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Abstract. We prove that averaging operators are uniformly bounded on Lp for all geometri-

cally doubling metric measure spaces and all 1 ≤ p < ∞, with bounds independent of the measure.

From this result, the Lp convergence of averages as r → 0 immediately follows.

1. Introduction

It is a well known consequence of translation invariance that for Lebesgue measure
on R

d, the averages Arf (also known as Steklov means) converge to f in L1 as r → 0.
Rather surprisingly, the corresponding approximation question regarding arbitrary
locally finite Borel measures µ on R

d (i.e., whether limr→0Ar,µf = f in L1(µ)) does
not seem to have been studied in the literature.

Here we give an affirmative answer not just for R
d, but for every geometrically

doubling metric measure space (every metric space of homogeneous type, in the ter-
minology of [CoWe], cf. Definition 2.5 below). We do this by proving that averaging
operators are uniformly bounded on L1, something that was previously unknown
even for R

d. By interpolation, boundedness also holds for all p ∈ (1,∞), since the
case p = ∞ is trivial. Note that on R

d and for p ∈ (1,∞), the Lp boundedness of
averaging operators was already known, since it is immediate from the corresponding
boundedness of the centered Hardy–Littlewood maximal operator. But for geomet-
rically doubling metric spaces in which the Besicovitch covering theorem does not
hold, not only the case p = 1, but also the case p ∈ (1,∞), is new.

The boundedness question regarding euclidean spaces was asked by the author
in [Al2]; two special cases were proved in that paper: the exponential distribution in
one dimension, and the standard gaussian distribution in every dimension. Here we
present the general result.

2. Definitions and notation

We will use Bo(x, r) := {y ∈ X : d(x, y) < r} to denote open balls, and Bcl(x, r) :=
{y ∈ X : d(x, y) ≤ r} to refer to metrically closed balls (“closed ball” will always be
understood in the metric, not the topological sense). If we do not want to specify
whether balls are open or closed, we write B(x, r). But when we utilize B(x, r), we
assume that all balls are of the same kind, i.e., all open or all closed.
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Definition 2.1. A Borel measure is τ -additive or τ -smooth, if for every collection
{Uα : α ∈ Λ} of open sets,

µ
(
⋃

αUα

)

= supF µ
(
⋃n

i=1Uαi

)

,

where the supremum is taken over all finite subcollections F = {Uα1
, . . . , Uαn

} of
{Uα : α ∈ Λ}. We say that (X, d, µ) is a metric measure space if µ is a τ -additive
Borel measure on the metric space (X, d), such that µ assigns finite measure to
bounded Borel sets.

From now on we always assume that measures are locally finite (finite on bounded
sets) and not identically 0. For motivation regarding the definition of metric measure
spaces using τ -additivity, cf. [Al3]. Note that in separable metric spaces all Borel
measures are τ -additive (so the spaces considered above are more general than those
given by some commonly used alternative definitions, cf. [HKST] for instance) and
the same happens with all Radon measures in arbitrary metric spaces. Recall that
the complement of the support (suppµ)c :=

⋃

{Bo(x, r) : x ∈ X, µBo(x, r) = 0} of a
Borel measure µ, is an open set, and hence measurable.

Definition 2.2. Let (X, d) be a metric space and let µ be a locally finite Borel
measure on X. If µ(X \ supp µ) = 0, we say that µ has full support.

By τ -additivity, if (X, d, µ) is a metric measure space, then µ has full support,
since X \ suppµ is a union of open balls of measure zero. Actually, the other im-
plication also holds, for the support is always separable, so having full support is
equivalent to τ -additivity (cf. [Bo, Proposition 7.2.10] for more details).

Definition 2.3. Let (X, d, µ) be a metric measure space and let g be a locally
integrable function on X. For each fixed r > 0 and each x ∈ supp µ, the averaging
operator Ar,µ is defined as

(1) Ar,µg(x) :=
1

µ(B(x, r))

ˆ

B(x,r)

g dµ.

Averaging operators in metric measure spaces are defined almost everywhere, by
τ -additivity. Sometimes it is convenient to specify whether balls are open or closed;
in that case, we use Ao

r,µ and Acl
r,µ for the corresponding operators. Furthermore,

when we are considering only one measure µ we often omit it, writing Ar instead of
the longer Ar,µ.

Definition 2.4. Let (X, d) be a metric space. A strict r-net (resp. non-strict

r-net) in X is a subset S ⊂ X such that for any pair of distinct points x, y ∈ S, we
have d(x, y) > r (resp. d(x, y) ≥ r).

We speak of an r-net if we do not want to specify whether it is strict or not. To
ensure disjointness of the balls B(x, r/2), r-nets are always taken to be strict when
working with closed balls; otherwise, we assume r-nets are non-strict.

Definition 2.5. A metric space is geometrically doubling if there exists a positive
integer D such that every ball of radius r can be covered with no more than D balls
of radius r/2. We call the smallest such D the doubling constant of the space.

We use Do and Dcl to refer to the corresponding constants for open and for closed
balls. It is easy to see, by enlarging balls slightly, that the geometrically doubling
condition is satisfied for open balls if and only if it is satisfied for closed balls. But
the constants will in general be different; for instance, if X = R, then Do = 3 and
Dcl = 2.
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Remark 2.6. Let X be geometrically doubling with constant D, and let M be
the maximum size of an r-net in B(x, r), taken over all x ∈ X and all r > 0. Then
M ≤ D, since every point in a maximal r-net inside B(x, r) is contained in one of
the covering balls of radius r/2, and each such ball can contain at most one point
from the r-net. By analogy with previous notation, we use M cl and Mo for strict
and non-strict nets respectively.

3. Boundedness of averaging operators on geometrically doubling spaces

The following proof reminds the reader of the fact that bounded continuous
functions with bounded support are dense in Lp for 1 ≤ p < ∞, and for these
functions, averages converge in norm as r → 0.

Theorem 3.1. (Lp-Lebesgue differentiation) Let (X, d, µ) be a metric measure

space, and let 1 ≤ p < ∞. If there is a constant C > 0 such that supr>0‖Ar‖Lp(µ)→Lp(µ)

≤ C, then for every f ∈ Lp(µ), limr→0Arf = f in Lp.

Proof. Given any sequence {rn}n≥1 satisfying rn → 0, we may suppose that
rn ≤ 1, by disregarding a finite number of terms, if needed. We may also suppose
that C ≥ 1 (else, replace it by 1).

Recall that in metric measure spaces the continuous functions that belong to Lp

are dense in Lp, by the standard argument whereby the case of real valued functions is
reduced to the case of non-negative functions, which by successive approximations is
reduced first, to the case of simple functions, then to indicator functions of measurable
sets, and finally, to indicator functions of closed sets F (with finite measure); for these
functions the result is true by the Tietze–Urysohn extension theorem: given ε > 0 we
choose O open such that F ⊂ O and µ(O\F ) < ε; then we extend g : Oc∪F → {0, 1}
given by g = 1 on F , g = 0 on Oc, to a continuous function G : X → [0, 1].

Let z ∈ X, let ε > 0, and let f ∈ Lp(µ). Then there exist t ≫ 0 and R ≫ 0 such
that

‖f − f 1B(z,R)∩{|f |≤t}‖p <
ε

6C
.

Next we choose a continuous function g such that −t ≤ g ≤ t, supp g ⊂ B(z, R + 1)
and

‖f 1B(z,R)∩{|f |≤t} − g‖p <
ε

6C
.

By the triangle inequality,

‖f − g‖p <
ε

3C
.

Now g is continuous, so for all x ∈ X, limn Arng(x) = g(x). Since for all n ≥ 1,

|Arng(x)− g(x)|p ≤ (2t)p 1B(z,R+2)(x) ∈ L1(µ),

by the dominated convergence theorem, limn ‖Arng − g‖p = 0. Hence,

lim sup
n

‖Arnf − f‖p ≤ sup
n

‖Arnf − Arng‖p + lim
n

‖Arng − g‖p + ‖g − f‖p

<
ε

3
+

ε

3C
< ε. �

Definition 3.2. We call

(2) as(y) :=

ˆ

X

1B(y,s)(x)

µB(x, s)
dµ(x)

the conjugate function to the averaging operator As.
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As it happens with averaging operators, the conjugate function as is well defined
a.e., when y belongs to the support of µ. If one wishes, it can be defined everywhere
via the usual conventions 0/0 = 0 · ∞ = 0, and 1/0 = ∞. These handle all the cases
where the denominator vanishes.

Theorem 3.3. Let (X, d, µ) be a metric measure space. The averaging operator

As is bounded on L1(µ) if and only if as ∈ L∞(µ), in which case ‖As‖L1(µ)→L1(µ) =
‖as‖∞.

Proof. Let 0 ≤ f ∈ L1(µ), and suppose as ∈ L∞(µ). Since by Fubini–Tonelli

‖Asf‖L1 =

ˆ

X

Asf(x) dµ(x) =

ˆ

X

ˆ

X

1B(x,s)(y)

µB(x, s)
f(y) dµ(y) dµ(x)(3)

=

ˆ

X

f(y)

ˆ

X

1B(y,s)(x)

µB(x, s)
dµ(x) dµ(y) =

ˆ

X

f(y) as(y) dµ(y),(4)

it follows from Hölder’s inequality that ‖As‖L1(µ)→L1(µ) ≤ ‖as‖∞.
On the other hand, we claim that if ‖As‖L1(µ)→L1(µ) ≤ C, then ‖as‖∞ ≤ C.

Towards a contradiction, suppose C < ‖as‖∞ (including the case ‖as‖∞ = ∞). Then
there is a t > C and a measurable set At such that At ⊂ {as > t} and 0 < µAt < ∞.
Let f := 1At

∈ L1(µ). Then

�(5) ‖Asf‖L1 =

ˆ

X

f(y) as(y) dµ(y) >

ˆ

At

t dµ(y) = tµ(At) > C‖f‖L1.

Definition 3.4. We say that a measure µ satisfies a local comparability condition

if there exists a constant C ∈ [1,∞) such that for all pairs of points x, y ∈ X and
every r > 0, whenever d(x, y) < r, we have µ(B(x, r)) ≤ Cµ(B(y, r)).

The preceding definition comes from [NaTa, p. 737]. There, local comparability is
called a “mild uniformity assumption”; the term “local comparability” was introduced
in [Al2], and used also in [Al1]. As indicated in [NaTa, p. 737], if µ satisfies a C local
comparability condition, then as(y) ≤ C, so ‖As‖L1→L1 ≤ C.

It is natural to ask under which conditions one can have uniform boundedness
of Ar without local comparability. In [Al2, Example 4.1] a metric measure space is
exhibited where the measure lacks local comparability, and ‖As‖Lp→Lp is unbounded
for all p ∈ [1,∞). Also, it is shown in [Al2, Theorem 4.8] that on R, there is a
measure µ such that the right directional averaging operator

Ar
s,µf(x) :=

1

µ([x, x+ s])

ˆ

[x,x+s]

f(y) dµ(y)

is unbounded on L1(µ) for s = 1.
On the other hand, the uniform L1 boundedness of the operators Ar was shown

to hold for R
d in two special cases, despite the lack of local comparability: the

exponential density in dimension one, and the standard gaussian measures in every
dimension (cf. [Al2, Theorems 4.2 and 4.3]).

Here we obtain the general result: Averaging operators are L1 bounded, uniformly
on r, for every locally finite measure in any geometrically doubling metric measure
space, not just in R

d.

Theorem 3.5. Let (X, d, µ) be a geometrically doubling metric measure space,

with doubling constant D, and let M be the maximum cardinality of any r-net in

B(x, r), where the maximum is taken over all x ∈ X and all r > 0. Then for every
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s > 0, ‖As‖L1(µ)→L1(µ) ≤ M ≤ D. Since ‖As‖L∞(µ)→L∞(µ) = 1, for 1 < p < ∞ we

have ‖As‖Lp(µ)→Lp(µ) ≤ M1/p by interpolation.

Proof. Let X be geometrically doubling with constant D, and let M be the
maximum size of an r-net in B(x, r). As was noted before, M ≤ D. By disregarding
a set of measure zero if needed, we suppose that X = supp µ, so every ball has
positive measure. Fix y ∈ X. We want to show that as(y) ≤ M , and then the result
follows from Theorem 3.3.

First we claim that b1 := inf{µB(x, s) : x ∈ B(y, s)} > 0. To see why, select
a sequence {xn}n≥1 of points in B(y, s) so that limn µB(xn, s) = b1. Since X is
geometrically doubling, B(y, s) can be covered by at most D balls of radius s/2, so at
least one of these balls, say, B(w, s/2), contains an infinite subsequence from {xn}n≥1,
which after relabelling, we also denote by {xn}n≥1. Then b1 ≥ µB(w, s/2) > 0,
since for all n ≥ 1, B(w, s/2) ⊂ B(xn, s). Now take 0 < ε ≪ 1, and choose
u1 ∈ B(y, s) so that µB(u1, s) < (1 + ε)b1; let b2 := inf{µB(x, s) : x ∈ B(y, s) \
B(u1, s)}, and select u2 ∈ B(y, s) \ B(u1, s) so that µB(u2, s) < (1 + ε)b2; repeat,

with bk+1 := inf{µB(x, s) : x ∈ B(y, s) \
⋃k

1 B(ui, s)}, uk+1 ∈ B(y, s) \
⋃k

1 B(ui, s),
and µB(uk+1, s) < (1 + ε)bk+1. Since the points ui form an s-net in B(y, s), there is
an m ≤ M such that B(y, s) \

⋃m
1 B(ui, s) = ∅, and then the process stops.

Next, fix x ∈ B(y, s), and let i be the first index such that x ∈ B(ui, s). Then

1B(y,s)(x)

µB(x, s)
≤ (1 + ε)

1B(y,s)∩B(ui,s)(x)

µB(ui, s)
≤ (1 + ε)

m
∑

j=1

1B(y,s)∩B(uj ,s)(x)

µB(uj, s)
,

so

as(y) =

ˆ

X

1B(y,s)(x)

µB(x, s)
dµ(x) ≤

ˆ

X

(1 + ε)
m
∑

j=1

1B(y,s)∩B(uj ,s)(x)

µB(uj, s)
dµ(x)

≤ (1 + ε)

ˆ

X

m
∑

j=1

1B(uj ,s)(x)

µB(uj, s)
dµ(x) ≤ (1 + ε)M,

and ‖As‖L1(µ)→L1(µ) ≤ M follows by letting ε ↓ 0. It is obvious that for all s > 0,
‖As‖L∞(µ)→L∞(µ) = 1 (we always have ‖As‖L∞(µ)→L∞(µ) ≤ 1, since averages never
exceed a supremum; for the other inequality, just take f = 1X). Thus, by a standard
interpolation argument, or simply by Jensen’s inequality (cf. [Al2, Theorem 2.10])
for all 1 < p < ∞ we have ‖As‖Lp(µ)→Lp(µ) ≤ M1/p. �

While the bounds given in the preceding theorem do not seem very tight, they
are. Adapting some arguments from [Al4], we show next that it is possible to have
‖Acl

1,µ‖L1(µ)→L1(µ) = M cl = Dcl, so the bounds from Theorem 3.5 cannot in general be
improved. The exponential dependency on the dimension of the space was already
known in some natural cases: for the standard gaussian measure γd on (Rd, ‖·‖2), for
1 ≤ p < ∞, and for every d sufficiently large, the weak type (p, p) constants satisfy
∥

∥

∥
A√

3d−3

2

∥

∥

∥

Lp→Lp,∞
> 1.019d/p, cf. [Al2, Theorem 4.3].

Recall that balls with respect to ‖ · ‖∞, the ℓ∞ norm on R
d, are cubes with sides

parallel to the axes.

Theorem 3.6. There exists a discrete measure µ on (Rd, ‖ · ‖∞) such that

‖Acl
1,µ‖L1(µ)→L1(µ) = 2d = M cl = Dcl.

Proof. That 2d = M cl = Dcl is clear: consider Bcl(0, 1) = [−1, 1]d; its vertices
form a strict 1-net in Bcl(0, 1), so 2d ≤ M cl. Also, the translates of [0, 1]d that are
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contained in [−1, 1]d and share a vertex with [−1, 1]d form a cover of [−1, 1]d, so
2d ≥ Dcl.

Let {x1, . . . , x2d} be an enumeration of the vertices of [−3/4, 3/4]d. For n ≥ 1,

set µn := n−1δ3ne1 +
∑2d

i=1 δxi+3ne1, and let µ :=
∑∞

n=1 µn. If fn := n13ne1 , then
‖fn‖L1(µ) = 1 and ‖Acl

1,µfn‖L1(µ) > 2dn/(n + 1). �

Putting together Theorems 3.1, 3.3, and 3.5, we obtain the following

Corollary 3.7. Suppose (X, d, µ) is either a geometrically doubling metric mea-

sure space, or µ satisfies a local comparability condition. Then for every f ∈ Lp(µ),
1 ≤ p < ∞, we have limr→0Arf = f in Lp.

Corollary 3.8. Suppose (X, d, µ) is either a geometrically doubling metric mea-

sure space, or µ satisfies a local comparability condition. Then for all f ∈ L1
loc(µ),

Mf(x) ≥ |f |(x) almost everywhere.

Proof. This follows from Corollary 3.7, since from L1 convergent sequences one
can always extract subsequences converging a.e., and for every r > 0, Mf(x) ≥
Ar|f |(x). �

The part of the preceding corollary dealing with geometrically doubling metric
spaces had been originally obtained (cf. [Al3, Corollary 2.10]) by using a result of
Hytönen (cf. [Hy, Lemma 3.3]) on the existence of arbitrarily small doubling balls,
for general measures in geometrically doubling metric measure spaces.

In view of the exponential increase of the bounds, for the standard gaussian
measure γd on (Rd, ‖ · ‖2), one might suspect that in the infinite dimensional case
the uniform boundedness of the averaging operators can fail. It follows from a result
of Preiss that this is indeed the case.

Corollary 3.9. There is a gaussian measure γ on an infinite dimensional sepa-

rable Hilbert space H , for which supr>0 ‖Ar‖Lp(γ)→Lp(γ) = ∞ whenever 1 ≤ p < ∞.

Proof. By [Pr], there exists a gaussian probability γ on a separable Hilbert space
H and a Borel subset C with 0 < γC < 1, such that γ-a.e. x,

lim
r→0

γ(C ∩B(x, r))

γ(B(x, r))
= 0.

Fix p ∈ [1,∞). By Theorem 3.1, if supr>0 ‖Ar‖Lp(µ)→Lp(µ) < ∞, then limr→0 ‖Ar1C−
1C‖p = 0, so it is possible to extract a sequence rn → 0 such that γ a.e. x,

lim
n

γ(C ∩B(x, rn))

γ(B(x, rn))
= 1C(x),

which is a contradiction. �
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