WEIGHTED COMPLETE CONTINUITY FOR THE COMMUTATOR OF MARCINKIEWICZ INTEGRAL

Guoen Hu
Beijing Normal University Zhuhai, School of Applied Mathematics
Zhuhai 519087, P. R. China; guoenxx@163.com

Abstract

Let Ω be homogeneous of degree zero, have mean value zero and integrable on the unit sphere, and \mathcal{M}_{Ω} be the higher-dimensional Marcinkiewicz integral associated with Ω. In this paper, the author considers the complete continuity on weighted $L^{p}\left(\mathbf{R}^{n}\right)$ spaces with $A_{p}\left(\mathbf{R}^{n}\right)$ weights, weighted Morrey spaces with $A_{p}\left(\mathbf{R}^{n}\right)$ weights, for the commutator generated by $\operatorname{CMO}\left(\mathbf{R}^{n}\right)$ functions and \mathcal{M}_{Ω} when Ω satisfies certain size conditions.

1. Introduction

As an analogy of the classicial Littlewood-Paley g-function, Marcinkiewicz [30] introduced the operator

$$
\mathcal{M}(f)(x)=\left(\int_{0}^{\pi} \frac{|F(x+t)-F(x-t)-2 F(x)|^{2}}{t^{3}} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

where $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$. This operator is now called Marcinkiewicz integral. Zygmund [39] proved that \mathcal{M} is bounded on $L^{p}([0,2 \pi])$ for $p \in(1, \infty)$. Stein [33] generalized the Marcinkiewicz operator to the case of higher dimension. Let Ω be homogeneous of degree zero, integrable and have mean value zero on the unit sphere S^{n-1}. Define the Marcinkiewicz integral operator \mathcal{M}_{Ω} by

$$
\begin{equation*}
\mathcal{M}_{\Omega}(f)(x)=\left(\int_{0}^{\infty}\left|F_{\Omega, t} f(x)\right|^{2} \frac{\mathrm{~d} t}{t^{3}}\right)^{\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

where

$$
F_{\Omega, t} f(x)=\int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \mathrm{d} y
$$

for $f \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. Stein [33] proved that if $\Omega \in \operatorname{Lip}_{\alpha}\left(S^{n-1}\right)$ with $\alpha \in(0,1]$, then \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for $p \in(1,2]$. Benedek, Calderón and Panzon [6] showed that the $L^{p}\left(\mathbf{R}^{n}\right)$ boundedness $(p \in(1, \infty))$ of \mathcal{M}_{Ω} holds true under the condition that $\Omega \in C^{1}\left(S^{n-1}\right)$. Using the one-dimensional result and Riesz transforms similarly as in the case of singular integrals (see [8]) and interpolation, Walsh [37] proved that for each $p \in(1, \infty), \Omega \in L(\ln L)^{1 / r}(\ln \ln L)^{2\left(1-2 / r^{\prime}\right)}\left(S^{n-1}\right)$ is a sufficient condition such that \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$, where $r=\min \left\{p, p^{\prime}\right\}$ and $p^{\prime}=p /(p-1)$. Ding, Fan and Pan [18] proved that if $\Omega \in H^{1}\left(S^{n-1}\right)$ (the Hardy space on S^{n-1}), then \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for all $p \in(1, \infty)$; Al-Salmam, Al-Qassem, Cheng and Pan [3] proved that $\Omega \in L(\ln L)^{1 / 2}\left(S^{n-1}\right)$ is a sufficient condition such that \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for all $p \in(1, \infty)$. Ding, Fan and Pan [17] considered the boundedness

[^0]on weighted $L^{p}\left(\mathbf{R}^{n}\right)$ with $A_{p}\left(\mathbf{R}^{n}\right)$ when $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$, where and in the following, for $p \in[1, \infty), A_{p}\left(\mathbf{R}^{n}\right)$ denotes the weight function class of Muckenhoupt, see [24] for the definitions and properties of $A_{p}\left(\mathbf{R}^{n}\right)$. For other works about the operator defined by (1.1), see $[2,3,10,18,19,21]$ and the related references therein.

The commutator of \mathcal{M}_{Ω} is also of interest and has been considered by many authors (see $[35,26,20,9,25])$. Let $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$, the commutator generated by \mathcal{M}_{Ω} and b is defined by

$$
\begin{equation*}
\mathcal{M}_{\Omega, b} f(x)=\left(\int_{0}^{\infty}\left|\int_{|x-y| \leq t}(b(x)-b(y)) \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \mathrm{d} y\right|^{2} \frac{d t}{t^{3}}\right)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

Torchinsky and Wang [35] showed that if $\Omega \in \operatorname{Lip}_{\alpha}\left(S^{n-1}\right)(\alpha \in(0,1])$, then $\mathcal{M}_{\Omega, b}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ with bound $C\|b\|_{\mathrm{BMO}\left(\mathbf{R}^{n}\right)}$ for all $p \in(1, \infty)$. Hu and Yan [26] proved the $\Omega \in L(\ln L)^{3 / 2}\left(S^{n-1}\right)$ is a sufficient condition such that $\mathcal{M}_{\Omega, b}$ is bounded on L^{2}. Ding, Lu and Yabuta [20] considered the weighted estimates for $\mathcal{M}_{\Omega, b}$, and proved that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$, then for $p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$, or $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right), \mathcal{M}_{\Omega, b}$ is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$. Chen and Lu [9] improved the result in [26] and showed that if $\Omega \in L(\ln L)^{3 / 2}\left(S^{n-1}\right)$, then $\mathcal{M}_{\Omega, b}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ with bound $C\|b\|_{\operatorname{BMO}\left(\mathbf{R}^{n}\right)}$ for all $p \in(1, \infty)$.

Let $\operatorname{CMO}\left(\mathbf{R}^{n}\right)$ be the closure of $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ in the $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ topology, which coincide with $\operatorname{VMO}\left(\mathbf{R}^{n}\right)$, the space of functions of vanishing mean oscillation introduced by Coifman and Weiss [16], see also [7]. Uchiyama [36] proved that if T is a CalderónZygmund operator, and $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$, then the commutator of T defined by

$$
[b, T] f(x)=b(x) T f(x)-T(b f)(x),
$$

is a compact operator on $L^{p}\left(\mathbf{R}^{n}\right)(p \in(1, \infty))$ if and only if $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right)$. Chen and Ding [12] considered the compactness of $\mathcal{M}_{\Omega, b}$ on $L^{p}\left(\mathbf{R}^{n}\right)$, and proved that if Ω satisfies certain regularity condition of Dini type, then for $p \in(1, \infty), \mathcal{M}_{\Omega, b}$ is compact on $L^{p}\left(\mathbf{R}^{n}\right)$ if and only if $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right)$. Using the ideas from [11], Mao, Sawano and Wu [29] considered the compactness of $\mathcal{M}_{\Omega, b}$ when Ω satisfies the size condition that

$$
\begin{equation*}
\sup _{\zeta \in S^{n-1}} \int_{S^{n-1}}|\Omega(\eta)|\left(\ln \frac{1}{|\eta \cdot \zeta|}\right)^{\theta} \mathrm{d} \eta<\infty \tag{1.3}
\end{equation*}
$$

and proved that if Ω satisfies (1.3) for some $\theta \in(3 / 2, \infty)$, then for $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right)$ and $p \in(4 \theta /(4 \theta-3), 4 \theta / 3), \mathcal{M}_{\Omega, b}$ is compact on $L^{p}\left(\mathbf{R}^{n}\right)$. Our first purpose of this paper is to consider the complete continuity on weighted $L^{p}\left(\mathbf{R}^{n}\right)$ for $\mathcal{M}_{\Omega, b}$ when $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$. To formulate our main result, we first recall some definitions.

Definition 1.1. Let \mathcal{X} be a normed linear spaces and \mathcal{X}^{*} be its dual space, $\left\{x_{k}\right\} \subset \mathcal{X}$ and $x \in \mathcal{X}$, If for all $f \in \mathcal{X}^{*}$,

$$
\lim _{k \rightarrow \infty}\left|f\left(x_{k}\right)-f(x)\right|=0,
$$

then $\left\{x_{k}\right\}$ is said to converge to x weakly, or $x_{k} \rightharpoonup x$.
Definition 1.2. Let \mathcal{X}, \mathcal{Y} be two Banach spaces and S be a bounded operator from \mathcal{X} to \mathcal{Y}.
(i) If for each bounded set $\mathcal{G} \subset \mathcal{X}, S \mathcal{G}=\{S x: x \in \mathcal{G}\}$ is a strongly pre-compact set in \mathcal{Y}, then S is called a compact operator from \mathcal{X} to \mathcal{Y};
(ii) if for $\left\{x_{k}\right\} \subset \mathcal{X}$ and $x \in \mathcal{X}$,

$$
x_{k} \rightharpoonup x \text { in } \mathcal{X} \Longrightarrow\left\|S x_{k}-S x\right\|_{\mathcal{Y}} \rightarrow 0
$$

then S is said to be a completely continuous operator.
It is well known that, if \mathcal{X} is a reflexive space, and S is completely continuous from \mathcal{X} to \mathcal{Y}, then S is also compact from \mathcal{X} to \mathcal{Y}. On the other hand, if S is a linear compact operator from \mathcal{X} to \mathcal{Y}, then S is also a completely continuous operator. However, if S is not linear, then S is compact do not imply that S is completely continuous. For example, the operator

$$
S x=\|x\|_{l^{2}}
$$

is compact from l^{2} to \mathbf{R}, but not completely continuous.
Our first result in this paper can be stated as follows.
Theorem 1.3. Let Ω be homogeneous of degree zero, have mean value zero on S^{n-1} and $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$. Suppose that p and w satisfy one of the following conditions
(i) $p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$;
(ii) $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$;
(iii) $p \in(1, \infty)$ and $w^{q^{\prime}} \in A_{p}\left(\mathbf{R}^{n}\right)$.

Then for $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right), \mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p}\left(\mathbf{R}^{n}, w\right)$.
Our argument used in the proof of Theorem 1.3 also leads to the complete continuity of $\mathcal{M}_{\Omega, b}$ on weighted Morrey spaces.

Definition 1.4. Let $p \in(0, \infty), w$ be a weight and $\lambda \in(0,1)$. The weighted Morrey space $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$ is defined as

$$
L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbf{R}^{n}\right):\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\infty\right\}
$$

with

$$
\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}=\sup _{y \in \mathbf{R}^{n}, r>0}\left(\frac{1}{\{w(B(y, r))\}^{\lambda}} \int_{B(y, r)}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p},
$$

here $B(y, r)$ denotes the ball in \mathbf{R}^{n} centered at y and having radius r, and $w(B(y, r))=$ $\int_{B(y, r)} w(z) \mathrm{d} z$. For simplicity, we use $L^{p, \lambda}\left(\mathbf{R}^{n}\right)$ to denote $L^{p, \lambda}\left(\mathbf{R}^{n}, 1\right)$.

The Morrey space $L^{p, \lambda}\left(\mathbf{R}^{n}\right)$ was introduced by Morrey [17]. It is well-known that this space is closely related to some problems in PED (see [31, 32]), and has interest in harmonic analysis (see [1] and the references therein). Komori and Shiral [27] introduced the weighted Morrey spaces and considered the properties on weighted Morrey spaces for some classical operators. Chen, Ding and Wang [13] considered the compactness of $\mathcal{M}_{\Omega, b}$ on Morrey spaces. They proved that if $\lambda \in(0,1), \Omega \in L^{q}\left(S^{n-1}\right)$ for $q \in(1 /(1-\lambda), \infty]$ and satisfies a regularity condition of L^{q}-Dini type, then $\mathcal{M}_{\Omega, b}$ is compact on $L^{p, \lambda}\left(\mathbf{R}^{n}\right)$. Our second purpose of this paper is to prove the complete continuity of $\mathcal{M}_{\Omega, b}$ on weighted Morrey spaces with $A_{p}\left(\mathbf{R}^{n}\right)$ weights.

Theorem 1.5. Let Ω be homogeneous of degree zero, have mean value zero on S^{n-1} and $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$. Suppose that $p \in\left(q^{\prime}, \infty\right), \lambda \in(0,1)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$; or $p \in\left(1, q^{\prime}\right), w^{r} \in A_{1}\left(\mathbf{R}^{n}\right)$ for some $r \in\left(q^{\prime}, \infty\right)$ and $\lambda \in\left(0,1-r^{\prime} / q\right)$. Then for $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right), \mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$.

Remark 1.6. The proof of Theorems 1.3 involves some ideas used in [11] and a sufficient condition of strongly pre-compact set in $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$ with $w \in A_{p}\left(\mathbf{R}^{n}\right)$. To prove Theorem 1.5, we will establish a lemma which clarify the relationship of the bounds on $L^{p}\left(\mathbf{R}^{n}, w\right)$ and the bounds on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$ for a class of sublinear operators, see Lemma 4.1 below.

We make some conventions. In what follows, C always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leq C B$. For a set $E \subset \mathbf{R}^{n}, \chi_{E}$ denotes its characteristic function. Let M be the Hardy-Littlewood maximal operator. For $r \in(0, \infty)$, we use M_{r} to denote the operator $M_{r} f(x)=\left(M\left(|f|^{r}\right)(x)\right)^{1 / r}$. For a locally integrable function f, the sharp maximal function $M^{\sharp} f$ is defined by

$$
M^{\sharp} f(x)=\sup _{Q \ni x} \inf _{c \in \mathbf{C}} \frac{1}{|Q|} \int_{Q}|f(y)-c| \mathrm{d} y .
$$

2. Approximation

Let Ω be homogeneous of degree zero, integrable on S^{n-1}. For $t \in[1,2]$ and $j \in \mathbf{Z}$, set

$$
\begin{equation*}
K_{t}^{j}(x)=\frac{1}{2^{j}} \frac{\Omega(x)}{|x|^{n-1}} \chi_{\left\{2^{j-1} t<|x| \leq 2^{j} t\right\}}(x) . \tag{2.1}
\end{equation*}
$$

As it was proved in [23], if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$, then there exists a constant $\alpha \in(0,1)$ such that for $t \in[1,2]$ and $\xi \in \mathbf{R}^{n} \backslash\{0\}$,

$$
\begin{equation*}
\left|\widehat{K_{t}^{j}}(\xi)\right| \lesssim\|\Omega\|_{L^{q}\left(S^{n-1}\right)} \min \left\{1,\left|2^{j} \xi\right|^{-\alpha}\right\} . \tag{2.2}
\end{equation*}
$$

Here and in the following, for $h \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$, \widehat{h} denotes the Fourier transform of h. Moreover, if $\int_{S^{n-1}} \Omega\left(x^{\prime}\right) \mathrm{d} x^{\prime}=0$, then

$$
\begin{equation*}
\left|\widehat{K_{t}^{j}}(\xi)\right| \lesssim\|\Omega\|_{L^{1}\left(S^{n-1}\right)} \min \left\{1,\left|2^{j} \xi\right|\right\} . \tag{2.3}
\end{equation*}
$$

Let

$$
\widetilde{\mathcal{M}}_{\Omega} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

with

$$
F_{j} f(x, t)=\int_{\mathbf{R}^{n}} K_{t}^{j}(x-y) f(y) \mathrm{d} y
$$

For $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$, let $\widetilde{\mathcal{M}}_{\Omega, b}$ be the commutator of $\widetilde{\mathcal{M}}_{\Omega}$ defined by

$$
\widetilde{\mathcal{M}}_{\Omega, b} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j, b} f(x, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}
$$

with

$$
F_{j, b} f(x, t)=\int_{\mathbf{R}^{n}}(b(x)-b(y)) K_{t}^{j}(x-y) f(y) \mathrm{d} y .
$$

A trivial computation leads to that

$$
\begin{equation*}
\mathcal{M}_{\Omega} f(x) \approx \widetilde{\mathcal{M}}_{\Omega} f(x), \mathcal{M}_{\Omega, b} f(x) \approx \widetilde{\mathcal{M}}_{\Omega, b} f(x) \tag{2.4}
\end{equation*}
$$

Let $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ be a nonnegative function such that $\int_{\mathbf{R}^{n}} \phi(x) \mathrm{d} x=1, \operatorname{supp} \phi \subset$ $\{x:|x| \leq 1 / 4\}$. For $l \in \mathbf{Z}$, let $\phi_{l}(y)=2^{-n l} \phi\left(2^{-l} y\right)$. It is easy to verify that for any $\varsigma \in(0,1)$,

$$
\begin{equation*}
\left|\widehat{\phi}_{l}(\xi)-1\right| \lesssim \min \left\{1,\left|2^{l} \xi\right|^{\varsigma}\right\} . \tag{2.5}
\end{equation*}
$$

Let

$$
F_{j}^{l} f(x, t)=\int_{\mathbf{R}^{n}} K_{t}^{j} * \phi_{j-l}(x-y) f(y) \mathrm{d} y
$$

Define the operator $\widetilde{\mathcal{M}}_{\Omega}^{l}$ by

$$
\begin{equation*}
\widetilde{\mathcal{M}}_{\Omega}^{l} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \tag{2.6}
\end{equation*}
$$

This section is devoted to the approximation of $\widetilde{\mathcal{M}}_{\Omega}$ by $\widetilde{\mathcal{M}}_{\Omega}^{l}$. We will prove following theorem.

Theorem 2.1. Let Ω be homogeneous of degree zero and have mean value zero. Suppose that $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty], p$ and w are the same as in Theorem 1.3, then for $l \in \mathbf{N}$,

$$
\left\|\widetilde{\mathcal{M}}_{\Omega} f-\widetilde{\mathcal{M}}_{\Omega}^{l} f\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{-\varrho_{p} l}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

with $\varrho_{p} \in(0,1)$ a constant depending only on p, n and w.
To prove Theorem 2.1, we will use some lemmas.
Lemma 2.2. Let Ω be homogeneous of degree zero and belong to $L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty], K_{t}^{j}$ be defined as in (2.1). Then for $t \in[1,2], l \in \mathbf{N}, R>0$ and $y \in \mathbf{R}^{n}$ with $|y|<R / 4$,

$$
\sum_{j \in \mathbf{Z}} \sum_{k=1}^{\infty}\left(2^{k} R\right)^{\frac{n}{q^{\prime}}}\left(\int_{2^{k} R<|x| \leq 2^{k+1} R}\left|K_{t}^{j} * \phi_{j-l}(x+y)-K_{t}^{j} * \phi_{j-l}(x)\right|^{q} \mathrm{~d} x\right)^{\frac{1}{q}} \lesssim l
$$

For the proof of Lemma 2.2, see [38].
Lemma 2.3. Let Ω be homogeneous of degree zero and $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty], p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$. Then

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * f_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\left\|\left(\sum_{j \in \mathbf{Z}}\left|f_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{2.7}
\end{equation*}
$$

Proof. Let M_{Ω} be the maximal operator defined by

$$
\begin{equation*}
M_{\Omega} h(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|\Omega(x-y) h(y)| \mathrm{d} y . \tag{2.8}
\end{equation*}
$$

We know from the proof of Lemma 1 in [22] that for $p \in(1,2]$,

$$
\begin{equation*}
\left\|\left(\sum_{j \in \mathbf{Z}}\left|M_{\Omega} f_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\left\|\left(\sum_{j \in \mathbf{Z}}\left|f_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{2.9}
\end{equation*}
$$

provided that $p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$, or $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$. On the other hand, it is easy to verify that

$$
\left|K_{t}^{j} * \phi_{j-l} * f_{j}(x)\right| \lesssim M_{\Omega} M f_{j}(x) .
$$

The inequality (2.9), together with the weighted vector-valued inequality of M (see Theorem 3.1 in [5]), proves that (2.7) holds when $p \in(1,2], p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$, or $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$. This, via a standard duality argument, shows that (2.7) holds when $p \in(2, \infty), p \in(1, q)$ and $w^{-1 /(p-1)} \in$ $A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$.

Proof of Theorem 2.1. We employ the ideas used in [38]. By Fourier transform estimates (2.2) and (2.5), and Plancherel's theorem, we know that

$$
\begin{aligned}
\left\|\widetilde{\mathcal{M}}_{\Omega} f-\widetilde{\mathcal{M}}_{\Omega}^{l} f\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} & =\int_{1}^{2}\left\|\left(\sum_{j \in \mathbf{Z}}\left|F_{l} f(\cdot, t)-F_{j}^{l} f(\cdot, t)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} \mathrm{~d} t \\
& =\int_{1}^{2} \sum_{j \in \mathbf{Z}} \int_{\mathbf{R}^{n}}\left|\widehat{K_{t}^{j}}(\xi)\right|^{2}\left|1-\widehat{\phi_{j-l}}(\xi)\right|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \mathrm{~d} t \\
& \lesssim 2^{-\alpha l}\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} .
\end{aligned}
$$

Now let p and w be the same as in Theorem 1.3. Recall that \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$ and so is $\widetilde{\mathcal{M}}_{\Omega}$. Thus, by interpolation with changes of measures of Stein and Weiss [34], it suffices to prove that

$$
\begin{equation*}
\left\|\widetilde{\mathcal{M}}_{\Omega}^{l} f\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim l\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{2.10}
\end{equation*}
$$

We now prove (2.10) for the case $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$. Let $\psi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ be a radial function such that $\operatorname{supp} \psi \subset\{1 / 4 \leq|\xi| \leq 4\}$ and

$$
\sum_{i \in \mathbf{Z}} \psi\left(2^{-i} \xi\right)=1, \quad|\xi| \neq 0
$$

Define the multiplier operator S_{i} by

$$
\widehat{S_{i} f}(\xi)=\psi\left(2^{-i} \xi\right) \widehat{f}(\xi)
$$

Set

$$
\begin{aligned}
& \mathrm{E}_{1} f(x)=\sum_{m=-\infty}^{0}\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}, \\
& \mathrm{E}_{2} f(x)=\sum_{m=1}^{\infty}\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

It then follows that for $f \in \mathcal{S}\left(\mathbf{R}^{n}\right)$,

$$
\left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} * f(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq \sum_{i=1}^{2}\left\|\mathrm{E}_{i} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}
$$

We now estimate the term E_{1}. By Fourier transform estimate (2.3), we know that

$$
\begin{align*}
& \left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} \tag{2.11}\\
& =\int_{1}^{2} \int_{\mathbf{R}^{n}} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

$$
\lesssim \sum_{j \in \mathbf{Z}} \int_{\mathbf{R}^{n}}\left|2^{j} \xi\left\|\left.\psi\left(2^{-m+j} \xi\right)\right|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \leq 2^{2 m}\right\| f \|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2}\right.
$$

On the other hand, applying Minkowski's inequality, Lemma 2.3 and the weighted Littlewood-Paley theory, we have that

$$
\begin{align*}
& \left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}^{2} \tag{2.12}\\
& \leq \int_{1}^{2}\left(\int_{\mathbf{R}^{n}}\left(\sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2}\right)^{p / 2} w(x) \mathrm{d} x\right)^{2 / p} \mathrm{~d} t \\
& \leq\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}^{2}, \quad p \in[2, \infty) .
\end{align*}
$$

To estimate

$$
\left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

for $p \in(1,2)$, we consider the mapping \mathcal{F} defined by

$$
\mathcal{F}:\left\{h_{j}(x)\right\}_{j \in \mathbf{Z}} \longrightarrow\left\{K_{t}^{j} * \phi_{j-l} * h_{j}(x)\right\} .
$$

Note that for $t \in[1,2]$,

$$
\left|K_{t}^{j} * \phi_{j-l} * h_{j}(x)\right| \lesssim M M_{\Omega} h_{j}(x) .
$$

We choose $p_{0} \in(1, p)$ such that $w^{-1 /\left(p_{0}-1\right)} \in A_{p_{0}^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$. Then by the weighted estimates for M_{Ω} (see [22]), we have that

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} \int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * h_{j}(x)\right|^{p_{0}} \mathrm{~d} t w(x) \mathrm{d} x \lesssim \int_{\mathbf{R}^{n}} \sum_{j \in \mathbf{Z}}\left|h_{j}(x)\right|^{p_{0}} w(x) \mathrm{d} x . \tag{2.13}
\end{equation*}
$$

Also, we have that

$$
\sup _{j \in \mathbf{Z}} \sup _{t \in[1,2]}\left|K_{t}^{j} * \phi_{j-l} * h_{j}(x)\right| \lesssim \sup _{j \in \mathbf{Z}}\left|h_{j}(x)\right| .
$$

which implies that for $p_{1} \in(1, \infty)$,

$$
\begin{equation*}
\left\|\sup _{j \in \mathbf{Z}} \sup _{t \in[1,2]}\left|K_{t}^{j} * \phi_{j-l} * h_{j}\right|\right\|_{L^{p_{1}}\left(\mathbf{R}^{n}, w\right)} \lesssim\left\|\sup _{j \in \mathbf{Z}}\left|h_{j}\right|\right\|_{L^{p_{1}}\left(\mathbf{R}^{n}, w\right)} . \tag{2.14}
\end{equation*}
$$

By interpolation, we deduce from the inequalities (2.13) and (2.14) (with $p_{0} \in(1,2)$, $p_{1} \in(2, \infty)$ and $\left.1 / p=1 / 2+\left(2-p_{0}\right) /\left(2 p_{1}\right)\right)$ that

$$
\left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * h_{j}\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\left\|\left(\sum_{j \in \mathbf{Z}}\left|h_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

and so

$$
\begin{aligned}
\left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} & \lesssim\left\|\left(\sum_{j \in \mathbf{Z}}\left|S_{m-j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \\
& \lesssim\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right), \quad p \in(1,2)}
\end{aligned}
$$

This, along with (2.12), states that for $p \in(1, q)$,

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{2.15}
\end{equation*}
$$

Again by interpolating, the inequalities (2.11) and (2.15) give us that for $p \in(1, q)$,

$$
\left\|\left(\int_{1}^{2} \sum_{j}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{t_{p} m}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

with $t_{p} \in(0,1)$ a constant depending only on p. Therefore,

$$
\left\|\mathrm{E}_{1} f\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

We consider the term E_{2}. Again by Plancherel's theorem and the Fourier transform estimates (2.2) and (2.5), we have that

$$
\begin{align*}
& \left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} \tag{2.16}\\
& =\int_{1}^{2} \sum_{j \in \mathbf{Z}} \int_{\mathbf{R}^{n}}\left|\widehat{K_{t}^{j}}(\xi)\right|^{2}\left|\psi\left(2^{-m+j} \xi\right)\right|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \mathrm{~d} t \\
& \left.\lesssim \sum_{j \in \mathbf{Z}} \int_{\mathbf{R}^{n}}\left|2^{j} \xi\right|^{-2 \alpha}\left|2^{j-l} \xi\right|^{\alpha} \psi\left(2^{-m+j} \xi\right)\right|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi \lesssim 2^{-m \alpha}\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} .
\end{align*}
$$

As in the inequality (2.15), we have that

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{2.17}
\end{equation*}
$$

Interpolating the inequalities (2.16) and (2.17) then shows that

$$
\left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} *\left(S_{m-j} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{-t_{p} m}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

This gives the desired estimate for E_{2}. Combining the estimates for E_{1} and E_{2} then yields (2.10) for the case $p \in(1, q)$ and $w^{-1 /(p-1)} \in A_{p^{\prime} / q^{\prime}}\left(\mathbf{R}^{n}\right)$.

We now prove (2.10) for the case of $p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$. By a standard argument, it suffices to prove that

$$
\begin{equation*}
M^{\sharp}\left(\widetilde{\mathcal{M}}_{\Omega}^{l} f\right)(x) \lesssim l M_{q^{\prime}} f(x), \tag{2.18}
\end{equation*}
$$

To prove (2.18), let $x \in \mathbf{R}^{n}$ and Q be a cube containing x. Decompose f as

$$
f(y)=f(y) \chi_{4 n Q}(y)+f(y) \chi_{\mathbf{R}^{n} \backslash 4 n Q}(y)=: f_{1}(y)+f_{2}(y) .
$$

It is obvious that $\widetilde{\mathcal{M}}_{\Omega}^{l}$ is bounded on $L^{q^{\prime}}\left(\mathbf{R}^{n}\right)$. Thus,

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} \widetilde{\mathcal{M}}_{\Omega}^{l} f_{1}(y) \mathrm{d} y \lesssim\left(\frac{1}{|Q|} \int_{Q}\left\{\widetilde{\mathcal{M}}_{\Omega}^{l} f_{1}(y)\right\}^{q^{\prime}} \mathrm{d} y\right)^{1 / q^{\prime}} \lesssim M_{q^{\prime}} f(x) \tag{2.19}
\end{equation*}
$$

Let $x_{0} \in Q$ such that $\widetilde{\mathcal{M}}_{\Omega}^{l} f_{2}\left(x_{0}\right)<\infty$. For $y \in Q$ and $t \in[1,2]$, it follows from Lemma 2.2 that

$$
\begin{aligned}
& \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * f_{2}(y)-K_{t}^{j} * \phi_{j-l} * f_{2}\left(x_{0}\right)\right| \\
& \lesssim \sum_{j \in \mathbf{Z}} \sum_{k=2}^{\infty}\left(\int_{2^{k+1} n Q \backslash 2^{k} n Q}\left|K_{t}^{j} * \phi_{j-l}(y-z)-K_{t}^{j} * \phi_{j-l}\left(x_{0}-z\right)\right|^{q} \mathrm{~d} z\right)^{\frac{1}{q}} \\
& \quad \cdot\left(\int_{2^{k+1} n Q}|f(z)|^{q^{\prime}} \mathrm{d} z\right)^{\frac{1}{q^{\prime}}} \lesssim l M_{q^{\prime}} f(x)
\end{aligned}
$$

Thus, for all $y \in Q$,

$$
\begin{align*}
& \left|\widetilde{\mathcal{M}}_{\Omega}^{l} f_{2}(y)-\widetilde{\mathcal{M}}_{\Omega}^{l} f_{2}\left(y_{0}\right)\right| \tag{2.20}\\
& \lesssim\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * f_{2}(y)-K_{t}^{j} * \phi_{j-l} * f_{2}\left(x_{0}\right)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \lesssim\left(\int_{1}^{2}\left(\sum_{j \in \mathbf{Z}}\left|K_{t}^{j} * \phi_{j-l} * f_{2}(y)-K_{t}^{j} * \phi_{j-l} * f_{2}\left(x_{0}\right)\right|\right)^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \lesssim l M_{q^{\prime}} f(x)
\end{align*}
$$

Combining the estimates (2.19) and (2.20) leads to that

$$
\inf _{c \in \mathbf{C}} \frac{1}{|Q|} \int_{Q}\left|\widetilde{\mathcal{M}}_{\Omega}^{l} f(y)-c\right| \mathrm{d} y \lesssim l M_{q^{\prime}} f(x)
$$

and then establishes (2.18).
Finally, we see that (2.10) holds for the case of $p \in(1, \infty)$ and $w^{q^{\prime}} \in A_{p}\left(\mathbf{R}^{n}\right)$, if we invoke the interpolation argument used in the proof of Theorem 2 in [28]. This completes the proof of Theorem 2.1.

3. Proof of Theorem 1.3

We begin with some preliminary lemmas.
Lemma 3.1. Let Ω be homogeneous of degree zero and belong to $L^{1}\left(S^{n-1}\right), K_{t}^{j}$ be defined as in (2.1). Then for $l \in \mathbf{N}, t \in[1,2]$, $s \in(1, \infty]$, $j_{0} \in \mathbf{Z}_{-}$and $y \in \mathbf{R}^{n}$ with $|y|<2^{j_{0}-4}$,

$$
\sum_{j>j_{0}} \sum_{k \in \mathbf{Z}} 2^{k n / s}\left(\int_{2^{k}<|x| \leq 2^{k+1}}\left|K_{t}^{j} * \phi_{j-l}(x+y)-K_{t}^{j} * \phi_{j-l}(x)\right|^{s^{\prime}} \mathrm{d} x\right)^{\frac{1}{s^{\prime}}} \lesssim 2^{l(n+1)} 2^{-j_{0}}|y| .
$$

Proof. We follow the argument used in [38] (see also [11]), with suitable modification. Observe that supp $K_{t}^{j} * \phi_{j-l} \subset\left\{x \in \mathbf{R}^{n}: 2^{j-2} \leq|x| \leq 2^{j+2}\right\}$ and

$$
\left\|\phi_{j-l}(\cdot+y)-\phi_{j-l}(\cdot)\right\|_{L^{s^{\prime}}\left(\mathbf{R}^{n}\right)} \lesssim 2^{(l-j) n / s} 2^{l-j}|y|
$$

Thus, for all $k \in \mathbf{N}$,

$$
\begin{aligned}
& 2^{\frac{k n}{s}} \sum_{j \in \mathbf{Z}}\left(\int_{2^{k}<|x| \leq 2 k+1}\left|K_{t}^{j} * \phi_{j-l}(x+y)-K_{t}^{j} * \phi_{j-l}(x)\right|^{s^{\prime}} \mathrm{d} x\right)^{\frac{1}{s}} \\
& \lesssim 2^{\frac{k n}{s}} \sum_{j \in \mathbf{Z}:|j-k| \leq 3}\left\|K_{t}^{j}\right\|_{L^{1}\left(\mathbf{R}^{n}\right)}\left\|\phi_{j-l}(\cdot+y)-\phi_{j-l}(\cdot)\right\|_{L^{s^{\prime}}\left(\mathbf{R}^{n}\right)} \lesssim 2^{l(n+1)} \frac{|y|}{2^{k}} .
\end{aligned}
$$

This, in turn, leads to that

$$
\begin{aligned}
& \sum_{j>j_{0}} \sum_{k \in \mathbf{Z}} 2^{\frac{k n}{s}}\left(\int_{2^{k}<|x| \leq 2 k+1}\left|K_{t}^{j} * \phi_{j-l}(x+y)-K_{t}^{j} * \phi_{j-l}(x)\right|^{s^{\prime}} \mathrm{d} x\right)^{\frac{1}{s^{\prime}}} \\
& \lesssim \sum_{k>j_{0}-3} 2^{\frac{k n}{s}} \sum_{j \in \mathbf{Z}}\left(\int_{2^{k}<|x| \leq 2 k+1}\left|K_{t}^{j} * \phi_{j-l}(x+y)-K_{t}^{j} * \phi_{j-l}(x)\right|^{s^{\prime}} \mathrm{d} x\right)^{\frac{1}{s^{\prime}}} \\
& \lesssim 2^{l(n+1)} 2^{-j_{0}}|y|
\end{aligned}
$$

and completes the proof of Lemma 3.1.
For $t \in[1,2]$ and $j \in \mathbf{Z}$, let K_{t}^{j} be defined as in (2.1), ϕ and $\phi_{l}($ with $l \in \mathbf{N})$ be the same as in Section 2. For $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$, let $\widetilde{\mathcal{M}}_{\Omega, b}^{l}$ be the commutator of $\widetilde{\mathcal{M}}_{\Omega}^{l}$ defined by

$$
\widetilde{\mathcal{M}}_{\Omega, b}^{l} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}},
$$

with

$$
F_{j, b}^{l} f(x, t)=\int_{\mathbf{R}^{n}}(b(x)-b(y)) K_{t}^{j} * \phi_{j-l}(x-y) f(y) \mathrm{d} y .
$$

For $j_{0} \in \mathbf{Z}$, define the operator $\widetilde{\mathcal{M}}_{\Omega}^{l, j_{0}}$ by

$$
\widetilde{\mathcal{M}}_{\Omega}^{l, j_{0}} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}: j>j_{0}}\left|F_{j}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

and the commutator $\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}}$ by

$$
\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}} f(x)=\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}: j>j_{0}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

with $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$.
Lemma 3.2. Let Ω be homogeneous of degree zero and integrable on S^{n-1}. Then for $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), l \in \mathbf{N}, j_{0} \in \mathbf{Z}_{-}$,

$$
\left|\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}} f(x)-\widetilde{\mathcal{M}}_{\Omega, b}^{l} f(x)\right| \lesssim 2^{j_{0}} M M_{\Omega} f(x) .
$$

Proof. Let $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ with $\|\nabla b\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}=1$. For $t \in[1,2]$, by the fact that $\operatorname{supp} K_{t}^{j} * \phi_{j-l} \subset\left\{x: 2^{j-2} \leq|x| \leq 2^{j+2}\right\}$, it is easy to verify that

$$
\begin{aligned}
& \sum_{j \leq j_{0}} \int_{\mathbf{R}^{n}}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||x-y||f(y)| \mathrm{d} y \\
& \lesssim \sum_{j \leq j_{0}} \sum_{k \in \mathbf{Z}} 2^{k} \int_{2^{k}<|x-y| \leq 2^{k+1}}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||f(y)| \mathrm{d} y \\
& \lesssim \sum_{j \leq j_{0}} \sum_{|k-j| \leq 3} 2^{k} \int_{2^{k}<|x-y| \leq 2^{k+1}}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||f(y)| \mathrm{d} y \lesssim 2^{j_{0}} M_{\Omega} M f(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left|\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}} f(x)-\widetilde{\mathcal{M}}_{\Omega, b}^{l} f(x)\right|^{2} \\
& \leq \sum_{j \leq j_{0}} \int_{1}^{2}\left|\int_{\mathbf{R}^{n}}(b(x)-b(y)) K_{t}^{j} * \phi_{j-l}(x-y) f(y)\right|^{2} \mathrm{~d} t \\
& \lesssim \int_{1}^{2}\left(\sum_{j \leq j_{0}} \int_{\mathbf{R}^{n}}|x-y|\left|K_{t}^{j} * \phi_{j-l}(x-y) f(y)\right| \mathrm{d} y\right)^{2} \mathrm{~d} t \lesssim\left\{2^{j_{0}} M_{\Omega} M f(x)\right\}^{2}
\end{aligned}
$$

The desired conclusion now follows immediately.
Let $p, r \in[1, \infty), q \in[1, \infty]$ and w be a weight, $L^{p}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)$ be the space of sequences of functions defined by

$$
L^{p}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)=\left\{\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}}:\|\vec{f}\|_{L^{p}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)}<\infty\right\}
$$

with

$$
\|\vec{f}\|_{L^{p}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)}=\left\|\left(\int_{1}^{2}\left(\sum_{k \in \mathbf{Z}}\left|f_{k}(x, t)\right|^{r}\right)^{\frac{q}{r}} \mathrm{~d} t\right)^{1 / q}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

With usual addition and scalar multiplication, $L^{p}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)$ is a Banach space.

Lemma 3.3. Let $p \in(1, \infty)$ and $w \in A_{p}\left(\mathbf{R}^{n}\right), \mathcal{G} \subset L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. Suppose that \mathcal{G} satisfies the following five conditions:
(a) \mathcal{G} is bounded, that is, there exists a constant C such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in$ $\mathcal{G},\|\vec{f}\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \leq C ;$
(b) for each fixed $\epsilon>0$, there exists a constant $A>0$, such that for all $\vec{f}=$ $\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\left(\int_{1}^{2} \sum_{k \in \mathbf{Z}}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{\{|\cdot|>A\}}(\cdot)\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon ;
$$

(c) for each fixed $\epsilon>0$ and $N \in \mathbf{N}$, there exists a constant $\varrho>0$, such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\sup _{|h| \leq \varrho}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-f_{k}(x+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon ;
$$

(d) for each fixed $\epsilon>0$ and $N \in \mathbf{N}$, there exists a constant $\sigma \in(0,1 / 2)$ such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t+s)-f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

(e) for each fixed $D>0$ and $\epsilon>0$, there exists $N \in \mathbf{N}$ such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

Then \mathcal{G} is a strongly pre-compact set in $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$.
Proof. We employ the argument used in the proof of [14, Theorem 5], with some refined modifications. Our goal is to prove that, for each fixed $\epsilon>0$, there exists a $\delta=\delta_{\epsilon}>0$ and a mapping Φ_{ϵ} on $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$, such that $\Phi_{\epsilon}(\mathcal{G})=\left\{\Phi_{\epsilon}(\vec{f})\right.$: $\vec{f} \in \mathcal{G}\}$ is a strong pre-compact set in the space $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$, and for any $\vec{f}, \vec{g} \in \mathcal{G}$,

$$
\begin{equation*}
\left\|\Phi_{\epsilon}(\vec{f})-\Phi_{\epsilon}(\vec{g})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}<\delta \Longrightarrow\|\vec{f}-\vec{g}\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}<8 \epsilon \tag{3.1}
\end{equation*}
$$

If we can prove this, then by Lemma 6 in [14], we see that \mathcal{G} is a strongly pre-compact set in $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$.

Now let $\epsilon>0$. We choose $A>1$ large enough as in assumption (b), $N \in \mathbf{N}$ such that for all $\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \chi_{B(0,2 A)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

Let $\varrho \in(0,1 / 2)$ small enough as in assumption (c) and $\sigma \in(0,1 / 2)$ small enough such that (d) holds true. Let Q be the largest cube centered at the origin such that $2 Q \subset B(0, \varrho), Q_{1}, \ldots, Q_{J}$ be J copies of Q such that they are non-overlapping, and $\overline{B(0, A)} \subset \overline{\bigcup_{j=1}^{J} Q_{j}} \subset B(0,2 A)$. Let $I_{1}, \ldots, I_{L} \subset[1,2]$ be non-overlapping intervals with same length $|I|$, such that $|s-t| \leq \sigma$ for all $s, t \in I_{j}(j=1, \ldots, L)$ and $\bigcup_{j=1}^{L} I_{j}=[1,2]$. Define the mapping Φ_{ϵ} on $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$ by

$$
\begin{aligned}
& \Phi_{\epsilon}(\vec{f})(x, t)=\left\{\ldots, 0, \ldots, 0, \sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{-N}\right) \chi_{Q_{i} \times I_{j}}(x, t),\right. \\
& \left.\quad \sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{-N+1}\right) \chi_{Q_{i} \times I_{j}}(x, t), \ldots, \sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{N}\right) \chi_{Q_{i} \times I_{j}}(x, t), 0, \ldots\right\},
\end{aligned}
$$

where and in the following,

$$
m_{Q_{i} \times I_{j}}\left(f_{k}\right)=\frac{1}{\left|Q_{i}\right|} \frac{1}{\left|I_{j}\right|} \int_{Q_{i} \times I_{j}} f_{k}(x, t) \mathrm{d} x \mathrm{~d} t
$$

We claim that Φ_{ϵ} is bounded on $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. In fact, if $p \in[2, \infty)$, we have by Hölder's inequality that

$$
\left|m_{Q_{i} \times I_{j}}\left(f_{k}\right)\right| \leq\left(\frac{1}{\left|Q_{i}\right|\left|I_{j}\right|} \int_{I_{j} \times Q_{i}}\left|f_{k}(y, t)\right|^{p} w(y) \mathrm{d} y \mathrm{~d} t\right)^{\frac{1}{p}}\left(\frac{1}{\left|Q_{i}\right|} \int_{Q_{i}} w^{-\frac{1}{p-1}}(y) \mathrm{d} y\right)^{\frac{1}{p^{\prime}}}
$$

and

$$
\begin{aligned}
& \sum_{|k| \leq N}\left(\frac{1}{\left|Q_{i}\right|\left|I_{j}\right|} \int_{I_{j}} \int_{Q_{i}}\left|f_{k}(y, t)\right|^{p} w(y) \mathrm{d} y \mathrm{~d} t\right)^{2 / p} \\
& \lesssim N^{1-2 / p}\left(\sum_{|k| \leq N} \frac{1}{\left|Q_{i}\right|\left|I_{j}\right|} \int_{I_{j} \times Q_{i}}\left|f_{k}(y, t)\right|^{p} w(y) \mathrm{d} y \mathrm{~d} t\right)^{2 / p} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}^{p} & =\sum_{i=1}^{J} \sum_{j=1}^{L} \int_{I_{j}} \int_{Q_{i}}\left(\sum_{|k| \leq N}\left|m_{Q_{i} \times I_{j}}\left(f_{k}\right)\right|^{2}\right)^{p / 2} w(x) \mathrm{d} x \mathrm{~d} t \\
& \lesssim N^{p / 2-1} \sum_{i=1}^{J} \sum_{j=1}^{L} \int_{I_{j}} \int_{Q_{i}} \sum_{|k| \leq N}\left|f_{k}(y, t)\right|^{p} w(y) \mathrm{d} y \mathrm{~d} t \\
& \leq N^{p / 2} \sum_{i=1}^{J} \sum_{j=1}^{L} \int_{I_{j}} \int_{Q_{i}}\left\{\sum_{|k| \leq N}\left|f_{k}(y, t)\right|^{2}\right\}^{\frac{p}{2}} w(y) \mathrm{d} y \mathrm{~d} t \\
& \leq N^{p / 2}\|\vec{f}\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right) .}^{p}
\end{aligned}
$$

On the other hand, for $p \in(1,2)$ and $w \in A_{p}\left(\mathbf{R}^{n}\right)$, we choose $\gamma \in(0,1)$ such that $w \in A_{p-\gamma}\left(\mathbf{R}^{n}\right)$. Note that

$$
\sup _{-N \leq k \leq N} \sup _{t \in[1,2]}\left|\sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{k}\right) \chi_{Q_{i} \times I_{j}}(x, t)\right| \lesssim \sup _{k \in \mathbf{Z}} \sup _{t \in[1,2]}\left|f_{k}(x, t)\right|,
$$

which implies that for $p_{1} \in(1, \infty)$,

$$
\begin{equation*}
\left\|\Phi_{\epsilon}(\vec{f})\right\|_{L^{p_{1}}\left(L^{\infty}([1,2]), l^{\infty} ; \mathbf{R}^{n}, w\right)} \lesssim\|\vec{f}\|_{L^{p_{1}}\left(L^{\infty}([1,2]), l^{\infty} ; \mathbf{R}^{n}, w\right)} . \tag{3.2}
\end{equation*}
$$

We also have that for $p_{0}=p-\gamma$,
$\left|m_{Q_{i} \times I_{j}}\left(f_{k}\right)\right| \leq\left(\frac{1}{\left|Q_{i}\right|\left|I_{j}\right|} \int_{I_{j}} \int_{Q_{i}}\left|f_{k}(y, t)\right|^{p_{0}} w(y) \mathrm{d} y \mathrm{~d} t\right)^{\frac{1}{p_{0}}}\left(\frac{1}{\left|Q_{i}\right|} \int_{Q_{i}} w^{-\frac{1}{p_{0}-1}}(y) \mathrm{d} y\right)^{\frac{1}{p_{0}}}$, and so

$$
\begin{equation*}
\left\|\Phi_{\epsilon}(\vec{f})\right\|_{L^{p_{0}}\left(L^{p_{0}}([1,2]), l^{p_{0}} ; \mathbf{R}^{n}, w\right)} \lesssim\|\vec{f}\|_{L^{p_{0}}\left(L^{p_{0}}([1,2]), l^{p_{0}} ; \mathbf{R}^{n}, w\right)} . \tag{3.3}
\end{equation*}
$$

By interpolation, we can deduce from (3.2) and (3.3) that in this case

$$
\left\|\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \lesssim\|\vec{f}\|_{L^{p}\left(L^{2}([0,1]), l^{2}, \mathbf{R}^{n}, w\right)} .
$$

Our claim then follows directly, and so $\Phi_{\epsilon}(\mathcal{G})=\left\{\Phi_{\epsilon}(\vec{f}): \vec{f} \in \mathcal{G}\right\}$ is strongly precompact in $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$.

We now verify (3.1). Denote $\mathcal{D}=\bigcup_{i=1}^{J} Q_{i}$ and write

$$
\begin{aligned}
& \left\|\vec{f} \chi_{\mathcal{D}}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \\
& \leq\left\|\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t) \chi_{\mathcal{D}}-\sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{k}\right) \chi_{Q_{i} \times I_{j}}(x, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \\
& \quad+\left\|\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(\cdot, t)\right|^{2}\right)^{\frac{1}{2}} \chi_{B(0,2 A)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
\end{aligned}
$$

Noting that for $x \in Q_{i}$ with $1 \leq i \leq J$,

$$
\begin{aligned}
& \left\{\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t) \chi_{\mathcal{D}}(x)-\sum_{u=1}^{J} \sum_{v=1}^{L} m_{Q_{u} \times I_{v}}\left(f_{k}\right) \chi_{Q_{u} \times I_{v}}(x, t)\right|^{2} \mathrm{~d} t\right\}^{\frac{1}{2}} \\
& \lesssim|Q|^{-1 / 2}|I|^{-1 / 2}\left\{\sum_{j=1}^{L} \int_{I_{j}} \int_{Q_{i}} \int_{I_{j}} \sum_{|k| \leq N}\left|f_{k}(x, t)-f_{k}(y, s)\right|^{2} \mathrm{~d} y \mathrm{~d} s \mathrm{~d} t\right\}^{\frac{1}{2}} \\
& \lesssim|Q|^{-1 / 2}\left\{\int_{2 Q} \int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, s)-f_{k}(x+h, s)\right|^{2} \mathrm{~d} s \mathrm{~d} h\right\}^{\frac{1}{2}} \\
& \quad+|I|^{-1 / 2}\left\{\sum_{j=1}^{L} \int_{I_{j}} \int_{I_{j}} \sum_{|k| \leq N}\left|f_{k}(x, t)-f_{k}(x, s)\right|^{2} \mathrm{~d} t \mathrm{~d} s\right\}^{\frac{1}{2}} \\
& \lesssim \sup _{|h| \leq \varrho}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-f_{k}(x+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \quad+\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t+s)-f_{k}(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

we then get that

$$
\sum_{i=1}^{J} \int_{Q_{i}}\left\{\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-\sum_{l=1}^{J} m_{Q_{l}}\left(f_{k}\right) \chi_{Q_{l}}(x)\right|^{2} \mathrm{~d} t\right\}^{p / 2} w(x) \mathrm{d} x \lesssim 2 \epsilon
$$

It then follows from the assumption (b) that for all $\vec{f} \in \mathcal{G}$,

$$
\begin{aligned}
\left\|\vec{f}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \leq & \left\|\vec{f} \chi_{\mathcal{D}}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \\
& +\left\|\left(\int_{1}^{2} \sum_{k \in \mathbf{Z}}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{\{|| |>A\}}(\cdot)\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \\
& <3 \epsilon
\end{aligned}
$$

Noting that

$$
\begin{aligned}
\|\vec{f}-\vec{g}\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \leq & \left\|\vec{f}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \\
& +\left\|\Phi_{\epsilon}(\vec{f})-\Phi_{\epsilon}(\vec{g})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \\
& +\left\|\vec{g}-\Phi_{\epsilon}(\vec{g})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}
\end{aligned}
$$

we then get (3.1) and finish the proof of Lemma 3.3.
Proof of Theorem 1.3. Let $j_{0} \in \mathbf{Z}_{-}, b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ with $\operatorname{supp} b \subset B(0, R), p$ and w be the same as in Theorem 1.3. Without loss of generality, we may assume that $\|b\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}+\|\nabla b\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}=1$. We claim that
(i) for each fixed $\epsilon>0$, there exists a constant $A>0$ such that

$$
\left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \chi_{\{||\cdot|>A\}}(\cdot)\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} ;
$$

(ii) for $s \in(1, \infty)$,

$$
\begin{align*}
& \left(\int_{1}^{2} \sum_{j>j_{0}}\left|F_{j, b}^{l} f(x, t)-F_{j, b}^{l} f(x+h, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \tag{3.4}\\
& \lesssim 2^{-j_{0}}|h|\left(\widetilde{\mathcal{M}}_{\Omega}^{l, j_{0}} f(x)+2^{l(n+1)} M_{s} f(x)\right)
\end{align*}
$$

(iii) for each $\epsilon>0$ and $N \in \mathbf{N}$, there exists a constant $\sigma \in(0,1 / 2)$ such that

$$
\begin{equation*}
\left\|\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|j| \leq N}\left|F_{j, b}^{l} f(x, s+t)-F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{3.5}
\end{equation*}
$$

(iv) for each fixed $D>0$ and $\epsilon>0$, there exists $N \in \mathbf{N}$ such that

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j>N}\left|F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \chi_{B(0, D)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} . \tag{3.6}
\end{equation*}
$$

We now prove claim (i). Let $t \in[1,2]$. For each fixed $x \in \mathbf{R}^{n}$ with $|x|>4 R$, observe that $\operatorname{supp} K_{t}^{j} * \phi_{j-l} \subset\left\{2^{j-2} \leq|y| \leq 2^{j+2}\right\}$, and $\int_{|z|<R}\left|K_{t}^{j} * \phi_{j-l}(x-z)\right| \mathrm{d} z \neq 0$ only if $2^{j} \approx|x|$. A trivial computation shows that

$$
\begin{aligned}
\int_{|z|<R}\left|K_{t}^{j} * \phi_{j-l}(x-z)\right| \mathrm{d} z & \lesssim\left(\int_{|z|<R}\left|K_{t}^{j} * \phi_{j-l}(x-z)\right|^{2} \mathrm{~d} z\right)^{\frac{1}{2}} R^{\frac{n}{2}} \\
& \lesssim\left(\int_{\frac{|x|}{2} \leq|z|<2|x|}\left|K_{t}^{j} * \phi_{j-l}(z)\right|^{2} \mathrm{~d} z\right)^{\frac{1}{2}} R^{\frac{n}{2}} \\
& \lesssim\left\|K_{t}^{j}\right\|_{L^{1}\left(S^{n-1}\right)}\left\|\phi_{j-l}\right\|_{L^{2}\left(\mathbf{R}^{n}\right)} R^{\frac{n}{2}} \\
& \lesssim 2^{n l / 2}|x|^{-\frac{n}{2}} R^{\frac{n}{2}}
\end{aligned}
$$

On the other hand, we have that for $s \in(1, p)$,

$$
\begin{aligned}
& \sum_{j \in \mathbf{Z}}\left(\int_{|y|<R}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||f(y)|^{s} \mathrm{~d} y\right)^{\frac{1}{s}} \\
& =\sum_{j \in \mathbf{Z}: 2^{j} \approx|x|}\left(\int_{|x| / 2 \leq|y-x| \leq 2|x|}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||f(y)|^{s} \mathrm{~d} y\right)^{\frac{1}{s}} \\
& \lesssim\left(M_{\Omega} M\left(|f|^{s}\right)(x)\right)^{1 / s} .
\end{aligned}
$$

Another application of Hölder's inequality then yields

$$
\begin{align*}
\sum_{j \in \mathbf{Z}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \lesssim & \sum_{j \in \mathbf{Z}}\left(\int_{|y|<R}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right||f(y)|^{s} \mathrm{~d} y\right)^{2 / s} \tag{3.7}\\
& \cdot\left(\int_{|y|<R}\left|K_{t}^{j} * \phi_{j-l}(x-y)\right| \mathrm{d} y\right)^{2 / s^{\prime}} \\
\lesssim & 2^{\frac{n}{s^{\prime}}}|x|^{-\frac{n}{s^{\prime}}} R^{\frac{n}{s^{\prime}}}\left(M_{\Omega} M\left(|f|^{s}\right)(x)\right)^{2 / s}
\end{align*}
$$

This, in turn leads to our claim (i).
We turn our attention to claim (ii). Write

$$
\left|F_{j, b}^{l} f(x, t)-F_{j, b}^{l} f(x+h, t)\right| \leq|b(x)-b(x+h)|\left|F_{j}^{l} f(x, t)\right|+J_{j}^{l} f(x, t)
$$

with
$\mathrm{J}_{j}^{l} f(x, t)=\left|\int_{\mathbf{R}^{n}}\left(K_{t}^{j} * \phi_{j-l}(x-y)-K_{t}^{j} * \phi_{j-l}(x+h-y)\right)(b(x+h)-b(y)) f(y) \mathrm{d} y\right|$.
It follows from Hölder's inequality and Lemma 3.1 that

$$
\begin{aligned}
\left(\sum_{j>j_{0}}\left|J_{j}^{l} f(x, t)\right|^{2}\right)^{\frac{1}{2}} \lesssim & \sum_{j>j_{0}} \int_{\mathbf{R}^{n}}\left|K_{t}^{j} * \phi_{j-l}(x-y)-K_{t}^{j} * \phi_{j-l}(x+h-y)\right||f(y)| \mathrm{d} y \\
\lesssim & \sum_{j>j_{0}} \sum_{k \in \mathbf{Z}}\left(\int_{2^{k}<|x-y| \leq 2^{k+1}} \mid K_{t}^{j} * \phi_{j-l}(x-y)\right. \\
& \left.-\left.K_{t}^{j} * \phi_{j-l}(x+h-y)\right|^{s^{\prime}} r m d y\right)^{\frac{1}{s^{\prime}}}\left(\int_{|x-y| \leq 2^{k+1}}|f(y)|^{s} \mathrm{~d} y\right)^{\frac{1}{s}} \\
\lesssim & 2^{l(n+1)}|h| 2^{-j_{0}} M_{s} f(x) .
\end{aligned}
$$

Therefore,

$$
\left(\int_{1}^{2} \sum_{j>j_{0}}\left|F_{j, b}^{l} f(x, t)-F_{j, b}^{l} f(x+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \lesssim|h| \widetilde{\mathcal{M}}_{\Omega}^{l, j_{0}} f(x)+2^{l(n+1)} 2^{-j_{0}}|h| M_{s} f(x)
$$

We now verify claim (iii). For each fixed $\sigma \in(0,1 / 2)$ and $t \in[1,2]$, let

$$
U_{t, \sigma}^{j}(z)=\frac{1}{2^{j}} \frac{|\Omega(z)|}{|z|^{n-1}} \chi_{\left\{2^{j}(t-\sigma) \leq|z| \leq 2^{j} t\right\}}+\frac{1}{2^{j}} \frac{|\Omega(z)|}{|z|^{n-1}} \chi_{\left\{2^{j+1} t \leq|z| \leq 2^{j+1}(t+\sigma)\right\}},
$$

and

$$
G_{l, t, \sigma}^{j} f(x)=\int_{\mathbf{R}^{n}}\left(U_{t, \sigma}^{j} *\left|\phi_{j-l}\right|\right)(x-y)|f(y)| \mathrm{d} y
$$

Note that for $t \in[1,2]$,

$$
\left\|U_{t, \sigma}^{j} *\left|\phi_{j-l}\right|\right\|_{L^{1}\left(\mathbf{R}^{n}\right)} \lesssim \sigma, \quad \sup _{|j| \leq N} \sup _{t \in[1,2]}\left|G_{l, t, \sigma}^{j} f(x)\right| \lesssim M M_{\Omega} f(x)
$$

Thus,

$$
\begin{equation*}
\left\|\sup _{|j| \leq N} \sup _{t \in[1,2]}\left|G_{l, t, \sigma}^{j} f\right|\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \lesssim \sigma\|f\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}, \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sup _{|j| \leq N} \sup _{t \in[1,2]}\left|G_{l, t, \sigma}^{j} f\right|\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\left\|M M_{\Omega} f\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} . \tag{3.9}
\end{equation*}
$$

Interpolating the estimates (3.8) and (3.9) shows that if $p_{1} \in(p, \infty)$,

$$
\begin{equation*}
\left\|\sup _{|j| \leq N} \sup _{t \in[1,2]}\left|G_{l, t, \sigma}^{j} f\right|\right\|_{L^{p_{1}\left(\mathbf{R}^{n}, w\right)}} \lesssim \sigma^{1-p / p_{1}}\|f\|_{L^{p_{1}}\left(\mathbf{R}^{n}, w\right)} . \tag{3.10}
\end{equation*}
$$

On the other hand, if $p_{0} \in(1, p)$, it then follows from the weighted estimae M and M_{Ω} that

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} \int_{1}^{2} \sum_{|j| \leq N}\left|G_{l, t, \sigma}^{j} f(x)\right|^{p_{0}} \mathrm{~d} t w(x) \mathrm{d} x \lesssim N\|f\|_{L^{p_{0}}\left(\mathbf{R}^{n}, w\right)}^{p_{0}} . \tag{3.11}
\end{equation*}
$$

Choosing $p_{1} \in(2, \infty)$ such that $1 / p=1 / 2+\left(2-p_{0}\right) /\left(2 p_{1}\right)$ in (3.10), we get from (3.10) and (3.11) that for $p \in(1,2)$,

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{|j| \leq N}\left|G_{l, t, \sigma}^{j} f(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim N \sigma^{\tau_{1}}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} . \tag{3.12}
\end{equation*}
$$

with $\tau_{1} \in(0,1)$ a constant. If $p \in[2, \infty)$, we obtain from Minkowski's inequality and Young's inequality that

$$
\begin{align*}
& \left\|\left(\int_{1}^{2} \sum_{|j| \leq N}\left|G_{l, t, \sigma}^{j} f(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}^{2} \tag{3.13}\\
& \lesssim\left\{\int_{\mathbf{R}^{n}}\left(\int_{1}^{2}\left(\sum_{|j| \leq N} \int_{\mathbf{R}^{n}}\left(U_{l, t, \sigma}^{j} *\left|\phi_{j-l}\right|\right)(x-y)|f(y)| \mathrm{d} y\right)^{2} \mathrm{~d} t\right)^{\frac{p}{2}} w(x) \mathrm{d} x\right\}^{\frac{2}{p}} \\
& \lesssim \int_{1}^{2}\left\{\sum_{|j| \leq N}\left(\int_{\mathbf{R}^{n}}\left(\int_{\mathbf{R}^{n}}\left(U_{l, t, \sigma}^{j} *\left|\phi_{j-l}\right|\right)(x-y)|f(y)| \mathrm{d} y\right)^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}\right\}^{2} \mathrm{~d} t \\
& \lesssim N^{2}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}^{2} .
\end{align*}
$$

Also, we have that

$$
\begin{align*}
& \left\{\int_{\mathbf{R}^{n}}\left(\int_{1}^{2} \sum_{|j| \leq N}\left(\int_{\mathbf{R}^{n}}\left(U_{l, t, \sigma}^{j} *\left|\phi_{j-l}\right|\right)(x-y)|f(y)| \mathrm{d} y\right)^{2} \mathrm{~d} t\right)^{\frac{p}{2}} \mathrm{~d} x\right\}^{\frac{2}{p}} \tag{3.14}\\
& \lesssim \int_{1}^{2}\left\{\sum_{|j| \leq N}\left\|U_{l, t, \sigma}^{j} *\left|\phi_{j-l}\right| *|f|\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}\right\}^{2} \mathrm{~d} t \\
& \lesssim(2 N \sigma)^{2}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)}^{2}, \quad p \in[2, \infty)
\end{align*}
$$

The inequalities (3.13) and (3.14), via interpolation with changes of measures, give us that for $p \in[2, \infty)$,

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{|j| \leq N}\left|G_{l, t, \sigma}^{j} f(x)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim N \sigma^{\tau_{2}}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}, \tag{3.15}
\end{equation*}
$$

with $\tau_{2} \in(0,1)$ a constant. Since

$$
\sup _{|s| \leq \sigma}\left|F_{j, b}^{l} f(x, t)-F_{j, b}^{l} f(x, t+s)\right| \leq G_{l, t, \sigma}^{j} f(x),
$$

our claim (iii) now follow from (3.12) and (3.15) immediately if we choose $\sigma=\epsilon /(2 N)$.
It remains to prove (iv). Let $D>0$ and $N \in \mathbf{N}$ such that $2^{N-2}>D$. Then for $j>N$ and $x \in \mathbf{R}^{n}$ with $|x| \leq D$,

$$
\begin{aligned}
\int_{\mathbf{R}^{n}}\left|K_{t}^{j} * \phi_{j-l}(x-y) f(y)\right| \mathrm{d} y & \leq \int_{\mathbf{R}^{n}}\left|K_{t}^{j} * \phi_{j-l}(x-y) f(y)\right| \chi_{\left\{|y| \leq 2^{j+3}\right\}}(y) \mathrm{d} y \\
& \lesssim \int_{|y| \leq 2^{j+3}}|f(y)| \mathrm{d} y\left\|K_{t}^{j}\right\|_{L^{1}\left(\mathbf{R}^{n}\right)}\left\|\phi_{j-l}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \\
& \lesssim 2^{n l} 2^{-n j / p}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j>N}\left|F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} \lesssim 2^{n l}\left(\frac{D}{2^{N}}\right)^{n / p}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \tag{3.16}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j>N}\left|F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim l\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \tag{3.17}
\end{equation*}
$$

Interpolating the inequalities (3.16) and (3.17) yields

$$
\left\|\left(\int_{1}^{2} \sum_{j>N}\left|F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{\tau_{3} n l}\left(\frac{D}{2^{N}}\right)^{\frac{\tau_{3} n}{p}}\|f\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}
$$

with $\tau_{3} \in(0,1)$ a constant depending only on w. The claim (iv) now follows directly.
We can now conclude the proof of Theorem 1.3. Let $p \in(1, \infty)$. Note that

$$
\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}} f(x) \leq \widetilde{\mathcal{M}}_{\Omega, b}^{l} f(x)
$$

and so $\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}}$ is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$. Our claims (i)-(iv), via Lemma 3.3, prove that for $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), l \in \mathbf{N}$ and $j_{0} \in \mathbf{Z}_{-}$, the operator $\mathcal{F}_{j_{0}}^{l}$ defined by

$$
\begin{equation*}
\mathcal{F}_{j_{0}}^{l}: f(x) \rightarrow\left\{\ldots, 0, \ldots, F_{j_{0}, b}^{l} f(x, t), F_{j_{0}+1, b}^{l} f(x, t), \ldots\right\} \tag{3.18}
\end{equation*}
$$

is compact from $L^{p}\left(\mathbf{R}^{n}, w\right)$ to $L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. Thus, $\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}}$ is completely continuous on $L^{p}\left(\mathbf{R}^{n}, w\right)$. This, via Lemma 3.2 and Theorem 2.1, shows that for $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), \widetilde{\mathcal{M}}_{\Omega, b}$ is completely continuous on $L^{p}\left(\mathbf{R}^{n}, w\right)$. Note that

$$
\left|\mathcal{M}_{\Omega, b} f_{k}(x)-\mathcal{M}_{\Omega, b} f(x)\right| \lesssim \mathcal{M}_{\Omega, b}\left(f_{k}-f\right)(x) \lesssim \widetilde{\mathcal{M}}_{\Omega, b}\left(f_{k}-f\right)(x)
$$

Thus, for $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), \mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p}\left(\mathbf{R}^{n}, w\right)$. Recalling that $\mathcal{M}_{\Omega, b}$ is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$ with bound $C\|b\|_{\operatorname{BMO}\left(\mathbf{R}^{n}\right)}$, we obtain that for $b \in \operatorname{CMO}\left(\mathbf{R}^{n}\right), \mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p}\left(\mathbf{R}^{n}, w\right)$.

4. Proof of Theorem 1.5

The following lemma will be useful in the proof of Theorem 1.5, and is of independent interest.

Lemma 4.1. Let $u \in(1, \infty), m \in \mathbf{N} \cup\{0\}, S$ be a sublinear operator which satisfies that

$$
|S f(x)| \leq \int_{\mathbf{R}^{n}}|b(x)-b(y)|^{m}|W(x-y) f(y)| \mathrm{d} y
$$

with $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$, and

$$
\begin{equation*}
\sup _{R>0} R^{n / u}\left(\int_{R \leq|x| \leq 2 R}|W(x)|^{u^{\prime}} \mathrm{d} x\right)^{1 / u^{\prime}} \lesssim 1 \tag{4.1}
\end{equation*}
$$

(a) Let $p \in(u, \infty), \lambda \in(0,1)$ and $w \in A_{p / u}\left(\mathbf{R}^{n}\right)$. If S is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$ with bound $D\|b\|_{\mathrm{BMO}\left(\mathbf{R}^{n}\right)}^{m}$, then for some $\varepsilon \in(0,1)$,

$$
\|S f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \lesssim\left(D+D^{\varepsilon}\right)\|b\|_{\mathrm{BMO}\left(\mathbf{R}^{n}\right)}^{m}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} .
$$

(b) Let $p \in(1, u), w^{r} \in A_{1}\left(\mathbf{R}^{n}\right)$ for some $r \in(u, \infty)$ and $\lambda \in\left(0,1-r^{\prime} / u^{\prime}\right)$. If S is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$ with bound D, then for some $\varepsilon \in(0,1)$,

$$
\|S f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}\right)} \lesssim\left(D+D^{\varepsilon}\right)\|b\|_{\mathrm{BMO}\left(\mathbf{R}^{n}\right)}^{m}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}\right)} .
$$

Proof. For simplicity, we only consider the case of $m=1$ and $\|b\|_{\mathrm{BMO}\left(\mathbf{R}^{n}\right)}=1$. For fixed ball B and $f \in L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$, decompose f as

$$
f(y)=f(y) \chi_{2 B}(y)+\sum_{k=1}^{\infty} f(y) \chi_{2^{k+1} B \backslash 2^{k} B}(y)=\sum_{k=0}^{\infty} f_{k}(y) .
$$

It is obvious that

$$
\int_{B}\left|S f_{0}(y)\right|^{p} w(y) \mathrm{d} y \lesssim D^{p} \int_{2 B}|f(y)|^{p} w(y) \mathrm{d} y \lesssim D^{p}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}^{p}\{w(B)\}^{\lambda}
$$

Let $\theta \in(1, p / u)$ such that $w \in A_{p /(\theta u)}\left(\mathbf{R}^{n}\right)$. For each $k \in \mathbf{N}$, let $S_{k} f(x)=$ $S\left(f \chi_{2^{k+1} B \backslash 2^{k} B}\right)(x)$. Then S_{k} is also sublinear. We have by Hölder's inequality that
for each $x \in B$,

$$
\begin{aligned}
\left|S_{k} f(x)\right| & \lesssim\left|b(x)-m_{B}(b)\right|\left\|f_{k}\right\|_{L^{u}\left(\mathbf{R}^{n}\right)}\left(\int_{2^{k} B}|W(x-y)|^{u^{\prime}} \mathrm{d} y\right)^{1 / u^{\prime}} \\
+ & \left\|\left(b-m_{B}(b)\right) f_{k}\right\|_{L^{u}\left(\mathbf{R}^{n}\right)}\left(\int_{2^{k} B}|W(x-y)|^{u^{\prime}} \mathrm{d} y\right)^{1 / u^{\prime}} \\
& \lesssim\left|b(x)-m_{B}(b)\right|\left\|f_{k}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)}\left(\int_{2^{k} B} w^{-\frac{1}{p / u-1}}(y) \mathrm{d} y\right)^{\frac{1}{u(p / u)^{\prime}}}\left|2^{k} B\right|^{-\frac{1}{u}} \\
& +\left(\int_{2^{k+1} B}\left|b(y)-m_{B}(b)\right|^{p \theta^{\prime}} \mathrm{d} y\right)^{1 /\left(p \theta^{\prime}\right)}\left\|f_{k}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \\
& \cdot\left(\int_{2^{k} B} w^{-\frac{1}{p /(\theta u)-1}}(y) \mathrm{d} y\right)^{\frac{1}{u(p /(\theta u))^{\prime}}}\left|2^{k} B\right|^{-\frac{1}{u}},
\end{aligned}
$$

here, $m_{B}(b)$ denotes the mean value of b on B. It follows from the John-Nirenberg inequality that

$$
\left(\int_{2^{k+1} B}\left|b(y)-m_{B}(b)\right|^{p \theta^{\prime}} \mathrm{d} y\right)^{\frac{1}{p \theta^{\prime}}} \lesssim k\left|2^{k} B\right|^{\frac{1}{p \theta^{\prime}}} .
$$

Therefore, for $q \in(1, \infty)$ and $k \in \mathbf{N}$, we have

$$
\begin{equation*}
\left\|S_{k} f\right\|_{L^{q}(B, w)} \lesssim k\{w(B)\}^{\frac{1}{q}-\frac{1}{p}}\left(\frac{w(B)}{w\left(2^{k} B\right)}\right)^{1 / p}\left\|f_{k}\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} . \tag{4.2}
\end{equation*}
$$

On the other hand, we deduce from the $L^{p}\left(\mathbf{R}^{n}, w\right)$ boundedness of S that

$$
\begin{equation*}
\int_{B}\left|S_{k} f(y)\right|^{p} w(y) \mathrm{d} y \lesssim D^{p} \int_{2^{k} B}|f(x)|^{p} w(x) \mathrm{d} x \tag{4.3}
\end{equation*}
$$

We then get from (4.2) (with $q=p$) and (4.3) that for $\sigma \in(0,1)$,

$$
\begin{equation*}
\int_{B}\left|S_{k} f(y)\right|^{p} w(y) \mathrm{d} y \lesssim k^{p} D^{p(1-\sigma)}\left(\frac{w(B)}{w\left(2^{k} B\right)}\right)^{\sigma} \int_{2^{k} B}|f(x)|^{p} w(x) \mathrm{d} x \tag{4.4}
\end{equation*}
$$

Recall that $w \in A_{p / u}\left(\mathbf{R}^{n}\right)$. Thus, there exists a constant $\tau \in(0,1)$,

$$
\frac{w(B)}{w\left(2^{k} B\right)} \lesssim\left(\frac{|B|}{\left|2^{k} B\right|}\right)^{\tau},
$$

see [24]. For fixed $\lambda \in(0,1)$, we choose σ sufficiently close to 1 such that $0<\lambda<\sigma$. It then follows from (4.4) that

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left(\int_{B}\left|S f_{k}(y)\right|^{p} w(y) \mathrm{d} y\right)^{\frac{1}{p}} & \lesssim D^{1-\sigma}\{w(B)\}^{\frac{\lambda}{p}} \sum_{k=1}^{\infty} k 2^{-k n \tau(\sigma-\lambda) / p}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \\
& \lesssim D^{1-\sigma}\{w(B)\}^{\lambda / p}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} .
\end{aligned}
$$

This leads to the conclusion (a).
Now we turn our attention to conclusion (b). From (4.1), it is obvious that for $y \in 2^{k+1} B \backslash 2^{k} B$,

$$
\int_{B}|W(x-y)|\left|b(x)-m_{B}(b)\right| w(x) \mathrm{d} x \lesssim\left|2^{k} B\right|^{-1 / u}|B|^{\frac{1}{w \vartheta}}\left(\int_{B} w^{w \vartheta}(x) \mathrm{d} x\right)^{\frac{1}{u \vartheta}}
$$

with $\vartheta \in(1, \infty)$ small enough such that $w^{u \vartheta} \in A_{1}\left(\mathbf{R}^{n}\right)$. This, in turn implies that

$$
\begin{aligned}
& \int_{B} \int_{2^{k+1} B \backslash 2^{k} B}|W(x-y) h(y)| \mathrm{d} y\left|b(x)-m_{B}(b)\right| w(x) \mathrm{d} x \\
& \lesssim 2^{k n / u^{\prime}} \frac{w(B)}{w\left(2^{k} B\right)} \int_{2^{k} B} h(y) w(y) \mathrm{d} y .
\end{aligned}
$$

Therefore, for $s \in(1, \infty)$,

$$
\begin{align*}
\int_{B}\left|S_{k} f(x)\right| w(x) \mathrm{d} x \lesssim & 2^{k n / u^{\prime}} \frac{w(B)}{w\left(2^{k} B\right)} \int_{2^{k} B}|f(x)| w(x) \mathrm{d} x \tag{4.5}\\
& +2^{k n / u^{\prime}} \frac{w(B)}{w\left(2^{k} B\right)} \int_{2^{k} B}|f(x)|\left|b(x)-m_{B}(b)\right| w(x) \mathrm{d} x \\
\lesssim & k 2^{\frac{k n}{u^{\prime}}} \frac{w(B)}{w\left(2^{k+1} B\right)}\left(\int_{2^{k} B}|f(x)|^{s} w(x) \mathrm{d} x\right)^{\frac{1}{s}}\left\{w\left(2^{k} B\right)\right\}^{\frac{1}{s}} .
\end{align*}
$$

Also, we get by (4.2) that for $q \in(u, \infty)$ and $\theta \in(0,1)$ with $\theta q \in(u, \infty)$,

$$
\begin{equation*}
\left\|S_{k} f\right\|_{L^{q(B, w)}} \lesssim k\{w(B)\}^{\frac{1}{q}-\frac{1}{\theta q}}\left(\frac{w(B)}{w\left(2^{k} B\right)}\right)^{\frac{1}{\theta q}}\|f\|_{L^{\theta q}\left(2^{k+1} B, w\right)} \tag{4.6}
\end{equation*}
$$

For $p \in(1, \infty)$, we choose $q \in(u, \infty)$ and $\theta \in(0,1), s \in(1, \infty)$ which is close to 1 sufficiently such that $1 / p=t+(1-t) / q$ and $1 / p=t / s+(1-t) /(\theta q)$, with $t \in(0,1 / p)$. By interpolating, we obtain from the inequalities (4.5) and (4.6) that

$$
\left\|S_{k} f\right\|_{L^{p}\left(\mathbf{R}^{n}, w\right)} \lesssim k 2^{\frac{k n}{p^{\prime}}}\left(\frac{w(B)}{w\left(2^{k} B\right)}\right)^{1 / p}\|f\|_{L^{p}\left(2^{k} B, w\right)}
$$

The fact that $w^{r} \in A_{1}\left(\mathbf{R}^{r}\right)$ tells us that

$$
\frac{w(B)}{w\left(2^{k} B\right)} \lesssim 2^{-k n(r-1) / r}
$$

see [24, p. 306]. This, together with the fact that S is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$ with bound D, gives us that for any $\omega \in(0,1)$,

$$
\begin{aligned}
\left(\int_{B}\left|S_{k} f(x)\right|^{p} w(x) \mathrm{d} x\right)^{1 / p} & \lesssim D^{1-\omega} k 2^{\frac{\omega k n}{p w^{\prime}}}\left(\frac{w(B)}{w\left(2^{k} B\right)}\right)^{\omega / p}\|f\|_{L^{p}\left(2^{k} B, w\right)} \\
& \lesssim\{w(B)\}^{\lambda / p} D^{1-\omega} k 2^{\frac{k n}{p}\left(\frac{\omega}{u^{\prime}}-\frac{\omega-\lambda}{r^{\prime}}\right)}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}
\end{aligned}
$$

For fixed $\lambda \in\left(0,1-r^{\prime} / u^{\prime}\right)$, we choose $\omega \in(\lambda, 1)$ sufficiently close to 1 such that $\omega / u^{\prime}-(\omega-\lambda) / r^{\prime}<0$. Summing over the last inequality yields conclusion (b).

Let $p, r \in[1, \infty), \lambda \in(0,1), q \in[1, \infty]$ and w be a weight. Define the space $L^{p, \lambda}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)$ by

$$
L^{p, \lambda}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)=\left\{\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}}:\|\vec{f}\|_{L^{p, \lambda}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)}<\infty\right\}
$$

with

$$
\|\vec{f}\|_{L^{p, \lambda}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)}=\left\|\left(\int_{1}^{2}\left(\sum_{k \in \mathbf{Z}}\left|f_{k}(x, t)\right|^{r}\right)^{\frac{g}{r}} \mathrm{~d} t\right)^{\frac{1}{q}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}
$$

With usual addition and scalar multiplication, $L^{p, \lambda}\left(L^{q}([1,2]), l^{r} ; \mathbf{R}^{n}, w\right)$ is a Banach space.

Lemma 4.2. Let $p \in(1, \infty), \lambda \in(0,1)$ and $w \in A_{p}\left(\mathbf{R}^{n}\right), \mathcal{G}$ be a subset in $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. Suppose that \mathcal{G} satisfies the following five conditions:
(a) \mathcal{G} is a bounded set in $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$;
(b) for each fixed $\epsilon>0$, there exists a constant $A>0$, such that for all $\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in$ \mathcal{G},

$$
\left\|\left(\int_{1}^{2} \sum_{k \in \mathbf{Z}}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{\{| |>A\}}(\cdot)\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

(c) for each fixed $\epsilon>0$ and $N \in \mathbf{N}$, there exists a constant $\varrho>0$, such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\sup _{||h| \leq \varrho}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t)-f_{k}(\cdot+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon ;
$$

(d) for each fixed $\epsilon>0$ and $N \in \mathbf{N}$, there exists a constant $\sigma \in(0,1 / 2)$ such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t+s)-f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

(e) for each fixed $D>0$ and $\epsilon>0$, there exists $N \in \mathbf{N}$ such that for all $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

Then \mathcal{G} is strongly pre-compact in $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$.
Proof. The proof is similar to the proof of Lemma 3.3, and so we only give the outline here. It suffices to prove that, for each fixed $\epsilon>0$, there exists a $\delta=\delta_{\epsilon}>0$ and a mapping Φ_{ϵ} on $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$, such that $\Phi_{\epsilon}(\mathcal{G})=\left\{\Phi_{\epsilon}(\vec{f}): \vec{f} \in \mathcal{G}\right\}$ is a strongly pre-compact set in $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$, and for $\vec{f}, \vec{g} \in \mathcal{G}$,

$$
\left\|\Phi_{\epsilon}(\vec{f})-\Phi_{\epsilon}(\vec{g})\right\|_{L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}<\delta \Longrightarrow\|\vec{f}-\vec{g}\|_{\left.L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)\right)}<8 \epsilon .
$$

For fixed $\epsilon>0$, we choose $A>1$ large enough as in assumption (b), and $N \in \mathbf{N}$ such that for all $\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\left\|\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0,2 A)}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon
$$

Let $Q, Q_{1}, \ldots, Q_{J}, \mathcal{D}, I_{1}, \ldots, I_{L} \subset[1,2]$, and Φ_{ϵ} be the same as in the proof of Lemma 3.2. For such fixed N, let ϱ and $\sigma \in(0,1 / 2)$ small enough such that for all
$\vec{f}=\left\{f_{k}\right\}_{k \in \mathbf{Z}} \in \mathcal{G}$,

$$
\begin{align*}
& \left\|\sup _{|h| \leq \varrho}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t)-f_{k}(\cdot+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\frac{\epsilon}{2 J} \tag{4.7}\\
& \left\|\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(\cdot, t+s)-f_{k}(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\frac{\epsilon}{2 J}, \tag{4.8}
\end{align*}
$$

We can verify that Φ_{ϵ} is bounded on $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$, and consequently, $\Phi_{\epsilon}(\mathcal{G})=\left\{\Phi_{\epsilon}(\vec{f}): \vec{f} \in \mathcal{G}\right\}$ is a strongly pre-compact set in $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. Recall that for $x \in Q_{i}$ with $1 \leq i \leq J$,

$$
\begin{aligned}
& \left\{\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-\sum_{v=1}^{L} m_{Q_{i} \times I_{v}}\left(f_{k}\right) \chi_{I_{v}}(t)\right|^{2} \mathrm{~d} t\right\}^{\frac{1}{2}} \\
& \lesssim \sup _{|h| \leq \varrho}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-f_{k}(x+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \quad+\sup _{|s| \leq \sigma}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t+s)-f_{k}(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

For a ball $B(y, r)$, a trivial computation involving (4.7) and (4.8), leads to that

$$
\begin{aligned}
& \int_{B(y, r)}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t) \chi_{\mathcal{D}}-\sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{k}\right) \chi_{Q_{i} \times I_{j}}(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{p}{2}} w(x) \mathrm{d} x \\
& =\sum_{i=1}^{J} \int_{B(y, r) \cap Q_{i}}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t)-\sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{k}\right) \chi_{I_{j}}(t)\right|^{2} \mathrm{~d} t\right)^{\frac{p}{2}} w(x) \mathrm{d} x \\
& \lesssim \epsilon\{w(B(y, r))\}^{\lambda} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{B(y, r)}\left\|\vec{f}_{\mathcal{D}}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{2}\left([1,2], l^{2}\right)}^{p} w(x) \mathrm{d} x \\
& \lesssim \int_{B(y, r)}\left(\int_{1}^{2} \sum_{|k| \leq N}\left|f_{k}(x, t) \chi_{\mathcal{D}}-\sum_{i=1}^{J} \sum_{j=1}^{L} m_{Q_{i} \times I_{j}}\left(f_{k}\right) \chi_{Q_{i} \times I_{j}}(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{p}{2}} w(x) \mathrm{d} x \\
& \quad+\int_{B(y, r)}\left(\int_{1}^{2} \sum_{|k|>N}\left|f_{k}(x, t)\right|^{2}\right)^{p / 2} \chi_{B(0,2 A)}(x) w(x) \mathrm{d} x \\
& \lesssim 2 \epsilon\{w(B(y, r))\}^{\lambda} .
\end{aligned}
$$

It then follows from the assumption (b) that for all $\vec{f} \in \mathcal{G}$,

$$
\left\|\vec{f}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)} \leq\left\|\vec{f} \chi_{\mathcal{D}}-\Phi_{\epsilon}(\vec{f})\right\|_{L^{p}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)}+\epsilon<3 \epsilon
$$

and

$$
\|\vec{f}-\vec{g}\|_{L^{p, \lambda}\left(\mathbf{R}^{n}\right)}<6 \epsilon+\left\|\Phi_{\epsilon}(f)-\Phi_{\epsilon}(\vec{g})\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}\right)} .
$$

This completes the proof of Lemma 4.2.
Proof of Theorem 1.5. We only consider the case of $p \in\left(q^{\prime}, \infty\right), w \in A_{p / q^{\prime}}\left(\mathbf{R}^{n}\right)$ and $\lambda \in(0,1)$. Recall that $\mathcal{M}_{\Omega, b}$ is bounded on $L^{p}\left(\mathbf{R}^{n}, w\right)$. By Lemma 4.2, we know that $\mathcal{M}_{\Omega, b}$ is bounded on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$. Thus, it suffices to prove that for $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$, $\mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$.

Let $j_{0} \in \mathbf{Z}_{-}, b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ with $\operatorname{supp} b \subset B(0, R)$ and $\|b\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}+\|\nabla b\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}=1$. Let $\widetilde{K^{j}}(z)=\frac{|\Omega(z)|}{|z|^{n}} \chi_{\left\{2^{j-1} \leq|z| \leq 2^{j+2}\right\}}(z)$. By Minkowski's inequality,

$$
\begin{aligned}
\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} & \leq\left(\sum_{j \in \mathbf{Z}} \int_{1}^{2}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \lesssim \sum_{j \in \mathbf{Z}} \int_{\mathbf{R}^{n}} \widetilde{K^{j}} * \phi_{j-l}(x-y)|f(y)| \mathrm{d} y
\end{aligned}
$$

It is obvious that $\operatorname{supp} \widetilde{K^{j}} * \phi_{j-l} \subset\left\{x: 2^{j-3} \leq|x| \leq 2^{j+3}\right\}$, and for any $R>0$,

$$
\int_{R \leq|x| \leq 2 R}\left|\sum_{j \in \mathbf{Z}} \widetilde{K^{j}} * \phi_{j-l}(x)\right|^{q} \mathrm{~d} x \leq \sum_{j: 2^{j} \approx R}\left\|\widetilde{K^{j}} * \phi_{j-l}\right\|_{L^{q}\left(\mathbf{R}^{n}\right)}^{q} \lesssim R^{-n q+n} .
$$

Let $\epsilon>0$. We deduce from Lemma 4.1 and the inequality (3.7) that, there exists a constant $A>0$, such that

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j \in \mathbf{Z}}\left|F_{j, b}^{l} f(x, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{\{| |>A\}}(\cdot)\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} . \tag{4.9}
\end{equation*}
$$

Recall that $\widetilde{\mathcal{M}}_{\Omega}^{l, j_{0}}$ is bounded on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$. For $r>1$ small enough, M_{r} is also bounded on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$ (see [27]). Thus by (3.4), we know that there exists a constant $\varrho>0$, such that

$$
\begin{equation*}
\left\|\sup _{||h| \leq \varrho}\left(\int_{1}^{2} \sum_{j>j_{0}}\left|F_{j, b}^{l} f(\cdot, t)-F_{j, b}^{l} f(\cdot+h, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \lesssim \epsilon\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} . \tag{4.10}
\end{equation*}
$$

It follows from Lemma 4.1, estimate (3.5) that for each $N \in \mathbf{N}$, there exists a constant $\sigma \in(0,1 / 2)$ such that

$$
\begin{equation*}
\left\|\sup _{||s| \leq \sigma}\left(\int_{1}^{2} \sum_{|j| \leq N}\left|F_{j, b}^{l} f(\cdot, s+t)-F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} . \tag{4.11}
\end{equation*}
$$

We also obtain by Lemma 4.1 and (3.6) that for each fixed $D>0$, there exists $N \in \mathbf{N}$ such that

$$
\begin{equation*}
\left\|\left(\int_{1}^{2} \sum_{j>N}\left|F_{j, b}^{l} f(\cdot, t)\right|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \chi_{B(0, D)}\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}<\epsilon\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \tag{4.12}
\end{equation*}
$$

The inequalities (4.9)-(4.12), via Lemma 4.2 , tell us for any $j_{0} \in \mathbf{Z}_{-}$, the operator $\mathcal{F}_{j_{0}}^{l}$ defined by (3.18) is compact from $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$ to $L^{p, \lambda}\left(L^{2}([1,2]), l^{2} ; \mathbf{R}^{n}, w\right)$. On the other hand, by Lemma 4.1, Theorem 2.1 and Lemma 3.2, we know that

$$
\left\|\widetilde{\mathcal{M}}_{\Omega} f-\widetilde{\mathcal{M}}_{\Omega}^{l} f\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{-\varepsilon \varrho_{p} l}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}
$$

and

$$
\left\|\widetilde{\mathcal{M}}_{\Omega, b}^{l, j_{0}} f-\widetilde{\mathcal{M}}_{\Omega, b}^{l} f\right\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)} \lesssim 2^{\varepsilon j 0}\|f\|_{L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)}
$$

As it was shown in the proof of Theorem 1.3, we can deduce from the last facts that $\mathcal{M}_{\Omega, b}$ is completely continuous on $L^{p, \lambda}\left(\mathbf{R}^{n}, w\right)$ when $b \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$. This completes the proof of Theorem 1.5.

Acknowledgement. The author would like to thank the referee for his/her valuable suggestions and helpful comments.

References

[1] Adams, D. R., and J. XiaO: Morrey potential and harmonic analysis. - Ark. Mat. 50, 2012, 201-230.
[2] Al-Salman, A.: On the L^{2} boundedness of parametric Marcinkiewicz integral operator. - J. Math. Anal. Appl. 375, 2011, 745-752.
[3] Al-Salman, A., H. Al-Qassem, L. Cheng, and Y. Pan: L^{p} bounds for the function of Marcinkiewicz. - Math. Res. Lett. 9, 2002, 697-700.
[4] Alvarez, J., R. Bagby, D. Kurtz, and C. Pérez: Weighted estimates for commutators of linear operators. - Studia Math. 104, 1993, 195-209.
[5] Anderson, K. F., and R. T. John: Weighted inequality for vector-valued maximal functions and singular integrals. - Studia Math. 69, 1980, 19-31.
[6] Banedek, A., A. P. Calderón, and R. Panzon: Convolution operators on Banach space valued functions. - Proc. Nat. Acad. Sci. U.S.A. 48, 1962, 356-365.
[7] Bourdaud, G., M. Lanza de Cristoforis, and W. Sickel: Functional calculus on BMO and related spaces. - J. Funct. Anal. 189, 2002, 515-538.
[8] Calderón, A. P., and A. Zygmund: On singular integrals. - Amer. J. Math. 78, 1956, 289309.
[9] Chen, D., and S. Lu: L^{p} boundedness for commutators of parabolic Littlewood-Paley operators with rough kernels. - Math. Nachr. 284, 2011, 973-986.
[10] Chen, J., D. Fan, and Y. Pan: A note on a Marcinkiewicz integral operator. - Math. Nachr. 227, 2001, 33-42.
[11] Chen, J., and G. Hu: Compact commutators of rough singular integral operators. - Canad. Math. Bull. 64, 2012, 257-281.
[12] Chen, Y., and Y. Ding: Compactness characterization of commutators for Littlewood-Paley operators. - Kodai Math. J. 32, 2009, 256-323.
[13] Chen, Y., Y. Ding, and X. Wang: Compactness for commutators of Marcinkiewicz integral on Morrey spaces. - Taiwanese J. Math. 15, 2011, 633-658.
[14] Clop, A., and V. Cruz: Weighted estimates for Beltrami equations. - Ann. Acad. Sci. Fenn. Math. 38, 2013, 91-113.
[15] Coifman, R., R. Rochberg, and G. Weiss: Factorizaton theorems for Hardy spaces in several variables. - Ann. of Math. (2) 103, 1976, 611-635.
[16] Coifman, R., and G. Weiss: Extension of Hardy spaces and their use in analysis. - Bull. Amer. Math. Soc. 83, 1977, 569-645.
[17] Ding, Y., D. Fan, and Y. Pan: Weighted boundedness for a class of rough Marcinkiewicz integral. - Indiana Univ. Math. J. 48, 1999, 1037-1055.
[18] Ding, Y., D. Fan, and Y. Pan: L^{p}-boundedness of Marcinkiewicz integrals with Hardy space function kernel. - Acta Math. Sin. (Engl. Ser.) 16, 2000, 593-600.
[19] Ding, Y., S. Lu, and K. Yabuta: A problem on rough Marcinkiewicz functions. - J. Austral. Math. Soc. 71, 2001, 1-9.
[20] Ding, Y., S. Lu, and K. Yabuta: On commutators of Marcinkiewicz integrals with rough kernel. - J. Math. Anal. Appl. 275, 2002, 60-68.
[21] Ding, Y., Q. Xue, and K. Yabuta: A remark to the L^{2} boundedness of parametric Marcinkiewicz integral. - J. Math. Anal. Appl. 387, 2012, 691-697.
[22] Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Trans. Amer. Math. Soc. 336, 1993, 869-880.
[23] Duoandikoetxea, J., and J. L. Rubio de Francia: Maximal and singular integrals via Fourier transform estimates. - Invent. Math. 84, 1986, 541-561.
[24] Grafakos, L.: Modern Fourier analysis. - Grad. Texts in Math. 250, 2nd Edition, Springer, New York, 2008.
[25] Hu, G.: $L^{p}\left(\mathbf{R}^{n}\right)$ boundedness for a class of g-functions and its applications. - J. Hokkaido Math. 32, 2003, 497-521.
[26] Hu, G., and D. Yan: On commutator of the Marcinkiewicz integral. - J. Math. Anal. Appl. 283, 2003, 351-361.
[27] Komori, Y., and S. Shirai: Weighted Morrey spaces and a singular integral operator. - Math. Nachr. 282, 2009, 219-232.
[28] Kurtz, D. S., and R. Wheeden: Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc. 255, 1979, 343-362.
[29] Mao, S., Y. Sawano, and H. Wu: On the compactness of commutators for rough Marcinkiewicz integral operators. - Taiwanese J. Math. 19, 2015, 1777-1793.
[30] Marcinkiewicz, J.: Sur quelques intégrales du type de Dini. - Ann. Soc. Polon. Math. 17, 1938, 42-50.
[31] Ruiz, A., and L. Vega: Unique continuation for Schrödinger operators with potential in Morrey space. - Publ. Mat. 35, 1991, 291-298.
[32] Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. - Amer. J. Math. 125, 2003, 1079-1115.
[33] Stein, E. M.: On the function of Littlewood-Paley, Lusin and Marcinkiewicz. - Trans. Amer. Math. Soc. 88, 1958, 430-466.
[34] Stein, E. M., and G. Weiss: Interpolation of operators with changes of measures. - Trans. Amer. Math. Soc. 87, 1958, 159-172.
[35] Torchinsky, A., and S. Wang: A note on the Marcinkiewicz integral. - Colloq. Math. 47, 1990, 235-243.
[36] Uchiyama, A.: On the compactness of operators of Hankel type. - Tohoku Math. J. 30, 1978, 163-171.
[37] Walsh, T.: On the function of Marcinkiewicz. - Studia Math. 44, 1972, 203-217.
[38] Watson, D. K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60, 1990, 389-399.
[39] Zygmund, A.: Trigonomatric series. - Cambridge Univ. Press, Cambridge, 3rd edition, 2002.

[^0]: https://doi.org/10.5186/aasfm.2019.4428
 2010 Mathematics Subject Classification: Primary 42B25; Secondary 47B07.
 Key words: commutator, Marcinkiewicz integral, completely continuous operator, Fourier transform, weighted Morrey space.

 The research was supported by the NNSF of China under grant \#11871108.

