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Abstract. We prove a compactness result for bounded sequences (uj)j of functions with

bounded variation in metric spaces (X, dj) where the space X is fixed but the metric may vary with

j. We also provide an application to Carnot–Carathéodory spaces.

1. Introduction

One of the milestones in the theory of functions with bounded variation (BV) is
the following Rellich–Kondrachov-type theorem: given a bounded open set Ω ⊆ R

n

with Lipschitz regular boundary, the space BV (Ω) of functions with bounded varia-
tion in Ω compactly embeds in Lq(Ω) for any q ∈ [1, n

n−1
[. One notable consequence

is the following property: if (uj)j is a sequence of functions in BVloc(R
n) that are

locally uniformly bounded in BV , then for any q ∈ [1, n
n−1

[ a subsequence (ujh)h
converges in Lq

loc
(Rn).

Sobolev and BV functions in metric measure spaces have recently received a great
deal of attention; to this regard we only mention the celebrated paper [7], where the
authors show how the validity of Poincaré-type inequalities and a doubling property
of the reference measure are enough to prove fundamental properties like Sobolev
inequalities, Sobolev embeddings, Trudinger inequality, etc. We also point out a
Rellich–Kondrachov-type result [7, Theorem 8.1]: if a sequence (uj)j is bounded in
some W 1,p, then a subsequence converges in some Lq.

In this paper we study similar compactness properties for sequences (uj)j of lo-
cally uniformly bounded BV functions in metric measure spaces (X, λ, dj) where the
underlying measure space (X, λ) is fixed but the metric dj varies with j. In our
main result we prove that, if dj converges locally uniformly to some distance d on
X such that (X, λ, d) is a (locally) doubling separable metric measure space, and
if the functions uj : X → R are locally uniformly (in j) bounded with respect to a
BV-type norm in (X, dj) and satisfy some local Poincaré inequality (with constant
independent of j), then a subsequence of uj converges in some Lq

loc
(X, λ). See The-

orem 2.1 for a precise statement. We prove Theorem 2.1 by the combined use of the
Poincaré inequality and of an approximation scheme for functions by their averages
on balls: these are of course very well-known ideas but, to our knowledge, this precise
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combination is novel even when the metric on X is not varying (i.e., when dj = d
for any j). In particular, our strategy seems to provide a different proof of the case
p = 1 in [7, Theorem 8.1] for separable metric spaces.

The motivation that led us to Theorem 2.1 comes from an application to the
study of BV functions in Carnot–Carathéodory (CC) spaces. In Theorem 3.6 we

indeed prove that, if Xj = (Xj
1 , . . . , X

j
m) are families of smooth vector fields in R

n

that, as j → ∞, converge in C∞
loc
(Rn) to a family X = (X1, . . . , Xm) satisfying the

Chow-Hörmander condition, and if uj : R
n → R are locally uniformly bounded in

BVXj ,loc, then a subsequence ujh converges in L1
loc
(Rn) to some u ∈ BVX,loc(R

n).
Theorem 3.6 directly follows from Theorem 2.1 once we show that the CC distances
induced by Xj converge locally uniformly to the one induced by X, and that (locally)
a Poincaré inequality holds for BVXj functions with constant independent of j; these
two results (Theorems 3.4 and 3.5, respectively) use in a crucial way some outcomes
of the papers [1, 11].

Our interest in Theorem 3.6, in turn, was originally motivated by the study
of fine properties of BVX functions in CC spaces and, in particular, of their local
properties. Here, one often needs to perform a blow-up procedure around a fixed
point p: it is well-known that this produces a sequence of CC metric spaces (Rn, Xj)
that converges to (a quotient of) a Carnot group structure G. In this blow-up, the
original BVX function u0 gives rise to a sequence (uj)j of functions in BVXj which, up
to a subsequence, will converge in L1

loc
to a BVG,loc function u in G. The function u

(typically: a linear map, or a jump map taking two different values on complementary
halfspaces of G) will then provide some information on u0 around p. We refer to [3]
for more details.

Aknowledgements. The authors are grateful to M. Miranda Jr. and D. Morbidelli
for fruitful discussions.

2. The main result

This section is devoted to the statement and the proof of our main result. See
e.g. [10] for a definition of BV functions in metric spaces.

Theorem 2.1. Let X be a set, q ≥ 1, δ > 0 and let d, dj (j ∈ N) be met-
rics on X such that (X, d) is locally compact and separable. Let λ, µj (j ∈ N) be
Radon measures on X and consider a sequence (uj)j in Lq

loc
(X ;λ). Suppose that the

following assumptions hold.

(i) The sequence (dj)j converges to d in L∞
loc
(X ×X).

(ii) (X, d, λ) is a locally doubling metric measure space, i.e., for any compact set
K ⊆ X there exist CD ≥ 1 and RD > 0 such that

∀ x ∈ K, ∀r ∈ (0, RD) λ(B(x, 2r)) ≤ CDλ(B(x, r)).

(iii) For every compact set K ⊆ X there exist CP , RP > 0 and α ≥ 1 such that

∀x ∈ K, ∀j ∈ N, ∀r ∈ (0, RP ) ‖uj − uj(B
j)‖Lq(Bj) ≤ CP rδµj(αB

j),

where Bj := Bj(x, r) denotes a ball in (X, dj), αB
j := Bj(x, αr) and uj(B

j) :=
ffl

Bj uj dλ.
(iv) For every compact set K ⊆ X there exists MK > 0 such that

∀j ∈ N ‖uj‖L1(K;λ) + µj(K) ≤ MK .

Then there exist u ∈ Lq
loc
(X ;λ) and a subsequence (ujh)h of (uj)j such that (ujh)h

converges to u in Lq
loc
(X ;λ) as h → +∞.
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Concerning the classical Euclidean case when

(X, dj, λ) = (X, d, λ) = (Rn, | · |,L n),

we invite the reader to compare the assumption in (iii) with the well-known Poincaré
inequality

‖u− u(Br)‖Lq(Br) ≤ Crδ|Du|(Br) ∀ q ∈ [1, n
n−1

[ with δ := n
q
+ 1− n > 0

valid for for any BV function u on any ball Br ⊆ R
n of radius r and where u(Br)

denotes the mean value L n(Br)
−1
´

Br
u dL n of u in Br, C > 0 is a geometric con-

stant, and |Du| denotes the total variation measure associated with u (i.e., the total
variation of the distributional derivatives of u).

Proof. We recall the following result that is needed later in the proof: given a
locally compact and separable metric space (X, d) and a Radon measure λ on (X, d),
then there exists a sequence (Kj) of compact sets such that Kj ⊆ int(Kj+1) and⋃

j∈NKj = X.
Let K ⊆ X be a fixed compact set and let ε > 0. We first prove that there exists

a subsequence (ujh)h such that

(1) lim sup
h,k→+∞

‖ujh − ujk‖Lq(K;λ) ≤ 2C0ε,

for some C0 > 0 depending on K only.
Consider an open set U1 ⊆ X such that K ⊆ U1, U 1 is compact and

(2) λ(U1 \K) ≤
1

4Cβ+3
D

λ(K),

where β is an integer such that 2β > 2α and α is given by condition (iii). By the 5r-
covering Theorem (see e.g. [8, Theorem 1.2]) we can find a family {B(xℓ, rℓ) : ℓ ∈ N}
of pairwise disjoint balls such that xℓ ∈ K, 0 < rℓ < min{ε1/δ, RD/4, 2αRP},

B(xℓ, 5rℓ) ⊆ U1 and

K ⊆
∞⋃

ℓ=0

B(xℓ, 5rℓ).

Denote for shortness Bℓ := B(xℓ, rℓ); then

λ(K) ≤
∞∑

ℓ=0

λ(5Bℓ) ≤
∞∑

ℓ=0

λ(8Bℓ) ≤ Cβ+3
D

∞∑

ℓ=0

λ( 1
2β
Bℓ) = Cβ+3

D λ

(
∞⋃

ℓ=0

1
2β
Bℓ

)
.

Hence we can choose L ∈ N such that

λ

(
L⋃

ℓ=0

1
2β
Bℓ

)
≥

1

2Cβ+3
D

λ(K).

Taking into account (2) we easily get that A1 := K ∩
⋃L

ℓ=0
1
2β
Bℓ satisfies

λ(A1) ≥
1

4Cβ+3
D

λ(K).

For j ∈ N and ℓ = 0, . . . , L set for shortness Bj
ℓ := Bj(xℓ, rℓ). By assumption (i),

and since Bℓ ⊆ U1 are compact for ℓ = 0, . . . , L, there exists J ∈ N such that for
every j ≥ J , and for every ℓ = 0, . . . , L

(3) 1
2β
Bℓ ⊆

1
2α
Bj

ℓ and 1
2
Bj

ℓ ⊆ Bℓ.
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Hence for every j ≥ J one has
∣∣uj

(
1
2α
Bj

ℓ

)∣∣ ≤ λ
(

1
2α
Bj

ℓ

)−1
‖uj‖L1(U1;λ) ≤ MU1

max{λ
(

1
2β
Bℓ

)−1
: ℓ = 0, . . . , L} < +∞.

By Bolzano–Weierstrass Theorem we get an increasing function ν1 : N → N such
that

(4) the sequence
(
uν1(j)

(
1
2α
B

ν1(j)
ℓ

))
j

is convergent for every ℓ = 0, . . . , L.

Then

lim sup
h,k→+∞

‖uν1(h) − uν1(k)‖Lq(A1;λ)

≤ lim sup
h,k→+∞

L∑

ℓ=0

(∥∥∥uν1(h) − uν1(h)

(
1
2α
B

ν1(h)
ℓ

)∥∥∥
Lq

(

1
2β

Bℓ;λ
)

+
∥∥∥uν1(k) − uν1(k)

(
1
2α
B

ν1(k)
ℓ

)∥∥∥
Lq

(

1
2β

Bℓ;λ
)

+
∥∥∥uν1(h)

(
1
2α
B

ν1(h)
ℓ

)
− uν1(k)

(
1
2α
B

ν1(k)
ℓ

)∥∥∥
Lq

(

1
2β

Bℓ;λ
)

)

and, using (3) and (4),

≤ lim sup
h,k→+∞

L∑

ℓ=0

(∥∥∥uν1(h) − uν1(h)

(
1
2α
B

ν1(h)
ℓ

)∥∥∥
Lq

(

1
2α

B
ν1(h)
ℓ

;λ
)

+
∥∥∥uν1(k) − uν1(k)

(
1
2α
B

ν1(k)
ℓ

)∥∥∥
Lq

(

1
2α

B
ν1(k)
ℓ

;λ
)

)

≤ lim sup
h,k→+∞

L∑

ℓ=0

CP rδℓ
(2α)δ

(
µν1(h)

(
1
2
B

ν1(h)
ℓ

)
+ µν1(k)

(
1
2
B

ν1(k)
ℓ

))

≤ lim sup
h,k→+∞

CP ε

(2α)δ
(
µν1(h)

(
U 1

)
+ µν1(k)

(
U 1

))
≤ C0ε,

where C0 depends only on U1 and thus only on K.
We proved that there exist A1 ⊆ K and a subsequence (uν1(h))h of (uj)j such

that

λ(K \ A1) ≤

(
1−

1

4Cβ+3
D

)
λ(K),

lim sup
h,k→+∞

‖uν(h) − uν(k)‖Lq(A1;λ) ≤ C0ε.

Since the set K2 = K \A1 is compact we can repeat the same argument on K2, with
ε
2

in place of ε, and paying attention to choose an open set U2 ⊆ U1 so that C0 can
be left unchanged. By a recursive argument, for every j ∈ N we get pairwise disjoint
sets Aj ⊆ K and subsequences (uνj(h))h such that for every j ≥ 1

(a) (uνj+1(h))h is a subsequence of (uνj(h))h;

(b) λ
(
K \

⋃j
i=1Ai

)
≤
(
1− 1

4Cβ+3
D

)j
λ(K);

(c) lim sup
h,k→+∞

‖uνj(h) − uνj(k)‖Lq(Aj ;λ) ≤ C02
1−jε.
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Inequality (b) immediately implies that λ (K \
⋃∞

i=1Ai) = 0. Working on the diago-
nal subsequence (uνh(h))h we can conclude that

(5)

lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(K;λ) = lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(
⋃

∞

i=1 Ai;λ)

≤
∞∑

i=1

lim sup
h,k→+∞

‖uνh(h) − uνk(k)‖Lq(Ai;λ) ≤ 2C0ε.

This proves (1).
Let us denote for simplicity (uh)h instead of (uνh(h))h. We now prove that for

every compact set K ⊆ X there exists a subsequence (ujh)h of (uh)h such that

(6) lim
h,k→+∞

‖ujh − ujk‖Lq(K;λ) = 0.

By (5), for every i ∈ N, we can recursively build a subsequence (uνi+1(h))h of (uνi(h))h
such that

lim sup
h,k→+∞

‖uνi(h) − uνi(k)‖Lq(K;λ) ≤
2

i+1
C0.

Then the diagonal sequence (uνh(h)) satisfies (6).
Eventually, take a sequence (Kj) of compact sets such that Kj ⊆ int(Kj+1) and⋃

j∈NKj = X. By (6), for every i ∈ N we can recursively build a subsequence

(uνi(h))h such that (uνi+1(h))h is a subsequence of (uνi(h))h and

lim
h,k→+∞

‖uνi(h) − uνi(k)‖Lq(Ki;λ) = 0.

The diagonal subsequence (uνh(h))h will then converge to some u in Lq
loc
(X ;λ). This

concludes the proof. �

Remark 2.2. The careful reader will easily notice that Theorem 2.1 holds also
when assumption (iii) is replaced by the following weaker one:

(iii’) For every compact set K ⊆ X there exist RP > 0, α ≥ 1 and f : (0,+∞) →
(0,+∞) such that limr→0+ f(r) = 0 and

∀x ∈ K, ∀j ∈ N, ∀r ∈ (0, RP ) ‖uj − uj(B
j)‖Lq(Bj) ≤ f(r)µj(αB

j).

3. An application to Carnot–Carathéodory spaces

Let Ω be an open set in R
n and let X = (X1, . . . , Xm) be an m-tuple of smooth

and linearly independent vector fields on R
n, with 2 ≤ m ≤ n. We say that an

absolutely continuous curve γ : [0, T ] → R
n (briefly denoted by γ ∈ AC([0, T ];Rn))

is an X-subunit path joining x and y in R
n if γ(0) = x, γ(T ) = y and there exist

h1, . . . , hm : [0, T ] → R with
∑m

j=1 h
2
j ≤ 1 such that

(7) γ̇(t) =

m∑

j=1

hj(t)Xj(γ(t)) for a.e. t ∈ [0, T ].

Moreover, for every x, y ∈ R
n we define the quantity

(8) d(x, y) := inf
{
T ∈ (0,+∞) : ∃γ ∈ AC([0, T ];Rn) X-subunit joining x and y

}
,

where we agree that inf ∅ = +∞.
We will suppose in the following that the Chow–Hörmander condition holds, i.e.,

that for every x ∈ R
n the vector space spanned by X1, . . . , Xm and their commutators

of any order computed at x is the whole R
n. By the Chow–Rashevsky Theorem, if

the Chow–Hörmander condition holds, the function d defined above is a distance and
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the couple (Rn, X) (or equivalently (Rn, d)) is called Carnot–Carathéodory space (CC
space for short). It is well known that d and the Euclidean distance de induce on R

n

the same topology (see [13]).
We denote balls induced by d by B(x, r) and Euclidean balls by Be(x, r). As

customary in the literature, in what follows we also suppose that the metric balls
B(x, r) are bounded with respect to the Euclidean metric. One consequence of this
assumption is the existence of geodesics, i.e., for any x, y ∈ R

n the infimum in (8)
(as well as the one in (9) below) is indeed a minimum; see e.g. [12, Theorem 1.4.4].

For j ∈ N let Xj = (Xj
1 , . . . , X

j
m) be a family of linearly independent vector fields

such that, for every fixed i = 1, . . . , m, Xj
i converges to Xi in C∞

loc
(Rn) as j → ∞.

We denote by dj , j ∈ N, the CC distance associated with Xj . If h ∈ L∞([0, T ];Rm)

with ‖h‖ ≤ 1, T > 0 and x ∈ R
n, it is convenient to define γh,x, γ

j
h,x : [0, T ] → R

n as

the AC curves such that γh,x(0) = γj
h,x(0) = x and for almost every t ∈ [0, T ]

γ̇h,x(t) =

m∑

i=1

hi(t)Xi(γh,x(t)), γ̇j
h,x(t) =

m∑

i=1

hi(t)X
j
i (γ

j
h,x(t)).

With this notation, an equivalent definition of the CC distance is

(9) d(x, y) = inf{‖h‖L∞(0,1) : h ∈ L∞([0, 1];Rm) and γh,x(1) = y}.

The boundedness of metric balls implies that, for every T > 0 and h ∈ L∞([0, T ];Rm),
the curve γh,x is well-defined on [0, T ].

It can be easily seen that, if the Chow–Hörmander condition holds, then for every
compact set K ⊆ R

n there exists an integer s(K) such that the following holds: for
any x ∈ K, X1, . . . , Xm and their commutators up to order s(K) computed at x span
the whole R

n. The following theorem gives a sort of quantitative version of some
of the celebrated results of [13]. The proof of Theorem 3.1 follows fairly easily from
[1, 11] (see in particular [1, Proposition 5.8 and Claim 3.3]) and from the following
observation: for any compact set K ⊆ R

n there exists J ∈ N such that, for any
x ∈ K and j ≥ J , the vector fields Xj

1 , . . . , X
j
m and their commutators up to order

s(K) computed at x span the whole R
n.

Theorem 3.1. For every compact set K ⊆ R
n there exist J0 ∈ N and CK > 0

such that for every x, y ∈ K and j ≥ J0

1

CK

|x− y| ≤ d(x, y) ≤ CK |x− y|1/s(K)

1

CK
|x− y| ≤ dj(x, y) ≤ CK |x− y|1/s(K).

We aim at proving that the sequence of distances dj converges to d locally uni-
formly; we need some preparatory lemmata.

Lemma 3.2. Let K be a compact set in R
n. Then for every T > 0, there

exist J1 = J1(K, T ) ∈ N and R = R(K, T ) > 0 such that for every x ∈ K, h ∈
L∞([0, T ];Rm) with ‖h‖ ≤ 1 and any j ≥ J1 the following hold:

(a) the curve γj
h,x is well defined on [0, T ];

(b) γj
h,x([0, T ]) ⊆ Be(0, R).

Proof. Define first

K ′ := {γh,x(T ) : x ∈ K, h ∈ L∞([0, T ];Rm), ‖h‖ ≤ 1} =
⋃

x∈K

B(x, T ).
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Since metric balls are bounded, also K ′ is bounded. We can therefore find R > 0
such that K ′ ⊆ Be(0, R) and de(K

′,Rn \ Be(0, R)) > 1. Choose J1 ∈ N such that
for every j ≥ J1

T

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCT ≤

1

2
,

where C > 0 will be determined later. Let h ∈ L∞([0, T ];Rm) and j ≥ J1 be fixed;
define

tj := sup{t > 0: γj
h,x is well-defined on [0, t] and γj

h,x([0, t]) ⊆ Be(0, R)}

and suppose by contradiction that tj < T . Then γj
h,x(tj) ∈ ∂Be(0, R) and for every

τ < tj one has

∣∣γj
h,x(τ)− γh,x(τ)

∣∣ ≤
ˆ τ

0

m∑

i=1

∣∣hi(s)X
j
i (γ

j
h,x(s))− hi(s)Xi(γh,x(s))

∣∣ ds

≤

ˆ τ

0

m∑

i=1

∣∣Xj
i (γ

j
h,x(s))−Xj

i (γh,x(s))
∣∣ ds

+

ˆ τ

0

m∑

i=1

∣∣Xj
i (γh,x(s))−Xi(γh,x(s))

∣∣ ds.

Notice that, since Xj
i is converging to Xi locally in C1, and since γj

h,x(s), γh,x(s) ∈
Be(0, R), the Lipschitz constants

c j
i := sup

x,y∈Be(0,R)

|Xj
i (x)−Xj

i (y)|

|x− y|

are converging to the Lipschitz constant ci := supx,y∈Be(0,R)
|Xi(x)−Xi(y)|

|x−y|
. Therefore

there exists C > 0 such that c j
i , ci ≤ C for any j ∈ N and i = 1, . . . , m, which gives

∣∣γj
h,x(τ)− γh,x(τ)

∣∣ ≤
ˆ τ

0

(
mC

∣∣γj
h,x(s)− γh,x(s)

∣∣+
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
ds.

We can therefore apply Grönwall’s Lemma (see [6]) to get

∣∣γj
h,x(tj)− γh,x(tj)

∣∣ ≤ tj

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCtj ≤

1

2
.

Notice that γh,x(tj) ∈ K ′ and γj
h,x(tj) ∈ ∂Be(0, R): this contradicts the definition of

R, giving tj = T . The lemma is proved. �

Lemma 3.3. Fix ε ∈ (0, 1) and a compact set K in R
n. Then, for every T >

0 there exists J2 = J2(K, T, ε) ∈ N such that for every x ∈ K, j ≥ J2, h ∈
L∞([0, T ];Rm) with ‖h‖ ≤ 1 and t ∈ [0, T ] one has

|γj
h,x(t)− γh,x(t)| ≤ ε

Proof. Let J1 = J1(K, T ) and R = R(K, T ) be given by Lemma 3.2 and let
C > 0 be the constant appearing in its proof. We can reason as in Lemma 3.2 above
and use Grönwall’s Lemma to get, for any x, j, h, t as in the statement, that

∣∣γj
h,x(t)− γh,x(t)

∣∣ ≤ t

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCt.
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The proof is then accomplished by choosing J2 ≥ J1 sufficiently large to have

T

(
m∑

i=1

sup
Be(0,R)

|Xj
i −Xi|

)
emCT < ε. �

Clearly, J2 can be chosen with the additional property that J2(K, T1, ε) ≤ J2(K,
T2, ε) whenever 0 < T1 ≤ T2.

Theorem 3.4. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be

m-tuples of linearly independent smooth vector fields on R
n such that X satisfies

the Chow–Hörmander condition and its CC balls are bounded in R
n; assume that,

for every i = 1, . . . , m, Xj
i → Xi in C∞

loc
(Rn) as j → ∞. Then the sequence (dj)j

converges to d in L∞
loc
(Rn ×R

n) as j → +∞.

Proof. Let K ⊆ R
n be a fixed compact set. We first prove that for every ε ∈ (0, 1)

there exists J3 = J3(K, ε) ∈ N such that for every x, y ∈ K and j ≥ J3 one has

dj(x, y) ≤ d(x, y) + ε.

Consider x, y ∈ K; by the existence of geodesics, there exists h ∈ L∞([0, 1];Rm) such
that ‖h‖L∞ = d(x, y) and γh,x(1) = y. We set yj := γj

h,x(1) and consider J0 and CK >
0 as given by Theorem 3.1. By Lemma 3.3, for j ≥ J3 := max{J0, J2(K, diamdK,
(ε/CK)

s(K))} we have

|yj − y| = |γj
h,x(1)− γh,x(1)| ≤

(
ε

CK

)s(K)

.

By Theorem 3.1 we deduce that dj(yj, y) ≤ ε; in particular, for any j ≥ J3 one has

(10) dj(x, y) ≤ dj(x, yj) + dj(yj, y) ≤ d(x, y) + ε,

as claimed. Notice also that supj≥J3 diamdjK ≤ diamdK + 1 =: L is finite.
We now prove that for any x, y ∈ K and ε ∈ (0, 1) there exists J4 = J4(K, x, y, ε) ∈

N such that for every j ≥ J4

(11) d(x, y) ≤ dj(x, y) + ε.

For every j ≥ J3 let hj ∈ L∞([0, 1];Rm) be such that

γj
hj ,x

(1) = y and ‖hj‖L∞ = dj(x, y) ≤ L.

The sequence (hj)j is bounded in L∞ and therefore there exists a subsequence (hjℓ)ℓ
and h ∈ L∞([0, 1];Rm) such that

hjℓ ∗
⇀ h in L∞ and lim

ℓ→∞
‖hjℓ‖L∞ = lim inf

j→∞
‖hj‖L∞ = lim inf

j→∞
dj(x, y).

Denoting γjℓ := γjℓ
hjℓ ,x

and considering R = R(K,L) > 0 as given by Lemma 3.2,

one has γjℓ([0, 1]) ⊆ Be(0, R). Since Xj
i are converging to Xi uniformly in C∞

(i = 1, . . . , m), such vector fields are equibounded on Be(0, R). By Ascoli–Arzelà
Theorem, up to a further subsequence, there exists a curve γ ∈ AC([0, 1],Rn) such
that γjℓ uniformly converges to γ in [0, 1] as ℓ → ∞. For every t ∈ [0, 1] one has

γjℓ(t) = x+

ˆ t

0

m∑

i=1

hjℓ
i (s)X

jℓ
i (γ

jℓ(s)) ds
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and, taking into account that Xjℓ
i ◦ γjℓ → Xi ◦ γ uniformly in [0, 1] and that hj ∗

⇀ h
in L∞, by letting ℓ → ∞ one gets

γ(t) = x+

ˆ t

0

m∑

i=1

hi(s)Xi(γ(s)) ds.

In particular γ = γh,x, γ(1) = y and

d(x, y) ≤ ‖h‖L∞ ≤ lim inf
ℓ→∞

‖hjℓ‖L∞ = lim inf
j→∞

dj(x, y),

which proves (11).

By the compactness of K we can find x1, . . . , xk ∈ K such that K ⊆
⋃k

ℓ=1B(xℓ, ε).

Using Theorem 3.1 and (11) we can find C̃ = C̃(K) > 0 and J5 = J5(K, ε) ∈ N such
that for j ≥ J5

B(xℓ, ε) ⊆ Bj(xℓ, C̃ε1/s(K)) ∀ ℓ = 1, . . . , k,

d(xℓ1 , xℓ2) ≤ dj(xℓ1 , xℓ2) + ε ∀ ℓ1, ℓ2 = 1, . . . , k.

For every x, y ∈ K we can find xℓ1 , xℓ2 ∈ K (with 1 ≤ ℓ1, ℓ2 ≤ k) such that x ∈
B(xℓ1 , ε) and y ∈ B(xℓ2 , ε), hence for j ≥ J5 we have

d(x, y) ≤ d(x, xℓ1) + d(xℓ1 , xℓ2) + d(y, xℓ2)

≤ ε+ dj(xℓ1 , xℓ2) + ε+ ε

≤ dj(xℓ1 , x) + dj(x, y) + dj(y, xℓ2) + 3ε

= dj(x, y) + 3ε+ 2C̃ε1/s(K),

which, combined with (10), concludes the proof. �

Let us recall that, given a CC space (Rn, X), a function u ∈ L1
loc
(Ω) is said to

have locally bounded X-variation if the distributional derivatives X1u, . . . , Xmu are
represented by Radon measures. See e.g. [2, 4]. We denote by BVX,loc(R

n) the set of
functions of locally bounded X-variation in R

n and by |DXu| the total variation of
the vector-valued measure DXu := (X1u, . . . , Xmu).

Sobolev- and Poincaré-type inequalities in CC spaces have been largely inves-
tigated; among the vast literature we mention only [9, 5, 7]. The following result
is an easy consequence of [1, Theorem 7.2] or [11, Theorem 1.1]. Notice that the
latter results are proved only when u is a smooth function on R

n; in order to prove
Theorem 3.5 as stated here one has to approximate functions in BVX,loc by smooth
ones (see [4, 5]).

Theorem 3.5. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-

tuples of linearly independent smooth vector fields on R
n such that X satisfies the

Chow–Hörmander condition and its CC balls are bounded in R
n; assume that, for

every i = 1, . . . , m, Xj
i → Xi in C∞

loc
(Rn) as j → ∞. Then, for every compact set

K ⊆ R
n there exist CP > 1, α ≥ 1, RP > 0 and J ∈ N such that for every j ≥ J ,

u ∈ BVXj ,loc(R
n), x ∈ K and r ∈ (0, RP ) one has

(12)

ˆ

Bj

∣∣u− u(Bj)
∣∣ dL n ≤ CP r |DXju|(αBj),

where Bj := Bj(x, r) and u(Bj) =
ffl

Bj u dL
n.

We can then state our main application. See [7, Section 8] for more references
about compactness results for Sobolev or BV functions in CC spaces.
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Theorem 3.6. Let X = (X1, . . . , Xm) and Xj = (Xj
1 , . . . , X

j
m), j ∈ N, be m-

tuples of linearly independent smooth vector fields on R
n such that X satisfies the

Chow–Hörmander condition and its CC balls are bounded in R
n; assume that, for

every i = 1, . . . , m, Xj
i → Xi in C∞

loc
(Rn) as j → ∞. Let uj ∈ BVXj ,loc(R

n) be a
sequence of functions that is locally uniformly bounded in BV , i.e., such that for any
compact set K ⊆ R

n there exists M > 0 such that

∀j ∈ N ‖uj‖L1(K) + |DXjuj|(K) ≤ M < ∞.

Then, there exist u ∈ BVX,loc(R
n) and a subsequence (ujh)h of (uj)j such that

ujh → u in L1
loc
(Rn) as h → ∞. Moreover, for any bounded open set Ω ⊆ R

n

the semicontinuity of the total variation

|DXu|(Ω) ≤ lim inf
j→∞

|DXjuj|(Ω)

holds.

Proof. We use Theorem 2.1 with X = R
n, λ = L n, δ = q = 1, µj := |DXju| and

d, dj the CC distances associated with X,Xj respectively. Assumption (i) follows
from Theorem 3.4, while the local doubling property (ii) of d is a well-known fact
(see e.g. [13]). The validity of (iii) (with δ = q = 1) follows from Theorem 3.5, while
(iv) is satisfied by assumption.

Theorem 2.1 ensures that, up to subsequences, uj converges to some u in L1
loc
(Rn);

we need to show that u ∈ BVX,loc(R
n). To this aim, for any i = 1, . . . , m we denote

by X∗
i the formal adjoint to Xi and write

Xi(x) =
n∑

k=1

ai,k(x)∂k and Xj
i (x) =

n∑

k=1

aji,k(x)∂k

for suitable smooth functions ai,k, a
j
i,k. Then, for any bounded open set Ω ⊆ R

n and

any test function ϕ = (ϕ1, . . . , ϕm) ∈ C1
c (Ω;R

m) with |ϕ| ≤ 1 we have

ˆ

Ω

u
m∑

i=1

X∗
i ϕi dL

n =

ˆ

Ω

u
m∑

i=1

n∑

k=1

∂k(ai,kϕi) dL
n = lim

j→∞

ˆ

Ω

uj

m∑

i=1

n∑

k=1

∂k(a
j
i,kϕi) dL

n

= lim
j→∞

ˆ

Ω

uj

m∑

i=1

Xj
i

∗
ϕi dL

n = − lim
j→∞

ˆ

Ω

m∑

i=1

ϕi dX
j
i uj

≤ lim inf
j→∞

|Dj
Xuj|(Ω) < ∞.

This proves that u ∈ BVX,loc(R
n) as well as the semicontinuity of the total variation.

The proof is accomplished. �

Remark 3.7. We conjecture that, when the CC space (Rn, X) is equiregular,
the convergence ujh → u in Theorem 3.6 holds in Lq

loc
for any q ∈ [1, Q

Q−1
[, where Q

is the Hausdorff dimension of (Rn, X). This would easily follow in case the Poincaré
inequality (12) could be strengthened to

‖u− u(Bj)‖Lq(Bj) ≤ CP rδ |DXju|(αBj)

for some δ > 0 (arguably, δ = Q
q
+ 1−Q). The key point would be proving that the

constant CP can be chosen independent of j but, as far as we know, no investigation
in this direction has been attempted in the literature.
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Remark 3.8. Theorems 3.4, 3.5 and 3.6 hold also under a slightly weaker as-
sumption: it is indeed enough that, for any compact set K ⊆ R

n, the convergence
Xj

i → Xi holds in Ck(K) for a suitable k = k(K) (actually, k depends only on s(K))
that one could explicitly compute. See [1, 11] for more details.
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