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Abstract. The tropical Nevanlinna theory in the whole real line R describes value distribution

of continuous piecewise linear functions of a real variable with arbitrary real slopes, called tropical

meromorphic functions, similarly as value distribution of meromorphic functions of a complex vari-

able is described by the classical Nevanlinna theory in the whole complex plane C. As a tropical

counterpart to the Nevanlinna theory in a disc or an annulus centered at the origin, we introduce in

this paper a value distribution theory of continuous piecewise linear functions in a symmetric finite

open interval (−R,R). The shift operator (difference operator) has a key role in the tropical value

distribution theory in R corresponding to the role of the differential operator in the Nevanlinna

theory in a subregion of C. However, the affine shift x 7→ x+ c does not operate properly in finite

intervals. Therefore, we introduce a shift x 7→ sτ (x) which may be called as the tropical hyperbolic

shift. This notion enables us to obtain the quotient estimate m
(

r, f
(

sτ (x)
)

⊘ f(x)
)

= o(1)T (r, f)

for tropical meromorphic functions f(x) defined in an interval (−R,R) in R, corresponding to the

logarithmic derivative estimate in the Nevanlinna theory for meromorphic functions f(z) defined in

a disc or in an annulus. A sort of the second main theorem is also stated by means of this estimate.

Concerning hyperbolic shift and the second main theorem, we assume an order restriction to f(x).

This restriction is shown to be necessary by an example.

1. Introduction and notation

Tropical Nevanlinna theory in the real line, see [5], [7] and [10], describes value
distribution of continuous piecewise linear functions of a real variable, similarly as
value distribution of meromorphic functions of a complex variable is described by the
classical Nevanlinna theory in the complex plane, see [1] and [6].

The original paper [5] on tropical Nevanlinna theory in the real line (restricting to
integer slopes) has been subsequently extended in [10] to include tropical counterpart
to the second main theorem (with arbitrary real slopes). A further extension has been
recently made in [8] to considering tropical holomorphic curves in a tropical projective
space. In these preceding papers, tropical Nevanlinna theory has been treated in the
global setting. We are now considering the theory in the local sense by going to treat
tropical meromorphic functions and their Nevanlinna theory in a finite interval.
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Recalling the standard one-dimensional tropical framework, we shall consider a
max-plus semi-ring endowing R−∞ := R ∪ {−∞} with tropical addition

x⊕ y := max(x, y)

and tropical multiplication

x⊗ y := x+ y.

We also use the notations x ⊘ y := x − y and x⊗α := αx for α ∈ R. The
neutral elements for the tropical operations are 0◦ = −∞ for addition and 1◦ = 0 for
multiplication. We note that 1◦ ⊕ x = max(x, 0) and 0◦ ⊗ x = 0◦ for any x ∈ R. We
sometimes denote max(x, 0) by x+. Observe that such a structure is not a ring, since
not all elements have tropical additive inverses. For a general background concerning
tropical mathematics, see [11], for example.

In this note, we introduce Nevanlinna theory of tropical meromorphic functions
in an open interval (−R,R), 0 < R < +∞. Here we give the reason why one may
concentrate on such a symmetric interval. Suppose that F (x) is tropical meromorphic
in a general open finite interval (R1, R2) with R1, R2 ∈ R. Then, instead of the pair
of the function F (x) and the interval (R1, R2), we can simply consider the pair of the
function f(x) and the interval (−R,R) given by

f(x) = F

(

x+
R1 +R2

2

)

and R =
R2 − R1

2
.

Further, we may also apply our theory to tropical meromorphic functions F (x) in
a half -infinite interval, say in (−∞, R2) with R2 ∈ R. Then there exists an R1 ∈
(−∞, R2) such that the function F (x) is linear, ℓ(x) say, in a neighborhood of x = R1.
Then consider two tropical meromorphic functions F1(x) (defined in the whole R)
and F2(x) (defined in the finite interval (R1, R2)) as follows:

F1(x) =

{

F (x) (−∞ < x ≤ R1),

ℓ(x) (R1 < x < +∞)

and

(1.1) F2(x) = F (x) (R1 < x < R2).

Then we may study value properties of F (x) in the half-infinite closed interval
(−∞, R1] through those of F1(x) by means of the tropical Nevanlinna theory on R as
the value distribution of F1(x) = ℓ(x) in the half-infinite interval (R1,∞) is trivial.
On the other hand, value properties of F (x) = F2(x) in the open interval (R1, R2)
follow by means of the tropical Nevanlinna theory to be introduced in this note.
Similarly one may consider half-infinite intervals (R1,+∞) with R1 ∈ R.

Returning to the study of tropical value distribution in a finite interval (R1, R2),
we are concerned with the case when our function F (x) can be continued beyond
neither of the endpoints to a tropical meromorphic function in any larger interval.
Then the endpoints x = R1 and x = R2 may be considered as essential singularities of
the tropical meromorphic function F (x) and we may say that F (x) is transcendental

near x = R1 and x = R2. In fact, this happens when the set of all the roots and
poles of F (x) (see Definition 1.3 below) has both of the endpoints as its limit points.

Thus, from now on, we are considering transcendental tropical meromorphic func-
tions in an open interval (−R,R), 0 < R < +∞ and we will study their value dis-
tribution by applying the finite interval version of the tropical Nevanlinna theory, to
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be described below. For convenience of the reader, we first restate some of the basic
definitions and notations from the real line case:

Definition 1.1. A continuous piecewise linear function f of an interval (−R,R)
to R is said to be tropical meromorphic on (−R,R), where 0 < R < +∞.

Observe that whenever f : (−R,R) → R is a continuous piecewise linear function,
the set of discontinuities of the derivative f ′, see below, might have limit points
possibly at x = R, at x = −R or at both of x = ±R.

Definition 1.2. A point x of derivative discontinuity of a tropical meromorphic
function f such that

ωf(x) := lim
ε→0+

(

f ′(x+ ε)− f ′(x− ε)
)

< 0

is said to be a pole of f of multiplicity −ωf (x), while if ωf(x) > 0, then the point x
is called a root (or a zero-point) of f of multiplicity ωf(x).

Observe that the multiplicity |ωf(x)| may be any real number, to be denoted as
τf(x) in what follows.

Definition 1.3. If a tropical meromorphic function f in the interval (−R,R)
has only finitely many poles and roots in (−R,R) implying that f is continuous
and piecewise linear in the closed interval [−R,R], then we may call it tropical
meromorphic of rational type in (−R,R). Otherwise, we say that f is transcendental
in (−R,R), meaning that it cannot be defined at both of the points x = ±R.

Suppose, in what follows, that f is tropical meromorphic in an interval (−R,R)
for a fixed number R > 0. The Nevanlinna functions are now easily set up similarly
as in [5], [7] and [10]:

Definition 1.4. The tropical proximity function for tropical meromorphic func-
tions f in the interval (−R,R) is defined as

(1.2) m(r, f) :=
f(−r)+ + f(r)+

2
,

where f(x)+ := max{f(x), 0}.

Next, we define tropical counting functions.

Definition 1.5. We denote by n(t, f) the number of distinct poles of f in the
symmetric interval (−t, t) for 0 < t < R, each pole bν ∈ (−t, t), 1 ≤ ν ≤ N
contributing to n(r, f) by its multiplicity τf (bν). Then the tropical counting function

for the poles in (−R,R) is defined as

N(r, f) :=
1

2

ˆ r

0

n(t, f) dt =
1

2

N
∑

ν=1

τf (bν)(r − |bν |),

=
1

2r

N
∑

ν=1

τf (bν)
(

r −max(bν , 0)
)(

min(bν , 0) + r
)

(1.3)

for any 0 < r < R.

Note that the weight (r− t) in the integral representation of N(r, f) drops off in
the infinite case R = ∞. However, most of the consequences are the same as in the
tropical theory in R.
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For the convenience of the reader, we work out the second equality of (1.3). Given
t ∈ (0, R), we put

n+(t, f) =
∑

0<bν<t

τf (bν) and n−(t, f) =
∑

0<−bν<t

τf (bν),

and thus we have

n(t, f) =
∑

|bν |<t

τf (bν) = n+(t, f) + n−(t, f) + τf (0).

Using Riemann–Stieltjes integrals and integrating by parts, we obtain

∑

0<bν<r

τf (bν)(r − bν) =

ˆ r

0

(r − t) dn+(t, f)

= (r − r)n+(r, f)− (r − 0)n+(0, f)−

ˆ r

0

n+(t, f) d(r − t) =

ˆ r

0

n+(t, f) dt,

and similarly

∑

0<−bν<r

τf (bν)(r + bν) =

ˆ r

0

(r − t) dn−(t, f) =

ˆ r

0

n−(t, f) dt.

This implies

∑

|bν |<r

τf (bν)(r − |bν |) =

ˆ r

0

n+(t, f) dt+

ˆ r

0

n−(t, f) dt+ τf (0)r

=

ˆ r

0

{

n+(t, f) + n−(t, f) + τf (0)
}

dt =

ˆ r

0

n(t, f) dt.

Since Definition 1.5 is the same as in the real line case, the next lemma is imme-
diate:

Lemma 1.6. For a given tropical meromorphic function g(x) in (−R,R), the
counting function N(r, g) is continuous and non-decreasing with respect to r.

In fact, d
dr
N(r, g) ≥ 0 holds for any r ∈ [0, R), since by definition and a simple

observation, we have

d

dr
N(r, g) =

d

dr

{

1

2

ˆ r

0

n(t, g) dt

}

=
1

2
n(r, g) ≥ 0.

Definition 1.7. Define the tropical characteristic function T (r, f) in (−R,R) in
the usual way as

(1.4) T (r, f) := m(r, f) +N(r, f).

For a tropical meromorphic function f(x) in (−R,R), the tropical Jensen formula

(1.5) T (r, f)− T (r,−f) = f(0)

holds for 0 ≤ r < R as in [5], [7] and [10], to be treated in more detail below.

2. Tropical Poisson–Jensen formula

In this section, we recall how to express a given tropical meromorphic function
in (−R,R) with 0 < R ≤ ∞ by means of its zeros (roots) and poles together with
multiplicity.
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Theorem 2.1. Suppose f is a tropical meromorphic function in (−R,R) and R
is a number satisfying 0 < R ≤ ∞. Denote the distinct zeros (roots), respectively
poles, of f in this interval (−r, r) ⊂ (−R,R) by aj, respectively by bk, with their
corresponding multiplicities τf attached. Then for any x ∈ (−r, r) we have the
tropical Poisson–Jensen formula

f(x) =
f(−r) + f(r)

2
+

f(r)− f(−r)

2r
x

−
1

2r

∑

|aj |<r

τf (aj)
(

r −max(aj , x)
)(

min(aj, x) + r
)

+
1

2r

∑

|bk|<r

τf(bk)
(

r −max(bk, x)
)(

min(bk, x) + r
)

.

(2.1)

In the particular, for x = 0, we obtain the tropical Jensen formula

f(0) =
f(−r) + f(r)

2
−

1

2r

∑

|cν |<r

ωf(cν)
(

r −max(cν , 0)
)(

min(cν , 0) + r
)

,

where we put {cν} = {aj} ∪ {bk}.

As for the proof of Theorem 2.1, we refer to [7, Theorem 3.1, p. 66] or to [5,
Lemma 3.1], where the interval (−r, r) is indeed assumed to be finite.

By using the identity

(2.2)
(

r −max(c, r)
)(

min(c, x) + r
)

= r2 − |c− x|r − cx,

we have the following result as given in [5] and [10]:

Corollary 2.2. Suppose f is a tropical meromorphic function in (−R,R). Then
for any x ∈ (−r, r) ⊂ (−R,R) we have

f(x) =
f(r) + f(−r)

2
+

x

2r

{

f(r)− f(−r)
}

−
1

2r

∑

|cν |<r

ωf(cν)(r
2 − |cν − x|r − cνx),

and

f(0) =
f(r) + f(−r)

2
−

1

2

∑

|cν |<r

ωf(cν)(r − |cν|),

for the distinct roots and poles cν of f in (−R,R).

With tropical Nevanlinna characteristic functions, the latter identity immediately
becomes the formula (1.5).

3. Basic Nevanlinna theory in the tropical setting

Basic Nevanlinna theory inequalities as proved in [5], [7] and [10] still hold in the
interval (−R,R) as well. Here we use the notation V (r, f) as a joint notation for
m(r, f), N(r, f) and T (r, f), unless otherwise specified.

Lemma 3.1. Let f and g be tropical meromorphic in the interval (−R,R).

(i) If f(x) ≤ g(x) holds for all x ∈ (−R,R), m(r, f) ≤ m(r, g) holds for all
r ∈ [0, R).

(ii) Given a positive real number α, we have

V (r, f⊗α) = V (r, αf) = αV (r, f)

for all r ∈ [0, R).
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(iii) For all r ∈ [r, R),

V (r, f ⊗ g) = V (r, f + g) ≤ V (r, f) + V (r, g).

(iv) For all r ∈ [r, R),

V (r, f ⊕ g) = V
(

r,max(f, g)
)

≤ V (r, f) + V (r, g).

Remark. Observe that whenever f(x) ≤ g(x) for all x ∈ (−R,R), the inequality
N(r, f) ≤ N(r, g) is not necessarily true. Similarly, the inequality V (r, f ⊕ g) ≤
V (r, f)⊕ V (r, g), that is,

V
(

r,max(f, g)
)

≤ max
{

V (r, f), V (r, g)
}

may fail for V = N, T , as shown by the following simple examples.
On the other hand, (i) shows that we always have

max
{

m(r, f), m(r, g)
}

≤ m
(

r,max(f, g)
)

.

Example. (1) Let us consider two functions f(x), g(x) in (−R,R) given by

g(x) =

{

x+R/2 (−R < x ≤ 0),

−x+R/2 (0 < x < R),

and

f(x) =



















x+R/2 (−R < x ≤ −R/4),

−x (−R/4 < x ≤ 0),

x (0 < x ≤ R/4),

−x+R/2 (R/4 < x < R).

Observe that g(x) has only one pole at x = 0 of multiplicity 2, while f(x) has
two poles of multiplicity 2 at x = ±R/4. Clearly, f(x) ≤ g(x) for all x ∈ (−R,R).
For the counting functions, we have

N(r, f) =

{

0 (0 ≤ r ≤ R/4),
2(−R/4+r)+2(r−R/4)

2
= 2(r −R/4) (R/4 < r < R),

N(r, g) = 2(0+r)
2

= r (0 ≤ r < R), and thus

N(r, f)−N(r, g) =

{

−r (0 ≤ r ≤ R/4),

r − R/2 (R/4 < r < R).

Hence

(3.1)

{

N(r, f) < N(r, g) whenever r ∈ [0, R/2),

N(r, f) > N(r, g) whenever r ∈ (R/2, R).

Moreover, since we have

m(r, f) =











r (0 ≤ r < R/4),

−r +R/2 (R/4 ≤ r < R/2),

0 (R/2 ≤ r < R),

and

m(r, g) =

{

−r +R/2 (0 ≤ r < R/2),

0 (R/2 ≤ r < R),
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their characteristic functions are estimated as

T (r, f) =

{

r (0 ≤ r < R/2),

2(r − R/4) (R/2 ≤ r < R),

and

T (r, g) =

{

R/2 (0 ≤ r < R/2),

r (R/2 ≤ r < R).

Therefore, T (r, f)− T (r, g) = r − R/2 for all r ∈ [0, R), and so
{

T (r, f) < T (r, g) whenever r ∈ [0, R/2),

T (r, f) > T (r, g) whenever r ∈ (R/2, R).

(2) We next consider another pair of tropical meromorphic functions given as

f1(x) =

{

x+R/2 (−R < x ≤ −R/4),

−x (−R/4 < x < R),

and

f2(x) =

{

x (−R < x ≤ R/4),

−x+R/2 (R/4 < x < R).

It is easy to see that their tropical sum f1(x)⊕ f2(x) coincides the above f(x) for all
x ∈ (−R,R). In fact, by drawing their graphs, one observes the following relations:

g(x) = f(x) = f1(x) > f2(x) (−R < x ≤ −R/4),

g(x) > f(x) = f1(x) > f2(x) (−R/4 < x < 0),

g(x) > f(x) = f1(x) = f2(x) (x = 0),

g(x) > f(x) = f2(x) > f1(x) (0 < x < R/4),

g(x) = f(x) = f2(x) > f1(x) (R/4 ≤ x < R).

It follows by the symmetric relation f2(x) = f1(−x) for all x ∈ (−R,R) that

N(r, f1) = N(r, f2) =
1

2
N(r, f) =

{

0 (0 ≤ r ≤ R/4),

r − R/4 (R/4 < r < R).

Therefore,

N(r, f1 ⊕ f2) = N(r, f) = N(r, f1) +N(r, f2) = 2max
{

N(r, f1), N(r, f2)
}

for all r ∈ [0, R). Of course, this quantity is strictly greater than max
{

N(r, f1), N(r, f2)
}

only if r ∈ (R/4, R). Similarly, we have m(r, f1) = m(r, f2) =
1
2
m(r, f) and thus

T (r, f1) = T (r, f2) =
1

2
T (r, f) =

{

r/2 (0 ≤ r ≤ R/2),

r − R/4 (R/2 < r < R)

for all r < R. Hence,

T (r, f1 ⊕ f2) > max
{

T (r, f1), T (r, f2)
}

(0 < r < R).
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4. First main theorem

As usual in the Nevanlinna theory and its tropical analogue in the real line R,
the next step from the tropical Poisson–Jensen formula is to formulate the first main
theorem. To this end, we will simply modify the notation L(f) := inf{f(b) : ωf(b) <
0, b ∈ R} applied in R for a tropical meromorphic function f defined in the finite
interval (−R,R) as follows:

LR(f) := inf{f(b) : ωf(b) < 0, |b| < R}.

In particular, if f has no poles in (−R,R), then we put LR(f) = +∞ as inf ∅. For
simplicity, we denote

(4.1) N(r, f | < a) := N(r, f)−N
(

r,max(f, a)
)

with the proviso that N(r, f | < a) :≡ 0 for a = −∞. Clearly, N(r, f | < a) also
vanishes identically either when −∞ < a < LR(f) or when LR(f) = +∞. Here we
note that N(r, f | < a) takes always a non-negative value for any a ∈ (−∞,+∞) and
all r ∈ [0, R), since it follows by Lemma 3.1 (iv) that

N
(

r,max(f, a)
)

≤ N(r, f) +N(r, a) = N(r, f)

is true for any a ∈ (−∞,+∞) and all r ∈ [0, R).

Theorem 4.1. Let f be tropical meromorphic in an interval (−R,R) (0 < R ≤
∞). Then the asymptotic equality

T
(

r, 1◦ ⊘ (f ⊕ a)
)

= T (r, f)−N(r, f | < a)−max
(

f(0), a
)

+ εf(r, a)

hold with a quantity εf(r, a) satisfying 0 ≤ εf(r, a) ≤ max(a, 0) for any a ∈ [−∞,+∞)
and for all r ∈ [0, R).

Proof. Making use of the tropical Jensen formula (1.5) to the function f(x)⊕a =
max

(

f(x), a
)

and the definition (4.1), we immediately conclude that our asymptotic
equality is equal to

εf(r, a) = T
(

r, 1◦ ⊘ (f ⊕ a)
)

− T (r, f) +N(r, f | < a) + max
(

f(0), a
)

= T
(

r,max(f, a)
)

− T (r, f) +
{

N(r, f)−N
(

r,max(f, a)
)}

= m
(

r,max(f, a)
)

−m(r, f).

(4.2)

Applying Lemma 3.1(iv) to the estimate (4.2), we have

εf(r, a) ≤ m(r, f) +m(r, a)−m(r, f) = m(r, a) ≡ max(a, 0)

for any a ∈ [−∞,+∞) and for all r ∈ [0, R).
On the other hand, applying Lemma 3.1(i) to (4.2), we have the lower estimate

εf(r, a) = m
(

r,max(f, a)
)

−m(r, f) ≥ 0

for any a ∈ [−∞,+∞) and for all r ∈ [0, R). Hence we have obtained the asymptotic
equality with this quantity εf(r, a) as in the lemma. �

We next proceed to prove the following result by a similar way given in [5] as
well as in [7] and [10].

Theorem 4.2. The characteristic function T (r, f) is a positive, continuous, non-
decreasing piecewise linear function of r ∈ [0, R).
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Proof. It is immediate to observe first that T (r, f) is positive and continuous,
due to the definitions of the proximity and counting functions and to Lemma 1.6. As
to the monotonicity of T (r, f), consider first intervals consisting of r ∈ [0, R) where
f(x) does not have a root or a pole at either x = r or x = −r. Differentiating the
tropical Jensen formula in Corollary 2.2 now results in

f ′(r)− f ′(−r) = n(r,−f)− n(r, f).

Applying the proof of Theorem 3.4 in [5] verbatim, we conclude that d
dr
T (r, f) is non-

negative in these intervals, meaning that T (r, f) is non-decreasing therein. Passing
over the values of ±r, where f has either a root or a pole, by continuity, the mono-
tonicity of T (r, f) follows. Piecewise linearity of T (r, f) again follows by the defini-
tions of the proximity and counting functions. �

Remark. (1) We can prove also this theorem by differentiating the tropical
Cartan identity [7, Theorem 3.8]. Indeed,

d

dr
T (r, f) =

d

dr

[

max
{

N
(

r, 1◦ ⊘ (−f)+
)

, N
(

r, 1◦ ⊘ f+
)

}

+ f(0)+
]

= max
{

n
(

r, 1◦ ⊘ (−f)+
)

, n
(

r, 1◦ ⊘ f+
)

}

≥ 0

holds for all r ∈ [0, R) off a discrete set. However, the proof of the identity itself
requires similar observations as had been used above, (see [7, pp. 73–75]).

(2) Note that T (r, f) is a non-decreasing function of log 1
R−r

as well, since

d

dr
log

1

R− r
=

1

R− r
> 0.

Similarly as in the real-line case, see [7] and [10], we may now define the order
ρ(f), resp. the hyper-order ρ2(f), of a non-constant tropical meromorphic function f
in the interval (−R,R). Notice, however, that the growth of T (r, f) in [0, R) should
be measured by the unbounded factor − log(R − r) instead of the variable r itself.
Normalizing − log(R − r) by logR − log(R − r) = log R

R−r
which is always positive

for r ∈ (0, R), we introduce the following definitions:

Definition 4.3. Let f(x) be a non-constant tropical meromorphic function in
an interval (−R,R). We put

ρ(f) := lim sup
r↑R

log+ T (r, f)

log log R
R−r

,

and

ρ2(f) := lim sup
r↑R

log+ log+ T (r, f)

log log R
R−r

.

Remark. Of course, log+ reduces to log in ρ(f), whenever T (r, f) ≥ 1, resp. in
ρ2(f), whenever T (r, f) ≥ e. In this paper, we concentrate in considering tropical
meromorphic functions f in (−R,R) satisfying T (r, f) ↑ ∞ as r ↑ R.

Example. If a non-constant tropical meromorphic function f is of rational type
in (−R,R), then there are constants A(> 0) and B(≥ 0) such that T (r, f) = Ar+B
for any r sufficiently near R and therefore we then have ρ(f) = ρ2(f) = 0. Of course,
the same conclusion is trivial whenever T (r, f) that is bounded as r → R. This
may happen for a tropical meromorphic function that is not of rational type. As an
example, consider a tropical meromorphic function f in (−R,R) which has no poles
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and whose root set is exactly the sequence an = R(1 − 1/n) (n ∈ N). Assuming
f(an+1)− f(an) = 1/2n for n ∈ N and f(x) ≡ 0 for x < 0, we see that this f(x) is
an increasing and convex function in (−R,R) and satisfies

T (r, f) = m(r, f) ≤
∞
∑

n=1

1

2n
= 1.

5. Tropical shift in finite intervals

In the real-line case, the shift x → x+ c (c ∈ R) has been applied to obtain the
lemma on tropical quotients, see [7, Section 3.4]. In our present finite-interval case,
we need to introduce a different shift notion s(x) such that s(x) remains in the same
interval for all x ∈ (−R,R). To this end, first note the formal tropical counter-part
to the standard Möbius transformation:

y(t) = (a⊗ t⊕ b)⊘ (c⊗ t⊕ d) = max(t+ a, b)−max(t+ c, d),

where a, b, c, d ∈ R−∞ := R ∪ {−∞} satisfying

a⊗ d⊕ b⊗ c 6= 0◦, i.e. max(a+ d, b+ c) 6= −∞.

Here we recall the convention

α⊗ 0◦ = 0◦ ⊗ α = 0◦, i.e. α + (−∞) = −∞ + α = −∞

for α ∈ R−∞.
Considering next the closed interval [−R,R] (0 < R < ∞), and the parameters

a = d = R and b = c = 0 = 1◦, we obtain the mapping ϕ : R → [−R,R] with

ϕ(t) =
(

R ⊗ t⊕ 1◦
)

⊘
(

t⊕ R
)

(5.1)

= max(t +R, 0)−max(t, R)

= R +max(t,−R)−max(t, R)(5.2)

=











−R (t < −R)

t (−R ≤ t ≤ R)

R (R < t).

(5.3)

This reduces to the identity mapping on the interval [−R,R], and has the (only)
root of multiplicity 1 at t = −R and the (only) pole of multiplicity 1 at t = R.

We proceed to a scaling of the mapping ϕ by fixing a constant τ ∈ (0, 1), and
defining two mappings as follows:

s+τ : R →
[

−τR, (2 − τ)R
]

⊂ R

and

s−τ : R →
[

−(2 − τ)R, τR
]

⊂ R

by

s±τ (x) = ϕ(τx)± (1− τ)R, −∞ < x < ∞.

In more detail, we now have

(5.4) s+τ (x) =











−R + (1− τ)R = −τR
(

x < −R
τ

)

τx+ (1− τ)R = τ(x− R) +R
(

−R
τ
≤ x ≤ R

τ

)

R + (1− τ)R =
(

2− τ)R (R
τ
< x

)



Tropical meromorphic functions in a finite interval 351

and

(5.5) s−τ (x) =











−R − (1− τ)R = −(2− τ)R
(

x < −R
τ

)

τx− (1− τ)R = τ(x+R)− R
(

−R
τ
≤ x ≤ R

τ

)

R − (1− τ)R = τR
(

R
τ
< x

)

.

The locations and multiplicities of the root, resp. the pole of the original map
ϕ(x) are now shifted so that s±τ (x) has the (only) root of multiplicity τ at x = −R

τ

and the (only) pole of multiplicity τ at x = R
τ
, both of which being outside of the

interval [−R,R] since τ ∈ (0, 1). Moreover, note that when s±τ (x) is restricted on
[−R,R] we have

lim
τ ↓ 0

s±τ (x) ≡ ±R and lim
τ ↑ 1

s±τ (x) ≡ x.

Also, s+τ (x), resp. s−τ (x) has its (unique) fixed point at x = R, resp. x = −R.
The functions s±τ (x) possess a number of simple properties required to be a shift

in the interval (−R,R). For example, as the counterpart of the property that the
nth iteration (x ± c)n = x ± nc of the shift x + c (c > 0) tends monotonely to ±∞
as n → +∞, we observe that the iterations behave like

(s+τ )
n(x) = s+τn(x) ↑ R and (s−τ )

n(x) = s−τn(x) ↓ −R

as n → +∞, respectively. We omit listing all those properties up here. Instead, we
proceed to combine s+τ (x) and s−τ (x) into a unified mapping sτ (x) by defining

(5.6) sτ (x) :=











s+τ (x) = τx+ (1− τ)R (ρ0 < x < R)

τx+ (1− τ) R
ρ0
x (−ρ0 ≤ x ≤ ρ0)

s−τ (x) = τx− (1− τ)R (−R < x < −ρ0)

for a fixed ρ0 ∈ (0, R). This sτ (x) is a continuous, monotone increasing mapping of
[−R,R] onto itself as one may immediately see. In what follows, fixing a constant τ ,
we call sτ (x) as the shift function on the interval [−R,R].

It is elementary to verify that sτ (−x) = −sτ (x) on the whole interval (−R,R).
Indeed, whenever −R < −x < −ρ0, then

sτ (−x) = s−τ (−x) = −s+τ (x) = −sτ (x),

if ρ0 < −x < R, then

sτ (−x) = s+τ (−x) = −s−τ (x) = −sτ (x)

and if |x| ≤ ρ0, then

sτ (−x) = τ(−x) + (1− τ)
R

ρ0
(−x) = −

{

τx + (1− τ)
R

ρ0
x
}

= −sτ (x).

Finally, observe that the mapping sτ (x) can naturally be continuously extended
outside the interval (−R,R) to satisfy sτ (−x) = −sτ (x) on R.

6. Growth lemma with the shift functions s
±
τ
(x)

A key goal in this paper is to find a finite interval analogue to the tropical
logarithmic quotient lemma in R, see [7, Section 3.4], by means of the shift function
sτ (x) in the finite interval (−R,R). As a preliminary step to this end, we show the
following estimates with two mappings s+τ (x) and s−τ (x):
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Lemma 6.1. Let f be a tropical meromorphic function in the interval (−R,R)
and let τ ∈ (0, 1) and r ∈ (0, R) be constants satisfying

τ(r −R) +R < ρ

for a given constant ρ ∈ (r, R). Then for any x ∈ [−r, r], we have

max
(

f
(

s±τ (x)
)

− f(x), 0
)

=
(

f
(

s±τ (x)
)

− f(x)
)+

≤ |s±τ (x)− x|

{

m(ρ, f) +m(ρ,−f)

ρ
+ n(ρ, f) + n(ρ,−f)

}

.

Proof. Applying the tropical Poisson–Jensen formula (2.1) to f(t) for any t ∈
(−ρ, ρ), we have

f(t) =
f(−ρ) + f(ρ)

2
+

f(ρ)− f(−ρ)

2ρ
t

−
1

2ρ

∑

|aµ|<ρ

τf(aµ)
(

ρ−max(aµ, t)
)(

min(aµ, t) + ρ
)

+
1

2ρ

∑

|bν |<ρ

τf(bν)
(

ρ−max(bν , t)
)(

min(bν , t) + ρ
)

,

where we denote by aµ and bν the distinct poles and distinct roots of f in the interval
(−ρ, ρ), respectively. Hence we have

f
(

s±τ (x)
)

− f(x) =
f(ρ)− f(−ρ)

2ρ

{

s±τ (x)− x
}

−
1

2ρ

∑

|aµ|<ρ

τf(aµ)
{

(

|s±τ (x)− aµ| − |x− aµ|
)

ρ+ aµ
(

s±τ (x)− x
)

}

+
1

2ρ

∑

|bν |<ρ

τf (bν)
{

(

|s±τ (x)− bν | − |x− bν |
)

ρ+ bν
(

s±τ (x)− x
)

}

,

since
(

ρ−max(c, t1)
)(

min(c, t1) + ρ
)

−
(

ρ−max(c, t2)
)(

min(c, t2) + ρ
)

=
{

|t2 − c| − |t1 − c|
}

ρ+ c(t2 − t1)

by the identity (2.2). Noting, moreover, that
∣

∣|t2− c| − |t1− c|
∣

∣ ≤ |t2− t1|, we finally
obtain

(

f
(

s±τ (x)
)

− f(x)
)+

≤
|f(ρ)− f(−ρ)|

2ρ

∣

∣s±τ (x)− x
∣

∣

+
1

2ρ

∑

|aµ|<ρ

τf (aµ)2ρ
∣

∣s±τ (x)− x
∣

∣ +
1

2ρ

∑

|bν |<ρ

τf (bν)2ρ
∣

∣s±τ (x)− x
∣

∣

= |s±τ (x)− x|







|f(ρ)− f(−ρ)|

2ρ
+

∑

|aµ|<ρ

τf (aµ) +
∑

|bν |<ρ

τf (bν)
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= |s±τ (x)− x|

{

f(ρ)+ +
(

−f(−ρ)
)+

+ f(−ρ)+ +
(

−f(ρ)
)+

2ρ
+ n(ρ, f) + n(ρ,−f)

}

= |s±τ (x)− x|

{

m(ρ, f) +m(ρ,−f)

ρ
+ n(ρ, f) + n(ρ,−f)

}

as desired. �

Remark. Observe that |s±τ (x) − x| = (1 − τ)(R ∓ x) when x ∈ [−R,R] by the
definition of the functions s±τ (x) in (5.4) and (5.5).

7. Lemma on a tropical ratio of logarithmic shift

As a preparation to a finite-interval version of the tropical quotient lemma, see
e.g. [7, Theorem 3.27], we first prove the following lemma which may be understood
as a finite-interval counterpart to [4, Lemma 8.3] as well as to [7, Theorem 3.15]:

Lemma 7.1. Let T : [0, R) → [0,+∞), 0 < R < ∞, be a non-decreasing contin-
uous function of hyper-order

ρ2(T ) := lim sup
r↑R

log+ log+ T (r)

log log R
R−r

< 1.

For any fixed constant ε > 0 satisfying (1+ ε)ρ2(T ) < 1 and for a constant p(ε) such
that (1 + ε)ρ2(T ) < p(ε) < 1, we put

ϕε(r) :=

(

log
R

R − r

)−
1−p(ε)
1+ε

(0 ≤ r < R).

Then we have
T
(

sτ (r)
)

< T (r) + ϕε(r)T (r),

where r tends to R outside of a set F ⊂ [ρ0, R) of measure
ˆ

F

d log log
R

R− r
=

ˆ

F

dr

(R− r) log R
R−r

< +∞.

Proof. First, denote

ν(r) =
{

1 + ϕε(r)
}−1

=

{

1 +
(

log
R

R− r

)− 1−p(ε)
1+ε

}−1

for r ∈ [ρ0, R) and assume, contrary to the assertion, that the set F of r with

T (r) ≤ ν(r)T
(

sτ (r)
)

is of infinite measure,
´

F
d log log R

R−r
= ∞. Let r0 (≥ ρ0) be the smallest element in

the set F . Define then a sequence {rn}n∈N inductively by

rn := min
{

r ∈ F ∩
[

sτ (rn−1), R
)

}

for each n ∈ N. Observe that sτ (rn−1) > rn−1 for each n ∈ N; this can easily be seen
by the definition of sτ (x) in (5.6). The sequence {rn}n≥0 satisfies

• rn ≥ sτ (rn−1) for all n ∈ N,
• F ⊂

⋃∞
n=0

[

rn, sτ (rn)
]

, and
• T (rn) ≤ ν(rn)T (rn+1) for all n ∈ N ∪ {0}.
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Therefore,

ˆ

F

d log log
R

R − r
≤

∞
∑

n=1

ˆ sτ (rn)

rn

d log log
R

R− r
+O(1).

For each n ∈ N, we now obtain

ˆ sτ (rn)

rn

d log log
R

R − r
=

[

log log
R

R− r

]sτ (rn)

rn

= log

{

log R
R−sτ (rn)

log R
R−rn

}

= log

{

log τ(R−rn)
R

log R−rn
R

}

= log

{

1 +
log(1/τ)

log R
R−rn

}

.

Assume now, for a while, that

R− rn ≤ R exp
(

−n1+ε
)

,

thus

log
R

R− rn
≥ n1+ε

is true for each n ∈ N. Then
ˆ sτ (rn)

rn

d log log
R

R− r
≤ log

{

1 +
log(1/τ)

n1+ε

}

≤
log(1/τ)

n1+ε

for every n ∈ N, so that

ˆ

F

d log log
R

R− r
≤

∞
∑

n=1

log(1/τ)

n1+ε
+O(1) ≤

{

log(1/τ)
}

ˆ ∞

1

dx

x1+ε
+O(1)

=
1

ε
log

1

τ
+O(1) < ∞,

a contradiction. Therefore, the sequence {rn}n∈N has a subsequence, {rnj
}j∈N, such

that we have

R− rnj
> R exp

(

− nj
1+ε

)

, hence log
R

R − rnj

< nj
1+ε

for each j ∈ N. Since

T (r1) ≤ ν(r1)T (r2) ≤ · · · ≤

{nj−1
∏

k=1

ν(rk)

}

T (rnj
)

and thus

log T (rnj
) ≥ log T (r1)−

nj−1
∑

k=1

log ν(rk)

= log T (r1) +

nj−1
∑

k=1

log
{

1 + ϕε(rk)
}

≥ log T (r1) + (nj − 1) log
{

1 + ϕε(rnj
)
}
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for each j ∈ N. Therefore,

ρ2(T ) ≥ lim sup
j→∞

log+ log+ T (rnj
)

log log R
R−rnj

≥ lim sup
j→∞

log
{

(nj − 1)ϕε(rnj
) log

{

1 + ϕε(rnj
)
}1/ϕε(rnj

)
}

log log R
R−rnj

≥ lim sup
j→∞







log(nj − 1)

log log R
R−rnj

−
1− p(ε)

1 + ε
·
log log R

R−rnj

log log R
R−rnj







≥
1

1 + ε
−

1− p(ε)

1 + ε
=

p(ε)

1 + ε
> ρ2(T ),

which is a contradiction, completing the proof of this lemma. �

We are now ready to give a finite-interval version of the tropical quotient lemma
in the following form:

Theorem 7.2. Let f be a tropical meromorphic function of hyper-order ρ2(f) <
1 in an open interval (−R,R) and τ be a fixed constant with τ ∈ (0, 1). Let then ε
be an arbitrary positive constant such that (1 + ε)ρ2(f) < 1, and take a constant δ
satisfying (1 + ε)ρ2(f) < δ < 1. Then, for the constant η given by

η =
1− δ

(1 + ε)
(

ρ2(f) + ε
) > 0,

we have

m
(

r, f
(

sτ (x)
)

⊘ f(x)
)

T (r, f)
= O

{

(

log+ T (r, f)
)−η

}

+O(R− r),

where r tends to R outside a set of F ⊂ [ ρ0, R ) such that
ˆ

F

d log log
R

R− r
=

ˆ

F

dr

(R− r) log R
R−r

< ∞.

Proof. We divide the subsequent proof in two parts, for the convenience of the
reader.

(1) Take first a fixed r0 ∈ [ ρ0, R ) such that T (r0, f) ≥ f(0). This may be done,
since otherwise T (ρ0, f) < f(0) and so

m(0, f) = f(0)+ ≤ T (0, f) ≤ T (ρ0, f) < f(0),

a contradiction.
Take next two constants κ and λ with κ < λ < τ < 1 and put

ρ = sλ(r) = λ(r − R) +R ∈ (r0, R)

for a value of r ∈ (r0, R). By (5.6),

sκ(x) > sλ(r) > sτ (r) (r0 ≤ r < R).

By the application of Lemma 6.1, we have

m
(

r, f
(

sτ (x)
)

⊘ f(x)
)

(7.1)

≤ (1− τ)(R − r)
{m(ρ, f) +m(ρ,−f)

ρ
+ n(ρ, f) + n(ρ,−f)

}

.
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Since

m(ρ, f) +m(ρ,−f) ≤ T (ρ, f) + T (ρ,−f) = 2T (ρ, f) + f(0) ≤ 3T (ρ, f)

by the tropical Jensen formula, it follows by the monotonicity of T (r, f) that

(7.2) (1− τ)(R − r) ·
m(ρ, f) +m(ρ,−f)

ρ
≤

3(1− τ)

r0
(R− r)T

(

sκ(r), f
)

when r > r0. The previous Lemma 7.1 shows

T
(

sκ(r), f
)

≤
{

1 + o(1)
}

T (r, f)

where o(1) stands for a quantity that approaches to zero as r ↑ R outside a set of F
as in the statement of our theorem, see Lemma 7.1.

(2) The second part of this proof is devoted to giving a similar estimate

(7.3) (1− τ)(R − r)
{

n(ρ, f) + n(ρ,−f)
}

= O
{

(

log+ T (r, f)
)−η

}

T (r, f)

again outside of the set F . Recall that the integrated counting functions are non-
negative and non-decreasing. Moreover, f(x) is of hyper-order ρ2(f) < 1, hence

lim sup
r↑R

log+ log+N(r,±f)

log log R
R−r

≤ ρ2(f)

by the tropical Jensen formula. Applying now Lemma 7.1 to N(r,±f), we obtain

N
(

sκ(r), f
)

+N
(

sκ(r),−f
)

−N(ρ, f)−N(ρ,−f) ≤ ϕε(ρ)
{

N(ρ, f) +N(ρ,−f)
}

outside a set F of r in [ρ0, R) that satisfies
´

F
d log log R

R−r
< ∞. Here we put ρ =

sλ(r) and

ϕε(ρ) =

(

log
R

R − ρ

)− 1−δ
1+ε

Then we observe

N
(

sκ(r),±f
)

−N(ρ,±f) ≥
1

2

ˆ sκ(r)

ρ

n(t,±f) dt ≥
1

2
n(ρ,±f)

(

sκ(r)− ρ
)

=
1

2
(λ− κ)(R − r)n(ρ,±f),

so that we obtain

(1− τ)(R− r)
{

n(ρ, f) + n(ρ,−f)
}

≤
2(1− τ)

λ− κ

{

N
(

sκ(r), f
)

+N
(

sκ(r),−f
)

−N(ρ, f)−N(ρ,−f)
}

≤
2(1− τ)

λ− κ
ϕǫ(ρ)

{

N(ρ, f) +N(ρ,−f)
}

≤
6(1− τ)

λ− κ
ϕε(r)T

(

sκ(r), f
)

for any r ∈ (r0, R) \ F , provided that r is close enough to R. Here we have used the
elementary observation that

ϕε(ρ) =

(

log
R

λ(R − r)

)− 1−δ
1+ε

<

(

log
R

R − r

)− 1−δ
1+ε

= ϕε(r).
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Furthermore, there exists r1 ∈ [r0, R) such that

log log+ T (r, f) <
(

ρ2(f) + ε
)

log log
R

R− r
,

hence
(

log+ T (r, f)
)1/(ρ2(f)+ε)

< log R
R−r

is true for all r ∈ [ r1, R ). This shows that

ϕε(r) <
(

log+ T (r, f)
)− 1−δ

(1+ε)(ρ2(f)+ε) .

We now recall η > 0, see Theorem 7.2:

η =
1− δ

(1 + ε)
(

ρ2(f) + ε
) .

Thus our estimate may be written as

(1− τ)(R − r)
{

n(ρ, f) + n(ρ,−f)
}

≤
6(1− τ)

λ− κ

(

log+ T (r, f)
)−η

T
(

sκ(r), f
)

outside of the set F . Another application of Lemma 7.1 shows

T
(

sκ(r), f
)

=
{

1 + o(1)
}

T (r, f)

and thus (7.3) holds outside an exceptional set which can be merged into the F .
By the equation (7.3) together with equations (7.1) and (7.2), we are done. �

8. Second main theorem

We have now proved that an sτ -operator analogue of the logarithmic derivative

lemma of the form

(8.1) lim
r↑R

m
(

r, f
(

sτ (x)
)

⊘ f(x)
)

T (r, f)
= 0

outside an exceptional set F given as above. Here we need of course to assume
T (r, f) → ∞ as r ↑ R. Hence, for such functions, that is, tropical meromorphic
functions f : (−R,R) → R with unbounded characteristic function T (r, f), we can
also deduce an sτ -operator analogue of the second main theorem by tracing verbatim
the reasoning for non-constant tropical meromorphic functions f : R → R in [7]
and [10]. This is mainly because that the Nevanlinna functions m(r, f), N(r, f) and
T (r, f) in R and in (−R,R) have the common properties as we have seen in this
note. Indeed, one finds the following correspondence of the results in [7] and those
in this note:

• As variants of the lemma on tropical quotients, Theorem 3.27 of [7, p. 82]
corresponds to our Theorem 7.2;

• Lemmas 3.28, 3.29, 3.30 and Remark 3.21 of [7, pp. 83–85] as well as Propo-
sition 3.34 of [7, p. 87] are all independent of the domains R and (−R,R);

• The statements and the proofs of Propositions 3.32 and 3.33 of [7, pp. 86-87]
are also available still in this note, if one replaces f(x + c) by f

(

sτ (x)
)

and

−f(c) by −f
(

sτ (0)
)

= −f(0) all at once;
• Propositions 3.36, 3.37 and 3.38 as well as Remark 3.39 of [7, pp. 87–90] are

also true in this note with the replacement of the notation Lf appeared in
the latter two statements by our LR(f) introduced in Section 4;

• The statement and the proof of Theorem 3.40 of [7, pp. 90–92] are available
in this note again by replacing f(x+ c) by f

(

sτ (x)
)

and −f(c) by −f(0) all
at once.
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After all, we have the following

Theorem 8.1. Let f be a tropical meromorphic function in an open inter-
val (−R,R) and let τ ∈ (0, 1), q ∈ N and a1, . . . , aq ∈ R be distinct such that
max{a1, . . . , aq} < LR(f). Then

qT (r, f) ≤

q
∑

j=1

N
(

r, 1◦ ⊘ (f ⊕ aj)
)

+ T
(

r, f
(

sτ (x)
)

)

−N
(

r, 1◦ ⊘ f
(

sτ (x)
)

)

+m
(

r, f
(

sτ (x)
)

⊘ f(x)
)

− f(0) + qmax{a1, . . . , aq, 0}

+ (q − 1)max{−a1, . . . ,−aq, 0}+

q
∑

j=1

max{f(0), aj}.

Theorem 7.2 states m
(

r, f
(

sτ (x)
)

⊘f(x)
)

is small in the sense there with respect

to T (r, f) under those assumptions. Here noting that
∣

∣sτ (x)
∣

∣ ≤ sτ (r) whenever
|x| ≤ r ∈ [0, R), we have

V
(

r, g
(

sτ (x)
))

≤ V
(

sτ (r), g
)

both with V = T and g = f and with V = N and g = 1◦⊘f . Further, the application
of Lemma 7.1 in each case deduces

V
(

sτ (r), g
)

≤ V (r, g) +
{

O
(

(

log+ T (t, f)
)−η

)

+O(R− r)
}

T (r, f)

outside an exceptional set F in the sense of Lemma 7.1 as well as of Theorem 7.2.
Then we can now prove our second main theorem as the counterpart of Theorem 3.41
of [7, p. 92].

Theorem 8.2. Suppose f is a tropical meromorphic function of hyper-order
ρ2(f) < 1 in an open interval (−R,R) and its characteristic function is unbounded,
and let a1, . . . , aq, q ≥ 1 be distinct real values that satisfy max{a1, . . . , aq} < LR(f).
Let ε be an arbitrary positive constant such that (1 + ε)ρ2(f) < 1. If we take a
constant δ satisfying (1 + ε)ρ2(f) < δ < 1 and put η = 1−δ

(1+ε)(ρ2(f)+ε)
(> 0), then

(q − 1)T (r, f) ≤

q
∑

j=1

N
(

r, 1◦ ⊘ (f ⊕ aj)
)

−N(r, 1◦ ⊘ f)

+
{

O
(

(

log+ T (t, f)
)−η

)

+O(R− r)
}

T (r, f),

as r ↑ R outside a set of F ⊂ [0, R) such that
´

F
d log log R

R−r
< ∞.

9. Discussion

We are listing here a few natural problems that should indeed be settled in the
present finite interval setting of tropical meromorphic functions to obtain a satisfac-
tory consideration.

(1) One is first to ask whether the assumption that ρ2(f) < 1 is necessary to
obtain a result similar to Theorem 7.2.

(2) The second problem is to ask whether it is possible to construct a continuous
piecewise linear function in (−R,R) which behaves like a tropical exponential
function eα(x) (α 6= 0,±1) in (−∞,∞), see [7, Section 1.2.4]. Actually, one
might expect that such a function y(x) could be easily constructed in [0, r)
by fixing its roots at ρ0, ρ1, . . ., where ρn+1 = sτ (ρn) = τρn + (1 − τ)R, and
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letting its slope increase to infinity as n → ∞. Defining now ỹ(x) so that
ỹ(2x − R) = y(x) for 0 < x < R, we get a tropical meromorphic function
of exponential type in (−R,R). However, this function is not as expected,
since for −R < t < −ρ0 we have ỹ(t) = y((R + t)/2), while ỹ(sτ (t)) =
y((R+sτ(t))/2) = y(τ(R+t)/2), but sτ ((R+t)/2)−τ(R+t)/2 = (1−τ)R 6= 0.
This means that ỹ(x) does not satisfy in (−R,−ρ0) a functional equation
similar to f(x+1) = f(x)⊗α satisfied by the exponential function eα(x) in R.

(3) Finally, the problem related to the preceding one is whether functional equa-
tions of type y

(

sτ (x)
)

= y(x)α permit tropical meromorphic solutions in
(−R,R), or at least for |x| > ρ0 being sufficiently close to R. Also, provided
such tropical meromorphic solutions exists, what about their order, respec-
tively hyper-order? As to this problem, see the next example below.

(4) The previous problem (3) may also be asked for the case when α = 1, that
is, for the ’sτ -periodic’ functions in the sense that they satisfy the relation
y(sτ(x)) = y(x) for |x| > ρ0. As to this problem, see the final remark.

Example. For the sake of simplicity, we take R = 1 and ρ0 = τ = 1
2
, respectively.

Then by definition we have

s(x) := s1/2(x) =











1
2
x− 1

2
(−1 < x < −1

2
)

3
2
x (−1

2
≤ x ≤ 1

2
)

1
2
x+ 1

2
(1
2
< x < 1).

As above, we have s(x) = −s(−x) and s(x) ∈ [1
2
, 1) whenever x ∈ [1

3
, 1). Hence we

will first restrict our attention on the interval [1
3
, 1) and find a solution y(x) of the

equation

y
(

s(x)
)

= αy(x), y(1/3) = 1,

there for a real constant α 6= 0,±1. Of course, after finding such solution y(x), our
desired tropical meromorphic functions, say εα(x), on (−1, 1) should be defined as
follows:

εα(x) =











−y(x) (−1 < x ≤ −1
3
)

3x (−1
3
≤ x ≤ 1

3
)

y(x) (1
3
< x < 1).

Then εα
(

s(x)
)

= αεα(x) when 1
3
≤ |x| < 1. On the other hand, this does not satisfy

the functional equation in the interval (−1
3
, 1
3
).

However, we proceed by looking at the orbit of the point x = 1/3 by s(x).
Inductively, we have

s
(1

3

)

=
3

2
·
1

3
=

1

2
,

s2
(1

3

)

= s
(1

2

)

=
1

2
·
(1

2
+ 1

)

=
2 + 1

22
,

s3
(1

3

)

= s
(2 + 1

22

)

=
1

2
·
(2 + 1

22
+ 1

)

=
22 + 2 + 1

23
,

...

sn
(1

3

)

=
2n−1 + 2 n− 2 + · · ·+ 2 + 1

2n
=

2n − 1

2n
= 1−

1

2n
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for n ≥ 1. In fact,

sn+1
(1

3

)

= s
(

1−
1

2n

)

=
1

2

(

1−
1

2n
+ 1

)

= 1−
1

2n+1

holds.
Then we have required y(x) to satisfy y(1/3) = 1 and thus have

y
(1

2

)

= y
(

s
(1

3

))

= αy
(1

3

)

= α.

Further, we inductively obtain

y
(

sn
(1

2

))

= αy
(

sn−1
(1

3

))

= · · · = αn−1y
(

s
(1

3

))

= αn

for any n ∈ N.
On the closed interval

[

sn
(

1
3

)

, sn+1
(

1
3

)]

(n ∈ N), let us define

y(x) =
αn+1 − αn

sn+1(1/3)− sn(1/3)

(

x− sn(1/3)
)

+ αn

=
αn+1 − αn

2n+1−1
2n+1 − 2n−1

2n

(

x−
2n − 1

2n

)

+ αn

= 2n+1αn(α− 1)x− 2(2n − 1)αn+1 + (2n+1 − 1)αn.

Since s(x) = 1
2
x+ 1

2
∈
[

sn−1
(

1
3

)

, sn
(

1
3

)]

if ∈
[

sn−1
(

1
3

)

, sn
(

1
3

)]

, we have

y
(

s(x)
)

= 2n+1αn(α− 1)s(x)− 2(2n − 1)αn+1 + (2n+1 − 1)αn

= 2nαn(α− 1)x+ 2nαn(α− 1)− 2(2n − 1)αn+1 + (2n+1 − 1)αn

= α
{

2nαn−1(α− 1)x− 2(2n−1 − 1)αn + (2n − 1)αn−1
}

= αy(x)

for each n ∈ N, so that y
(

s(x)
)

= αy(x) whenever x ∈ [1/3, 1).
Assume α > 1 and therefore εα(x) has no poles at all so that we have T (r, εα) =

m(r, εα). Since the solution y(x) > 0 only when x > 0, we further have m(r, εα) =
1
2
εα(r). For any r ∈ [1

3
, 1), there exists an n ∈ N such that

sn
(1

3

)

≤ r < sn+1
(1

3

)

, that is,
1

2n
≥ 1− r >

1

2n+1
,

so that

n ≤ log2
1

1− r
< n + 1

holds. Then αn ≤ εα(r) < αn+1, that is, 1
2
αn ≤ T (r, εα) <

1
2
αn+1, which implies

n logα− log 2 ≤ log T (r, εα) < (n+ 1) logα− log 2,

and thus

logn + log logα ≤ log
(

log T (r, εα) + log 2
)

< log(n+ 1) + log logα.

Since we know

logn ≤ log log
1

1− r
− log log 2 < log(n+ 1),

it follows altogether

log n

log(n+ 1)
+ o(1) ≤

log log T (r, εα)

log log 1
1−r

≤
log(n+ 1)

log n
+ o(1)
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as n → ∞, that is,

lim
r↑1

log log T (r, εα)

log log 1
1−r

= 1,

as we expected.
On the other hand,

y
(

s(x)
)

− y(x) = (α− 1)y(x)

implies the estimate

m
(

r, εα
(

s(x)
)

⊘ εα(x)
)

= T (r, ε) +O(1).

Remark. We finally add a brief remark on sτ (x)-periodic functions. Given a
continuous piecewise linear function π(x) on the interval [1/3, 1/2], define a function
y(x) on [1/2, 1) so that for a given point x ∈ [sn(1/3), sn+1(1/2)], n ∈ N, y(x) :=
π(s−n(x)). This now implies y(s(x)) = π(s−n(x)) = y(x). We next extend this
y(x) over (−1, 1) as an even function over (−1,−1/3] ∪ [1/3, 1), and as a constant
in [−1/3, 1/3]. The periodicity in [1/2, 1) implies that there are two constants c1, c2
greater than one such that both 1/c1 ≤ m(r, y) < c1 and 1/c2 ≤ n(r, y) < c2 hold for
all r ∈ (0, 1). By a similar discussion as in the preceding example, we deduce that
log T (r, y) is comparable with log log 1

1−r
as r ↑ 1. Thus, the growth is regular and

the order is equal to one, deviating from the case when α 6= 1. A completely similar
discussion could be made for the case α = −1, that is, for the anti-sτ (x)-periodic
case.
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