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Abstract. We consider the Assouad spectrum, introduced by Fraser and Yu, along with a

natural variant that we call the ‘upper Assouad spectrum’. These spectra are designed to inter-

polate between the upper box-counting and Assouad dimensions. It is known that the Assouad

spectrum approaches the upper box-counting dimension at the left hand side of its domain, but

does not necessarily approach the Assouad dimension on the right. Here we show that it necessarily

approaches the quasi-Assouad dimension at the right hand side of its domain. We further show that

the upper Assouad spectrum can be expressed in terms of the Assouad spectrum, thus motivating

the definition used by Fraser–Yu. We also provide a large family of examples demonstrating new

phenomena relating to the form of the Assouad spectrum. For example, we prove that it can be

strictly concave, exhibit phase transitions of any order, and need not be piecewise differentiable.

1. Assouad type dimensions and spectra

The Assouad dimension of a metric space is a highly localised measure of its
‘thickness’. Due to this it is an important tool when studying bi-Lipschitz embed-
dings of metric spaces. While the Assouad dimension captures the worst local cov-
ering of a space, its box-counting dimension is a more ‘averaged’ measure of scaling
complexity. Fraser and Yu introduced the Assouad spectrum as a tool to interpolate
between the upper box-counting and Assouad dimensions, see [FY1, FY2]. The As-
souad spectrum necessarily approaches the upper box-counting dimension at the left
hand side of its domain, but it was shown in [FY1] that it need not approach the
Assouad dimension at the right hand side. Similar to the Assouad dimension, the
quasi-Assouad dimension is also an upper bound to the Assouad spectrum. It differs
from the Assouad dimension by ignoring ‘sub-exponential effects’. While in most nat-
ural settings the quasi-Assouad and Assouad dimensions coincide, the quasi-Assouad
dimension can be strictly smaller. In those examples where the Assouad spectrum
reaches the Assouad dimension, the quasi-Assouad and Assouad dimensions coincide
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and it is natural to ask whether the Assouad spectrum always approaches the quasi-
Assouad dimension. In this article we prove that this is indeed the case and we also
exhibit a new family of examples of possible spectra.

For a bounded set E ⊆ Rd and a scale r > 0 we let N(E, r) be the minimum
number of sets of diameter r required to cover E. The Assouad dimension of a set
F ⊆ Rd is defined by

dimA F = inf

{
α : (∃C > 0) (∀ 0 < r < R) sup

x∈F
N
(
B(x,R) ∩ F, r

)
6 C

(
R

r

)α}

and the quasi-Assouad dimension, introduced much more recently by Lü and Xi [LX],
is defined by

dimqA F = lim
θ→1

(
inf

{
α : (∃C > 0) (∀0 < r 6 R1/θ 6 R < 1) (∀x ∈ F )

N
(
B(x,R) ∩ F, r

)
6 C

(
R

r

)α})
.

We can see from its definition that the quasi-Assouad dimension leaves an ‘expo-
nential gap’ between r and R. This gap can be exploited in some stochastic settings
to show that the quasi-Assouad dimension behaves more like the upper box-counting
dimension than the Assouad dimension. Interesting examples of such behaviour are
Mandelbrot and fractal percolation (on self-similar sets): the Assouad dimension is
almost surely the dimension of the percolated set (which is as big as possible), see
[FMT, T], whereas the quasi-Assouad dimension almost surely coincides with the up-
per box-counting dimension (which is almost surely strictly smaller than the ambient
dimension), see [FY2, T].

The Assouad spectrum, introduced by Fraser and Yu [FY1], is the function de-
fined by

θ 7→ dimθ
A F = inf

{
α : (∃C > 0) (∀0 < R < 1) (∀x ∈ F )

N
(
B(x,R) ∩ F,R1/θ

)
6 C

(
R

R1/θ

)α}

where θ varies over (0, 1). Here, the parameter θ fixes the relationship between
r = R1/θ and R, but it is equally natural to consider the ‘upper spectrum’, which
fixes R1/θ as an upper bound to r only, defined by

θ 7→ dim
θ

AF = inf

{
α : (∃C > 0) (∀0 < r 6 R1/θ 6 R < 1) (∀x ∈ F )

N
(
B(x,R) ∩ F, r

)
6 C

(
R

r

)α}
,

where, again, θ varies over (0, 1). We remark that dim
θ

AF corresponds to hF (δ) in
[LX], where δ = 1/θ − 1.

We write dimBF for the upper box-counting dimension but refer the reader to
[F] for the definition. When we discuss the upper box-counting dimension we are
implicitly referring to bounded sets only, since the definition does not readily apply
to unbounded sets. For F ⊆ Rd and any θ ∈ (0, 1), we have

(1.1) dimBF 6 dimθ
A F 6 dim

θ

AF 6 dimqA F 6 dimA F
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and by definition dim
θ

AF → dimqA F as θ → 1. It was also shown in [FY1] that

dimθ
A F is a continuous function of θ and satisfies

(1.2) dimθ
A F 6

dimBF

1− θ

and therefore dimθ
A F → dimBF as θ → 0. Also, note that by definition dim

θ

AF is non-
decreasing in θ, but it was shown in [FY1, Section 8] that dimθ

A F is not necessarily

non-decreasing: in particular, dimθ
A F and dim

θ

AF do not necessarily coincide.
For more background on the Assouad dimension, see [L, R, Fr], for the quasi-

Assouad dimension, see [LX, GH], and for the upper box-counting dimension, see
[F].

2. Results

Our main technical theorem, which we prove in Section 3.1, is the following.

Theorem 2.1. Let F ⊆ Rd. Then, for all θ ∈ (0, 1),

dim
θ

AF = sup
0<θ′6θ

dimθ′

A F.

This result shows that all of the information contained in the upper spectrum
is also contained in the Assouad spectrum. This has the benefit of focusing future
study on the Assouad spectrum rather than the upper spectrum which could have a

priori contained new information in its own right. Moreover, as a corollary we obtain
the interpolation result which motivated the introduction of the Assouad spectrum
in the first place, albeit with the Assouad dimension replaced by the quasi-Assouad
dimension.

Corollary 2.2. Let F ⊆ Rd. Then dimθ
A F → dimqA F as θ → 1.

Theorem 2.1 only directly implies that lim supθ→1 dim
θ
A F = dimqA F , but the

fact that dimθ
A F has a limit as θ → 1 follows from estimates in [FY1]. We give the

details in Section 3.2. Combining (1.2) and Corollary 2.2 we immediately obtain the
following result.

Corollary 2.3. Let F ⊆ Rd. Then dimBF = 0 if and only if dimqA F = 0.

The ‘only if’ part of this result is surprising since one generally has control in the
opposite direction, that is dimBF 6 dimqA F , and, moreover, the Assouad dimension
can take on any value in [0, d] even in cases where the box-counting dimension is
0. We are not aware of such a ‘null-equivalence’ result holding for any other pair
of dimensions. However, a weaker result with quasi-Assouad dimension replaced by
the Assouad spectrum can be found in [FY1, Corollary 3.3] and a direct proof of
Corollary 2.3, where one does not go via the Assouad spectrum, already appeared in
[GH, Proposition 15].

There are several other consequences of Theorem 2.1 regarding the upper spec-
trum which can be derived from analogous properties of the Assouad spectrum. For
example, the upper spectrum is immediately seen to be continuous and to approach
the upper box-counting dimension as θ → 0. It also follows immediately that the
two spectra coincide on any interval where the upper spectrum is strictly increasing.
An example was constructed in [FY1, Section 8] demonstrating that the Assouad
spectrum can be strictly decreasing (and thus distinct from the upper spectrum) on
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infinitely many disjoint intervals accumulating at θ = 0. However, we believe this
behaviour is not possible at θ = 1 and make the following conjecture.

Conjecture 2.4. For any set F ⊆ Rd, there exists θ0 ∈ (0, 1) such that dim
θ

AF =
dimθ

A F for all θ ∈ [θ0, 1).

Finally, we present a new family of examples concerning the Assouad spectrum.
In [FY1] some consideration was given to the possible forms the spectrum can take,
however, many questions remain open. In particular, in all examples so far the spec-
trum has been piecewise convex, piecewise analytic, and the only examples of phase
transitions have been points of non-differentiability. It follows from [FY1, Corol-
lary 3.7] that the spectrum is Lipschitz on every closed interval strictly contained in
(0, 1) and therefore it is differentiable almost everywhere by Rademacher’s Theorem.
However, in all examples so far the points of non-differentiability have been a finite
set, or a discrete set accumulating only at 0. Finally, in all previous examples the
spectrum has been constant in a neighbourhood of 1. Here we demonstrate that
much richer behaviour is possible.

Theorem 2.5. Let f : [0, 1] → [0, 1] be continuous, concave, non-decreasing and

satisfy f(0) > 0 and f(θ) 6 f(0)(θ+1) for all θ ∈ [0, 1]. Then there exists a compact

set F ⊆ [0, 1] such that

dimθ
A F = f(θ)

for all θ ∈ (0, 1).

The proof of Theorem 2.5 will be given in Section 3.3. The proof gives a recipe for
constructing further examples and we have not attempted to optimise its utility for
sake of clarity. The basic strategy is to establish countable stability of the spectrum
in a very specific situation and then build the desired function from known examples.
Note that the spectrum is not generally countably stable. Theorem 2.5 demonstrates
that the following list of phenomena are possible, all of which have not been seen
before:

1. The points of non-differentiability can be dense in (0, 1).
2. Phase transitions of all orders are possible, that is points at which the spec-

trum is Ck but not Ck+1.
3. The spectrum need not be constant in a neighbourhood of 1.
4. The spectrum is not necessarily piecewise analytic, or even piecewise differ-

entiable. This answers [FY1, Question 9.1] in the negative.
5. The spectrum can be strictly concave.
6. The spectrum can be simultaneously strictly increasing and analytic on the

whole interval (0, 1).

Note that for all examples provided by Theorem 2.5, the upper spectrum and
Assouad spectrum coincide since the Assouad spectrum is non-decreasing.

3. Proofs

3.1. A tale of two spectra: proof of Theorem 2.1. Let θ ∈ (0, 1), suppose

s = dim
θ

A
F > 0, and let 0 < ε < s. Note that if s = 0, then the result is trivial. By

definition we can find sequences xi, ri, Ri (i ∈ N) such that xi ∈ F , 0 < ri 6 R
1/θ
i <

Ri < 1, (ri/Ri) → 0 and

(3.1) N (B(xi, Ri) ∩ F, ri) >

(
Ri

ri

)s−ε

.
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Moreover, we can assume that Ri → 0 since otherwise dimBF > s− ε and the result
follows by letting ε → 0 since dimBF is a uniform lower bound for the Assouad
spectrum.

For each i, let θi be defined by ri = R
1/θi
i , noting that 0 < θi 6 θ. Using

compactness of [0, θ] to extract a convergent subsequence, we may assume that θi →
θ′ ∈ [0, θ] and by taking a further subsequence if necessary we can assume that
|θi− θ′| < δ for all i where δ > 0 can be chosen arbitrarily. We may also assume that
the sequence θi is either non-increasing or strictly increasing. Assume for now that
θ′ > 0. We will deal with the θ′ = 0 case separately at the end.

If the sequence θi is non-increasing, then θ′ 6 θi, and therefore R
1/θi
i > R

1/θ′

i , for
all i. It follows that

N
(
B(xi, Ri) ∩ F,R

1/θ′

i

)
> N

(
B(xi, Ri) ∩ F,R

1/θi
i

)
>

(
Ri

R
1/θi
i

)s−ε

by (3.1)

=

(
Ri

R
1/θ′

i

)(

1−1/θi
1−1/θ′

)

(s−ε)

>

(
Ri

R
1/θ′

i

) θ′(1−θ′−δ)

(θ′+δ)(1−θ′)
(s−ε)

.

This yields dimθ′

A
F >

θ′(1−θ′−δ)
(θ′+δ)(1−θ′)

(s − ε) and, since δ > 0 can be chosen arbitrarily

small (after fixing θ′), we obtain dimθ′

A
F > s− ε.

On the other hand, if θi is strictly increasing, then θ′ > θi for all i. Taking another
subsequence if necessary we can also assume that θi > θ′/2 for all i. Covering by

R
1/θ′

i -balls and then covering each R
1/θ′

i -ball by R
1/θi
i -balls we obtain

N
(
B(xi, Ri) ∩ F,R

1/θi
i

)
6 N

(
B(xi, Ri) ∩ F,R

1/θ′

i

)(
sup
z∈Rd

N
(
B
(
z, R

1/θ′

i

)
, R

1/θi
i

))

6 N
(
B(xi, Ri) ∩ F,R

1/θ′

i

)
c(d)

(
R

1/θ′

i

R
1/θi
i

)d

where c(d) > 1 is a constant depending only on the ambient spatial dimension d.
Therefore

N
(
B(xi, Ri) ∩ F,R

1/θ′

i

)
> c(d)−1N

(
B(xi, Ri) ∩ F,R

1/θi
i

)
R

(1/θi−1/θ′)d
i

> c(d)−1

(
Ri

R
1/θi
i

)s−ε

R
(1/θi−1/θ′)d
i by (3.1)

= c(d)−1

(
Ri

R
1/θ′

i

)(

1−1/θi
1−1/θ′

)

(s−ε)+

(

1/θi−1/θ′

1−1/θ′

)

d

> c(d)−1

(
Ri

R
1/θ′

i

)s−ε− δd
(1−θ′)θ′/2

.

It follows that dimθ′

A
F > s− ε − δd

(1−θ′)θ′/2
and since δ > 0 can be chosen arbitrarily

small (after fixing θ′) we obtain dimθ′

A
F > s− ε as before. Since ε > 0 was arbitrary

it follows that
sup

0<θ′6θ
dimθ′

A
F > s

completing the proof, noting that the other direction is trivial.
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All that remains is to consider the case where θ′ = 0. Interestingly, this case is
very straightforward if F is bounded, but not otherwise. Indeed, for bounded F ,

N
(
F,R

1/θi
i

)
> N

(
B(xi, Ri) ∩ F,R

1/θi
i

)
>

(
Ri

R
1/θi
i

)s−ε

>

(
1

R
1/θi
i

)(s−ε)(1−δ)

by (3.1). Note that the final inequality uses the fact that δ > θi, which follows since
(in the θ′ = 0 case) δ > |θi−θ′| = θi. Then, by (1.1), dimθ

A
F > dimBF > (s−ε)(1−δ).

Since δ > 0 and ε > 0 can be chosen arbitrarily small, this yields the desired result.
However, if F is unbounded, then we cannot easily go via box-counting dimension
and more work is needed. Let φ ∈ (0, θ) be chosen such that

log θ

log φ
/∈ Q

and suppose for a contradiction that max{dimφ
A
F, dimθ

A
F} < s− 2ε. It follows that

for all R small enough and all x ∈ F we have

(3.2) N
(
B(x,R), R1/φ

)
6

(
R

R1/φ

)s−2ε

and

(3.3) N
(
B(x,R), R1/θ

)
6

(
R

R1/θ

)s−2ε

.

Note that we can get rid of any constants here since we are only considering the
spectrum at two points, and therefore two instances of having to take small enough
R. Consider the additive monoid generated by {log φ, log θ}, that is, the set

{m log φ+ n log θ : m,n > 0, m, n ∈ Z} ⊂ (−∞, 0].

By our irrationality assumption on φ and θ, it follows that for all η > 0, there exists
an i0 such that if i > i0 then there exists m,n > 0 such that

0 6 log(φmθn)− log θi 6 η.

In particular, this implies that for sufficiently large i we can choose m,n > 0 such
that

(3.4) 0 6 1/θi − 1/(φmθn) 6 ε/(2dθi).

Fix a large i and m,n corresponding to i as in (3.4) above. We can now build an

efficient cover of B(xi, Ri) by R
1/θi
i -balls. We begin by covering B(xi, Ri) with R

1/φ
i -

balls and then each of these R
1/φ
i -balls by R

1/φ2

i -balls and continue in this way until we

have covered R
1/φm−1

i -balls by R1/φm
-balls. We then switch to a ‘θ-regime’, covering

each R
1/φm

i -ball with R
1/(φmθ)
i -balls. Each of these balls is covered by R

1/(φmθ2)
i -balls

until we reach a covering by R
1/(φmθn)
i -balls. Using (3.2) and (3.3) and a standard
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telescoping argument we therefore get

N
(
B(xi, Ri), R

1/(φmθn)
i

)
6

(
Ri

R
1/φ
i

)s−2ε(
R

1/φ
i

R
1/φ2

i

)s−2ε

· · ·
(
R

1/φm−1

i

R
1/φm

i

)s−2ε

·
(

R
1/φm

i

R
1/(φmθ)
i

)s−2ε(
R

1/(φmθ)
i

R
1/(φmθ2)
i

)s−2ε

· · ·
(
R

1/(φmθn−1)
i

R
1/(φmθn)
i

)s−2ε

=

(
Ri

R
1/(φmθn)
i

)s−2ε

.

Finally, to obtain a cover by R
1/θi
i -balls we cover each R

1/(φmθn)
i -ball by at most

c(d)

(
R

1/(φmθn)
i

R
1/θi
i

)d

many R
1/θi
i -balls, where c(d) > 1 is, as above, a constant depending only on the

ambient spatial dimension d. Combining this with (3.1) we get that for all large
enough i (and thus small enough Ri) we must have

(
Ri

R
1/θi
i

)s−ε

6 N (B(xi, Ri) ∩ F, ri) 6 c(d)

(
Ri

R
1/(φmθn)
i

)s−2ε(
R

1/(φmθn)
i

R
1/θi
i

)d

.

Using (3.4) we therefore have
(
1

θi
− 1

)
(s− ε) 6

(
1

φmθn
− 1

)
(s− 2ε) +

(
1

θi
− 1

φmθn

)
d

6

(
1

θi
− 1

)
(s− 2ε) +

ε

2θi

which, since θi → 0, yields s − ε 6 s − 3ε/2, a contradiction. It follows that the
Assouad spectrum is at least s−2ε at either θ or φ, which upon letting ε → 0 proves
the result. �

3.2. Interpolation in the limit: proof of Corollary 2.2. As already stated,
Theorem 2.1 directly implies that lim supθ→1 dim

θ
A F = dimqA F . Therefore all that

remains is to prove that limθ→1 dim
θ
A F exists. This follows from results in [FY1,

Section 3], although it was not explicitly stated. In particular, we have the following
lemma, which appears as part of [FY1, Remark 3.9].

Lemma 3.1. For nonempty F ⊆ Rd, θ ∈ (0, 1) and n ∈ N, we have

dimθ
A F 6 dim

n√θ
A F.

Let t = lim supθ→1 dim
θ
A F = dimqA F and ε > 0. Since dimθ

A F is a continuous
function of θ we can find 0 < a < b < 1 such that for all θ ∈ [a, b] we have
dimθ

A F > t− ε. It follows from Lemma 3.1 that for all

θ ∈
⋃

n∈N

[
n
√
a,

n
√
b
]
=: X

we also have dimθ
A F > t− ε. However, it is easily seen that X contains an interval

(x, 1) for some x ∈ (0, 1). Indeed, the intervals [ n
√
a, n

√
b] and [ n+1

√
a, n+1

√
b] intersect
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each other when n is sufficiently large. In fact, one can choose x = n
√
a where n is

chosen large enough to ensure that

n

n+ 1
>

log b

log a
.

It follows that lim infθ→1 dim
θ
A F = lim supθ→1 dim

θ
A F = t, as required. �

3.3. New examples: proof of Theorem 2.5. The Moran constructions
considered in [FY2] provide us with a simple but useful family of examples. In par-
ticular, we have the following result by applying [FY2, Corollary 6.2] to the examples
considered towards the end of [FY2, Section 6.2].

Lemma 3.2. [FY2, Section 6.2] For any 0 < s < t 6 1, there exists a compact

set F ⊆ [0, 1] such that

dimθ
A F = min

{
s

1− θ
, t

}
.

Note that these examples attain the general upper bound (1.2) until the quasi-
Assouad dimension is reached. Such sets F are constructed in [FY2] as homogeneous
(dyadic) Moran constructions where one has complete control over the number of
dyadic intervals present inside a higher level dyadic interval. Thus one also has
complete control, up to a uniform constant, on the covering numbers N(B(x,R) ∩
F,R1/θ). Therefore, either following the proof of [FY2, Corollary 6.2] or simply
‘pruning’ the sets F as necessary, one can ‘upgrade’ the above lemma as follows.

Lemma 3.3. For any 0 < s < t 6 1, there exists a compact set F ⊆ [0, 1] such

that

dimθ
A F = min

{
s

1− θ
, t

}
=: u(θ)

and, moreover, for all x ∈ F and R ∈ (0, 1) we have

N(B(x,R) ∩ F,R1/θ) 6 10

(
R

R1/θ

)u(θ)

.

Recall that f : [0, 1] → [0, 1] is an arbitrary continuous, concave, non-decreasing
function assumed to satisfy f(0) > 0 and f(θ) 6 f(0)(θ + 1) for all θ ∈ [0, 1]. The
aim is to build a compact set F ⊆ [0, 1] such that dimθ

A F = f(θ).
Let {qi}i>1 be an enumeration of the rationals in (0, 1) and for each i, let Fi ⊆

[0, 1] be the set provided by Lemma 3.3 where t = ti = f(qi) and s = si = f(qi)(1−
qi). In particular the phase transition in dimθ

A Fi =: ui(θ) occurs with coordinates
(qi, f(qi)). Also, note that by assumption

f(θ) 6 f(0)(θ + 1) 6
f(0)

1− θ

and therefore si 6 f(0) for all i. Since f is concave and non-decreasing and ui is
convex on [0, qi] it follows that ui(θ) 6 f(θ) for all θ ∈ (0, 1) and that ui(qi) = f(qi)
for all i > 1. Therefore, since f is continuous, we can conclude that

sup
i>1

ui(θ) = f(θ)

for all θ ∈ (0, 1).
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We can now construct the set F required to prove the theorem. Let

F = {0} ∪
⋃

i>1

F̂i

where F̂i = 2−2iFi + 2−2i = {2−2ix + 2−2i : x ∈ Fi} ⊆ [0, 1]. Let θ ∈ (0, 1), x ∈ F

and R ∈ (0, 1). Let j = min{i > 1: F̂i ∩B(x,R) 6= ∅}. If F̂j′ ∩B(x,R) 6= ∅ for some

j′ > j, then R > 2−2j/4 and also R1/θ > (2−2j/θ)/41/θ. Therefore, there is a constant
k ∈ N depending only on θ such that

N

(
{0} ∪

⋃

i>j+k

F̂i, R1/θ

)
6 1.

Therefore by Lemma 3.3 we conclude that

N(B(x,R) ∩ F,R1/θ) 6 1 +

j+k−1∑

i=j

N(B(x,R) ∩ Fi, R
1/θ) 6 1 + 10k

(
R

R1/θ

)supi>1 ui(θ)

.

This proves that dimθ
A F 6 supi>1 ui(θ) = f(θ). The reverse inequality is immediate

by monotonicity and therefore the theorem is proved. �
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