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Abstract. The study of uniformly distributed measures was crucial in Preiss’ proof of his the-

orem on rectifiability of measures with positive density. It is known that the support of a uniformly

distributed measure is an analytic variety. In this paper, we provide quantitative information on

the rectifiability of this variety. Tolsa had already shown that n-uniform measures have big pieces

of Lipschitz graph(BPLG). Here, we prove that a uniformly distributed measure has BPLG locally.

1. Introduction

Understanding the geometry of uniformly distributed measures has been an im-
portant question in geometric measure theory ever since Preiss proved his remarkable
theorem on the n-rectifiability of measures in [P]. This theorem states that, given a
Radon measure σ in R

d, if the n-density of σ

Θn(x, σ) = lim
r→0

σ(B(x, r))

rn

exists, is finite and positive σ-almost everywhere on R
d, then there exists a countably

n-rectifiable set E such that σ(Rd\E) = 0. The proof of Preiss’ theorem relied heavily
on the study of uniformly distributed measures. Indeed, these measures appear as
blow ups (zoom-ins) and blow downs (zoom-outs) of measures with positive finite
density. We say a Radon measure µ in R

d is uniformly distributed if there exists a
positive function φ : R+ → R+, called its distribution function, such that

µ(B(x, r)) = φ(r), for all x ∈ supp µ, for all r > 0.

An example of note is when the function φ is crn for some c > 0, n ≤ d. These
are called n-uniform measures and appear in many different contexts from geometric
measure theory to harmonic analysis and PDE’s (for instance in [DKT] and [PTT]).

The geometry of the supports of uniformly distributed measures is not very well
understood. Let us start by stating some known facts. As a direct consequence of
Preiss’ theorem, we can deduce that the support of an n-uniform measure is count-
ably n-rectifiable. In fact, the same can be said of uniformly distributed measures.
Indeed, Preiss proved in [P] that uniformly distributed measures “look like” n-uniform
measures on small and on large scales. Their n-rectifiability can easily be deduced
from that fact.

One might expect much more regularity than rectifiability, given the fact that
the property of being uniformly distributed is a global one (i.e. it is a property for
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all r > 0). This turns out to be the case. For n-uniform measures, a classification is
available in some cases. In [P], Preiss provides a classification of the cases n = 1, 2 in
R

d for any d . In these cases, µ is Hausdorff measure restricted to a line or a plane
respectively. In [KoP], Kowalski and Preiss proved that µ is (d − 1)-uniform in R

d

if and only if µ = Hd−1 V where V is a (d − 1)-plane, or d ≥ 4 and there exists
an orthonormal system of coordinates in which µ = Hd−1 (C ×W ) where W is a
(d− 4)-plane and C is the KP-cone (Kowalski–Preiss cone)

(1.1) C = {(x1, x2, x3, x4); x
2
4 = x21 + x22 + x23}.

The classification for n ≥ 3 and codimension ≥ 2 remains an open question.
On the other hand, in [KiP], Kirchheim and Preiss proved that the support of a

uniformly distributed measure is an analytic variety, that is the intersection of zero
sets of analytic functions. More precisely:

Theorem 1.1. [KiP] Let µ be a uniformly distributed measure over R
d and let

u ∈ Σ where Σ = suppµ. For every x ∈ R
d and s > 0, let

(1.2) F (x, s) =

ˆ

Rd

e−s|z−x|2 − e−s|z−u|2 dµ(z)

Then:

• F (x, s) is well-defined and finite for any x ∈ R
d and any s > 0; moreover its

definition is independent of the choice of u ∈ Σ
• Σ =

⋂
s>0

{
x ∈ R

d;F (x, s) = 0
}

It is a known fact that an analytic variety of dimension n is a finite union of
analytic n-submanifolds up to a set of Hn-measure 0. This confirms the expectation
of regularity but has the disadvantage of not providing any quantitative information
on the regularity of the support.

Let us now turn to uniform rectifiability. This notion was introduced by David
and Semmes (see for example [DS2]). It is a quantitative version of the notion of
n-rectifiability. One possible definition of it is the following.

Let µ be a Radon measure in R
d, and Σ its support, 0 ∈ Σ. We say that an

Ahlfors n-regular measure µ has big pieces of Lipschitz graphs (BPLG) if there exist
constants θ and M so that, for each x ∈ Σ and R > 0, there is a Lipschitz function
g from R

n to R
d−n such that g has Lipschitz norm not exceeding M and such that

its graph Γ (up to rotation) satisfies

µ(B(x,R) ∩ Γ) ≥ θRn.

We say that µ has BPLG locally if given K a compact set of R
d then for every

x ∈ Σ ∩K and every 0 < R < diam(K), there is a Lipschitz function g from R
n to

R
d−n such that g has Lipschitz norm not exceeding M and such that its graph Γ (up

to rotation) satisfies

µ(B(x,R) ∩ Γ) ≥ θRn.

In [T], Tolsa proved that n-uniform measures have BPLG.

Theorem 1.2. [T] Let µ be an n-uniform measure in R
d. Then µ has big pieces

of Lipschitz graphs.

Since uniformly distributed measures “look like” n-uniform measures on small
scales one might expect this result to hold locally for uniformly distributed measures.
In this paper, we will prove that this is indeed the case. Namely, we will prove the
following theorem:
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Theorem 1.3. Let µ be a uniformly distributed measure in R
d. Then µ has big

pieces of Lipschitz graph locally.

The proof is analogous to Tolsa’s proof of Theorem 1.2. To apply the techniques
that the author introduced in [T], one needs to use the fact that uniformly distributed
measures locally behave like n-uniform measures and are radially invariant. These
two properties allow us to obtain estimates on the Riesz transforms and to prove
that every ball in Σ the support of µ contains a relatively large ball that is flat.

The second step consists in proving that flatness is stable for uniformly dis-
tributed measures. In other words, if the support is flat at small enough scale it
will be flat at all smaller scales. The fact that uniformly rectifiable measures have
n-uniform pseudo-tangents is the key idea allowing us to generalize the stability of
flatness for n-uniform measures to uniformly distributed measures.

2. Preliminaries

Let us first define the support of a measure.

Definition 2.1. Let µ be a measure in R
d. We define the support of µ to be

(2.1) supp(µ) =
{
x ∈ R

d; µ(B(x, r)) > 0, for all r > 0
}
.

Note that the support of a measure is a closed subset of Rd.

We start with some facts about uniformly distributed measures. The first is a
theorem by Preiss describing the behavior of uniformly distributed measures at small
and large scales.

Theorem 2.2. [P, Theorem 3.11] Suppose µ is uniformly distributed in R
d, and

let φ be its distribution function. Then there exist integers n and p such that

lim
r→0

φ(r)

rn
and lim

r→∞

φ(r)

rp
both exist, are positive and finite.

We denote n and p by

n = dim0 µ and p = dim∞ µ.

We can deduce the following useful corollary about the growth of µ at small scales
from this theorem.

Corollary 2.3. Suppose µ is a uniformly distributed measure with dim0 µ = n
and dim∞ µ = p, and φ the function associated to µ. Let R ∈ R+. There exists
C ∈ R+ depending on R such that for all r ≤ R, the following holds:

(2.2) C−1rn ≤ φ(r) ≤ Crn.

Proof. According to Theorem 2.2 there exist r0 and r∞ such that

µ(B(x, r)) ∼ rn, x ∈ Σ, r ≤ r0,

µ(B(x, r)) ∼ rp, x ∈ Σ, r ≥ r∞

If R ≤ r0, the statement follows with a C not depending on R. First, assume
r0 ≤ R ≤ r∞ and take r such that r0 ≤ r ≤ R. Then

(2.3)
r0

n

Rn
rn . φ(r0) ≤ φ(r) ≤ φ(r∞) .

r∞
p

r0n
rn

Now assume R ≥ r∞ and let r ≤ R. If r0 ≤ r ≤ r∞, then

(2.4)
r0

n

r∞n
rn ≤ r0

n . φ(r0) ≤ φ(r) ≤ φ(r∞) . r∞
p ≤

r∞
p

r0n
rn.
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Finally, suppose r∞ ≤ r ≤ R. Then

�(2.5)
r∞

p

Rn
rn ≤ r∞

p . φ(r) . rp ≤
Rp

r∞n
rn.

Another theorem in [KiP] states that uniformly distributed measures don’t grow
too fast.

Theorem 2.4. [KiP, Lemma 1.1] Let µ be a uniformly distributed measure over
R

d, x ∈ R
d, 0 < s < r < ∞ and φ its distribution function. Then µ(B(x, r)) ≤

5d
(
r
s

)d
φ(s).

Another interesting feature of uniformly distributed measures is that radial func-
tions integrate nicely against them.

Theorem 2.5. [M] Let µ be a uniformly distributed measure on R
d and f be a

non-negative Borel function on R+. For all z, y ∈ supp(µ), we have
ˆ

f(|x− z|) dµ(x) =

ˆ

f(|x− y|) dµ(x).

Next, we introduce the following beta numbers initially introduced by Jones.
They quantify how ”flat” (or far from a plane) the support of a measure is.

Definition 2.6. Let µ be a Radon measure in R
d, and Σ its support.

• We define Jones’ βn
µ number of B to be

βn
µ(B) = inf

L

sup
x∈Σ∩B

dist(x, L)

r
,

where B is a ball in R
d, and the infimum is taken over all n-planes.

• We define the bilateral beta number bβn
µ of B to be

bβn
µ(B) = inf

L

(
sup

x∈Σ∩B

dist(x, L)

r
+ sup

p∈L∩B

dist(p,Σ)

r

)
,

where the infimum is taken over all n planes in R
d. We will drop the n

superscript and µ subscript when there is no ambiguity.
• We say µ is n-flat if there exists an n-dimensional plane V in R

d and a
constant c > 0 such that µ = cHn V .

Let us define doubling measures.

Definition 2.7. Let µ be a measure in R
d. We say µ is a doubling measure if

there exists C > 0 such that

(2.6) µ(B(x, 2r)) ≤ Cµ(B(x, r)), for all x ∈ supp(µ), for all r > 0.

The smallest such C is called the doubling constant of µ.

The two following lemmas relate the weak convergence of a sequence of doubling
measures to the convergence of their supports as sets in R

d. They are analogues of
Lemmas 2.2 and 2.3 from [T].

Lemma 2.8. Let µj , µ be doubling Radon measures, all having their doubling
constants bounded by the same positive C > 0. Let Σj , Σ be the supports of µj and
µ respectively, and B a closed ball in R

d such that B ∩ Σ 6= ∅, and B ∩ Σj 6= ∅ for
all j. If µj converges weakly to µ (µj ⇀ µ), then dB,2B(Σj ,Σ) converges to 0, where

dB,2B(U, V ) = sup
x∈U∩B

dist(x, V ∩ 2B) + sup
x∈V ∩B

dist(x, U ∩ 2B).
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Proof. We first prove that supp∈Σj∩B
dist(p,Σ ∩ 2B) → 0. Suppose not. Then,

without loss of generality there exists ǫ > 0, pj ∈ Σj ∩B, for j > 0, such that

B(pj , 2ǫ) ∩ Σ ∩ 2B = ∅.

In particular, µ(B(pj , 2ǫ)) = 0. Let χj, χ̃ be functions compactly supported in 4B
such that χB(pj ,ǫ) ≤ χj ≤ χB(pj ,2ǫ), and χB ≤ χ̃ ≤ χ3B. There exists kj ≥ 0 such that

2B ⊂ B(pj , 2
kjǫ).

In particular, since pj ∈ B is closed,

kj ≤
log(2r(B))− log(ǫ)

log(2)
≤ K,

where K does not depend on j. Since µj are all doubling, we have:

C−Kµj(2B) ≤ µj(B(pj , ǫ)) ≤

ˆ

χj dµj.

On one hand, µj(2B) ≥
´

χ̃ dµj and
´

χ̃ dµj →
´

χ̃ dµ > 0 imply that lim inf
´

χj dµj >
0. On the other hand, since

´

χj dµj ≤
´

χ̃ d(µ−µj)+µ(B(pj, 2ǫ)), then
´

χj dµj → 0
as j → ∞, yielding a contradiction.

We now prove that supp∈Σ∩B dist(p,Σj ∩ 2B) → 0. Suppose not. Then there

exists ǫ > 0, and, without loss of generality, points xj ∈ Σ∩B such that: B(xj , 2ǫ)∩
Σj ∩ 2B = ∅. In particular, µj(B(xj , 2ǫ)) = 0. Passing to a subsequence, we can
assume that xj → x, x ∈ Σ ∩ B since Σ ∩ B. So there exists N such that, when
j > N , |x − xj | < ǫ. Consequently, B(x, ǫ) ⊂ B(xj , 2ǫ) and µj(B(x, ǫ)) = 0. Let

φ be a function compactly supported in 4B such that χB(x, ǫ
5
) ≤ φ ≤ χB(x,ǫ). Then,

on one hand, we have
´

φ dµj = 0, implying that
´

φ dµ = lim
´

φ dµj = 0. On the
other hand,

´

φ dµ ≥ µ(B(x, ǫ
5
)) > 0, yielding a contradiction. �

Theorem 2.9. Let µj, µ be doubling measures, with the same doubling constant
c, B a ball such that µj ⇀ µ, Σj ∩B 6= ∅, Σ ∩ B 6= ∅. Let 0 < n ≤ d. Then

1

2
lim sup βn

µj

(
1

2
B

)
≤ βn

µ(B) ≤ 2 lim inf βn
µj
(2B),(2.7)

1

2
lim sup bβn

µj

(
1

2
B

)
≤ bβn

µ(B) ≤ 2 lim inf bβn
µj
(2B).(2.8)

Proof. The proof is an easy consequence of Lemma 2.8. We prove that βn
µ(B) ≤

2 lim inf βn
µj
(2B) as an example. Take any x ∈ Σj ∩ B. Let y ∈ Σ ∩ 2B be such

that |x − y| = dist(x,Σ ∩ 2B). Pick any n-plane L . Then dist(x, L) ≤ dist(x,Σ ∩
2B)+dist(y, L), implying that infL supx∈Σj∩B

dist(x, L) ≤ supx∈Σj∩B
dist(x,Σ∩2B)+

infL supy∈Σ∩2B dist(y, L). Therefore, βn
µ(B) ≤ 2βn

µj
(2B). �

To describe the local geometry of a measure, we study objects called its tangents
and pseudo-tangents.

Definition 2.10. Let µ be a Radon measure on R
d.

• We say that ν is a tangent measure of µ at a point a ∈ R
d if ν is a non-zero

Radon measure on R
d, and if there exist sequences (ri) and (ci) of positive

numbers such that ri → 0 and ciTa,ri♯µ ⇀ ν, as i → ∞. Here, Ta,ri♯µ is the
push-forward of µ under the bijection Ta,r(x) =

x−a
r

.
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• Let Σ denote the support of the measure µ. We say that µ is n-uniform if
there exists c > 0 such that for all x ∈ Σ, for all r > 0, the following holds:

µ(B(x, r)) = crn.

In [P, Theorem 3.11], Preiss showed that if µ is an uniformly distributed measure,
there exists a unique n-uniform measure λ such that:

(2.9) r−nTx,r♯µ ⇀ λ, as r → ∞,

for all x ∈ R
d. λ is called the tangent measure of µ at ∞.

A remarkable fact about this measure λ is the following “connectedness at ∞”
for the cone of uniform measures. The following is a version of this result formulated
by Tolsa in [T].

Theorem 2.11. [P] Suppose µ is a uniformly distributed measure in R
d, λ its

tangent at ∞.

• If n = 1, 2, then µ is flat.
• If n ≥ 3, there exists a constant τ0 depending only on n and d such that, if λ

satisfies the following:

(2.10) βn
λ(B(0, 1)) ≤ τ0,

then µ is n-flat.

Let us define the notion of asymptotically optimally doubling measures.

Definition 2.12. If x ∈ Σ, r > 0 and t ∈ (0, 1], define the quantity

(2.11) Rt(x, r) =
µ(B(x, tr))

µ(B(x, r))
− tn.

We say µ is asymptotically optimally doubling if for each compact set K ⊂ Σ, x ∈ K,
and t ∈ [1

2
, 1]

(2.12) lim
r→0+

sup
x∈K

|Rt(x, r)| = 0.

We define Ahlfors regular and locally Ahlfors regular measures.

Definition 2.13. Let µ be a Radon measure in R
d, and Σ its support.

• We say µ is Ahlfors n-regular, 0 < n ≤ d if there exists a constant c1 such
that:

(2.13) c−1
1 rn ≤ µ(B(x, r)) ≤ c1r

n, for all x ∈ Σ, r > 0.

• We say µ is locally Ahlfors n-regular if for allK compact, there exist constants
cK > 0 and rK such that, for all x ∈ Σ ∩K, 0 < r ≤ rK ,

c−1
K rn ≤ µ(B(x, r)) ≤ cKr

n.

The notion of uniform rectifiability was introduced by David and Semmes in
[DS2]. It is a quantitative version of the notion of n-rectifiability.

Definition 2.14. Let µ be a Radon measure in R
d, and Σ its support.

• We say µ is uniformly n-rectifiable if it is Ahlfors n-regular, and there exist
constants θ and M so that, for each x ∈ Σ and R > 0, there is a Lipschitz
mapping g from R

n to R
d such that g has Lipschitz norm not exceeding M

and such that
µ(B(x,R) ∩ g(Rn)) ≥ θRn.

We say Σ has big pieces of Lipschitz images (BPLI).
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• We say µ is locally uniformly n-rectifiable if it is locally Ahlfors n-regular,
and for every compact set K, there exist constants RK , θK and MK so that,
for each x ∈ Σ∩K and 0 < R ≤ RK , there is a Lipschitz mapping g from R

n

to R
d such that g has Lipschitz norm not exceeding MK and such that

µ(B(x,R) ∩ g(Rn)) ≥ θKR
n.

Our final definition is of the Riesz transforms of a measure.

Definition 2.15. Let µ be a Radon measure in R
d. The Riesz transform of µ

for z0 ∈ supp(µ), 0 < r < s is defined as

Rr,sµ(z0) =

ˆ

r≤|z0−y|≤s

z0 − y

|z0 − y|n+1
dµ(y).

In [T], the following estimate on the Riesz transform was an essential tool for
Tolsa’s proof of the uniform rectifiability of n-uniform measures.

Lemma 2.16. [T] Let µ be a Radon measure, Σ = supp(µ), n ≤ d. Let B be a
ball centered in Σ and r(B) its radius. Suppose that there exist constants κ, c1 such
that

(2.14) c−1
1 rn ≤ µ(B(x, r)) ≤ c1r

n, for x ∈ B ∩ Σ, κr(B) ≤ r ≤ r(B).

Moreover, suppose that for some ǫ > 0, we have

(2.15) βd−1
µ (B(x, r)) ≥ ǫ, for x ∈ B ∩ Σ, κr(B) ≤ r ≤ r(B).

Then, for any M > 0, there exists κ0 (κ0 = κ(M, ǫ, c1)), such that if κ ≤ κ0 , then
there exists r, κr(B) ≤ r ≤ r(B), and points x, z0 ∈ B ∩ Σ, with |x − z0| ≤ κr(B)
satisfying

(2.16)

∣∣∣∣
x− z0
κr(B)

· Rκr(B),rµ(z0)

∣∣∣∣ ≥M.

Finally, we state the following theorem from [DT] which will be used in the final
step of the proof.

Theorem 2.17. [DT] Let E be a set that is locally Ahlfors-regular and that
satisfies for ǫ small enough, bβµ(B(x, r)) ≤ ǫ, for every x ∈ E and every 0 ≤ r ≤ 1
where , µ = Hn E. Then there exist constants θ > 0 and M > 0 depending only on
n, d and the Ahlfors regularity constant such that for x ∈ E and 0 < r ≤ 1, we can
find a n-plane P and an M-Lipschitz function F : P → P⊥ such that

µ(ΓF ∩ B(x, r)) ≥ θrd,

where ΓF denotes the graph of F .

3. Existence of big flat balls for uniformly distributed measures

We start by proving that the Riesz transform of a uniformly distributed measure
is locally bounded. The two following lemmas are local analogues to Lemmas 3.1 and
3.4 in [T] for uniformly distributed measures. Their proofs follow closely the proofs
of their counterparts in [T].

Lemma 3.1. Let µ be a uniformly distributed measure, dim0(µ) = n, R > 0.
Let z0 ∈ Σ, 0 < r ≤ R. Then we have

∣∣∣∣
x− z0
r

· Rr,sµ(z0)

∣∣∣∣ ≤ c, for all r < s ≤
R

2
, and for all x ∈ B(z0, r)
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where c depends only on R.

Proof. Without loss of generality, assume z0 = 0. For r, s fixed, 0 < r < s ≤ R
2
,

define the function ψ : R → R to be a compactly supported C∞ function with the
following properties:

ψ(t) =

{
0 if |t| ≥ 2s or |t| ≤ r

2
,

1
tn

if r ≤ |t| ≤ s,

and

(3.1) |ψ(t)| ≤ c min

(
1

rn
,
1

tn

)
for all t ∈ R.

We also require that

(3.2) |ψ′(t)| ≤ cmin

(
1

(3r)n+1
,

1

tn+1

)
for all t ∈ R.

We define real-valued functions ρ and Ψ respectively from R and R
d as follows:

ρ(u) = −

ˆ ∞

u

ψ(t) dt, u ∈ R,

and

Ψ(y) = ρ(|y|), y ∈ R
d.

Since µ is uniformly distributed and Ψ is radial, for all x ∈ B(0, r)∩ supp(µ), we
have by Theorem 2.5

(3.3)

ˆ

Ψ(x− y) dµ(y)−

ˆ

Ψ(y) dµ(y) = 0.

On the other hand, Taylor’s formula gives

(3.4) Ψ(x− y)−Ψ(−y) = x · ∇Ψ(−y) +
1

2
xT · ∇2Ψ(ξx,y) · x,

where ξx,y ∈ [x− y,−y] ⊂ R
d. Note that ∇Ψ(z) = ψ(|z|) · z

|z|
implying that

(3.5) −Rr,sµ(0) =

ˆ

r≤|y|≤s

∇Ψ(−y) dµ(y)

since ψ(|z|) = 1
|z|n

when |z| ∈ (r, s). Combining (3.3),(3.4) and (3.5), we get

x ·

ˆ

|y|≤r

∇Ψ(−y) dµ(y)− x ·Rr,sµ(0) + x ·

ˆ

|y|>s

∇Ψ(−y) dµ(y)

+
1

2
xT ·

(
ˆ

∇2Ψ(ξx,y) dµ(y)

)
· x = 0.

This gives

(3.6) x ·Rr,sµ(0) = x ·

ˆ

{|y|≤r}∪{|y|>s}

∇Ψ(−y) dµ(y)+
1

2
xT ·

(
ˆ

∇2Ψ(ξx,y) dµ(y)

)
·x.

Let us estimate the right hand-side of (3.6). Using the inequalities (3.1) and (3.2)
and Corollary 2.3, we get the following estimates on the first term in (3.6):

∣∣∣∣
ˆ

|y|≤r

∇Ψ(−y) dµ(y)

∣∣∣∣ ≤
c

rn
µ(B(0, r)) ≤ C since r ≤ R



Uniformly distributed measures have big pieces of Lipschitz graphs locally 397

and since 2s ≤ R
∣∣∣∣
ˆ

|y|>s

∇Ψ(−y) dµ(y)

∣∣∣∣ =
∣∣∣∣
ˆ

s<|y|≤2s

∇Ψ(−y) dµ(y)

∣∣∣∣ ≤
1

sn
µ(B(0, 2s)) ≤ C 2n,

where C depends on R. Let us now estimate the second order derivative of Ψ using
the fact that

∣∣∇2Ψ(ξx,y)
∣∣ ≤ cmin

(
1

3rn+1
,

1

|ξx,y|n+1

)
.

More specfically, we show that
ˆ ∣∣∇2Ψ(ξx,y)

∣∣ dµ(y) 6 1

r
.

If |y| ≤ 2r, we get |∇2Ψ(ξx,y)| ≤
C

rn+1 . If |y| > 2r, then |y|
2
≤ |x − y| ≤ 2|y| implies

that |ξx,y| ∼ |y| and hence |∇2Ψ(ξx,y)| ≤ C
|y|n+1 . Therefore, since µ is uniformly

distributed, and ψ compactly supported in [−R,R], we get
ˆ ∣∣∇2Ψ(ξx,y)

∣∣ dµ(y) ≤ c

ˆ

|y|≤2r

1

rn+1
dµ(y) + c

ˆ

2r<|y|≤R

1

|y|n+1
dµ(y),

≤
c

r
+ c

ˆ

2r<|y|≤R

1

|y|n+1
dµ(y), since 2r ≤ R.

We claim that
ˆ

2r<|y|≤R

1

|y|n+1
dµ(y) ≤

c

r
.

Indeed,

ˆ

2r<|y|≤R

1

|y|n+1
dµ(y) =

ˆ 1
(2r)n+1

1
Rn+1

µ

({
y : |y| <

1

t
1

(n+1)

})
dt

=

ˆ 1
(2r)n+1

1
Rn+1

µ

(
B

(
0,

1

t(n+1)

))
dt

≤ c

ˆ 1
(2r)n+1

1
Rn+1

1

t
n

(n+1)

dt = c

(
1

2r
−

1

R

)
≤

c

2r
.

This gives

|x ·Rr,sµ(0)| ≤ c|x|+ c
|x|2

r
≤ cr

since |x| ≤ r. �

Lemma 3.2. Let µ be a uniformly distributed measure, n = dim0 µ, n < m ≤ d,
ǫ > 0. Let K be a compact set, R = diam(K). There exist constants δ, τ depending
only on ǫ, K, n and d such that if B is a ball centered in Σ∩K, with r(B) ≤ R and
βm
µ (B) ≤ δ, then there exists a ball B′, B′ ⊂ B, centered in Σ such that βm−1

µ (B′) ≤ ǫ
and r(B′) ≥ τ · r(B) where r(B) denotes the radius of B.

Proof. Let L be a best approximating m-plane for βm
µ (B). In particular, for any

z ∈ Σ ∩B,

(3.7) |z − π(z)| < δr(B),
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assuming that βm
µ (B) ≤ δ for a δ to be chosen later. Denote πL, the orthogonal

projection onto L, by π and define the measure ν on L to be

ν(A) = µ(π−1(A) ∩ B) for A ⊂ L.

Let x ∈ 1
2
B ∩ Σ̃, where Σ̃ = supp ν. On one hand, denoting by BL(x, r) the ball

in L i.e. B(x, r) ∩L, we have B(x, r) ⊂ π−1(BL(x, r)) ∩B when r ≤ r(B)
2

, and hence

c−1rn ≤ µ(B(x, r)) ≤ ν(BL(x, r)).

On the other hand, if J is the maximal number of disjoint balls of radius r that can
be contained in π−1(BL(x, r)) ∩ 2B, then we claim that

J ≤ ωm(2r)
m−d2r(B)d−m.

Indeed, assuming that L is the m-plane {(y1, . . . , yd); ym+1 = . . . = yd = 0} , the
union E of these J balls is included in the cylinder

C = {y; (y1, . . . , ym) ∈ BL(x, r), yj ∈ (−2r(B), 2r(B)), j > m} .

Thus

J · Ld(B(0, r)) ≤ Ld(C) = ωmr
m2r(B)d−m.

Let {Bi} be a disjoint collection of balls of radius r such that Bi ⊂ π−1(BL(x, r)) ∩
2B ⊂

⋃
5Bi, obtained by a Vitali covering. In particular, by the above argument,

there are at most J of them. Then, if δr(B) ≤ r ≤ r(B), where δ is to be chosen
later, we have

ν(BL(x, r)) ≤ µ
(⋃

5Bi

)
≤ J · c · (r)n ≤ (2r)m−dωmr(B)d−m(2r)n ≤

c

δd−m
rn.

Hence, letting C = c
δd−m , we have

C−1rn ≤ ν(B(x, r)) ≤ Crn, when x ∈
1

2
B ∩ Σ̃, δr(B) ≤ r ≤ r(B).

We first claim that for all z0 ∈
1
2
B ∩ Σ̃, and r0, r with δ

1
2 r(B) ≤ r0 ≤ r ≤ r(B), if δ

is small enough, then

(3.8)

∣∣∣∣
x− z0
r0

Rr0,rν(z0)

∣∣∣∣ ≤ c, for x ∈ Σ̃ ∩ B(z0, r0).

Let us finish the proof of the lemma before proving (3.8). Choose ǫ > 0. Let

κ0 = κ0(ǫ) be as in Lemma 2.16. Let δ be small enough for (3.8) to hold, δ
1
2 ≤ κ0

and δ
1
2 ≤ ǫ

2
. Identify L with R

m. Since ν satisfies (2.14) but not (2.16), then (2.15)

cannot hold. Namely, there must exist a ball B′ centered in Σ̃, and r(B′) ≥ δ
1
2 r(B),

such that βm−1
ν (B′) ≤ 1

2
ǫ. We also have B′ ⊂ 1

2
B by the same argument as in the

proof of Theorem 2.16 in [T]. Let L′ be a best approximating (m − 1)-plane for
βm−1
ν (B′). We claim that the following holds:

(3.9) Σ ∩B′ ⊂ U
δr(B)+

ǫr(B′)
2

(L′),

where U
δr(B)+

ǫr(B′)
2

(L′) denotes the (δr(B) + ǫr(B′)
2

)-neighborhood of L′. Indeed, we

have

(3.10) βm−1
ν (B′) ≤

ǫ

2
.
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Suppose z ∈ Σ∩B′. Then z = π(z)+πL⊥(z), where π and πL⊥ are the projections onto
L and L⊥ respectively. Since Σ∩B′ ⊂ Σ∩B and βm

µ (B) ≤ δ, we get |πL⊥(z)| ≤ δr(B).
Moreover, by (3.10), dist(π(z), L′) ≤ ǫ

2
r(B′). Thus, for all z ∈ Σ ∩B′,

dist(z, L′) ≤ |z − π(z)|+ dist(π(z), L′) ≤ δr(B) +
ǫ

2
r(B′).

Therefore

βm−1
µ (B′) ≤

δr(B) + ǫ
2
r(B′)

r(B′)
≤ δ

1
2 +

ǫ

2
≤ ǫ.

We now prove (3.8). Pick z0 ∈
1
2
B ∩ Σ̃, r0, r such that δ

1
2 r(B) ≤ r0 < r ≤ r(B).

Choose any x ∈ Σ̃∩B(z0, r0), and let z1, x1 ∈ Σ∩B be such that π(z1) = z0, π(x1) =
x. Then

(3.11)

∣∣∣∣
x− z0
r0

Rr0,rν(z0)

∣∣∣∣ ≤ A+B + C,

where

(3.12) A =

∣∣∣∣
x− z0
r0

· (Rr0,rν(z0)−Rr0,rµ(z1))

∣∣∣∣ ,

(3.13) B =

∣∣∣∣
(x− z0)− (x1 − z1)

r0
· Rr0,rµ(z1)

∣∣∣∣

and

(3.14) C =

∣∣∣∣
x1 − z1
r0

·Rr0,rµ(z1)

∣∣∣∣ .

Estimating A. Let us first estimate (3.12). We denote the kernel of the Riesz
transform by K, and the annulus in R

d by A(z0, r0, r) = {y ∈ R
d; r0 < |y− z0| ≤ r},

the annulus in L by AL(z0, r0, r). Then, we can write

Rr0,rν(z0) =

ˆ

B∩π−1(AL(z0,r0,r))

K(z0 − π(y)) dµ(y)

and

|Rr0,rν(z0)− Rr0,rµ(z1)|

=

∣∣∣∣
ˆ

B∩π−1(AL(z0,r0,r))

K(z0 − π(y)) dµ(y)−

ˆ

A(z1,r0,r)

K(z1 − y) dµ(y)

∣∣∣∣
≤ S1 + S2.

(3.15)

where

S1 :=

ˆ

B∩π−1(AL(z0,r0,r))

|K(z0 − π(y))−K(z1 − y)| dµ(y),

and

S2 :=

∣∣∣∣
ˆ

B∩π−1(AL(z0,r0,r))

K(z1 − y) dµ(y)−

ˆ

A(z1,r0,r)

K(z1 − y) dµ(y)

∣∣∣∣ .

Estimating S1 from (3.15). To estimate S1, we need the following intermediate
estimates. First, note that if y ∈ B ∩ π−1(AL(z0, r0, r)) ∩ Σ, it follows from the fact
that |z0 − y|2 = |z0 − π(y)|2 + |π(y)− y|2 and π(y) ∈ AL(z0, r0, r) that the following
holds

(3.16) |z0 − y| ≥ |z0 − π(y)| ≥ r0
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Second, by (3.7),

(3.17) |(z0 − π(y))− (z1 − y)| ≤ |z0 − z1|+ |y − π(y)| ≤ 2δr(B).

Similarly, we claim that

(3.18)
1

2
|z0 − y| ≤ |z0 − π(y)| ≤ 2|z0 − y| and

1

2
|z0 − y| ≤ |z1 − y| ≤ 2|z0 − y|.

Indeed, on one hand assuming δ small enough that δr(B) ≤ 1
2
r0,

|z0 − y| ≤ |z0 − π(y)|+ |π(y)− y| ≤ |z0 − π(y)|+ δr(B)

≤ |z0 − π(y)|+
1

2
r0 ≤ 2|z0 − π(y)|, by (3.16).

On the other hand

|z0 − π(y)| ≤ |z0 − y|+ |y − π(y)|

≤ |z0 − y|+
1

2
r0 ≤ 2|z0 − y|, by (3.7).

The other estimate in (3.18) follows similarly. On one hand,

|z0 − y| ≤ |z0 − z1|+ |z1 − y| ≤ δr(B) + |z1 − y|

≤ |z0 − π(y)|+ |z1 − y| ≤ 2|z1 − y|, since z0 = π(z1).

On the other hand,

|z1 − y| ≤ |z1 − z0|+ |z0 − y| ≤ δr(b) + |z0 − y| ≤ 2|z0 − y|.

Thus, to estimate S1, noting that

|K(z0 − π(y))−K(z1 − y)| ≤

∣∣∣∣
z0 − π(y)

|z0 − π(y)|n+1
−

z1 − y

|z0 − π(y)|n+1

∣∣∣∣

+

∣∣∣∣
z1 − y

|z0 − π(y)|n+1
−

z1 − y

|z1 − y|n+1

∣∣∣∣
=: D1 +D2,

(3.19)

one obtains on one hand, using (3.16) and (3.17),

(3.20) D1 =
|z0 − π(y)− (z1 − y)|

|z0 − π(y)|n+1
≤

2n+1Cδr(B)

|z0 − y|n+1
,

and on the other hand, using (3.17) and (3.18),

(3.21)

D2 = |z1 − y|

∣∣∣∣
|z1 − y|n+1 − |z0 − π(y)|n+1

|z1 − y|n+1|z0 − π(y)|n+1

∣∣∣∣

≤ Cn

|z0 − π(y)|n+1

|z0 − y|2n+2
· ||z1 − y| − |z0 − π(y)||

≤ Cn

δr(B)

|z0 − y|n+1
.

.
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Putting (3.20) and (3.21) together gives

(3.22)

S1 ≤

ˆ

B∩π−1(AL(z0,r0,r))

cδr(B)

|z0 − y|n+1
dµ(y)

≤ c

ˆ

1
2
r0≤|y−z0|≤2r

δr(B)

|z0 − y|n+1
dµ(y)

≤ cδr(B)

ˆ ( 2
r0

)n+1

1
2rn+1

µ

({
y,

1

|z0 − y|n+1
> t

})
dt

≤ cδr(B)

ˆ ( 2
r0

)n+1

1
2rn+1

µ(B(z0, t
− 1

n+1 )) dt

≤ cδr(B)

ˆ ( 2
r0

)n+1

1
2rn+1

1

t
n

n+1

dt

≤
C ′δr(B)

r0
≤ 1 by choosing δ

1
2 < C ′−1

.

Estimating S2 from (3.15).

S2 =

∣∣∣∣
ˆ

B∩π−1(AL(z0,r0,r))

K(z1 − y) dµ(y)−

ˆ

A(z1,r0,r)

K(z1 − y) dµ(y)

∣∣∣∣

≤

ˆ

B∩(π−1(AL(z0,r0,r))△A(z1,r0,r))

|K(z1 − y)| dµ(y).

Now, we claim that for δ > 0 small enough, we have

(3.23) Σ∩B∩(π−1(AL(z0, r0, r))△A(z1, r0, r)) ⊂ A

(
z1,

1

2
r0, 2r0

)
∪A

(
z1,

1

2
r, 2r

)
.

We will only treat the case where π(y) ∈ A(z0, r0, r) and y /∈ A(z1, r0, r). The other
case follows in exactly the same manner. First, note that in the above case, either
|y − z1| ≤ r0, implying in particular that |y − z1| ≤ 2r0. Moreover, for such a y,

|y − z1| ≥ |π(y)− z0| − |y − π(y)| − |z1 − z0| ≥ r0 − 2δr(B) by (3.7)

≥
1

2
r0,

and hence, y ∈ A(z1,
1
2
r0, 2r0). Otherwise, |y − z1| > r (a fortiori, |y − z1| >

1
2
r) and

|y − z1| ≤ |y − π(y)|+ |π(y)− z0|+ |z1 − z0| ≤ 2δr(B) + r ≤ 2r

implying y ∈ A(z1,
1
2
r, 2r). Hence,

Σ ∩B ∩ (π−1(AL(z0, r0, r)) ∩A(z1, r0, r)
C) ⊂ A

(
z1,

1

2
r0, 2r0

)
∪ A

(
z1,

1

2
r, 2r

)
.

Using (3.23), we obtain

(3.24)

S2 ≤

ˆ

A(z1,
1
2
r0,2r0)

1

|z1 − y|n
dµ(y) +

ˆ

A(z1,
1
2
r,2r)

1

|z1 − y|n
dµ(y)

≤ 2n
µ(B(z1, 2r0))

rn0
+ 2n

µ(B(z1, 2r))

rn
≤ Cn.
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The estimates (3.22) and (3.24) combined give

(3.25)

∣∣∣∣
x− z0
r0

· (Rr0,rν(z0)−Rr0,rµ(z1))

∣∣∣∣ ≤ |
x− z0
r0

| · C ≤ C ′.

Estimating B. Let us now estimate (3.13): first note that

|(x− z0)− (x1 − z1)| ≤ |x− x1|+ |z0 − z1| ≤ 2δr(B) by (3.7).

Moreover,

|Rr0,rµ(z1)| ≤

ˆ

r0<|y−z1|≤r

1

|y − z1|n
dµ(y)

≤

ˆ r−n
0

r−n

µ({y : |K(y − z1)| > t−n}) dt

≤

ˆ r−n
0

r−n

1

t
dt ≤ C log

(
r(B)

r0

)
≤ C ′| log(δ)|.

Therefore, assuming δ is small enough,
∣∣∣∣
(x− z0)− (x1 − z1)

r0
· Rr0,rµ(z0)

∣∣∣∣ ≤ C
δr(B)

r0
| log δ|

≤ Cδ
1
2 | log δ| ≤ C(3.26)

Estimating C. Finally, we estimate (3.14): we want to apply Lemma 3.1 to

evaluate
∣∣∣x1−z1

r0
· Rr0,rµ(z1)

∣∣∣. But we do not have x1 ∈ B(z1, r0). Nevertheless, we

have

(3.27) |x1 − z1| ≤ |x0 − z0|+ |z0 − z1|+ |x0 − x1| ≤ |x0 − z0|+ 2δr(B) ≤ 2r0.

Using (3.27), and applying Lemma 3.1 to the first term, we have
∣∣∣∣
x1 − z1
r0

· Rr0,rµ(z1)

∣∣∣∣ ≤ 2

∣∣∣∣
x1 − z1
2r0

· R2r0,rµ(z1)

∣∣∣∣+
∣∣∣∣
x1 − z1
r0

· Rr0,2r0µ(z1)

∣∣∣∣

≤ 2c+

∣∣∣∣
x1 − z1
r0

∣∣∣∣ · |Rr0,2r0µ(z1)| .(3.28)

To estimate the second term on the right hand side of the inequality in (3.28), we
simply notice that

(3.29) |Rr0,2r0µ(z1)| ≤ r−n
0 µ(B(z1, 2r0)) ≤ c̃.

This implies the uniform boundedness of C.
Combining our estimates in (3.25), (3.26), (3.28), and (3.29), we have proven

the claim we had set out to prove: namely, that for all z0 ∈ 1
2
B ∩ Σ̃, and r0, r with

δ
1
2 r(B) ≤ r0 ≤ r ≤ r(B), if δ is small enough,

�(3.30)

∣∣∣∣
x− z0
r0

·Rr0,rν(z0)

∣∣∣∣ ≤ c, for x ∈ Σ̃ ∩B(z0, r0).

Theorem 3.3. Let µ be a uniformly distributed measure with n = dim0 µ, K
a compact set. For every ǫ > 0 , there exists some τ > 0 such that every ball B
centered in Σ and contained in K, contains another ball B′ also centered in Σ, which
satisfies βn

µ(B
′) ≤ ǫ, and r(B′) ≥ τr(B). Moreover, τ only depends on ǫ, K, n and

d.
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Proof. We just apply Lemma 3.2 (d− n) times. Indeed, since β
(d)
µ (B) = 0, there

exists B1 ⊂ B, β
(d−1)
µ (B1) ≤ ǫ1, r(B1) ∼ r(B). By induction, we get a ball Bd−n ⊂ B,

r(Bd−n) ∼ r(B), β
(n)
µ (Bd−n) ≤ ǫd−n. Making the successive ǫi’s as small as needed,

since there are only finitely many steps, letting ǫ = ǫd−n, and B′ = Bd−n, we get

ǫ > 0, B′ ⊂ B, r(B′) ∼ r(B) such that β
(n)
µ (B′) ≤ ǫ. �

4. Stability of the β-numbers

In the following section, we will write β(B) for βn(B).

Lemma 4.1. Let µ be a Radon measure, Σ its support. Let µx,r be the following
measure (and Σx,r its support):

µx,r(A) = µ(rA+ x).

Then we have

(4.1) bβµx,r
(B) = bβµ(rB + x)

Proof. It is easily seen that Σ = rΣx,r + x. Let L be an n-plane.
Let y ∈ Σx,r∩B. Then y′ = ry+x is in Σ∩Bx,r and dist(y, L) = 1

r
dist(y′, L+x).

Hence,

(4.2) sup
Σx,r∩B

dist(y, L) =
1

r
sup

Σ∩Bx,r

dist(y′, L+ x).

On the other hand, let p ∈ L ∩ B. Then dist(p,Σx,r) =
1
r
dist(rp + x,Σ), where

rp+ x = p′, p′ ∈ (L+ x) ∩Bx,r. Hence,

(4.3) sup
L∩B

dist(p,Σx,r) = sup
L+x∩Bx,r

dist(p′,Σ).

Adding (4.2) and (4.3), and taking the infimum over all n-planes proves (4.1). �

We can now prove the following theorem. It states that the flatness of µ on a fixed
number of bigger scales than B implies flatness at scale B. Its proof is analogous to
the proof of Lemma [3.6] in [T].

Lemma 4.2. Let µ be a Radon measure on R
d that is uniformly distributed with

dim0(µ) = n and K a compact set in R
d. Let ǫ > 0, and δ0 be τ0 from Theorem 2.11.

There exists an integer N > 0, depending only on n, ǫ, d and K such that for every
ball B centered in Σ ∩K, if

2NB ⊂ K, βµ(2
kB) ≤

δ0
4
, 1 ≤ k ≤ N,

then

bβµ(B) ≤ ǫ.

Proof. We argue by contradiction. Suppose there is no such N . Then, for every j,
there exist a n-AOD measure µj, a ball Bj = B(xj , rj), xj ∈ K ∩Σ, 2jrj ≤ diam(K)
such that

βµj
(2kBj) ≤

δ0
4
, 1 ≤ k ≤ j,

but

(4.4) bβµj
(Bj) ≥ ǫ
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Note that xj ∈ Σ∩K, 2jrj ≤ diam(K) imply that, passing to a subsequence, rj → 0
and xj → x, x ∈ K, as j → ∞. Now, let νj be the measure defined as

νj(A) =
µj(rjA + xj)

µj(Bj)
.

There exists some subsequence of µj that converges weakly to a measure ν as
j → ∞. Indeed, for any ball B(0, R), R > 1, if φj is the distribution function of µj

we have
µj(rjB(0, R) + xj)

µj(Bj)
=
φj(Rrj)

φj(rj)
≤ 5dRd,

according to Theorem 2.4. Since each νj is uniformly distributed, ν is also uniformly
distributed. Moreover, since the µj’s are doubling with the same constant, using
Lemma 2.9 and (4.4),

2bβν(B(0, 2)) ≥ lim sup
j→∞

bβνj(B(0, 1)) = lim sup
j→∞

bβµj
(Bj) ≥ ǫ.

On the other hand, for all k ≥ 0, by (4.4),

βν(B(0, 2k−1)) ≤ 2 lim inf
j→∞

βνj(B(0, 2k)) = 2 lim inf
j→∞

βµj
(2kBj) ≤

δ0
2
.

Let λ be the tangent measure of ν at ∞. Define νk in the following manner:

νk(A) =
ν(2kA)

2nk
.

Then νk ⇀ λ and

βλ(B(0, 1)) ≤ 2 lim inf
k→∞

βνk(B(0, 2)) = 2 lim inf
k→∞

βν(B(0, 2k+1) ≤ δ0.

By Theorem 2.11, this implies that ν is flat, contradicting bβν(B(0, 1)) > ǫ. �

We prove that a uniformly distributed measure is doubling and asymptotically
optimally doubling.

Lemma 4.3. Suppose µ is a uniformly distributed Radon measure in R
d with

dim0 µ = n, dim∞ µ = p and such that µ(B(x, r)) = φ(r), for x ∈ Σ. Then µ is
doubling and asymptotically optimally n-doubling.

Proof. We first prove that µ is doubling. This follows easily from Theorem 2.4.
Indeed, if x ∈ supp(µ), r > 0,

µ(B(x, 2r)) ≤ 10dµ(B(x, r)).

To prove that µ is n-asymptotically optimally doubling, let K be a compact set
such that K ∩ Σ 6= ∅, and τ ∈ (0, 1). Choose x in K ∩ Σ. Then

µ(B(x, τr))

µ(B(x, r))
=
φ(τr)

φ(r)

and hence, using Theorem 2.2,

lim
r→0

sup
x∈K∩Σ

µ(B(x, τr))

µ(B(x, r))
= lim

r→0
inf

x∈K∩Σ

µ(B(x, τr))

µ(B(x, r))
= lim

r→0

φ(τr)

φ(r)

= lim
r→0

φ(τr)

τnrn
rn

φ(r)
τn = τn. �

The proof of the following corollary is analogous to the proof of Theorem [4.2] in
[PTT] since uniformly distributed measures are n-AOD and doubling.
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Corollary 4.4. Let µ be a uniformly distributed measure on R
d, K compact set

in R
d. Fix η > 0. Then there exists δ > 0 depending on η, µ, n and d such that if B

is a ball centered in Σ ∩K, with βµ(B) < δ, then bβµ(B
′) ≤ η for any ball B′ ⊂ 1

2
B

centered in Σ.

We can finally prove Theorem 1.3. The proof is identical to the proof of Theorem
[1.2] in [T]. We repeat it for the reader’s convenience.

Proof. Let K be compact, ǫ > 0. By Theorems 3.3 and 4.4, there exists c
depending on ǫ and K such that any ball centered in Σ ∩ K contains a ball B′,
r(B′) ≥ cr(B) contained in B such that every ball B” centered in Σ∩K and contained
in 1

2
B′ satisfies bβµ(B”) < ǫ. An application of Theorem [15.2] from [DT] gives the

result. �
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