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Abstract. The infinitesimal space of a quasiregular mapping was introduced by Gutlyanskii

et al [6]. Quasiregular mappings are only differentiable almost everywhere, and so the infinitesimal

space generalizes the notion of derivative to this class of mappings. In this paper, we show that

the infinitesimal space is either simple, that is, it consists of only one mapping, or it contains

uncountable many. To achieve this, we define the orbit of a given point as its image under all

elements of the infinitesimal space. We prove that this orbit is a compact and connected subset

of Rn \ {0} and moreover, every such set can be realized as an orbit space in dimension two. We

conclude with some examples exhibiting features of orbits.

1. Introduction

Quasiregular mappings are the natural generalization to R
n, for n ≥ 2, of holo-

morphic mappings in the plane. These are mappings with bounded distortion, and
share many properties with holomorphic mappings such as value distribution and
normal family results, see for example Rickman’s monograph [9] for much more in-
formation on this. However, they are much more flexible since they only need to be
differentiable almost everywhere.

For holomorphic maps, one only needs to look at the multiplier f ′(z0) to deter-
mine the behaviour of f near z0. This fact plays an important role of the classification
of fixed points. For quasiregular mappings, the failure of differentiability everywhere
means it is a more subtle issue to describe the behaviour near a particular point.

As a generalization of the notion of a derivative for quasiregular mappings,
Gutlyanskii et al [6] introduced generalized derivatives. See also [2, Chapter 6] for
the development of this theory in dimension two. The bounded distortion prop-
erty and normal family machinery for quasiregular mappings mean that generalized
derivatives always exist. If a mapping is differentiable at a particular point, then the
generalized derivative is nothing other than a scaled version of the derivative. It is
possible for a quasiregular mapping to have more than one generalized derivative at
a particular point, see [3]. We then call the collection of all generalized derivatives
at a particular point x0 for a given quasiregular mapping f the infinitesimal space of
f at x0, and denote it by T (x0, f).

The main aim of the current note is to prove that the infinitesimal space either
contains one element or uncountably many. The idea is to look at the orbit of a
point under all elements of the infinitesimal space. We will show that this orbit
arises as an accumulation set of a curve, from which the required property follows.
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For the converse, we also show that in the plane, every compact connected set in
R

2 \ {0} arises as an orbit space of a quasiconformal map f : R2 → R
2. We restrict

ourselves here to dimension two to take advantage of computations involving the
complex dilatation which are unavailable in higher dimensions. As part of the proof
of this result, we construct distorted versions of logarithmic spiral maps, see Lemma
4.2, which could conceivably be of independent interest. We refer to [1] and the
references therein for recent work related to logarithmic spiral maps.

The paper is organised as follows. In section two, we cover preliminary material
on quasiregular mappings and generalized derivatives and state our main results.
In section three, we define and study properties of the orbit of a point under an
infinitesimal space of a quasiregular mapping. In section four, we show that in
dimension two, we can realize any non-empty, compact, connected subset of the
punctured plane as an orbit space. Finally, in section five we exhibit some examples
and show in particular that the behaviour of the generalized derivative on a compact
set does not determine the generalized derivative.

2. Preliminaries

2.1. Quasiregular mappings. We start by recalling the definition of a quasireg-
ular mapping.

Definition 2.1. Let n ≥ 2 and U a domain in R
n. Then a continuous mapping

f : U → R
n is called quasiregular if f is in the Sobolev space W 1

n,loc
(U) and there

exists K ∈ [1,∞) so that

|f ′(x)|n ≤ KJf (x) a. e.

The smallest K here is called the outer dilatation KO(f) of f . If f is quasiregular,
then it is also true that

Jf (x) ≤ K ′ℓ(f ′(x))n a. e.

for some K ′ ∈ [1,∞). Here, ℓ(f ′(x)) = inf |h|=1 |f ′(x)h|. The smallest K ′ for which
this holds is called the inner dilatation KI(f) of f . The maximal dilatation is then
K(f) = max{KO(f), KI(f)}. We say that f is K-quasiregular if K(f) ≤ K.

If U is a domain in R
n with non-empty boundary, then for x ∈ U , we denote

by d(x, ∂U) the Euclidean distance from x to ∂U . One of the important properties
of quasiregular mappings is that they have bounded linear distortion, which we now
define.

Definition 2.2. Let n ≥ 2, U ⊂ R
n a domain, x ∈ U and f : U → R

n be
K-quasiregular. For 0 < r < d(x, ∂U), we define

ℓf(x, r) = inf
|y−x|=r

|f(y)− f(x)|, Lf(x, r) = sup
|y−x|=r

|f(y)− f(x)|.

The linear distortion of f at x is

H(x, f) = lim sup
r→0

Lf(x, r)

ℓf(x, r)
.

The local index i(x, f) of a non-constant quasiregular mapping f at the point x
is

i(x, f) = inf
N

sup
y

card(f−1(y) ∩N),

where the infimum is taken over all neighbourhoods N of x. In particular, f is locally
injective at x if and only if i(x, f) = 1.



The orbits of generalized derivatives 487

Theorem 2.3. [9, Theorem II.4.3] Let n ≥ 2, U ⊂ R
n a domain and f : U → R

n

a non-constant quasregular mapping. Then for all x ∈ U ,

H(x, f) ≤ C <∞,

where C is a constant that depends only on n and the product i(x, f)KO(f).

Recall that a family F of K-quasiregular mappings defined on a domain U ⊂ R
n

is called normal if every sequence in F has a subsequence which converges uniformly
on compact subsets of U to a K-quasiregular mapping. There is a version of Montel’s
Theorem for quasiregular mappings due to Miniowitz.

Theorem 2.4. [8] Let F be a family of K-quasiregular mappings defined on a

domain U ⊂ R
n. Then there exists a constant q = q(n,K) so that if a1, . . . , aq are

distinct points in R
n satisfying f(U) ∩ {a1, . . . , aq} = ∅ for all f ∈ F , then F is a

normal family.

The constant q here is called Rickman’s constant and arises from Rickman’s
version of Picard’s Theorem, see [9, Theorem IV.2.1].

2.2. Generalized derivatives and infinitesimal spaces. In [6], a general-
ization for the derivative of a non-constant quasiregular mapping f at x0 was defined
as follows. For t > 0, let

(2.1) ft(x) :=
f(x0 + tx)− f(x0)

ρf (t)
,

where ρf (r) is the mean radius of the image of a sphere of radius r centered at x0
and given by

(2.2) ρf(r) =

(

λ[f(B(x0, r))]

λ[B(0, 1)]

)1/n

.

Here λ denotes the standard Lebesgue measure. While each ft(x) is only defined on a
ball centered at 0 of radius d(x0, ∂D)/t, when we consider limits as t→ 0, we obtain
mappings defined on all of Rn. Of course, there is no reason for such a limit to exist,
but because each ft is a quasiregular mapping with the same bound on the distortion,
it follows from Theorem 2.3 and Theorem 2.4 that for any sequence tk → 0, there is
a subsequence for which we do have local uniform convergence to some non-constant
quasiregular mapping.

Definition 2.5. Let f : U → R
n be a quasiregular mapping defined on a domain

U ⊂ R
n and let x0 ∈ R

n. A generalized derivative ϕ of f at x0 is defined by

ϕ(x) = lim
k→∞

ftk(x),

for some decreasing sequence (tk)
∞
k=1, whenever the limit exists. The collection of

generalized derivatives of f at x0 is called the infinitesimal space of f at x0 and is
denoted by T (x0, f).

To exhibit the behaviour of generalized derivatives, we consider some simple
examples.

Example 2.6. Let w ∈ C \ {0} and define f(z) = wz. Then it is elementary to
check that if z0 = 0, we have ft(z) = ei argwz for any t > 0. Consequently, T (0, f)
consists only of the map ϕ(z) = ei argwz.

Example 2.7. Let d ∈ N and define g(z) = zd. One can check that if z0 = 0,
we have ft(z) = zd for any t > 0 and so T (0, g) consists only of the map ϕ(z) = zd.
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These examples illustrate the informal property the generalized derivatives main-
tain the shape of f near x0, but they lose information about the scale of f . In general,
if a quasiregular map f is in fact differentiable at x0 ∈ R

n, then T (x0, f) consists
only of a scaled multiple of the derivative of f at x0, normalized to preserve the
volume of the unit ball in R

n.
The reason for the scaling is the use of ρf (r) in the definition of ft. We may in

fact replace ρf (r) by Lf(x0, r), lf(x0, r) or any other quantity comparable to ρf (r). In
the special case of uniformly quasiregular mappings, that is, quasiregular mappings
with a uniform bound on the distortion of the iterates, it was proved in [7] that at
fixed points with i(x0, f) = 1, they are locally bi-Lipschitz. Consequently, in this
special case one may replace ρf (r) with r itself. In general, quasiregular mappings
are only locally Hölder continuous and so it does not suffice to use r instead of ρf(r).

Definition 2.8. Let f : U → R
n be quasiregular on a domain U and let x0 ∈ U .

If the infinitesimal space T (x0, f) consists of only one element, then T (x0, f) is called
simple.

In both the examples above, the respective infinitesimal spaces are simple. It
was shown in [6] that when the infinitesimal space is simple, then the function is
well-behaved near x0. In particular,

f(x) ∼ f(x0) + ρf (|x− x0|)ϕ
(

x− x0
|x− x0|

)

,

where ϕ is the unique generalized derivative in T (x0, f)

2.3. Statement of results. Denote by C(U,Rn) the set of continuous functions
from a domain U ⊂ R

n into R
n. If x ∈ U and F ⊂ C(U,Rn), denote by Ex : F → R

n

the point evaluation map, that is, if f ∈ F then Ex(f) = f(x).

Definition 2.9. Let f : U → R
n be a quasiregular mapping defined on a domain

U ⊂ R
n and let x0 ∈ U . Then the orbit of a point x ∈ R

n under the infinitesimal
space T (x0, f) is defined by

O(x) = Ex(T (x0, f)) = {ϕ(x) : ϕ ∈ T (x0, f)}.
Our first main result relates the orbit space to the accumulation set of a curve.

Theorem 2.10. Let f : U → R
n be a quasiregular mapping defined on a domain

U ⊂ R
n and let x0 ∈ U . Then the orbit space O(x) is the accumulation set of the

curve t 7→ ft, where ft is defined by (2.1).

Moreover, [5, Theorem 1.5] shows that O(x) lies in a ring {x ∈ R
n : 1/C ′ ≤ |x| ≤

C ′} for some constant C ′ ≥ 1 depending only on n,KO(f) and i(x0, f).

Corollary 2.11. Let f : U → R
n be a quasiregular mapping defined on a domain

U ⊂ R
n and let x0 ∈ U . Then the infinitesimal space T (x0, f) either consists of one

element or uncountably many.

Since Theorem 2.10 shows that O(x) is compact and connected and lies in a ring,
we prove the following converse in dimension two.

Theorem 2.12. Let X ⊂ R
2 \ {0} be a non-empty, compact and connected set.

Then there exists a quasiconformal mapping f : R2 → R
2 for which X is the image

of the point evaluation map Ex1
: T (0, f) → R

2 for x1 = (1, 0).
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Remarks.

• The proof will show that if X ⊂ {z ∈ R
2 : 1/C ≤ |z| ≤ C}, then we can

bound the distortion of the quasiregular mapping in terms of C.
• The map we construct will map every circle centred at the origin onto an

ellipse of uniformly bounded eccentricity (with bound in terms of C) via a
stretch and a rotation. Moreover, as the radius changes, either the eccen-
tricity changes smoothly or the ellipse rotates analogously to a logarithmic
spiral. It follows that our construction is in fact in the bi-Lipschitz class.
Since we lose information in terms of scaling but preserve information of the
shape when we consider generalized derivatives, it is not surprising that the
most general version of Theorem 2.12 can be obtained in this stronger class.

• It would be interesting to prove Theorem 2.12 in higher dimensions, but the
specific computations used in this paper involve the complex dilatation. This
is not available in higher dimensions.

The authors would like to thank the referee for useful comments and improving
the readability of the paper.

3. The orbit space

In this section, we prove Theorem 2.10. To that end, let f : U → R
n be a

quasiregular mapping defined on a domain U ⊂ R
n and let x0 ∈ U . By Theorem

2.3, find r0 > 0 small enough so that if 0 < r < r0 then

(3.1)
Lf (x0, r)

ℓf(x0, r)
≤ C1,

where C1 = 2C depends only on n,KO(f) and i(x0, f). For x ∈ R
n fixed and

0 < t ≤ r0/|x|, consider the curve

(3.2) γx(t) =
f(x0 + tx)− f(x0)

ρf(t)
.

Lemma 3.1. The curve t 7→ γx(t) is continuous for 0 < t < r0/|x|.
Proof. Since f is quasiregular, t 7→ f(x0 + tx)− f(x0) is continuous. It therefore

suffices to show that ρf is continuous in t or, by (2.2), that λ[f(B(x0, t))] is continuous
in t. Suppose this is not the case and we can find t0 ∈ (0, r0/|x|) and a sequence
tk → t0 so that λ[f(B(x0, tk))]− λ[f(B(x0, t0))] does not converge to 0. Necessarily,
we must have tk 6= t0 for infinitely many k. By passing to a subsequence, we can
assume that tk − t0 has the same sign for all k and consequently λ[f(B(x0, tk))] −
λ[f(B(x0, t0))] converges to δ > 0. However, this means that λ[f(∂B(x0, t0))] > 0.
This contradicts the fact that quasiregular mappings satisfy Lusin’s (N) condition,
see [9, Proposition I.4.14 (a)], that states that if λ(E) = 0, then λ(f(E)) = 0 �

This curve γx(t) is analogous to a trajectory in the theory of differential equations.
Since f is quasiregular and (3.1) holds for t < r0/|x|, it follows that γx(t) is in the
ring R = {x : 1/C1 ≤ |x| ≤ C1}. Continuing the analogy with differential equations,
we define the ω-limit set of γx as

ω(γx) =
⋂

s>0

{γx(t) : t < s}.

We can now prove Theorem 2.10.
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Proof of Theorem 2.10. We will show that the ω-limit set of γx equals O(x).
First suppose that y ∈ O(x). Then we can find a decreasing sequence tk → 0 such
that

y = lim
k→∞

f(x0 + tkx)− f(x0)

ρf (tk)
.

Each term in this sequence lies on γx and since tk is decreasing, they are arranged in
order along the curve. Hence y is contained in ω(γx).

Conversely, if y ∈ ω(γx), then there exist yk ∈ γx with yk → y. By definition
yk = γx(tk) for some tk > 0. Since the family of functions

{

f(x0 + tkx)− f(x0)

ρ(tk)
: k ∈ N

}

forms a normal family, there exists a subsequence converging to a generalized deriv-
ative g. We must have g(x) = y and we are done. �

Since ω(γx) is closed and connected, it immediately follows from Theorem 2.10
that O(x) has these properties too.

Proof of Corollary 2.11. If for each x ∈ R
n the corresponding orbit space O(x)

has one element, then the infinitesimal space T (x0, f) has only element, defined by
ϕ(x) = Ex(T (x0, f)). On the other hand, if there exists x ∈ R

n so that O(x) has more
than one element, then by Theorem 2.10 it has uncountably many. Consequently,
there are uncountably many different generalized derivatives in T (x0, f). �

4. Realizing the orbit space

In this section, we prove Theorem 2.12. Since we will just work in dimension
2, we recall (see for example [4]) that if f : C → C is K-quasiconformal, then its
complex dilatation is defined by

µf =
fz
fz

=
(fx + ify)

(fx − ify)
.

Then µ ∈ L∞(C) with ||µ||∞ ≤ k < 1 and where k = K−1
K+1

. We note that if L > 0

and |µf | =
∣

∣

L−1
L+1

∣

∣, then f is max{L, 1/L}-quasiconformal.
In proving Theorem 2.12, our construction will involve a quasiconformal map

which sends circles centred at 0 to ellipses centred at 0 with various eccentricities
and angles. Denote by hK,θ the quasiconformal map obtained by stretching by a
factor K > 0 in the x-direction and rotating through angle θ. Then

(4.1) hK,θ(z) = eiθ
((

K + 1

2

)

z +

(

K − 1

2

)

z

)

.

The following lemma will be useful in verifying our construction has the requisite
properties.

Lemma 4.1. Let K > 0, θ ∈ [0, 2π) and let hK,θ be defined by (4.1). Then for

r > 0, we have

hK,θ(r)

ρ(r)
=

√
Keiθ.
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Proof. The area of the image of the disk of radius r under hK,θ is an ellipse with
semi-axes of length Kr and r and hence

ρ(r) =

(

πKr2

π

)1/2

=
√
Kr.

Hence
hK,θ(r)

ρ(r)
= Kreiθ√

Kr
=

√
Keiθ as required. �

Consequently, for hK,θ, x0 = 0 and x = 1 ∈ C we have for any r > 0 that,
recalling (3.2),

(4.2) γ1(r) =
√
Keiθ.

We next require specific quasiconformal constructions which interpolate between
hK1,θ1 and hK2,θ2 on two circles, where either K1 = K2 or θ1 = θ2. There are various
such results in the literature, such as Sullivan’s Annulus Theorem (see for example
[10]), but we want an explicit interpolation for our purposes. The first is a distorted
version of the logarithmic spiral map.

Lemma 4.2. Let K > 0. Then if α ∈ R satisfies

|α| <
∣

∣

∣

∣

2K

1−K2

∣

∣

∣

∣

,

there exists a quasiconformal spiral map given by

S(z) =

((

K + 1

2

)

z +

(

K − 1

2

)

z

)

|z|iα.

Moreover, we may choose |α| small enough so that S is 2max{K, 1/K}-quasiconformal.

As usual, |z|iα is understood as exp(iα ln |z|) for z 6= 0, and 0 otherwise. The
parity of α indicates the direction of spiralling and α = 0 just reduces to the map
hK,0. When K = 1, we obtain any the usual logarithmic spiral map which can take
on any amount of spiralling.

Proof. We need to check that the map S defines a homeomorphism. First observe
that S is clearly continuous by definition. Next, S is injective on the circle of radius
t and maps this circle onto an ellipse. If S is not globally injective, then there exist
t1, t2 so that the images of the circles of radius t1, t2 under S cross. Since for t > 0
we have

(4.3) S(tz) = teiαtS(z),

it follows that the images of the circles of radius 1 and t2/t1 must also cross. Con-
sequently, it suffices to show that the condition on α implies that the images of the
circles |z| = 1 and |z| = 1 + t do not cross for all small t > 0, and then (4.3) implies
that S is a homeomorphism.

The images of the circles of radii 1 and 1+ t are given by ellipses with equations

( x

K

)2

+ y2 = 1,

(

x′

K(1 + t)

)2

+

(

y′

1 + t

)2

= 1

respectively, where

x′ = x cos(α ln(1 + t))− y sin(α ln(1 + t)), y′ = x sin(α ln(1 + t)) + y cos(α ln(1 + t)).
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Working to first order in t, if S is a homeomorphism then these ellipses do not
intersect and hence there is no solution to the equation

( x

K

)2

+ y2 =

(

x− αty

K(1 + t)

)2

+

(

αtx+ y

1 + t

)2

.

Simplifying this equation and again neglecting terms in t2, we should have no solu-
tions to

x2 +K2y + α(1−K2)xy = 0.

Now this equation has no solutions when α2(K2 − 1)2 − 4K2 < 0. Consequently, the
condition |α| < |2K|/|1−K2| implies that S is a homeomorphism.

To verify that S is quasiconformal, we compute the complex dilatation. Since

Sz =

(

1 +
iα

2

)(

K + 1

2

)

ziα/2ziα/2 +

(

iα

2

)(

K − 1

2

)

ziα/2−1ziα/2+1,

and

Sz =

(

iα

2

)(

K + 1

2

)

ziα/2+1ziα/2−1 +

(

1 +
iα

2

)(

K − 1

2

)

ziα/2ziα/2,

we have

µS =
Sz

Sz
=
iαe2i arg(z) +

(

K−1
K+1

)

(2 + iα)

2 + iα + iα
(

K−1
K+1

)

e−2i arg(z)
.

Writing k = (K − 1)/(K + 1) and ψ = 2 arg(z), we can rewrite this as

(4.4) µS =
2k − α sinψ + iα(cosψ + k)

2 + αk sinψ + iα(1 + k cosψ)
.

For S to be quasiconformal, we require ||µS||∞ < 1. To that end, we observe that

|2 + αk sinψ + iα(1 + k cosψ)|2 − |2k − α sinψ + iα(cosψ + k)|2

= 4(1− k2) + 8αk sinψ > 4[1− k2 − 2|α|k] > 0

since the hypothesis on α implies that |α| < |1−k2|/2|k|. From (4.4), we see that we
may choose |α| small enough so that the distortion of S is at most 2max{K, 1/K}.

�

The second construction involves changing the stretching in a given direction.

Lemma 4.3. Let K,L > 0. Then we may find 0 < t < 1 so that the map defined

by

(4.5) R(x+ iy) = K(x2 + y2)ν/2x+ iy

is quasiconformal on {z : t ≤ |z| ≤ 1}, where ν = ln(L/K)/ ln t. Moreover, if t <
e−| ln(L/K)| then R is 2max{K,L, 1/K, 1/L}-quasiconformal.

The point about this construction is that on |z| = 1, R = hK,0 and on |z| = t,
R = hL,0.

Proof. With the function R as defined by (4.5), for t ≤ r ≤ 1, R maps the
circle |z| = r onto the ellipse with semi-axes ir and Kr1+ln(L/K)/ ln t. The size of both
semi-axes are continuous and monotonic in r for 1 + ln(L/K)/ ln t > 0 and hence R
is a homeomorphism if t < e−| ln(L/K)|. We may therefore assume that 1 + ν > 0.

To compute the complex dilatation, the partial derivatives of R are

Rx = K(x2 + y2)ν/2−1((ν + 1)x2 + y2), Ry = νKxy(x2 + y2)ν/2−1 + i.
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Since Rz = (Rx − iRy)/2 and Rz = (Rx + iRy)/2, we have

µR =
K(x2 + y2)ν/2−1((ν + 1)x2 + y2 + iνxy)− 1

K(x2 + y2)ν/2−1((ν + 1)x2 + y2 − iνxy) + 1
.

Clearly the absolute values of the imaginary parts of numerator and denominator
agree, and the real part of the numerator is strictly less than the real part of the
denominator since 1 + ν > 0. It follows that ||µR||∞ < 1 and R is quasiconformal.

One can check that if t < e−| ln(L/K)|, that is, if |ν| < 1 then |(ν+1)x2+y2+iνxy| <
2(x2 + y2) and consequently

|µR(z)| ≤
2K|z|ν − 1

2K|z|ν + 1

for t ≤ |z| ≤ 1. On this range, K|z|ν lies between K and L. Hence, for such a choice
of t, R is 2max{K,L, 1/K, 1/L}-quasiconformal. �

We will now prove Theorem 2.12, that given a non-empty, compact, connected
subset of R2 \ {0}, we can realize it as an orbit space for a quasiregular, and in fact
quasconformal, map.

Proof of Theorem 2.12. Let X ⊂ R
2 \ {0} be compact and connected. For

k ∈ N, let Uk be an open 1/k-neighbourhood of X. We can find K ∈ N and C > 0
so that for k ≥ K, Uk ⊂ {z : 1/C ≤ |z| ≤ C}. For k ≥ K, find a path Γk ⊂ Uk

starting and ending at (possibly different) points of X so that:

• Γk is made up of finitely many radial line segments and circular arcs centred
at 0,

• for every z ∈ Uk, there exists w ∈ Γk with |z − w| < 1/k,
• the endpoint of Γk coincides with the starting point of Γk+1.

Our aim is to construct a quasiconformal map f so that, recalling (3.2), the curve
γ1 is the concatenation of Γk for k ≥ K. If this is so, then since by construction γ1
accumulates exactly on X, we are done. Our map f will send a circle of radius r
to an ellipse centred at 0 with appropriate eccentricity and orientation so that γ1(r)
has the required value. Recall that Lemma 4.1 and (4.2) says what ellipse we need
to obtain a required value for γ1(r).

To this end, we will give a parameterization pk : [rk+1, rk] → Γk for k ≥ K, where
rk is given and rk+1 is to be determined. Suppose k ≥ K, we have the open set Uk

and a point pk(rk) ∈ X. We can find a path Γk with the required properties, made
up of Γ1

k, . . . ,Γ
m
k where m = m(k) and each Γj

k is either a radial line segment or an

arc of a circle centred at 0. We must have rmk = r1k+1. The parameterization for Γj
k

is given by pjk : [r
j+1
k , rjk] → Γj

k, where we are given rjk and have to determine rj+1
k .

Case (i). Γj
k is an arc of a circle, say from seiθ1 to seiθ2 with 1/C ≤ s ≤ C

and the appropriate orientation. By (4.2), on |z| = rjk we have f(z) = hs2,θ1(z) and

γ1(r
j
k) = seiθ1 .
Apply Lemma 4.2 with K = s2 and α chosen with parity to give the correct

direction of spiralling commensurate with the orientation of our circular arc, and
|α| chosen small enough so that S has distortion at most 2max{K, 1/K}. We then
choose rj+1

k so that on {z : rj+1
k ≤ |z| ≤ rjk},

f(z) = rjke
iθ1S

(

z

rjk

)

,
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and f(rj+1
k ) = s2eiθ2 . Then by (4.2), we have γ1(r

j+1
k ) = seiθ2.

Case (ii). Γj
k is a radial line segment, say from s1e

iθ to s2e
iθ with s1, s2 ∈ [1/C, C].

By (4.2), on |z| = rjk we have f(z) = hs2
1
,θ(z) and γ1(r

j
k) = s1e

iθ.

Apply Lemma 4.3 with K = s21 and L = s22 and t chosen small enough that R
has distortion at most 2max{K,L, 1/K, 1/L}. Choosing rj+1

k = t, we have

f(z) = rjke
iθR

(

z

rjk

)

,

and f(rj+1
k ) = s22e

iθ. Then by (4.2), we have γ1(r
j+1
k ) = s2e

iθ.
These two cases show how to parameterize each sub-arc of Γk and hence induc-

tively how to define a parameterization for γe1 from (0, rK]. By construction, the
obtained map f has distortion at most 4C2 and hence is quasiconformal. �

We remark that if for each sub-arc, if we chose α and t to be very small, we can
obtain an upper bound for the distortion of the corresponding f arbitrarily close to
C2.

5. Examples

In this section, we exhibit some examples.

(i) We again remark that if f is simple at x0, then there is only one element
of the infinitesimal space and so O(x) consists of exactly one point for each
x ∈ R

n.
(ii) The logarithmic spiral map z 7→ z|z|iα for α ∈ R has O(w) equal to the

circle of radius |w|, for w 6= 0.
(iii) The uniformly quasiregular map H constructed in [3, Theorem 1.8] has a

radial line segment as its orbit space for any x ∈ R
n \ {0}, since H is radial

and behaves like different powers of r on different r-intervals.

It is worth pointing out that just because one orbit consists of one point for a
given map f and x0 ∈ R

n, it does not imply that all orbits do. For example, we can
define a quasiconformal map f : R2 → R

2 which maps each circle of radius r onto
itself, fixes every point of the positive real axis but so that, for x > 0, f maps −x
onto xeiθ(x) where θ is continuous and oscillates between π/2 and 3π/2. Then for
x > 0, O(x) consists of one point, but O(−x) consists of a semicircle.

Finally, we show that the behaviour of a generalized derivative on a compact set
does not determine the generalized derivative.

Proposition 5.1. There exists a quasiconformal map f : D → D so that for

any R > 0, there exist distinct generalized derivatives g1, g2 ∈ T (0, f) which agree

on {z : |z| < R}.
Proof. Let Rt(z) = eitz be the rotation centred at 0 through angle t, and let A

be the ring domain A = {z : 1 ≤ |z| ≤ 2}. On A, define the Dehn twists

f+(z) = R2π(|z|−1)(z) and f−(z) = R2π(1−|z|)(z).

One can check that these mappings are bi-Lipschitz and hence quasiconformal.
Next, we define sequences rn+1 < un < tn < sn < rn with rn = 1, rn/sn →

∞, sn/tn = 2, tn/un → ∞ and un/rn+1 = 2. We define a map f : D → D as
follows. For |z| ∈ [sn, rn] ∪ [un, tn] we set f(z) = z. For |z| ∈ [tn, sn], we set
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f(z) = tnf
+(z/tn). Finally, for |z| ∈ [rn+1, un] we set f(z) = rn+1f

−(z/rn+1). The
map f is quasiconformal, since f+, f− are.

Now let R > 0. Consider sequences (δn)
∞
n=1 and (ǫn)

∞
n=1 given by

δn =
rn
R

and ǫn =
tn
R
.

Computing the generalized derivatives associated to these two sequences, we obtain
g1, g2 respectively, both of which are the identity in {z : |z| < R}. This is due to the
fact that rn/sn → ∞ and tn/un → ∞. However, in {z : R < |z| < 2R}, g1 and g2
differ since they spiral in different directions in the x1, x2 plane. �
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