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Abstract. Let Q be homogeneous of degree zero, have mean value zero and integrable on
the unit sphere, and Mg be the higher-dimensional Marcinkiewicz integral associated with Q. In
this paper, the author considers the complete continuity on weighted LP(R™) spaces with A,(R™)
weights, weighted Morrey spaces with A, (R"™) weights, for the commutator generated by CMO(R™)
functions and Mg when ) satisfies certain size conditions.

1. Introduction

As an analogy of the classicial Littlewood—Paley g-function, Marcinkiewicz [30|
introduced the operator

M(f)(z) = (/0” |F(x+1t) — F(z —t) — 2F(x)|? dt)% |

t3

where F(z) = [ f(t)dt. This operator is now called Marcinkiewicz integral. Zyg-
mund [39] proved that M is bounded on LP([0,27]) for p € (1,00). Stein [33]
generalized the Marcinkiewicz operator to the case of higher dimension. Let €2 be
homogeneous of degree zero, integrable and have mean value zero on the unit sphere
S™=1. Define the Marcinkiewicz integral operator Mg by

(1) Ma(pio) = ([ |me<ac>|2%)é ,

where o )

r—Y

Faod) = [ ) dy

for f € S(R™). Stein [33] proved that if Q € Lip,(S™"!) with a € (0,1], then Mg
is bounded on LP(R™) for p € (1,2]. Benedek, Calderén and Panzon [6] showed that
the LP(R") boundedness (p € (1,00)) of Mg holds true under the condition that
Q) € C1(S™1). Using the one-dimensional result and Riesz transforms similarly as in
the case of singular integrals (see [8]) and interpolation, Walsh [37]| proved that for
cach p € (1,00), Q € L(In L)"/"(InIn L)?0=2/")(8"=1) is a sufficient condition such
that Mg is bounded on L?(R™), where r = min{p, p'} and p’ = p/(p —1). Ding, Fan
and Pan [18] proved that if Q € H'(S"!) (the Hardy space on S™!), then Mg, is
bounded on LP(R") for all p € (1,00); Al-Salmam, Al-Qassem, Cheng and Pan 3|
proved that Q € L(In L)/2(S"!) is a sufficient condition such that Mg is bounded
on LP(R") for all p € (1,00). Ding, Fan and Pan [17] considered the boundedness
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on weighted LP(R™) with A,(R™) when Q € L4(S" ') for some ¢ € (1,00], where
and in the following, for p € [1,00), A,(R") denotes the weight function class of
Muckenhoupt, see [24] for the definitions and properties of A,(R™). For other works
about the operator defined by (1.1), see [2, 3, 10, 18, 19, 21| and the related references
therein.

The commutator of Mg is also of interest and has been considered by many
authors (see [35, 26, 20, 9, 25]). Let b € BMO(R"), the commutator generated by
Mg and b is defined by

1
2dt\ 2

12 Mo = ([T 0@ s s
0 lz—y|<t ‘:1" - y|

Torchinsky and Wang [35] showed that if Q € Lip,(S™ ') (a € (0,1]), then Mg,
is bounded on LP(R") with bound C||b||zsmomn) for all p € (1,00). Hu and Yan
[26] proved the Q € L(InL)*?(S"7!) is a sufficient condition such that Mg, is
bounded on L?. Ding, Lu and Yabuta [20] considered the weighted estimates for
Maqy, and proved that if Q € L7(S™!) for some ¢ € (1,00], then for p € (¢, 00)
and w € A,y (R"), or p € (1,q) and w™V?=V € A, (R"), Mg, is bounded
on LP(R", w). Chen and Lu [9] improved the result in [26] and showed that if
Q € L(In L)*>?(S"1), then Mgy is bounded on LP(R") with bound C||b||smomn)
for all p € (1, 00).

Let CMO(R™) be the closure of Cj°(R") in the BMO(R™) topology, which coin-
cide with VMO(R™), the space of functions of vanishing mean oscillation introduced

by Coifman and Weiss [16], see also [7]. Uchiyama [36] proved that if 7" is a Calderon—
Zygmund operator, and b € BMO(R"), then the commutator of 7" defined by

b, T]f(x) = b(x)T f(x) = T(bf)(x),

is a compact operator on LP(R") (p € (1,00)) if and only if b € CMO(R™). Chen
and Ding [12]| considered the compactness of Mg, on LP(R™), and proved that if
() satisfies certain regularity condition of Dini type, then for p € (1,00), Mgy is
compact on LP(R") if and only if b € CMO(R"). Using the ideas from [11]|, Mao,
Sawano and Wu [29] considered the compactness of Mg, when () satisfies the size
condition that

(1.3 sup [ 1) (1

CESnfl

1 )9 d
N < 00,

- ¢l

and proved that if € satisfies (1.3) for some 6 € (3/2,00), then for b € CMO(R")
and p € (46/(40 — 3),46/3), Mg, is compact on LP(R™). Our first purpose of this
paper is to consider the complete continuity on weighted LP(R") for Mg, when
Q e L1(S"1) for some g € (1, 00]. To formulate our main result, we first recall some
definitions.

Definition 1.1. Let X be a normed linear spaces and X* be its dual space,
{zy} C X and 2 € X, If for all f € X*,

lim | () = /()] =0,

then {xy} is said to converge to = weakly, or x; — x.

Definition 1.2. Let X', Y be two Banach spaces and S be a bounded operator
from X to ).
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(1) If for each bounded set G C X, SG = {Sx: x € G} is a strongly pre-compact
set in ), then S is called a compact operator from X to );
(i) if for {zx} C X and x € X,

Ty —~rin X = ||Szx — Sz|y — 0,
then S is said to be a completely continuous operator.

It is well known that, if X is a reflexive space, and S is completely continuous
from X to Y, then S is also compact from X to ). On the other hand, if S is a linear
compact operator from X to ), then S is also a completely continuous operator.
However, if S is not linear, then S is compact do not imply that S is completely
continuous. For example, the operator

Sw = [l

is compact from /2 to R, but not completely continuous.
Our first result in this paper can be stated as follows.

Theorem 1.3. Let ) be homogeneous of degree zero, have mean value zero on
S~ and Q € LI(S™ 1Y) for some q € (1,00]. Suppose that p and w satisfy one of the
following conditions

(i) p € (¢',00) and w € A/ (R");

(i) p € (1,¢) and w=/®=V € A, (R");

(iii) p € (1,00) and w? € A,(R™).
Then for b € CMO(R"), Mg, is completely continuous on LP(R", w).

Our argument used in the proof of Theorem 1.3 also leads to the complete con-
tinuity of Mg, on weighted Morrey spaces.

Definition 1.4. Let p € (0,00), w be a weight and A € (0,1). The weighted
Morrey space LPA(R™, w) is defined as

LPMR" w) = {f € Lio(R"): || fllor o ) < 00}

loc

with

1 / 1/p
PARM W) =  SU -_— x)|Pw(x) dz ,
T yERngw({w(B(w))}A o @) )

here B(y, r) denotes the ball in R” centered at y and having radius r, and w(B(y,r)) =
S50y w(2)dz. For simplicity, we use LPA(R™) to denote LPA(R™, 1).

The Morrey space LP*(R™) was introduced by Morrey [17]. Tt is well-known that
this space is closely related to some problems in PED (see [31, 32]), and has interest
in harmonic analysis (see [1] and the references therein). Komori and Shiral [27]
introduced the weighted Morrey spaces and considered the properties on weighted
Morrey spaces for some classical operators. Chen, Ding and Wang [13] considered the
compactness of Mg on Morrey spaces. They proved that if A € (0,1), Q € L9(S™™1)
for ¢ € (1/(1 — \), 0o} and satisfies a regularity condition of L?-Dini type, then Mg
is compact on LP*(R"). Our second purpose of this paper is to prove the complete
continuity of Mg on weighted Morrey spaces with A,(R™) weights.

Theorem 1.5. Let () be homogeneous of degree zero, have mean value zero on
S~ and Q € LY(S"!) for some q € (1,00]. Suppose that p € (¢',), A € (0,1) and
w e Ay (R");orpe(1,¢), w € A (R") for somer € (¢',00) and A € (0,1—1"/q).
Then for b € CMO(R"), Mg is completely continuous on LP*R", w).
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Remark 1.6. The proof of Theorems 1.3 involves some ideas used in [11]| and
a sufficient condition of strongly pre-compact set in LP(L?([1,2]),1%; R™ w) with
w € A,(R™). To prove Theorem 1.5, we will establish a lemma which clarify the
relationship of the bounds on LP(R",w) and the bounds on LP*(R", w) for a class
of sublinear operators, see Lemma 4.1 below.

We make some conventions. In what follows, C' always denotes a positive constant
that is independent of the main parameters involved but whose value may differ from
line to line. We use the symbol A < B to denote that there exists a positive constant
C such that A < CB. For a set E C R", xg denotes its characteristic function.
Let M be the Hardy-Littlewood maximal operator. For r € (0,00), we use M, to

denote the operator M, f(x) = (M(|f|r)(:z'))l/r For a locally integrable function f,
the sharp maximal function M*f is defined by

1
t = Su 1 —_— — C .
M? f(x) = sup inf 0 /Q\f(y) | dy

Qox ceC

2. Approximation

Let © be homogeneous of degree zero, integrable on S™~!. For t € [1,2] and
J €7, set

; 1 Qx)
(2.1) Ki(x) = ZWX{%*HQMS%Q(:C)-

As it was proved in [23], if Q € L9(S™" 1) for some ¢ € (1,00], then there exists a
constant a € (0,1) such that for t € [1,2] and £ € R"\{0},

(2.2) K7 ()] S (12l o(sn-1y min{1, [27¢] 7.
Here and in the following, for h € S'(R"), T denotes the Fourier transform of h.
Moreover, if [, , Q(z') da’ = 0, then
(2.3) K7 ()] S 19 1(sn-1) min{1, [27¢]}.
Let
1
Maf(x) = (/ D | Eif (1) dt) :
1 jez
with
Fif(e,t)= | K{(z—y)f(y)dy.

RTL

For b € BMO(R"), let ./f\;llg,b be the commutator of .//\—/va defined by

N ) 1/2
Mapf(z) = </1 Z ‘F}bf(:c,t)‘zdt) ,
with

Faf(e.t) = [ (oa) = b)) Ko — 1) (0) .

A trivial computation leads to that

(2.4) Maf(z) = Maf(x), Mapf(z) = Mayf(z).
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Let ¢ € C5°(R™) be a nonnegative function such that [g, ¢(z)dz =1, supp ¢ C
{z: |z| < 1/4}. Forl € Z, let ¢y(y) = 27"¢(27'y). It is easy to Verlfy that for any
€ (0,1),
(2:5) 1) = 11 < min{1, [2€[}
Let
Fif(x,t) = K % ¢;i(x—y)f(y) dy.

Rn
Define the operator le by

(2.6) (/Z}fot}dt)

JEZ
This section is devoted to the approximation of /T/l/g by /T/l/lﬂ We will prove
following theorem.

Theorem 2.1. Let () be homogeneous of degree zero and have mean value zero.
Suppose that Q € L1(S" ') for some q € (1,00], p and w are the same as in Theo-
rem 1.3, then for | € N,

[Maf — Mofllor@rw) S 277N f e ),
with o, € (0,1) a constant depending only on p,n and w.
To prove Theorem 2.1, we will use some lemmas.

Lemma 2.2. Let 2 be homogeneous of degree zero and belong to Li(S™Y) for
some q € (1,00], K be defined as in (2.1). Then for t € [1,2],1 € N, R > 0 and
y € R™ with |y| < R/4,

1

SN @Ry (/ |KY % ¢j_(z +y) — KT *¢j_l(x)\"dx) <.
2k R<|z|<2F+1R

JEZ k=1
For the proof of Lemma 2.2, see [38].

Lemma 2.3. Let 2 be homogeneous of degree zero and 2 € L(S"!) for some
g€ (1,00], p € (1,q) and w/®Y € A, (R"). Then

en (S s 57) <H(Z|f|)

Proof. Let Mg be the maximal operator deﬁned by

1
2.8 Mqh(x) = sup ———— Q(x —y)h(y)|dy.
23) ah(a) =sup e [ 10t k)

We know from the proof of Lemma 1 in [22] that for p € (1, 2],
|2 2 < 2
(2.9) H (Z Mo f;] ) PR w) " H ( Z gl )
JEZ JEZ

provided that p € (¢, 00) and w € A,y (R"), or p € (1,q) and w= /=Y € 4,,,(R").
On the other hand, it is easy to verify that

KT s ¢y % fi(x)| S MM f;().

LP(Rw)

LP(R™,w
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The inequality (2.9), together with the weighted vector-valued inequality of M (see
Theorem 3.1 in [5]), proves that (2.7) holds when p € (1,2], p € (¢,00) and
w € Ayy(R"), or p € (1,9) and w=/®=V e A, (R"). This, via a standard
duality argument, shows that (2.7) holds when p € (2,00), p € (1,¢) and w=/®~1) ¢
Ap g (R"). [

Proof of Theorem 2.1. We employ the ideas used in [38]. By Fourier transform
estimates (2.2) and (2.5), and Plancherel’s theorem, we know that

| Mof = Mb 2y = / [P RH) .
- [ Z/n KOPIL - G P IFE) P de
JEZ

S 27 f Il

Now let p and w be the same as in Theorem 1.3. Recall that Mg is bounded on
LP(R™, w) and so is Mg. Thus, by interpolation with changes of measures of Stein
and Weiss [34], it suffices to prove that

(2.10) IMafllonwy S UlLfllo e .
We now prove (2.10) for the case p € (1,¢) and w=/®=Y € A, (R"). Let
Y € C§°(R™) be a radial function such that supp ¢ C {1/4 < [¢| < 4} and

doweT) =1, [¢#£0.

1€Z

Define the multiplier operator S; by

~

S,F(€) = w(27) F(€).
Set

1

By f( (/Z\K]*@z* Suif)(a)] d )

m=—0oQ

Eo f(x (/Z)Kﬂwﬂ* (S f) (@ )) )

It then follows that for f e S(R"),

2 ) 2
(/1 Z }Kg * (bj—l * f(x)‘2 dt) < Z HEZfHLp(Rn)
J i=1

LP(R™)

[NIES

We now estimate the term E;. By Fourier transform estimate (2.3), we know that
1112

(2.11) (/1 Z\KZ*¢j_z*(Sm—jf)(x)\2 dt)
L2(R")
/ /nZ\K s @i % (S f)( )\ dz dt

JEZ
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S [ el mHOPIROR s < 27 me

JEZ

On the other hand, applying Minkowski’s inequality, Lemma 2.3 and the weighted
Littlewood—Paley theory, we have that

(2.12) /Z‘K * Qj_1 % (Sm—j f)(x )} dt)

1112

LP(R™,w)
2/p

3/12 / (E\Kwﬂ*(m]f)( >>p/2w<x>dx dt

JEZ
< lIZs@mnwy, P € [2,00).

To estimate
1

'(/1 Z | K7 * ¢y (Sm—jf)(fc)\2 dt)

for p € (1,2), we consider the mapping F defined by

FiA{hj(z)}jez — {K] * ¢y hj(x)}.
Note that for t € [1,2],

LP(R™,w)

| K7 * ¢j_y * hy(z)| S MMoh;().

We choose py € (1,p) such that w=/®=D e A, . (R"). Then by the weighted
estimates for Mq (see [22]), we have that

(2.13) //Z\K x ¢y * hy(2)|” dt w( dx</ ZV’ )Pow(

JEZ JEZ

Also, we have that

sup sup ‘K{ * iy * hj(x)‘ < sup |hj(x)].
JEZ te[1,2] JEZ

which implies that for p; € (1, 00),

(2.14) sup |h;|

sup sup }Ktj * i * hj} up
J€

JEZ te[1,2]

LP1 (R ) LP1 (R w)

By interpolation, we deduce from the inequalities (2.13) and (2.14) (with po € (1, 2),
p1 € (2,00) and 1/p=1/2+ (2 —po)/(2p1)) that

/ ST x ¢y | dt) < (Zhﬁ)é ,

JEZ LP(R™,w) JEZ Lo (R w)
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and so

(/12 Z ’Kf ¥ hji % (Sm—jf)rdt) 5 N (Z |Sm—jf|2> 5

(R™,w) Jj€Z LP(R™,w)
S ler@ew), P € (1,2).

This, along with (2.12), states that for p € (1, ¢q),

2 ) 2 %
(2.15) </1 Z ‘Kf * Qg * (Sm—jf)‘ dt) S fller@e,w)-
J

LP(R™,w)

Again by interpolating, the inequalities (2.11) and (2.15) give us that for p € (1, q),

1

2 ) 9 2
(/ 5[ % by (Sums () dt) 2 i
b LP (R w)

with ¢, € (0,1) a constant depending only on p. Therefore,

1B fll e e ) S (1F 1| zo e -

We consider the term E;. Again by Plancherel’s theorem and the Fourier trans-
form estimates (2.2) and (2.5), we have that
1112

(2.16) ( / 5y K67 % 6118 (Sums (o) dt) 5

7€ L2(R)

:/ Z/ K7 ()Pl 2 PP FO) dé di
1 jez n

S22 / |2 e 2 PIFE) s < 27 f e
JEZ

As in the inequality (2.15), we have that

) | L\
(2.17) < | S|t (S dt) S 1 leoren
b ez LP(R™,w)

Interpolating the inequalities (2.16) and (2.17) then shows that

1

2 _ 5 \?
</ S | by (Sumaif)le) dt) 20 f
' ez LP(R™w)

This gives the desired estimate for E;. Combining the estimates for E; and E, then
yields (2.10) for the case p € (1,¢) and w=/®=1 € 4, (R").

We now prove (2.10) for the case of p € (¢, 00) and w € Ay, (R"). By a standard
argument, it suffices to prove that
(2.18) M (Mo f)(x) S 1My f(x),
To prove (2.18), let z € R™ and ) be a cube containing x. Decompose f as

fW) = FW)xano) + f(y)xrmungy) =: fi(y) + f2(v).
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It is obvious that ./K/lvé2 is bounded on L7 (R"). Thus,

1 [ — 1 — s\
219 /Q Mgfl(y)dy5<@ /Q (M) dy) < My f(2)

Let zp € @ such that lengg(xo) < oo0. Fory € Q and t € [1,2], it follows from
Lemma 2.2 that

S KL #6505 foly) = K x 61 % falo)]
JjEZ

S / }Ktj*cb'—z(y—z)—Kg*¢'—z($o—z)\qdz)q

([ e a) " s,
2k+1nQ
Thus, for all y € Q,

(2:20) |Mbfaly) = Mbfa(00)|

N

2 . .
S (/1 Z ‘Ktj * i1 foy) — K * ¢ * fz(ifo)‘zdt)

JEZ

N

2 2 ?
/1(Z‘Kg*@—l*fz(y)—Kg*¢j—l*f2($0)‘) dt | S IMy f(x).

jez
Combining the estimates (2.19) and (2.20) leads to that

1 —
nf /Q Mbf () — | dy < 1My f(2)

ceC

and then establishes (2.18).

Finally, we see that (2.10) holds for the case of p € (1,00) and w? € A,(R"), if
we invoke the interpolation argument used in the proof of Theorem 2 in [28]. This
completes the proof of Theorem 2.1. O

3. Proof of Theorem 1.3

We begin with some preliminary lemmas.

Lemma 3.1. Let Q2 be homogeneous of degree zero and belong to L*(S™1), K]
be defined as in (2.1). Then forl € N, t € [1,2], s € (1,00], jo € Z_ andy € R"
with |y| < 279074,
2> 2 ( / K7 65w + ) = K7 5 6a(a)]” dx) © g 2y
j>jo k€Z 2k <|z| <21

Proof. We follow the argument used in [38] (see also [11]), with suitable modifi-
cation. Observe that supp Kj * ¢;_; C {x € R": 2072 < |z| < 27*?} and

fj-i(- +y) — dji(-) S 27/t y|.

L' (R™)
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Thus, for all £ € N,

L
s/

=5 (f %6140+ 9) = K 0y o)
ez \J2F<|z|<2k+1

l(n—i—l)@
ey S 2O

kn .
<29 > K e léia(-+y) — ¢5-()

JEZ: |j—k|<3

This, in turn, leads to that

S5 ([ Rete - Kool )
k<|x|<2k+

1
s/

J>jo keZ
1
kn i i s’ 7
s>y 56 % 6y1(a - 9) — K % 6,4(2)] )
k>jo—3 jez 2k <|z|<2k+1

< 2l(n+1)2—j0 |y|’

and completes the proof of Lemma 3.1. O
Fort € [1,2] and j € Z, let K7 be defined as in (2.1), ¢ and ¢, (with [ € N) be

the same as in Section 2. For b € BMO(R"), let Mlglb be the commutator of M},
defined by

(NI

My f(z) = < / Z\F},bf(x,t)\zdt) ,

jEZ
with

FL (.0 = [ (b0) = W) 65400 = ) ()

n

For jo € Z, define the operator .//\\/lJl(’sz by

/W@”f(x):(/l > }F}f(x,t>\2dt> :

JEZ: j>jo

and the commutator ./f\;l/éfg by

[NIES

i ([ 3 Inweora)

JEZ: j>j0

with b € BMO(R™).

Lemma 3.2. Let Q) be homogeneous of degree zero and integrable on S"~'. Then
forbe C°(R™),l €N, jo€Z_,

| Mo f(2) — Mby, f ()] S 27 MMq f(x).
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Proof. Let b € C§°(R") with |Vb| peemn)y = 1. For t € [1,2], by the fact that
supp K * ¢;; C {x: 2972 < |z| < 2972} it is easy to verify that

Z/ K7 % 651w — )| le — ol F()ldy

J<jo

S 2’“/ K s« dii(x — )| f(y)] dy

< 2k/ KJ* r—y )| d < 990 Mo M '
Z Z 2k <|z—y|<2k+1 ‘ ¢j ! Hf ‘ N Q f(l’)

J7<jo |k—37|<3

Thus,

]<J0
2 )
/ > / o= g} 052 = ) ()] dy) e S {20V M f ()2
J<Jjo
The desired conclusion now follows immediately. ([

Let p,r € [1,00), ¢ € [1,00] and w be a weight, LP(L4([1,2]),{"; R", w) be the
space of sequences of functions defined by

Lp(Lq([laz])alT§ Rn7w> = {f: {fk}kez : Hﬂ‘LP(Lq([l,ﬂ),lT;R”,w) < 00}7

with
1l oz arsmemy = (/ (D1t ) dt)

keZ LP(R"w)

With usual addition and scalar multiplication, LP(L%([1,2]),l"; R",w) is a Banach
space.
Lemma 3.3. Let p € (1,00) and w € A,(R"), G C LP(L*([1,2]), 1% R", w).
Suppose that G satisfies the following five conditions:
(a) G is bounded, that is, there exists a constant C such that for all f = { fy}rez €
G, | fll o222 rew < C B
(b) for each fixed € > 0, there exists a constant A > 0, such that for all f =
{fi}rez € G,

</ > 1Al |dt> X543 () <€

L kez Lo (R )
(c) for each fixed ¢ > 0 and N € N, there exists a constant ¢ > 0, such that for
all f = {fr}rez €,

(NI

sup / Z | fe(z,t) — frlx + h,t)|? dt <€
|h|<e 1 |k|<N
LP(R™,w)
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(d) for each fixed e > 0 and N € N, there exists a constant o € (0,1/2) such
that for all f = {fk}keZ € Q,

N

sup /Zm ) — fulp) <e

LP(R™,w)
(e) for each fixed D > 0 and ¢ > 0, there exists N € N such that for all
f=Afrtrez € G,

/Z|fk HIPdt | xso,n) <e.

k>N

N[

LP(R™,w)
Then G is a strongly pre-compact set in LP(L*([1,2]),1*; R",w).

Proof. We employ the argument used in the proof of [14, Theorem 5|, with some
refined modifications. Our goal is to prove that, for each fixed ¢ > 0, there exists a
§ = d. > 0 and a mapping ®, on LP(L?([1,2]),1% R™, w), such that ®(G) = {®.(f) :
f € G} is a strong pre-compact set in the space LP(L?([1,2]),1% R™ w), and for any
fg€g,

(31) ||(I)€(f) — @6(5)HLP(LQ([172})J2;R7L’UJ) <) = Hf — §||LP(L2([1’2])J2;R7L7w) < Re.

If we can prove this, then by Lemma 6 in [14], we see that G is a strongly pre-compact
set in LP(L?*([1,2]),1%; R™ w).

Now let € > 0. We choose A > 1 large enough as in assumption (b), N € N such
that for all {fx}rez € G,

1/2

/ Z | fi(- 0))? dt XB(0,24) <€

Lojk>N
LP(R™,w)

Let 0 € (0,1/2) small enough as in assumption (¢) and o € (0,1/2) small enough
such that (d) holds true. Let @ be the largest cube centered at the origin such that
2Q C B(0,0), Q1,-..,Qy be J copies of @ such that they are non-overlapping, and

B(0,A) C szl Q; C B(0,24). Let I,...,I; C [1,2] be non-overlapping intervals
with same length |I], such that |s — ¢ < o for all s,t € I; (j = 1,...,L) and
Ule I; = [1,2]. Define the mapping ®, on LF(L*([1,2]),1*; R",w) by

J L
<I>E(f)(x,t):{...,0,...,0,22 Mot (f-n)Xaixr, (7, 1),

J L L
ZZszxl (f-n+1)XQix1; (1), - -, mq.x1, (fn)XQix1, (2,1), 0, . }v

i=1 j=1 i=1 j=1

M“

where and in the following,

1 1
— fr(x, t)dzdt.
Qil 1151 Jg,x1,

mQ,x1;(fr) =
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We claim that @, is bounded on LP(L*([1,2]),1% R",w). In fact, if p € [2,00),
we have by Hélder’s inequality that

1 1
1 ’ 1 1 o
muer, ()] < horumaya) (50 [ e ma)”
. Qill 5] /1, xq, 1Qil Jo,
and
1 2/p
> o [ 1w opew dy
o @il 5 Jo,
2/p
SN | fi(y, )[Pw(y) dy dt
%@M”@
Therefore,
I p/2
H(I)( )HLp(L2(12 JZR™ w) = ZZ// Z |le><1 fk w(:c) dax dt
i=1 j=1"1; |k|<N
sW“ZZ//EJn%Ww@w
i=1 j=1 |k|<N
<NP/QZZ// ST )P w(y) dyd
i=1 j=1 |k|<N

< NP2 Al 2 iz oy

On the other hand, for p € (1,2) and w € A,(R"), we choose v € (0,1) such that
w e A,_(R"). Note that

J L
sup sup |y > mguer, (fr)Xqixr, (2, 0)| S sup sup |fu(, 1)),
—N<k<Nte[L2] |35 55 k€Z te[1,2]
which implies that for p; € (1, 00),
(3.2) [P () o (oo (2000 Ry S N Nl 2o (2o (11,2000 R ) -
We also have that for pg = p — v,
1 1

1 Po " 1 -1 T)
Imqxr; (i)l < 7 | fi(y, D) [Pw(y) dy di w r(y)dy )
and so
(3.3) 1@ (£ ] zro oo (1,25)070: R ) S (1 F 1| oo (190 12,29 0705 B -

By interpolation, we can deduce from (3.2) and (3.3) that in this case

| @)l zr2qua) 2 mrw) S 1l 2ecz2o,1)2, 87 0) -

Our claim then follows directly, and so ®.(G) = {®.(f): f € G} is strongly pre-
compact in LP(L*([1,2]),1%; R™ w).
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We now verify (3.1). Denote D = |J;_, Q; and write

HJFXD - (I)e<J?)HLP(Lz([Lz}),l?;R”,w)

J L 9 12
< (/1 > )fk(-,t)xD—ZZinxfj(fk)mej(x,t)) dt)

k<N i=1 j=1 )
. )
2 ) 2
+ / Z | fie(, 1)) X B(0,24)
L k>N
LP(R™,w)

Noting that for x € Q; with 1 <i < J,

J L 1
{/ Z }fk x,t)xp(z ZZmquLj Te)X0ux1, (T, t) ‘ dt}

|k|I<N u=1 v=1
1

<1QI7 V21|~ 1/2{2// / Z | felz,t) — fu(y, s dydsdt}

i |k|<N

S QI 1/2{//ka:cs ka+hs)2dsdh}

k|<N

+ I 1/2{2// >l t) - fk:):s)2dtds}

|k|<N
1
2

< sup (/ Z|kat ka+ht)2dt)
1

‘hISQ |k“<N

[N

|k|<N

—|—|Sl‘lp (/ Z|kat+s fr(z, t)zdt) ,
s|<o 1

we then get that

J 9 p/2
Z/ {/ Z }fk(f’?t Zle fe)xaq, (z } dt} w(z)dr < 2e.

bk
It then follows from the assumption (b) that for all f € G,

||f - (I)E(f)||LP(L2([1,2]),l2;R”,w) < H.fXD - (bg(f)HLP(LZ([1,2]),l2;R”,w)

1

(/1 D I |dt) X{-1>3 (")

kEZ Lp (R a0)

<3
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Noting that

If = dllerezqa iz mrrw) <= Pl )|l o222 re w)
+ | Pc(f) = Pe(9) o (z2(1,2).22:R7 0
+ 117 = Pe(9) | Lrz2(1,2)).02 R7 )5
we then get (3.1) and finish the proof of Lemma 3.3. O

Proof of Theorem 1.3. Let jo € Z_, b € C°(R™) with suppb C B(0, R), p and
w be the same as in Theorem 1.3. Without loss of generality, we may assume that
||b||Loo rr) + || V0| Lo mny) = 1. We claim that

) for each fixed € > 0, there exists a constant A > 0 such that

1/2
| /Z| () dt) X{H>43() < €|l fllo e w);

jez LP(R™ w)
) for s € (1, 00),
1/2
(3.4) (/ > IEf(at) - j,bf(x+h,t)|2dt>
J>Jjo
< 270 h] (M f () + 2 DMLf(2))
(iii) for each € > 0 and N € N, there exists a constant o € (0,1/2) such that
%
5 [low | [ 1w +0) - Fustw P < el lwmn
[s|<o 1 |
JISN
LP(R™,w)

(iv) for each fixed D > 0 and € > 0, there exists N € N such that

1/2
(3.6) / Z | |2dt) XB(0,D) < €|l flLr@nw)-

J>N LP(R",w)
We now prove claim (i). Let ¢ € [1,2]. For each fixed x € R" with [z] > 4R,
observe that supp K7 x¢,;_; C {2772 < |y| < 272}, and f|z|<R |Ki x¢p;_(x—2)|dz # 0
only if 2/ & |z|. A trivial computation shows that

1

/ }Ktj * pj_(x — z)‘ dz < (/ ‘Kg x dj_y(x — z)}2 dz) R%
|z|<R |z|<R

1
2

< Klx¢ ()] dz| R®
N</;”<|z|<2|x|} -2 Z)

SE [ sm1) |-l 2y RE
< 2"1/2|a7|_%R%.
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On the other hand, we have that for s € (1, p),

2 (/y|<R\Kf *¢j—z($—y)\\f(y)|sdy)%

J

= 5 ([ e =l a)

JEZ: 2zl

S (Mo M([f])(2))"*.
Another application of Holder’s inequality then yields

' 2/s
61 SIEL ) Z(/| <RIK§*cbj_z(:c—y)IIf(y)\sdy)

JEZ JEZ

_ 2/s’
- ( [ k2o e =) dy)
ly|<R

<27 |2V R (Mo M(|f]°)(2))™" .

This, in turn leads to our claim (i).
We turn our attention to claim (ii). Write

|[Fjof(2,) = Fjy f(x + h, )] < |b(w) = bla + B[ Fjf (2, )] + T3 f (2, 1),

@ =

with

Jéf(l’, t) =

/n (K7 * ¢j_i(x —y) — K7 * ¢ja(x + h —y)) (b(z + h) — b(y)) f(y) dy| -

It follows from Holder’s inequality and Lemma 3.1 that

(Z\Jl f(z,1)] ) <Z/ ‘K * gz — )—Kf*(bj_l(erh—y)Hf(y)\dy

J>Jo J>J0

S22 </2k<|x—y|<2k+1 K 0jrla = y)

J>jo kEZ
1

’ rmdy) (/ If(y)lsdy)
|z—y|<2k+1

—Ktj *pj_i(x+h—y)

< 210V 27 M, f (2),
Therefore,

[NIES

(/ D IFLf () F}{bf(ﬁh,t)?dt) S Mg f (@) + 2002750 | B M f (2).

J>jo
We now verify claim (iii). For each fixed o € (0,1/2) and t € [1, 2], let
1 [9(2)] 1 19(2)

2% WX{W@—O)S\Z\S%} + 55 9 WX{WHK\Z\QJH(HU)}’

Ulo(2) =

and

Gliofta) = [ (Ul 16r-d) (a = AW dy,
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Note that for t € [1,2],

U7, # éj-illnirey S 00 sup sup |G, f(2)] S MMaf().

I7I<N te[1,2]
Thus
(3.8) sup sup |GY,, f| S ol fllze®mn,
IJ‘<N te[l 2] Loo(Rn)
and
(3.9) sup sup |G, f| S IMMaoflewewy S 1o e w)-
IiI<N te[1,2] Lo (R )

Interpolating the estimates (3.8) and (3.9) shows that if p; € (p, 00),

(3.10) S Y| fll o e -

LP1(R™ )

sup sup |Glto |
[7I<N te[1,2]

On the other hand, if py € (1,p), it then follows from the weighted estimae M and
MQ that

(3.11) / / S |Gl F @) dteo(z) dz S NI e
l7I<N

Choosing p; € (2,00) such that 1/p = 1/2 4+ (2 — po)/(2p1) in (3.10), we get from
(3.10) and (3.11) that for p € (1,2),

[NIES

o [ 3t ropa S N1 ren

Loilsn
LP(R™,w)

with 71 € (0,1) a constant. If p € [2,00), we obtain from Minkowski’s inequality and
Young’s inequality that

2

2

(3.13) /Z|G”J (2)2dt

liI<N
Lr(R™,w)

)
SIS

NSNS [ @60 @ -oirwian) at) wwas

l7ISN

<[ I;(L(/( o 65mi) = W ay) wie)ar)

S N )

=
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Also, we have that

(3.14) /R /12 >

l7I<N

» 2
5 p

2

( /R (Ul #|651l) (2 = 9| F ()] dy)2 a | de

2 .
< / S NG #1654 % 1 gy ¢
L WPTE

S @NoY [ flLomny, P € [2,00).

The inequalities (3.13) and (3.14), via interpolation with changes of measures, give
us that for p € [2,0),

[NIES

(3.15) /Z\Gm (2)[2 dt < No™ ||| o
1

ljISN
LP(R™,w)

with 7 € (0, 1) a constant. Since

sup |F, b.f(x t) — bf($t+5)|<Gltgf( ),

[s|<o

our claim (iii) now follow from (3.12) and (3.15) immediately if we choose o = ¢/(2N).
It remains to prove (iv). Let D > 0 and N € N such that 2V2 > D. Then for
j > N and z € R" with |z| < D,

[ 18 < opte=nsldn < [ | 5 0ymie = D )gpicors () dy

S [ @Iyl 8-
‘y|§2]+3

< 2nl2—n]'/p||f||Lp(Rn).
Therefore,

1
2 ’ < nl D "
(3.16) Z ‘ )7 dt | xBo,n) S2 oN [ f1 o (R

N L7 (R)

It is obvious that

1
2
(3.17) (/ Z |F! \2dt> X B(0,D) S U N e e -

J>N LP(R™,w)
Interpolating the inequalities (3.16) and (3.17) yields

3N

3 DA
</ Z\ |dt> XB(0,D) < 2mn (2—N) [ £1] o (R )

J>N LP(R",w)

with 73 € (0,1) a constant depending only on w. The claim (iv) now follows directly.
We can now conclude the proof of Theorem 1.3. Let p € (1, 00). Note that

Mgy f () < Mi, (),



Weighted complete continuity for the commutator of Marcinkiewicz integral 477

and so ./T/l/éfg is bounded on LP(R",w). Our claims (i)—(iv), via Lemma 3.3, prove
that for b € C5°(R"™), l € N and jp € Z_, the operator ]_—le defined by

(3.18) Fhif@) = {0, FL f(a,t), Bl f(a,t), )

is compact from LP(R™ w) to LP(L*([1,2]),*; R™,w). Thus, MQ]b is completely
continuous on LP(R"™ w). This, via Lemma 3.2 and Theorem 2.1, shows that for
be CP(R™), Mgy is completely continuous on LP(R"™, w). Note that

|Mapfi(a) — Mapf(@)| S Mau(fi — F)(z) S Mas(fi — ().

Thus, for b € C3*(R"™), Mgy is completely continuous on LP(R™,w). Recalling
that Mg is bounded on LP(R",w) with bound C||b|smomr), We obtain that for
b e CMO(R™), Mg, is completely continuous on LP(R", w). O

4. Proof of Theorem 1.5

The following lemma will be useful in the proof of Theorem 1.5, and is of inde-
pendent interest.

Lemma 4.1. Let u € (1,00), m € N U {0}, S be a sublinear operator which
satisfies that

1Sf(z)] < / [b(z) = b(y)[" W (z — y) f(y)|dy,
with b € BMO(R™"), and

1/v/
(4.1) sup R™/" (/ W ()| dx) S I
R>0 R<|z|<2R

(a) Let p € (u,00), A € (0,1) and w € Ay, (R"). If S is bounded on LP(R", w)
with bound D|[b]|gyo(rny, then for some € € (0, 1),

IS Fll o gy S (D + DBl Brto@en | £l o @ )-

(b) Let p € (1,u), w" € A;(R"™) for some r € (u,00) and A € (0,1 —7'/u’). If S
is bounded on LP?(R",w) with bound D, then for some € € (0, 1),

155y S (2 + D) IBBvon 1 o

Proof. For simplicity, we only consider the case of m = 1 and ||b||pmomn) = 1.
For fixed ball B and f € LP(R",w), decompose f as

fy) = FW)xan(y +Zf WXz sl) = Y fily)
k=0
It is obvious that
[ I8t Putay S 7 [ 1) dn S DI (0B

Let 0 € (1,p/u) such that w € A,/,)(R"). For each k € N, let Spf(x) =
S ( S Xort1p\25 B) (z). Then Sy is also sublinear. We have by Holder’s inequality that
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for each x € B,

1/u
|Skf ()] < [0(x) = mpO)| fell L) (/2 W (z —y)|* dy)

kB

1/u/
0= ma ) il ([ 1= )1 00)
1 oy 1
5 |b(l’) — mB(b)|||fk||Lp(Rn7w) </2ka P/ufl(y) dy) |2kB| u

NG
(L b= ma®P ) el
2k+1p

-1
2kB

here, mp(b) denotes the mean value of b on B. It follows from the John—Nirenberg
inequality that

( [ ) = ma) dy) < k2Bl
2k +1p

Therefore, for ¢ € (1,00) and k € N, we have

i w(B) \?
42) 5l g S HEH (AT s
On the other hand, we deduce from the LP(R", w) boundedness of S that
(43) [1s@Pewdy S0 [ (P ds
B 2B

We then get from (4.2) (with ¢ = p) and (4.3) that for o € (0,1),

wn [ isspree) s s oo (S0 [ e i

Recall that w € A,,,(R"). Thus, there exists a constant 7 € (0,1),
w(B) < ( |B| )T
w(2kB) ~ M2kB|7 7

see [24]. For fixed A € (0,1), we choose o sufficiently close to 1 such that 0 < A < o.
It then follows from (4.4) that

> ( /B 1S fiu(y)[Pw(y) dy) S D {w(B)}r Y k2T £l )
k=1

k=1
< D (BN i
This leads to the conclusion (a).
Now we turn our attention to conclusion (b). From (4.1), it is obvious that for
y € 2M1B\2*B,

1

[ W@ = )l@) = mp@ule) e < (2B Bl ( [ @ dx)” |
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with 9 € (1, 00) small enough such that w*’ € A;(R"). This, in turn implies that

L W 00000 ) a0
< okn/u' wU(JékBBZ) /2kB h(y)w(y) dy.

Therefore, for s € (1,00),

(45) / 10f (@)lw(z) dx < 2 (gf;) /ZkB\f(x)\w(x)dx

L gknful wﬂ(féf;) /2 1 (@)b(w) = mi()u(a) dr

chor B ([ | putan) (we)

Also, we get by (4.2) that for ¢ € (u,00) and 6 € (0, 1) with 6qg € (u, 00),

s w(B) \*
A 15y S H0EBEH () I sy
For p € (1,00), we choose g € (u,00) and 6 € (0,1), s € (1,00) which is close to 1

sufficiently such that 1/p = t+(1—t)/qand 1/p = t/s+(1—t)/(8q), with ¢t € (0,1/p).
By interpolating, we obtain from the inequalities (4.5) and (4.6) that

o w(B)
1Sk f || omrw) S K27 (w(QkB)) 1 Nzrat .0

The fact that w” € A;(R™) tells us that

'LU(B) <2—kn(r—1)/r
w(2kB) ~ ’

see [24, p. 306]. This, together with the fact that S is bounded on LP(R", w) with
bound D, gives us that for any w € (0, 1),

ko w(B) w/p

I (i) Wl

([ isr@pucan)” 5 s

—wpokn (g _esA
< {w(B) PP D k2 ) £l o g,

For fixed A € (0,1 — r'/u’), we choose w € (A, 1) sufficiently close to 1 such that
w/u' — (w—A)/r" < 0. Summing over the last inequality yields conclusion (b). O

Let p,r € [1,00), A € (0,1), ¢ € [1,00] and w be a weight. Define the space
LPA(LA([1,2]),17; R, w) by
Lp)\(Lq([la 2])? lr; Rnaw) = {f: {fk}kez: ||-ﬂ|va>‘(Lq([1,2}),lT;R”,w) < 00}7
with

2 r
Nl oA craq 2 m me w) = / (Z |fk(if’t)|r> de
1

keZ
LPA(R™,w)

With usual addition and scalar multiplication, LP*(L9([1,2]),{"; R", w) is a Banach
space.
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Lemma 4.2. Let p € (1,00), A € (0,1) and w € A,(R"), G be a subset in
LPA(L2([1,2]), 1% R™, w). Suppose that G satisfies the following five conditions:

(a) G is a bounded set in LP*(L?([1,2]),1%; R™, w);
(b) for each fixed € > 0, there exists a constant A > 0, such that for all { f}rez €
g,

Z\fk t)[* dt) X{H>43() <€

1
kEZ LA R )

(c) for each fixed e > 0 and N € N, there exists a constant ¢ > 0, such that for
all f={frtrez €,

[NIE

sup / > felot) = fil- + hot)dt <6
1

|h|<o |k|<N
Lr:A(R™,w)

(d) for each fixed ¢ > 0 and N € N, there exists a constant ¢ € (0,1/2) such
that for all f = {fx}rez € G,

(SIS

2
sup / ST fulrt+5) — fil DI dE <e

lsl<o Ik|<N
Lr:A(R™,w)

(e) for each fixed D > 0 and ¢ > 0, there exists N € N such that for all
f=Afrtrez € G,

(SIS

/Z|fk t)*dt | xso,n) <e.
1

|k|>N
LA (R™,w)
Then G is strongly pre-compact in LP*(L?([1,2]), 1% R™ w).

Proof. The proof is similar to the proof of Lemma 3.3, and so we only give the
outline here. It suffices to prove that, for each fixed ¢ > 0, there exists a § = 0, > 0
and a mapping ®, on LP*(L?([1,2]), 1% R", w), such that ®.(G) = {®.(f A): feglis
a strongly pre-compact set in LP*(L2([1,2]),1% R", w), and for f, j € G,

H(I)E(f) - (I)E(@HLP»A(L2([1,2}),I2;R",w) <) = Hf - §’||LP”\(L2([1,2}),I2;R”,w)) < 8e.

For fixed € > 0, we choose A > 1 large enough as in assumption (b), and N € N
such that for all {fy}rez € G,

2

[fe(, )Pt ] XBo.24) <e.
>
1

|k|>N
LPA(R™,w)

Let Q, Q1,...,Qy, D, I,..., I, C [1,2], and ®. be the same as in the proof of
Lemma 3.2. For such fixed N, let p and o € (0,1/2) small enough such that for all
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f= {fe}rez € G,

1
2
€
4.7 sup / (-4 h,t)*dt < —;
@n - |sw 1|;<N: Fet) = i+ R, 5
LA (R, w)
1
2
€
4.8 t 2dt < —
TR T A YA o
|k|<N
LPA (R w)

We can verify that ®. is bounded on LPA(L3([1,2]), 1% R",w), and consequently,
®.(G) = {D.(f): f € G} is a strongly pre-compact set in Lf”’\(L2([1 2]),1%; R™, w).
Recall that for z € Q; with 1 <1 < J,

2

/Z\fwt Zm@m xa (O dt

lk|<N
1
2

2
Ssup | [0 [font) = fo + b
1

|h‘SQ |k‘§N

1
2

+ sup /Z|kat+s — fr(z, )2 dt

Isl<e \ /1 <

For a ball B(y,r), a trivial computation involving (4.7) and (4.8), leads to that

J L 2 5
/ / S @ tixe =0 mar, (f)xaqur, (1) dt | w(z)dz
Blyr) \/1 |p<n i—1 j—1
J 2 5
:Z/ / Z fr(@,t) ZlexI (fr)xz; (1) w(x) dx
i=1 7 Bly,r)NQ; k|<N

< e{w(Bly,m)}

Therefore,
[ 10— 0yt o
B(y,r)
J L 2 5
/ / Z ful@, t)xp — ZZszxl (fx) XQixI; (x,t)| dt | w(x)dx
Bl \71 jr<n pa
p/2
/ / Z ‘f'f z, t XB(0,24) (x)w(x) dx
Log>N

< 2e{w(B(y, r)}*
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It then follows from the assumption (b) that for all feg,

Hf - (I)e(f)HLP’A(LQ([l,ﬂ),IZ;R”,w) < HfXD - (I)e(f)HLP(LQ([IQ}),P;R”,w) +e< 367

and .
If - £7||LM(Rn) < be+ || Pe(f) — q’e(ﬁ)HLM(Rn)-
This completes the proof of Lemma 4.2. U

Proof of Theorem 1.5. We only consider the case of p € (¢',00), w € A,y (R")
and A € (0,1). Recall that Mg is bounded on LP(R",w). By Lemma 4.2, we know
that Mg is bounded on LPA(R™, w). Thus, it suffices to prove that for b € C§°(R"),
Mgy is completely continuous on LPA(R™, w).

LetjoeZ_,be Cgo(Rn) with supp b C B(O, R) and ||bHL°°(R")+||Vb||L°°(R") =1.

Let I?/J( ) = ‘?Z(VL)'X{Q] 1<|2|<2+2}(2). By Minkowski’s inequality,

(/ > IR bfa:t|2dt) g(ﬂez/| bf:)stzdt>;

JEZ
< Z/ K7+ 61z — )|/ ()] dy.

JEZ

< R—nq—l—n'

It is obvious that supp K7 * ¢ C {x 2773 < |z| <2773}, and for any R > 0,
dr < HKJ * ‘
x Z ¢J ! Lq(Rn)

/ E KJ * <Z>J I :c
R<[2|<2R | jioi~R

Let € > 0. We deduce from Lemma 4.1 and the inequality (3.7) that, there exists a
constant A > 0, such that

(4.9) (/ Z| () dt) X{->43(+) < €|l fll Lo ®r w)-

jez LA (R™w)

Recall that Mé’ljo is bounded on LPA(R™ w). For r > 1 small enough, M, is also
bounded on LPAR™ w) (see [27]). Thus by (3.4), we know that there exists a
constant o > 0, such that

(4.10) | sup ( / STIELSCot) = ELf(+ b t>|2dt> < el fllmamn .

|h|<eo
J>jo LP”\(R",w)

D=

It follows from Lemma 4.1, estimate (3.5) that for each N € N, there exists a constant
o € (0,1/2) such that

N

(4.11) ||sup /12\ st = FLiCtPdt < el lrrmon).

Isl<o GI<N
LA (R ,w)

We also obtain by Lemma 4.1 and (3.6) that for each fixed D > 0, there exists N € N
such that

%
(4.12) | / Z\ |2dt> XB(0,0) < ellfllramn w)-

LPA(R™,w)
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The inequalities (4.9)—(4.12), via Lemma 4.2, tell us for any j, € Z_, the operator
Fl defined by (3.18) is compact from LPAR", w) to LP*(L*([1,2]), 1% R",w). On
the other hand, by Lemma 4.1, Theorem 2.1 and Lemma 3.2, we know that

HjZﬂf——jzéfHanme)§52_WHHfHLnMmep
and o .
M5 F = Moo fll o oy S 271 Nz R
As it was shown in the proof of Theorem 1.3, we can deduce from the last facts that

Mgy is completely continuous on LPA(R™ w) when b € C°(R"). This completes
the proof of Theorem 1.5. U
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