
k is a

harmonic mapping of the disk D, where h is a bounded function in D and |g′(z)| ≤
|h′(z)| for z ∈ D (the later condition obviously holds if f is sense-preserving). If
p ∈ [0, 2] then the following sharp inequality holds

|a0|p +
∞
∑

k=1

(|ak|p + |bk|p)rk ≤ ||h||∞ max
a∈[0,1]

{

ap +
2r(1− a2)p

1− rap

}

for r ≤ (21/(p−2) + 1)p/2−1. In the case p > 2 we have

|a0|p +
∞
∑

k=1

(|ak|p + |bk|p)rk ≤ ||h||∞max{1, 2r}.

Corollary 4. Suppose that f(z) = h(z) + g(z) =
∑

∞

k=0 akz
k +

∑

∞

k=1 bkz
k is a

sense-preserving harmonic mapping of the disk D, where h is a bounded function in
D. Then the following sharp inequalities holds:

|a0|+
∞
∑

k=1

(|ak|+ |bk|)rk ≤
||h||∞
r

(5− 2
√
6
√
1− r2) for

1

5
≤ r ≤

√

2

3
,

and

|a0|+
∞
∑

k=1

(|ak|+ |bk|)rk ≤ ||h||∞ for r ≤ 1

5
.

Proofs of Theorem 2 and Corollary 4 will be given in Section 2. In Section 3, we
discuss Bohr radius for the class of Bieberbach–Eilenberg functions.
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2. Proofs of Theorems 1 and 2 and their corollaries

The proofs of the theorems rely on a couple of lemmas established by the present
authors in [12] (see also [13]).

Lemma 1. [12] Let |a| < 1 and 0 < R ≤ 1. If g(z) =
∑

∞

k=0 bkz
k belongs to B,

then the following sharp inequality holds:
∞
∑

k=1

|bk|2Rk ≤ R
(1− |b0|2)2
1− |b0|2R

.

Lemma 2. For all p ∈ (0, 2), we have rp < (1/2)1−p/2 = Rp, where rp is defined
as in the beginning.

Proof. Let r = Rp and set a = (1/2)1−p/2. Then we conclude that

ap + r
(1− a2)p

1− rap
= 2

(

1

2

)p/2

> 1

which contradicts to the definition of rp. �

Proof of Theorem 1. Let |a0| = a > 0 and r ≤ 2p/2−1. At first we suppose that
a > r1/(2−p). In this case we have

Mf
p (r) = ap +

∞
∑

k=1

ρk|ak|p
(

r

ρ

)k

≤ ap +

(

∞
∑

k=1

(

ρk|ak|p
)2/p

)p/2( ∞
∑

k=1

(

r

ρ

)2k/(2−p)
)1−p/2

= ap +

(

∞
∑

k=1

(ρ2/p)k|ak|2
)p/2





∞
∑

k=1

(

(

r

ρ

)2/(2−p)
)k




(2−p)/2

≤ ap +

(

ρ2/p(1− a2)2

1− a2ρ2/p

)p/2(
(r/ρ)2/(2−p)

1− (r/ρ)2/(2−p)

)(2−p)/2

(by Lemma 1)

= ap + r

(

(1− a2)2

1− a2ρ2/p

)p/2(
1

1− (r/ρ)2/(2−p)

)(2−p)/2

.

Setting ρ = rp/2a(p−2)p/2 we obtain the inequality

Mf
p (r) ≤ ap + r

(1− a2)p

1− rap
,

which proves the theorem in the case a > r1/(2−p).
In the case a ≤ r1/(2−p), we set ρ = 1 and obtain

Mf
p (r) =

∞
∑

k=0

|ak|prk ≤ ap + r
(1− a2)p/2

(1− r2/(2−p))1−p/2
.

Let us remark that the inequality Mf
p (r) ≤ 1 is valid in the cases a = 0 and a =

r1/(2−p). This fact can be established as a limiting case of the previous case. Finally,
we let t = a2. We have then to maximize the expression

A(t) = tp/2 + r
(1− t)p/2

(1− r2/(2−p))1−p/2
, t ≤ r2/(2−p).
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Using differentiation we obtain the stationary point

t = 1− r2/(2−p)

which must satisfy under the restriction t ≤ r2/(2−p) which is impossible because
r ≤ 2p/2−1.

However, in the case r > 2p/2−1 the critical point t is admissible so that

A(t) = tp/2 + r
(1− t)p/2

(1− r2/(2−p))1−p/2
=

(

1

1− r2/(2−p)

)1−p/2

.

This observation shows that

Mf
p (r) ≤

(

1

1− r2/(2−p)

)1−p/2

, 2p/2−1 < r < 1.

Now let us show that this inequality cannot be sharp. To do this we will use the
method presented by Bombieri and Bourgain [8].

Suppose that the estimate sharp in this case. Then by analyzing Hölder’s in-
equality we immediately conclude that

|ak| =
√

1− r2/(2−p) rk/(2−p), k ≥ 0.

Also it is easy to show that the extremal function must be a Blashke product with a
finite degree d ≥ 1. Computing the area, one obtains that

πd = Area f(D) = π

∞
∑

k=1

k|ak|2 = π
λ2

1− λ2
, λ = r1/(2−p).

From here we easily deduce that d = λ2/(1− λ2) and thus, λ =
√

d/(d+ 1)), which
gives

(2)

√

d

d+ 1
= r1/(2−p), i.e. r =

(

d

d+ 1

)1−(p/2)

.

Therefore our inequality could be sharp for these values only. Now let us show that
this is possible for d = 1 only. Using the same reasoning as in [8] (in fact we apply
their considerations in which r is replaced by r1/(2−p)) we arrive at the identity

√

1− r2/(2−p) = rd/(2−p)

which together with (2) implies that
√

1− d

d+ 1
=

(

d

d+ 1

)d/2

which is equivalent to the equality

1

d+ 1
=

(

d

d+ 1

)d

.

From classical analysis we know that the right hand side of this equality is greater
than 1/e for d ≥ 1 so that d+1 ≤ e and from here we easily deduce that d = 1 which
concludes the proof of Theorem 1. �

Proof of Corollary 1. Easily follows from Theorem 1 and Lemma 2. �

Proof of Corollary 2. Theorem 1 for p = 1 gives that

Mp(r) = max
a∈[0,1]

{

a+
r(1− a2)

1− ra

}

.
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By using differentiation it is easy to show that in the case 1/3 ≤ r ≤ 1/
√
2 the

maximum of the last expression is achieved at the point

a =

(

1−
√
1− r2√

2

)

1

r

and consequently, we obtain that

M1(r) =
1

r
(3− 2

√
2
√
1− r2).

The proof is complete. �

Proof of Theorem 2. Without lost of generality we may assume that ||h||∞ = 1.
As in [14], the condition |g′(z)| ≤ |h′(z)| gives that for each r ∈ [0, 1),

(3)
∞
∑

k=1

|bk|2rk ≤
∞
∑

k=1

|ak|2rk.

Let |a0| = a > 0. Then, by using the same method as in the previous theorem in the
case a > r1/(2−p), we obtain

|a0|p +
∞
∑

k=1

(|ak|p + |bk|p)rk ≤ ap + 2r
(1− a2)p

1− rap
.

In the case a ≤ r1/(2−p), we let ρ = 1 and obtain

∞
∑

k=0

|ak|prk ≤ ap + 2r
(1− a2)p/2

(1− r2/(2−p))1−p/2
.

We set t = a2. We have to maximize the expression

B(t) = tp/2 + 2r
(1− t)p/2

(1− r2/(2−p))1−p/2
, t ≤ r2/(2−p).

Using differentiation we see that the function B(t) is increasing on the interval

0 ≤ t ≤ 1− r2/(2−p)

1 + (2r)2/(2−p) − r2/(2−p)
.

The upper bound of this interval is greater than or equal to 2p/2−1 in the case r ≤
(21/(p−2) + 1)p/2−1. It means that the function B(t) has maximum at the point
t = r2/(2−p) which corresponds to the case a = r1/(2−p) so that we can apply our
previous case. This completes the proof of Theorem 2. �

Let p = 1 and then we apply the previous theorem. As a result, we obtain the
inequality

|a0|+
∞
∑

k=1

(|ak|+ |bk|)rk ≤ max
a∈[0,1]

{

a +
2r(1− a2)

1− ra

}

for r ≤
√

2/3.

Straightforward calculations confirm the proof of Corollary 4.
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3. Concluding remarks

Let BE denote the class of all functions f(z) =
∑

∞

k=1 akz
k analytic in D such that

f(z1)f(z2) 6= 1 for all pairs of points z1, z2 in D. Each f ∈ BE is called a Bieberbach–
Eilenberg function. Clearly, BE contains the class B0, where B0 = {f ∈ B : f(0) = 0}.
In 1970, Aharonov [1] and Nehari [15] independently showed that

(4)

∞
∑

k=1

|ak|2 ≤ 1 and |f(z)| ≤ |z|
√

1− |z|2

hold for every f ∈ BE . Equality holds only for the functions

f(z) =
ηz

R± (
√
R2 − 1)iηz

, R > 1, |η| = 1.

Since B0 ⊂ BE , it is natural to ask for the Bohr radius for the family BE . Indeed,
we see blow that the Bohr radius for BE and the class B0 remains the same.

Theorem 3. Assume that f(z) =
∑

∞

k=1 akz
k belongs to BE . Then

∞
∑

k=1

|ak|rk ≤ 1 for |z| = r ≤ 1/
√
2.

The number 1/
√
2 is sharp.

Proof. Because f ∈ BE satisfies the coefficient inequality (4), it follows that

∞
∑

k=1

|ak|rk ≤

√

√

√

√

∞
∑

k=1

|ak|2
√

√

√

√

∞
∑

k=1

r2k ≤ r√
1− r2

which is less than or equal to 1 if 0 ≤ r ≤ 1/
√
2. The number 1/

√
2 is sharp as the

function f(z) = z(a−z)/(1−az) shows, where a = 1/
√
2. The proof is complete. �

Theorem 4. Suppose that f(z) = h(z) + g(z) =
∑

∞

k=1 akz
k +

∑

∞

k=1 bkz
k is a

harmonic mapping of the disk D, where h ∈ BE and |g′(z)| ≤ |h′(z)| for z ∈ D. Then
for any p ≥ 1 and r < 1, the following inequality holds:

∞
∑

k=1

(|ak|p + |bk|p)1/prk ≤ max{2(1/p)−1/2, 1}
√
2r√

1− r2
.

Proof. By hypothesis, (3) holds and thus, letting r approach 1, we get
∞
∑

k=1

|bk|2 ≤
∞
∑

k=1

|ak|2 ≤ 1.

Consequently, we obtain

∞
∑

k=1

(|ak|p + |bk|p)1/prk ≤

√

√

√

√

∞
∑

k=1

(|ak|p + |bk|p)2/p
√

√

√

√

∞
∑

k=1

r2k

≤

√

√

√

√max{2(2/p)−1, 1}
∞
∑

k=1

(|ak|2 + |bk|2)
r√

1− r2

≤ max{2(1/p)−1/2, 1}
√
2 r√

1− r2
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and the proof is complete. �

Theorem 4 for p = 1 shows that for r ≤ 1/
√
5,

∞
∑

k=1

(|ak|+ |bk|)rk ≤ 1.

Similarly, for p = 2, we see that for r ≤ 1/
√
3,

∞
∑

k=1

(|ak|2 + |bk|2)1/2rk ≤ 1.
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